HRCal: An effective calibration system for heart rate detection during exercising
Heart rate directly reflects heart health and the detection of heart rate contributes to finding the abnormal performance of heart activity in a timely manner. Nevertheless, there is scope for a significant improvement in current heart rate detection systems and devices, especially during strenuous...
Saved in:
Published in | Journal of network and computer applications Vol. 136; pp. 1 - 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1084-8045 1095-8592 |
DOI | 10.1016/j.jnca.2019.03.007 |
Cover
Abstract | Heart rate directly reflects heart health and the detection of heart rate contributes to finding the abnormal performance of heart activity in a timely manner. Nevertheless, there is scope for a significant improvement in current heart rate detection systems and devices, especially during strenuous exercise. Motion compensation algorithm is used in most current systems to improve the monitoring accuracy, but it is limited by sensors and its performance is not satisfactory. In this paper, we propose HRCal, a novel Heart Rate Calibration System, which establishes a Long Short-Term Memory (LSTM) model to calibrate the detection of heart rate based on multisensor data fusion. Specifically, HRCal utilizes the built-in sensors (e.g. accelerometer, gyroscope and magnetometer) from smart devices (smartphones and sports watches) to collect users' motion data. Then a LSTM model is proposed and trained with different features to improve the accuracy and reliability of heart rate detection. In addition, we also elaborately design an evaluation scheme to compare HRCal with other approaches. We have fully implemented HRCal on Android platform and the experimental results (8 subjects) demonstrate that HRCal has a remarkable effect on common sports watches, to improve their accuracy of heart rate detection in physical training (up to 12.5% for moto 360 and 6.8% for Mio Alpha). |
---|---|
AbstractList | Heart rate directly reflects heart health and the detection of heart rate contributes to finding the abnormal performance of heart activity in a timely manner. Nevertheless, there is scope for a significant improvement in current heart rate detection systems and devices, especially during strenuous exercise. Motion compensation algorithm is used in most current systems to improve the monitoring accuracy, but it is limited by sensors and its performance is not satisfactory. In this paper, we propose HRCal, a novel Heart Rate Calibration System, which establishes a Long Short-Term Memory (LSTM) model to calibrate the detection of heart rate based on multisensor data fusion. Specifically, HRCal utilizes the built-in sensors (e.g. accelerometer, gyroscope and magnetometer) from smart devices (smartphones and sports watches) to collect users' motion data. Then a LSTM model is proposed and trained with different features to improve the accuracy and reliability of heart rate detection. In addition, we also elaborately design an evaluation scheme to compare HRCal with other approaches. We have fully implemented HRCal on Android platform and the experimental results (8 subjects) demonstrate that HRCal has a remarkable effect on common sports watches, to improve their accuracy of heart rate detection in physical training (up to 12.5% for moto 360 and 6.8% for Mio Alpha). |
Author | Yu, Shui Niu, Jianwei Jin, Xin Gu, Fei Ouyang, Zhenchao |
Author_xml | – sequence: 1 givenname: Xin surname: Jin fullname: Jin, Xin organization: State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering Beihang University, Beijing 100191, China – sequence: 2 givenname: Fei surname: Gu fullname: Gu, Fei organization: State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering Beihang University, Beijing 100191, China – sequence: 3 givenname: Jianwei surname: Niu fullname: Niu, Jianwei email: niujianwei@buaa.edu.cn organization: State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering Beihang University, Beijing 100191, China – sequence: 4 givenname: Shui surname: Yu fullname: Yu, Shui organization: Deakin University, Australia – sequence: 5 givenname: Zhenchao surname: Ouyang fullname: Ouyang, Zhenchao organization: State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering Beihang University, Beijing 100191, China |
BookMark | eNp9kEFOwzAQRS0EEm3hAqx8gYRxnDgOYlNVQJEqIRCsLceZgKM0Qbap6O1xKCsWXc2M7Tf6fnNyOowDEnLFIGXAxHWXdoPRaQasSoGnAOUJmTGoikQWVXY69TJPJOTFOZl73wGAyCs-I8_rl5Xub-hyoNi2aILdITW6t7XTwY4D9XsfcEvb0dEP1C7QeI60wTC9jffNl7PDO8VvdMb62F6Qs1b3Hi__6oK83d-9rtbJ5unhcbXcJIYDhMSwGImhxrIAzrGtGyZyk9eiFAgiixM3UghZmoZlWd5Kk5VGNrUu2roQWvMFkYe9xo3eO2yVseE3c3Da9oqBmtSoTk1q1KRGAVdRTUSzf-ins1vt9seh2wOE8VM7i055Y3Ew2FgXXahmtMfwH156gD0 |
CitedBy_id | crossref_primary_10_1016_j_rser_2020_110223 crossref_primary_10_24969_hvt_2024_536 |
Cites_doi | 10.1016/j.inffus.2016.09.005 10.1109/JBHI.2013.2264358 10.1016/j.apenergy.2005.08.006 10.3390/s17010111 10.1109/TBME.2015.2406332 10.1007/s10488-013-0528-y 10.1109/TBME.2005.869784 10.1109/5.554205 10.1111/cpf.12203 10.1016/j.jtcvs.2014.05.014 10.1109/TSC.2016.2626372 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jnca.2019.03.007 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1095-8592 |
EndPage | 10 |
ExternalDocumentID | 10_1016_j_jnca_2019_03_007 S1084804519301122 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K WH7 ZU3 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS FGOYB HZ~ R2- SEW UHS XPP ZMT ~HD |
ID | FETCH-LOGICAL-c300t-c11081eae75033efbd164c4b676e062d163c86687cd1224f8c27c8dba5fb56aa3 |
IEDL.DBID | .~1 |
ISSN | 1084-8045 |
IngestDate | Wed Oct 01 03:43:42 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Fri Feb 23 02:12:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multisensor data fusion LSTM Wearable devices Heart rate calibration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-c11081eae75033efbd164c4b676e062d163c86687cd1224f8c27c8dba5fb56aa3 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jnca_2019_03_007 crossref_primary_10_1016_j_jnca_2019_03_007 elsevier_sciencedirect_doi_10_1016_j_jnca_2019_03_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-15 |
PublicationDateYYYYMMDD | 2019-06-15 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of network and computer applications |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fukushima, Kawanaka, Bhuiyan, Oguri (bib6) 2012 Yousefi, Nourani, Ostadabbas, Panahi (bib27) 2014; 18 Lipton, Kale, Elkan, Wetzel (bib18) 2015 Tu, Huang, Bi, Xing (bib25) 2017 Ahmed, Chowdhury, Sinharay, Mukhopadhyay, Ghose, Chakravarty (bib1) 2017 Casacanditella, Cosoli, Casaccia, Tomasini, Scalise (bib3) 2016 Palinkas, Horwitz, Green, Wisdom, Duan, Hoag wood (bib24) 2015; 42 Kim, Yoo (bib16) 2006; 53 Barbosa, da Costa, Silva, Azevedo, Pastre, Vanderlei (bib2) 2016; 36 Hou, Lian, Yao, Yuan (bib13) 2006; 83 Jin, Niu, Gu (bib15) 2017 Gu, Niu, Das, He (bib9) 2018; 11 Liggins, Hall, Llinas (bib17) 2017 Garmin (bib7) 2018 Hu, Gao, Liu, Zhu, Wang, Wang, Wu, Li, Gu, Yang (bib14) 2017 Ouyang, Hu, Niu, Qi (bib23) 2017 Hormann, Hesse, Adams, Rückert (bib12) 2016 Fajkus, Nedoma, Martinek, Vasinek, Nazeran, Siska (bib5) 2017; 17 Zhang, Pi, Liu (bib29) 2015; 62 Gustafson-Bold, Thome (bib10) 1996; vol. 2 Moto (bib20) 2018 Nishimura, Otto, Bonow, Carabello, Erwin, Guyton, OGara, Ruiz, Skubas, Sorajja (bib21) 2014; 148 Cattivelli, Garudadri (bib4) 2009 (bib19) 2018 Xiaomi (bib26) 2018 Olah (bib22) 2018 Zhang (bib28) 2015; 62 Hall, Llinas (bib11) 1997; 85 Gravina, Alinia, Ghasemzadeh, Fortino (bib8) 2017; 35 Lipton (10.1016/j.jnca.2019.03.007_bib18) 2015 Kim (10.1016/j.jnca.2019.03.007_bib16) 2006; 53 Gustafson-Bold (10.1016/j.jnca.2019.03.007_bib10) 1996; vol. 2 Olah (10.1016/j.jnca.2019.03.007_bib22) 2018 (10.1016/j.jnca.2019.03.007_bib19) 2018 Nishimura (10.1016/j.jnca.2019.03.007_bib21) 2014; 148 Hu (10.1016/j.jnca.2019.03.007_bib14) 2017 Liggins (10.1016/j.jnca.2019.03.007_bib17) 2017 Fukushima (10.1016/j.jnca.2019.03.007_bib6) 2012 Casacanditella (10.1016/j.jnca.2019.03.007_bib3) 2016 Gu (10.1016/j.jnca.2019.03.007_bib9) 2018; 11 Yousefi (10.1016/j.jnca.2019.03.007_bib27) 2014; 18 Jin (10.1016/j.jnca.2019.03.007_bib15) 2017 Zhang (10.1016/j.jnca.2019.03.007_bib28) 2015; 62 Ahmed (10.1016/j.jnca.2019.03.007_bib1) 2017 Ouyang (10.1016/j.jnca.2019.03.007_bib23) 2017 Hou (10.1016/j.jnca.2019.03.007_bib13) 2006; 83 Tu (10.1016/j.jnca.2019.03.007_bib25) 2017 Fajkus (10.1016/j.jnca.2019.03.007_bib5) 2017; 17 Gravina (10.1016/j.jnca.2019.03.007_bib8) 2017; 35 Xiaomi (10.1016/j.jnca.2019.03.007_bib26) 2018 Hall (10.1016/j.jnca.2019.03.007_bib11) 1997; 85 Barbosa (10.1016/j.jnca.2019.03.007_bib2) 2016; 36 Moto (10.1016/j.jnca.2019.03.007_bib20) 2018 Palinkas (10.1016/j.jnca.2019.03.007_bib24) 2015; 42 Garmin (10.1016/j.jnca.2019.03.007_bib7) 2018 Zhang (10.1016/j.jnca.2019.03.007_bib29) 2015; 62 Cattivelli (10.1016/j.jnca.2019.03.007_bib4) 2009 Hormann (10.1016/j.jnca.2019.03.007_bib12) 2016 |
References_xml | – volume: 18 start-page: 670 year: 2014 end-page: 681 ident: bib27 article-title: A motion-tolerant adaptive algorithm for wearable photoplethysmographic biosensors publication-title: IEEE J. Biomed. Health Inform. – volume: 53 start-page: 566 year: 2006 end-page: 568 ident: bib16 article-title: Motion artifact reduction in photoplethysmogra phy using independent component analysis publication-title: IEEE Trans. Biomed. Eng. – volume: 83 start-page: 1033 year: 2006 end-page: 1046 ident: bib13 article-title: Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data-fusion technique publication-title: Appl. Energy – volume: 11 start-page: 262 year: 2018 end-page: 276 ident: bib9 article-title: Runnerpal: a runner monitoring and advisory system based on smart devices publication-title: IEEE Transact. Serv. Comput. – volume: 62 start-page: 522 year: 2015 end-page: 531 ident: bib29 article-title: Troika: a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – year: 2017 ident: bib17 article-title: Handbook of Multisensor Data Fusion: Theory and Practice – start-page: 183 year: 2016 end-page: 188 ident: bib12 article-title: A software assistant for user-centric calibration of a wireless body sensor publication-title: Wearable andImplantable Body Sensor Networks (BSN), 2016 IEEE 13th International Conference on – year: 2018 ident: bib22 article-title: Understanding Lstm Networks – volume: 85 start-page: 6 year: 1997 end-page: 23 ident: bib11 article-title: An introduction to multisensor data fusion publication-title: Proc. IEEE – start-page: 1 year: 2017 end-page: 7 ident: bib15 article-title: Ccms: a calorie consumption monitoring system for exercising with least-squares calibration publication-title: GLOBECOM 2017-2017 IEEE Global Communications Conference – volume: 62 start-page: 1902 year: 2015 end-page: 1910 ident: bib28 article-title: Photoplethysmography-based heart rate monitoring in physical activities via joint sparse spectrum reconstruction publication-title: IEEE Trans. Biomed. Eng. – year: 2018 ident: bib19 publication-title: Mio alpha 2 – year: 2017 ident: bib14 article-title: Report on Cardiovascular Diseases in china 2016 – volume: 42 start-page: 533 year: 2015 end-page: 544 ident: bib24 article-title: Purposeful sampling for qualitative data collection and analysis in mixed method implementation research publication-title: Adm. Policy Ment. Health – volume: 35 start-page: 68 year: 2017 end-page: 80 ident: bib8 article-title: Multi-sensor fusion in body sensor networks: state-of-the-art and research challenges publication-title: Inf. Fusion – volume: 36 start-page: 112 year: 2016 end-page: 117 ident: bib2 article-title: Comparison of polar R rs800g3 heart rate monitor with polar R s810i and electrocardiogram to obtain the series of rr intervals and analysis of heart rate variability at rest publication-title: Clin. Physiol. Funct. Imaging – year: 2018 ident: bib26 article-title: Mi Band 3 – start-page: 114 year: 2009 end-page: 119 ident: bib4 article-title: Noninvasive cuffless estimation of blood pressure from pulse arrival time and heart rate with adaptive calibration publication-title: Wearable and Implantable Body Sensor Networks, 2009. BSN 2009. Sixth International Workshop on. IEEE – start-page: 1 year: 2017 end-page: 6 ident: bib23 article-title: An Asymmetrical Acoustic Field Detection System for Daily Tooth Brushing Monitoring – year: 2018 ident: bib7 article-title: Garmin Fnix 3 Hr – volume: 17 start-page: 111 year: 2017 ident: bib5 article-title: A non-invasive multichannel hybrid fiber-optic sensor system for vital sign monitoring publication-title: Sensors – year: 2018 ident: bib20 article-title: Moto 360 – start-page: 2901 year: 2012 end-page: 2904 ident: bib6 article-title: Estimating heart rate using wrist-type photoplethysmography and acceleration sensor while running publication-title: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE – start-page: 3568 year: 2016 end-page: 3571 ident: bib3 article-title: In- direct measurement of the carotid arterial pressure from vibrocardiographic signal: calibration of the waveform and comparison with photoplethysmo graphic signal publication-title: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the – start-page: 1 year: 2017 end-page: 8 ident: bib25 article-title: Fitbeat: a lightweight system for accurate heart rate measurement during exercise publication-title: Smart Computing (SMARTCOMP), 2017 IEEE International Conference on – year: 2015 ident: bib18 article-title: Learning to Diagnose with Lstm Recurrent Neural Networks – volume: 148 start-page: e1 year: 2014 end-page: e132 ident: bib21 article-title: 2014 aha/acc guideline for the management of patients with valvular heart disease: a report of the american college of cardiology/american heart association task force on practice guidelines publication-title: J. Thorac. Cardiovasc. Surg. – start-page: 1 year: 2017 end-page: 5 ident: bib1 article-title: A personalized on-line calibration for photoplethysmograph based wrist wearable sensor publication-title: Wireless Summit (GWS), 2017, Global – volume: vol. 2 start-page: 1283 year: 1996 end-page: 1285 ident: bib10 article-title: Cross-calibration of two smal-l footprint sensors publication-title: Geoscience and Remote Sensing Symposium, 1996. IGARSS '96. ‘Remote Sensing for a Sustainable Future’, International – year: 2017 ident: 10.1016/j.jnca.2019.03.007_bib17 – volume: 35 start-page: 68 year: 2017 ident: 10.1016/j.jnca.2019.03.007_bib8 article-title: Multi-sensor fusion in body sensor networks: state-of-the-art and research challenges publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.09.005 – volume: 18 start-page: 670 issue: 2 year: 2014 ident: 10.1016/j.jnca.2019.03.007_bib27 article-title: A motion-tolerant adaptive algorithm for wearable photoplethysmographic biosensors publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2013.2264358 – volume: 83 start-page: 1033 issue: 9 year: 2006 ident: 10.1016/j.jnca.2019.03.007_bib13 article-title: Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data-fusion technique publication-title: Appl. Energy doi: 10.1016/j.apenergy.2005.08.006 – volume: 17 start-page: 111 issue: 1 year: 2017 ident: 10.1016/j.jnca.2019.03.007_bib5 article-title: A non-invasive multichannel hybrid fiber-optic sensor system for vital sign monitoring publication-title: Sensors doi: 10.3390/s17010111 – volume: 62 start-page: 1902 issue: 8 year: 2015 ident: 10.1016/j.jnca.2019.03.007_bib28 article-title: Photoplethysmography-based heart rate monitoring in physical activities via joint sparse spectrum reconstruction publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2406332 – start-page: 1 year: 2017 ident: 10.1016/j.jnca.2019.03.007_bib23 – volume: 42 start-page: 533 issue: 5 year: 2015 ident: 10.1016/j.jnca.2019.03.007_bib24 article-title: Purposeful sampling for qualitative data collection and analysis in mixed method implementation research publication-title: Adm. Policy Ment. Health doi: 10.1007/s10488-013-0528-y – start-page: 1 year: 2017 ident: 10.1016/j.jnca.2019.03.007_bib1 article-title: A personalized on-line calibration for photoplethysmograph based wrist wearable sensor – volume: 53 start-page: 566 issue: 3 year: 2006 ident: 10.1016/j.jnca.2019.03.007_bib16 article-title: Motion artifact reduction in photoplethysmogra phy using independent component analysis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.869784 – start-page: 1 year: 2017 ident: 10.1016/j.jnca.2019.03.007_bib25 article-title: Fitbeat: a lightweight system for accurate heart rate measurement during exercise – year: 2017 ident: 10.1016/j.jnca.2019.03.007_bib14 – year: 2018 ident: 10.1016/j.jnca.2019.03.007_bib7 – start-page: 183 year: 2016 ident: 10.1016/j.jnca.2019.03.007_bib12 article-title: A software assistant for user-centric calibration of a wireless body sensor – start-page: 3568 year: 2016 ident: 10.1016/j.jnca.2019.03.007_bib3 article-title: In- direct measurement of the carotid arterial pressure from vibrocardiographic signal: calibration of the waveform and comparison with photoplethysmo graphic signal – volume: vol. 2 start-page: 1283 year: 1996 ident: 10.1016/j.jnca.2019.03.007_bib10 article-title: Cross-calibration of two smal-l footprint sensors – start-page: 114 year: 2009 ident: 10.1016/j.jnca.2019.03.007_bib4 article-title: Noninvasive cuffless estimation of blood pressure from pulse arrival time and heart rate with adaptive calibration – start-page: 2901 year: 2012 ident: 10.1016/j.jnca.2019.03.007_bib6 article-title: Estimating heart rate using wrist-type photoplethysmography and acceleration sensor while running – volume: 85 start-page: 6 issue: 1 year: 1997 ident: 10.1016/j.jnca.2019.03.007_bib11 article-title: An introduction to multisensor data fusion publication-title: Proc. IEEE doi: 10.1109/5.554205 – year: 2018 ident: 10.1016/j.jnca.2019.03.007_bib26 – year: 2015 ident: 10.1016/j.jnca.2019.03.007_bib18 – volume: 62 start-page: 522 issue: 2 year: 2015 ident: 10.1016/j.jnca.2019.03.007_bib29 article-title: Troika: a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 36 start-page: 112 issue: 2 year: 2016 ident: 10.1016/j.jnca.2019.03.007_bib2 article-title: Comparison of polar R rs800g3 heart rate monitor with polar R s810i and electrocardiogram to obtain the series of rr intervals and analysis of heart rate variability at rest publication-title: Clin. Physiol. Funct. Imaging doi: 10.1111/cpf.12203 – year: 2018 ident: 10.1016/j.jnca.2019.03.007_bib22 – year: 2018 ident: 10.1016/j.jnca.2019.03.007_bib19 – year: 2018 ident: 10.1016/j.jnca.2019.03.007_bib20 – start-page: 1 year: 2017 ident: 10.1016/j.jnca.2019.03.007_bib15 article-title: Ccms: a calorie consumption monitoring system for exercising with least-squares calibration – volume: 148 start-page: e1 issue: 1 year: 2014 ident: 10.1016/j.jnca.2019.03.007_bib21 article-title: 2014 aha/acc guideline for the management of patients with valvular heart disease: a report of the american college of cardiology/american heart association task force on practice guidelines publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2014.05.014 – volume: 11 start-page: 262 issue: 2 year: 2018 ident: 10.1016/j.jnca.2019.03.007_bib9 article-title: Runnerpal: a runner monitoring and advisory system based on smart devices publication-title: IEEE Transact. Serv. Comput. doi: 10.1109/TSC.2016.2626372 |
SSID | ssj0006493 |
Score | 2.2122786 |
Snippet | Heart rate directly reflects heart health and the detection of heart rate contributes to finding the abnormal performance of heart activity in a timely manner.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Heart rate calibration LSTM Multisensor data fusion Wearable devices |
Title | HRCal: An effective calibration system for heart rate detection during exercising |
URI | https://dx.doi.org/10.1016/j.jnca.2019.03.007 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-8592 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006493 issn: 1084-8045 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-8592 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006493 issn: 1084-8045 databaseCode: ACRLP dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-8592 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006493 issn: 1084-8045 databaseCode: .~1 dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-8592 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006493 issn: 1084-8045 databaseCode: AIKHN dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-8592 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006493 issn: 1084-8045 databaseCode: AKRWK dateStart: 19960101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvejBR1Wsj7IHb7I2z030VopSFQs-Cr0t2UegpcQi8epvdybZaAXpwVs27ECYmcxMst98A3CuMGUrX1mujLA8yq3HlfZznuaJr9HmYZJQ7_DjWIwm0f00nrZg2PTCEKzSxf46plfR2t3pO232l7NZ_8UnKviKHoWcNKA4TOxf6NOXnz8wDxFdOZB9xGm3a5ypMV5z-m2AKdARnSZ_J6eVhHO7C9uuUmSD-mH2oGWLDuw0UxiYeyk7sLVCKbgPT6PnYba4ZoOC1VANjGYM7UBfxWQDVlM3M6xVGQ2zLhlxRTBjywqTVbC6b5G5UUx4eQCT25vX4Yi7sQlch55Xck3Ift9mtjqitLky-EmkIyUSYT0R4CrUqRBpog0dq-WpDhKdGpXFuYpFloWH0C7eCnsEzBiRidCzofWo4zRFC2YoEBkqIwMVdMFv9CW14xSn0RYL2YDH5pJ0LEnH0gsl6rgLF98yy5pRY-3uuDGD_OUXEkP-Grnjf8qdwCatCAzmx6fQLt8_7BmWHaXqVX7Vg43B3cNo_AWfUNbX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5Ke1APPqpife7BmyzNcxO9lWJJ7QPUFnpbso9AS4lF4v93J9lIBenBW14DYWbzzW72m28A7oVJ2cIVmgrFNA0y7VAh3YzGWeRKE3M_irB2eDJlyTx4WYSLBvTrWhikVVrsrzC9RGt7pWu92d0sl913F6XgS3kUHKSeweFWEBpMbkKrNxwl0x9AZsGj5dkHFA1s7UxF81rhnwOTBa3WafR3ftrKOYNjOLSTRdKr3ucEGjpvw1HdiIHY77INB1uqgqfwmrz10_UT6eWkYmsYQCMmFLgwxjCQSr2ZmOkqwX7WBUG5CKJ0UdKyclKVLhLbjckcnsF88DzrJ9R2TqDSd5yCSiT3uzrV5S6lzoQyqyIZCBYx7TDPnPkyZiyOpMKdtSyWXiRjJdIwEyFLU_8cmvlHri-AKMVS5jva1w4WncYmiKkxCBTOJD3hdcCt_cWllRXH7hZrXvPHVhx9zNHH3PG58XEHHn5sNpWoxs6nwzoM_NfQ4Ab1d9hd_tPuDvaS2WTMx8Pp6Ar28Q5yw9zwGprF55e-MbOQQtzaUfYN_PzZgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HRCal%3A+An+effective+calibration+system+for+heart+rate+detection+during+exercising&rft.jtitle=Journal+of+network+and+computer+applications&rft.au=Jin%2C+Xin&rft.au=Gu%2C+Fei&rft.au=Niu%2C+Jianwei&rft.au=Yu%2C+Shui&rft.date=2019-06-15&rft.pub=Elsevier+Ltd&rft.issn=1084-8045&rft.eissn=1095-8592&rft.volume=136&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1016%2Fj.jnca.2019.03.007&rft.externalDocID=S1084804519301122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1084-8045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1084-8045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1084-8045&client=summon |