Ludo game-based metaheuristics for global and engineering optimization

This paper proposes a Ludo game-based strategy to enhance the ability of swarm algorithms to solve numerous global optimization problems. The proposed strategy simulates the rules of playing the game Ludo using two or four players to perform the update process for different swarm intelligent behavio...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 84; p. 105723
Main Authors Singh, Prabhat R., Elaziz, Mohamed Abd, Xiong, Shengwu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2019
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2019.105723

Cover

Abstract This paper proposes a Ludo game-based strategy to enhance the ability of swarm algorithms to solve numerous global optimization problems. The proposed strategy simulates the rules of playing the game Ludo using two or four players to perform the update process for different swarm intelligent behaviors. The proposed approach is named the Ludo Game-based Swarm Intelligence (LGSI) Algorithm. The LGSI algorithm uses the concepts of two and four players to enhance the exploration and exploitation of the optimization methods. In the proposed LGSI, a player is represented by a swarm algorithm, for example, in the two-player concept; Moth Flame Optimization (MFO) and the Grasshopper Optimization Algorithm (GOA) are selected, while in the four-player version, two other algorithms, the Sine Cosine Algorithm (SCA) and Gray Wolf Optimization (GWO), are added. In the proposed LGSI algorithm, the functional behaviors of all the used algorithms are different; also, there is no similarity among algorithmic behaviors except for convergence towards the global optimum, which is a common interest for all. However, the other algorithms share the same platform with this strategy, so in this case, competitive behavior may not be underestimated. The proposed LGSI algorithm shares positions among all the algorithms used during the search for the optimal solution. The performance of the LGSI algorithm is tested on a set of CEC2005 benchmark problems and engineering problems and is compared with the original versions of the utilized algorithms and a variety of other state-of-the-art algorithms. The experimental results show that the LGSI algorithm can provide promising and competitive results. •There are two sets of hybrid algorithms have used to find global optima.•Ludo game used for maintaining a good balance between exploration and exploitation.•Each algorithm in Ludo method represents a player and population sizes are tokens.•Proposed algorithm is tested on 23 CEC Benchmark and 7 engineering design problems.•Performance of proposed algorithm is compared with well-known algorithms.
AbstractList This paper proposes a Ludo game-based strategy to enhance the ability of swarm algorithms to solve numerous global optimization problems. The proposed strategy simulates the rules of playing the game Ludo using two or four players to perform the update process for different swarm intelligent behaviors. The proposed approach is named the Ludo Game-based Swarm Intelligence (LGSI) Algorithm. The LGSI algorithm uses the concepts of two and four players to enhance the exploration and exploitation of the optimization methods. In the proposed LGSI, a player is represented by a swarm algorithm, for example, in the two-player concept; Moth Flame Optimization (MFO) and the Grasshopper Optimization Algorithm (GOA) are selected, while in the four-player version, two other algorithms, the Sine Cosine Algorithm (SCA) and Gray Wolf Optimization (GWO), are added. In the proposed LGSI algorithm, the functional behaviors of all the used algorithms are different; also, there is no similarity among algorithmic behaviors except for convergence towards the global optimum, which is a common interest for all. However, the other algorithms share the same platform with this strategy, so in this case, competitive behavior may not be underestimated. The proposed LGSI algorithm shares positions among all the algorithms used during the search for the optimal solution. The performance of the LGSI algorithm is tested on a set of CEC2005 benchmark problems and engineering problems and is compared with the original versions of the utilized algorithms and a variety of other state-of-the-art algorithms. The experimental results show that the LGSI algorithm can provide promising and competitive results. •There are two sets of hybrid algorithms have used to find global optima.•Ludo game used for maintaining a good balance between exploration and exploitation.•Each algorithm in Ludo method represents a player and population sizes are tokens.•Proposed algorithm is tested on 23 CEC Benchmark and 7 engineering design problems.•Performance of proposed algorithm is compared with well-known algorithms.
ArticleNumber 105723
Author Singh, Prabhat R.
Elaziz, Mohamed Abd
Xiong, Shengwu
Author_xml – sequence: 1
  givenname: Prabhat R.
  orcidid: 0000-0003-4847-7417
  surname: Singh
  fullname: Singh, Prabhat R.
  email: prabhatranjansingh68@gmail.com
  organization: School of Computer Science, Wuhan University of Technology, Wuhan, China
– sequence: 2
  givenname: Mohamed Abd
  orcidid: 0000-0002-7682-6269
  surname: Elaziz
  fullname: Elaziz, Mohamed Abd
  email: abd_el_aziz_m@yahoo.com
  organization: Department of mathematics, Faculty of Science, Zagazig University, 44519 Zagazig, Egypt
– sequence: 3
  givenname: Shengwu
  surname: Xiong
  fullname: Xiong, Shengwu
  email: xiongsw@whut.edu.cn
  organization: School of Computer Science, Wuhan University of Technology, Wuhan, China
BookMark eNp9kM9KAzEQh4NUsK2-gKe8wNYku_mz4EWKVaHgRc8hm51dU3aTkqSCPr1b68lDTzPMj2-Y-RZo5oMHhG4pWVFCxd1uZVKwK0ZoPQ24ZOUFmlMlWVELRWdTz4UqqroSV2iR0o5MUM3UHG22hzbg3oxQNCZBi0fI5gMO0aXsbMJdiLgfQmMGbHyLwffOA0Tnexz22Y3u22QX_DW67MyQ4OavLtH75vFt_VxsX59e1g_bwpaE5KLpOqEY47TpQEhBmTTUKlqVFRBQJSeylcSULbNU1orLmld8Co3iICg0pFwiddprY0gpQqety78X5GjcoCnRRx96p48-9NGHPvmYUPYP3Uc3mvh1Hro_QTA99ekg6mQdeAuti2CzboM7h_8AGwd7Uw
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106734
crossref_primary_10_1016_j_eswa_2020_113702
crossref_primary_10_1080_21681163_2021_2024088
crossref_primary_10_1007_s00521_024_10009_4
crossref_primary_10_1007_s00500_022_07604_9
crossref_primary_10_1007_s10586_024_04954_x
crossref_primary_10_1007_s10462_023_10403_9
crossref_primary_10_1007_s11831_024_10168_6
crossref_primary_10_1007_s10462_020_09952_0
crossref_primary_10_1016_j_asoc_2019_106002
crossref_primary_10_1016_j_eswa_2021_116468
crossref_primary_10_1007_s12652_022_03765_5
crossref_primary_10_1007_s00500_023_09025_8
crossref_primary_10_3390_e23040491
crossref_primary_10_1080_19942060_2022_2098826
crossref_primary_10_1016_j_asoc_2022_108562
crossref_primary_10_1007_s11831_023_09897_x
crossref_primary_10_1007_s10462_024_10981_2
crossref_primary_10_1109_ACCESS_2020_3012597
crossref_primary_10_1016_j_engappai_2022_105622
crossref_primary_10_1016_j_eswa_2023_122070
crossref_primary_10_1016_j_cma_2022_115652
crossref_primary_10_1371_journal_pone_0251204
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1007_s11831_022_09766_z
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_1016_j_eswa_2023_120905
crossref_primary_10_1007_s10462_023_10463_x
crossref_primary_10_1080_21642583_2024_2385310
crossref_primary_10_1007_s11227_021_03943_w
crossref_primary_10_1007_s00500_023_08468_3
crossref_primary_10_1007_s12652_020_02439_4
crossref_primary_10_1016_j_knosys_2020_105709
Cites_doi 10.1007/s12559-017-9542-9
10.1155/2018/4231647
10.1016/j.cma.2004.09.007
10.1016/j.eswa.2008.02.021
10.1007/s00158-008-0238-3
10.1109/SCEECS.2016.7509293
10.1016/j.apm.2018.07.044
10.5430/air.v4n2p22
10.1016/j.asoc.2017.06.044
10.1016/j.swevo.2016.01.002
10.1016/j.advengsoft.2017.01.004
10.1016/j.asoc.2009.08.031
10.1155/2017/6741972
10.1109/CEC.2016.7744378
10.1080/088395198117550
10.1007/s00366-011-0241-y
10.1016/j.asoc.2018.09.019
10.1109/TSMCB.2006.873185
10.1016/j.asoc.2012.11.026
10.1007/s11721-007-0001-1
10.1016/j.eswa.2019.03.043
10.1007/s10845-014-0970-z
10.1016/j.compstruc.2014.04.005
10.1016/j.knosys.2015.07.006
10.1155/2015/481360
10.1016/j.ccell.2017.07.004
10.1007/s00521-015-1870-7
10.1016/j.advengsoft.2016.01.008
10.1016/j.ins.2009.03.004
10.1016/j.swevo.2018.02.011
10.5954/ICAROB.2018.GS3-2
10.1016/0360-8352(96)00037-X
10.1016/j.compstruc.2012.07.010
10.1016/j.eswa.2017.04.023
10.1126/science.220.4598.671
10.1016/j.engappai.2006.03.003
10.1016/j.asoc.2017.09.039
10.1016/j.engappai.2017.10.024
10.1287/ijoc.2.1.4
10.1111/coin.12081
10.3233/JIFS-171001
10.1155/2016/7950348
10.1016/j.swevo.2018.01.001
10.1109/ICSCTI.2015.7489575
10.1109/JSEE.2015.00037
10.1016/j.asoc.2015.08.052
10.1016/j.eswa.2017.07.043
10.1109/ICEETS.2016.7583804
10.1080/10407790903116469
10.1049/iet-gtd.2015.0429
10.1109/SOCPAR.2014.7008044
10.1016/j.eswa.2018.05.040
10.1155/2018/4945157
10.1016/j.asoc.2018.02.049
10.1016/j.eswa.2015.04.055
10.1109/TSMCC.2010.2054080
10.1016/j.simpat.2017.04.001
10.1016/j.asoc.2015.02.014
10.1016/j.compstruc.2012.12.010
10.1007/s10489-017-1074-1
10.1016/j.advengsoft.2013.12.007
10.1007/s00521-014-1806-7
10.1109/TSMCB.2012.2227469
10.1007/s12293-013-0128-0
10.1016/j.ins.2019.04.022
10.1109/TEVC.2003.814902
10.1016/j.knosys.2015.12.022
10.1016/j.eswa.2018.06.023
10.1007/978-3-319-70139-4_15
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.105723
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2019_105723
S1568494619305046
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-bff682251bfe676127a1c81434e0e83507d70a3d2c1798579545434a85e61eb03
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Wed Oct 01 02:32:15 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Fri Feb 23 02:24:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ludo game strategy
Global optimization
Swarm intelligence
Engineering problems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-bff682251bfe676127a1c81434e0e83507d70a3d2c1798579545434a85e61eb03
ORCID 0000-0003-4847-7417
0000-0002-7682-6269
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2019_105723
crossref_primary_10_1016_j_asoc_2019_105723
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105723
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Cai, Wang (b98) 2010; 10
Xue, Zhang, Browne (b10) 2012; 43
Nenavath, Kumar Jatoth, Das (b67) 2018; 43
Bhattacharjee, Bhattacharya, Sharma (b42) 2016; 10
Zhang, Kang, Cheng, Wang (b61) 2018; 67
Caro, Ducatelle, Gambardella (b6) 2005
Ibrahim, Elaziz, Lu (b53) 2018; 108
Gutjahr (b100) 2007; 1
El Aziz, Ewees, Hassanien (b40) 2017; 83
Sapre, Mini (b51) 2018
S. Łukasik, P.A. Kowalski, M. Charytanowicz, P. Kulczycki, Data clustering with grasshopper optimization algorithm, 11 (2017) 71–74.
Qu, Zeng, Dai, Yi, He (b64) 2018; 2018
J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE International Conference on Particle Swarm Optimization, vol. 4, 1995, pp. 1942–1948.
Karaboga (b76) 2005
Saremi, Mirjalili, Lewis (b28) 2017; 105
Mittal, Singh, Sohi (b54) 2016; 2016
Mousavi, Bahreininejad, Musa, Yusof (b15) 2017; 28
S. Kirkpatrick, C.D. Gelatt, M.P. Vecch, Optimization by simulated annealing, 220 (4598) (2007) 671–680.
Neve, Kakandikar, Kulkarni (b45) 2017; 06
Xu, Chen, Luo, Zhang, Jiao, Zhang (b50) 2019; 492
R. Kaur, P. Luthra, Load balancing in cloud computing, 5 (8) (2017) 375–381.
Abd Elaziz, Ewees, Oliva, Duan, Xiong (b65) 2017
Nenavath, Jatoth (b66) 2018; 62
Dautenhahn (b19) 1998; 12
Zhang, Liu, Li, Jiang (b52) 2017
Cagnina, Esquivel, Coello Coello (b109) 2008; 32
Tharwat, Houssein, Ahmed, Hassanien, Gabel (b46) 2018; 48
Baykasotlu, Akpinar (b104) 2015; 37
(b36) 2018
Mirjalili (b27) 2015; 89
H.M. Zawbaa, E. Emary, B. Parv, M. Sharawi, Feature selection approach based on whale optimization algorithm, in: 2016 IEEE Congr. Evol. Comput. CEC 2016, 2016, pp. 4612–4617.
Glover (b33) 1990; 2
Jaganathan, Sabari (b13) 2018
Yang, Young (b31) 2006; 12
Ke, Zhang, Li, Du (b92) 2016; 17
Eskandar, Sadollah, Bahreininejad, Hamdi (b111) 2012; 110–111
Gupta, Deep, Bansal (b26) 2017; 33
Zhu, Xu, Li, Wu, Liu (b56) 2015; 26
Lee, Geem (b86) 2005; 194
Sharma, Sharma, Panigrahi, Kiran, Kumar (b24) 2016; 28
Krohling, Dos Santos Coelho (b95) 2006; 36
I. Kassabalidis, M.A. El-Sharkawi, R.J.I. Marks, P. Arabshahi, A.A. Gray, Swarm intelligence for routing in communication networks, in: GLOBECOM’01. IEEE Glob. Telecommun. Conf. (Cat. No.01CH37270), vol. 6, 2001, pp. 3613–3617.
Yadav, Zhang (b9) 2017; 2017
Blender, Buchner, Fernandez, Pichlmaier, Schlegel (b7) 2016
Best (b11) 2017; 32
A.I. Hafez, H.M. Zawbaa, E. Emary, A.E. Hassanien, Sine cosine optimization algorithm for feature selection, in: Proc. 2016 Int. Symp. Innov. Intell. Syst. Appl. INISTA 2016, 2016, pp. 1–5.
He, Wang (b85) 2007; 20
Schwefel, Rudolph, Bäck (b105) 1995; 929
Mirjalili (b29) 2016; 96
Arora, Anand (b71) 2018
Long (b59) 2016
Singh, Elaziz, Xiong (b23) 2018; 110
zhuo Huang, Wang, He (b87) 2007; 186
Bonabeau, Dorigo, Theraulaz (b78) 1999
Ray, Liew (b88) 2003; 7
Mirjalili, Mirjalili, Hatamlou (b99) 2016; 27
Misra, Ray (b2) 2017
Ngai, Xiu, Chau (b16) 2009; 36
Rashedi, Nezamabadi-pour, Saryazdi (b82) 2009; 179
Ewees, Abd Elaziz, Houssein (b75) 2018; 112
Zhang, Zhou (b58) 2015; 2015
Aljarah, Al-Zoubi, Faris, Hassonah, Mirjalili, Saadeh (b48) 2018; 10
Rajakumar, Amudhavel, Dhavachelvan, Vengattaraman (b41) 2017; 2017
Michalewicz, Dasgupta, Le Riche, Schoenauer (b96) 1996; 30
He, Wang (b101) 2007; 186
Sadollah, Bahreininejad, Eskandar, Hamdi (b89) 2013; 13
Abd Elaziz, Oliva, Xiong (b63) 2017; 90
Chegini, Bagheri, Najafi (b68) 2018; 73
Bansal, Sharma, Jadon, Clerc (b25) 2014; 6
H. Jemal, Z. Kechaou, M. Ben Ayed, Swarm intelligence and multi agent system in healthcare, in: 6th Int. Conf. Soft Comput. Pattern Recognition, SoCPaR 2014, 2015, pp. 423–427.
Kulkarni, Venayagamoorthy (b18) 2011; 41
Czerniak, Zarzycki, Ewald (b97) 2017; 76
Gupta, Deep (b60) 2019; 44
Mirjalili, Mirjalili, Hatamlou (b80) 2016; 27
Huang (b12) 2015; 4
Kaveh, Khayatazad (b93) 2013; 117
D. Jitkongchuen, U. Ampant, Integrated optimization of differential evolution with grasshopper optimization algorithm, in: Proc. Int. Conf. Artif. Life Robot., vol. 23, 2019, pp. 88–91.
Mirjalili, Mohammad, Lewis (b108) 2014; 69
Vakili, Gadala (b17) 2009; 56
E. Mezura-Montes, J. Velázquez-Reyes, C.A. Coello Coello, Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization, in: Proc. 2005 Conf. Genet. Evol. Comput. - GECCO ’05, 2005, pp. 225–232.
Xu (b49) 2019; 129
Mirjalili, Mirjalili, Lewis (b30) 2014; 69
Deb, Srinivasan (b110) 2006
Wang, Cai, Zhou, Fan (b106) 2009; 37
Long, Jiao, Liang, Tang (b62) 2018; 68
Yadav, Zhang, Chen, Guo (b8) 2017
Suganthan (b79) 2005
Saxena, Shekhawat, Kumar (b72) 2018
Parlett, David (b35) 1999
Ray, Dutta, Chakraborty (b3) 2017
Keyrouz (b4) 2012; 60
K.R. Das, Optimal tuning of PID controller using GWO algorithm for speed control in DC motor, in: Int. Conf. Soft Conputing Tech. Implementations, 2015, pp. 108–112.
N. Jangir, M.H. Pandya, I.N. Trivedi, R.H. Bhesdadiya, P. Jangir, A. Kumar, Moth-flame optimization algorithm for solving real challenging constrained engineering optimization problems, in: 2016 IEEE Students’ Conf. Electr. Electron. Comput. Sci. SCEECS 2016, no. 1, 2016.
Rao, Savsani, Vakharia (b103) 2011; 43
S.A. Parmar, Optimal active and reactive power dispatch problem solution using moth-flame optimizer algorithm, in: 2016 International Conference on Energy Efficient Technologies for Sustainability, ICEETS, 2016, pp. 491–496.
Zhang, Zhou, Luo (b69) 2018; 34
De Castro, Von Zuben (b77) 1999
Luo, Chen, Zhang, Xu, Huang, Zhao (b73) 2018; 64
Saremi, Mirjalili, Mirjalili (b55) 2015; 26
Eskandar, Sadollah, Bahreininejad, Hamdi (b102) 2012; 110–111
iF. Glover, Laguna, Marti (b34) 2007; 23
Heidari, Pahlavani (b57) 2017; 60
Kaveh, Mahdavi (b83) 2014; 139
Rizk-Allah (b70) 2018
Gandomi, Yang, Alavi (b91) 2013; 29
Kiran (b90) 2015
Kaveh, Rastegar Moghaddam (b84) 2017; 0
Mirjalili, Lewis (b81) 2016; 95
Yu, Li (b21) 2015; 30
Y.C. Lin, M. Middendorf, Simple probabilistic population based optimization for combinatorial optimization, in: Proc. 2013 IEEE Symp. Swarm Intell. SIS 2013-2013 IEEE Symp. Ser. Comput. Intell. SSCI 2013, 2013, pp. 213–220.
Gandomi, Yang, Alavi (b94) 2013; 29
Cagnina (10.1016/j.asoc.2019.105723_b109) 2008; 32
Blender (10.1016/j.asoc.2019.105723_b7) 2016
Kaveh (10.1016/j.asoc.2019.105723_b93) 2013; 117
Singh (10.1016/j.asoc.2019.105723_b23) 2018; 110
Mirjalili (10.1016/j.asoc.2019.105723_b29) 2016; 96
Keyrouz (10.1016/j.asoc.2019.105723_b4) 2012; 60
De Castro (10.1016/j.asoc.2019.105723_b77) 1999
10.1016/j.asoc.2019.105723_b37
10.1016/j.asoc.2019.105723_b38
10.1016/j.asoc.2019.105723_b39
Misra (10.1016/j.asoc.2019.105723_b2) 2017
10.1016/j.asoc.2019.105723_b32
Karaboga (10.1016/j.asoc.2019.105723_b76) 2005
Aljarah (10.1016/j.asoc.2019.105723_b48) 2018; 10
Gandomi (10.1016/j.asoc.2019.105723_b91) 2013; 29
Mirjalili (10.1016/j.asoc.2019.105723_b81) 2016; 95
Gupta (10.1016/j.asoc.2019.105723_b26) 2017; 33
10.1016/j.asoc.2019.105723_b47
Ke (10.1016/j.asoc.2019.105723_b92) 2016; 17
El Aziz (10.1016/j.asoc.2019.105723_b40) 2017; 83
Saremi (10.1016/j.asoc.2019.105723_b55) 2015; 26
Saxena (10.1016/j.asoc.2019.105723_b72) 2018
Nenavath (10.1016/j.asoc.2019.105723_b66) 2018; 62
10.1016/j.asoc.2019.105723_b43
10.1016/j.asoc.2019.105723_b44
Sadollah (10.1016/j.asoc.2019.105723_b89) 2013; 13
Zhu (10.1016/j.asoc.2019.105723_b56) 2015; 26
Schwefel (10.1016/j.asoc.2019.105723_b105) 1995; 929
Long (10.1016/j.asoc.2019.105723_b59) 2016
He (10.1016/j.asoc.2019.105723_b85) 2007; 20
He (10.1016/j.asoc.2019.105723_b101) 2007; 186
Vakili (10.1016/j.asoc.2019.105723_b17) 2009; 56
Parlett (10.1016/j.asoc.2019.105723_b35) 1999
Baykasotlu (10.1016/j.asoc.2019.105723_b104) 2015; 37
Rizk-Allah (10.1016/j.asoc.2019.105723_b70) 2018
10.1016/j.asoc.2019.105723_b14
Gandomi (10.1016/j.asoc.2019.105723_b94) 2013; 29
Tharwat (10.1016/j.asoc.2019.105723_b46) 2018; 48
Yadav (10.1016/j.asoc.2019.105723_b9) 2017; 2017
Xu (10.1016/j.asoc.2019.105723_b49) 2019; 129
Abd Elaziz (10.1016/j.asoc.2019.105723_b65) 2017
Dautenhahn (10.1016/j.asoc.2019.105723_b19) 1998; 12
Bansal (10.1016/j.asoc.2019.105723_b25) 2014; 6
iF. Glover (10.1016/j.asoc.2019.105723_b34) 2007; 23
Ewees (10.1016/j.asoc.2019.105723_b75) 2018; 112
Long (10.1016/j.asoc.2019.105723_b62) 2018; 68
Rashedi (10.1016/j.asoc.2019.105723_b82) 2009; 179
Kaveh (10.1016/j.asoc.2019.105723_b83) 2014; 139
Ray (10.1016/j.asoc.2019.105723_b88) 2003; 7
Wang (10.1016/j.asoc.2019.105723_b106) 2009; 37
10.1016/j.asoc.2019.105723_b107
10.1016/j.asoc.2019.105723_b20
Arora (10.1016/j.asoc.2019.105723_b71) 2018
Mirjalili (10.1016/j.asoc.2019.105723_b27) 2015; 89
10.1016/j.asoc.2019.105723_b22
Qu (10.1016/j.asoc.2019.105723_b64) 2018; 2018
Xue (10.1016/j.asoc.2019.105723_b10) 2012; 43
Czerniak (10.1016/j.asoc.2019.105723_b97) 2017; 76
10.1016/j.asoc.2019.105723_b5
Best (10.1016/j.asoc.2019.105723_b11) 2017; 32
Rao (10.1016/j.asoc.2019.105723_b103) 2011; 43
Yu (10.1016/j.asoc.2019.105723_b21) 2015; 30
Kiran (10.1016/j.asoc.2019.105723_b90) 2015
Saremi (10.1016/j.asoc.2019.105723_b28) 2017; 105
Mirjalili (10.1016/j.asoc.2019.105723_b80) 2016; 27
Yang (10.1016/j.asoc.2019.105723_b31) 2006; 12
Yadav (10.1016/j.asoc.2019.105723_b8) 2017
10.1016/j.asoc.2019.105723_b1
Nenavath (10.1016/j.asoc.2019.105723_b67) 2018; 43
10.1016/j.asoc.2019.105723_b74
Krohling (10.1016/j.asoc.2019.105723_b95) 2006; 36
Zhang (10.1016/j.asoc.2019.105723_b58) 2015; 2015
Mittal (10.1016/j.asoc.2019.105723_b54) 2016; 2016
Ibrahim (10.1016/j.asoc.2019.105723_b53) 2018; 108
Gupta (10.1016/j.asoc.2019.105723_b60) 2019; 44
Suganthan (10.1016/j.asoc.2019.105723_b79) 2005
Eskandar (10.1016/j.asoc.2019.105723_b102) 2012; 110–111
Lee (10.1016/j.asoc.2019.105723_b86) 2005; 194
Huang (10.1016/j.asoc.2019.105723_b12) 2015; 4
Sharma (10.1016/j.asoc.2019.105723_b24) 2016; 28
Mirjalili (10.1016/j.asoc.2019.105723_b30) 2014; 69
Abd Elaziz (10.1016/j.asoc.2019.105723_b63) 2017; 90
Mousavi (10.1016/j.asoc.2019.105723_b15) 2017; 28
Liu (10.1016/j.asoc.2019.105723_b98) 2010; 10
Zhang (10.1016/j.asoc.2019.105723_b69) 2018; 34
Rajakumar (10.1016/j.asoc.2019.105723_b41) 2017; 2017
Chegini (10.1016/j.asoc.2019.105723_b68) 2018; 73
Gutjahr (10.1016/j.asoc.2019.105723_b100) 2007; 1
Mirjalili (10.1016/j.asoc.2019.105723_b108) 2014; 69
Zhang (10.1016/j.asoc.2019.105723_b61) 2018; 67
Heidari (10.1016/j.asoc.2019.105723_b57) 2017; 60
Caro (10.1016/j.asoc.2019.105723_b6) 2005
Neve (10.1016/j.asoc.2019.105723_b45) 2017; 06
Ray (10.1016/j.asoc.2019.105723_b3) 2017
Kaveh (10.1016/j.asoc.2019.105723_b84) 2017; 0
Ngai (10.1016/j.asoc.2019.105723_b16) 2009; 36
Deb (10.1016/j.asoc.2019.105723_b110) 2006
Xu (10.1016/j.asoc.2019.105723_b50) 2019; 492
Bonabeau (10.1016/j.asoc.2019.105723_b78) 1999
zhuo Huang (10.1016/j.asoc.2019.105723_b87) 2007; 186
Bhattacharjee (10.1016/j.asoc.2019.105723_b42) 2016; 10
Luo (10.1016/j.asoc.2019.105723_b73) 2018; 64
Mirjalili (10.1016/j.asoc.2019.105723_b99) 2016; 27
Glover (10.1016/j.asoc.2019.105723_b33) 1990; 2
Eskandar (10.1016/j.asoc.2019.105723_b111) 2012; 110–111
(10.1016/j.asoc.2019.105723_b36) 2018
Sapre (10.1016/j.asoc.2019.105723_b51) 2018
Kulkarni (10.1016/j.asoc.2019.105723_b18) 2011; 41
Jaganathan (10.1016/j.asoc.2019.105723_b13) 2018
Zhang (10.1016/j.asoc.2019.105723_b52) 2017
Michalewicz (10.1016/j.asoc.2019.105723_b96) 1996; 30
References_xml – volume: 33
  start-page: 210
  year: 2017
  end-page: 240
  ident: b26
  article-title: Improving the local search ability of spider monkey optimization algorithm using quadratic approximation for unconstrained optimization
  publication-title: Comput. Intell.
– year: 1999
  ident: b78
  article-title: Swarm intelligence: from natural to artificial systems
– volume: 2
  start-page: 4
  year: 1990
  end-page: 32
  ident: b33
  article-title: Tabu search—Part II
  publication-title: ORSA J. Comput.
– volume: 186
  start-page: 1407
  year: 2007
  end-page: 1422
  ident: b101
  article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization
  publication-title: Appl. Math. Comput.
– volume: 0
  start-page: 0
  year: 2017
  ident: b84
  article-title: A hybrid WOA-CBO algorithm for construction site layout planning problem
  publication-title: Sci. Iran.
– volume: 37
  start-page: 395
  year: 2009
  end-page: 413
  ident: b106
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Struct. Multidiscip. Optim.
– volume: 73
  start-page: 697
  year: 2018
  end-page: 726
  ident: b68
  article-title: PSOSCALF: A new hybrid PSO based on sine cosine algorithm and levy flight for solving optimization problems
  publication-title: Appl. Soft Comput. J.
– reference: N. Jangir, M.H. Pandya, I.N. Trivedi, R.H. Bhesdadiya, P. Jangir, A. Kumar, Moth-flame optimization algorithm for solving real challenging constrained engineering optimization problems, in: 2016 IEEE Students’ Conf. Electr. Electron. Comput. Sci. SCEECS 2016, no. 1, 2016.
– reference: H. Jemal, Z. Kechaou, M. Ben Ayed, Swarm intelligence and multi agent system in healthcare, in: 6th Int. Conf. Soft Comput. Pattern Recognition, SoCPaR 2014, 2015, pp. 423–427.
– reference: Y.C. Lin, M. Middendorf, Simple probabilistic population based optimization for combinatorial optimization, in: Proc. 2013 IEEE Symp. Swarm Intell. SIS 2013-2013 IEEE Symp. Ser. Comput. Intell. SSCI 2013, 2013, pp. 213–220.
– volume: 36
  start-page: 2592
  year: 2009
  end-page: 2602
  ident: b16
  article-title: Application of data mining techniques in customer relationship management: A literature review and classification
  publication-title: Expert Syst. Appl.
– year: 2016
  ident: b59
  article-title: Grey wolf optimizer based on nonlinear adjustment control parameter
  publication-title: 2016 4th International Conference on Sensors, Mechatronics and Automation, ICSMA 2016
– volume: 139
  start-page: 18
  year: 2014
  end-page: 27
  ident: b83
  article-title: Colliding bodies optimization: a novel meta-heuristic method
  publication-title: Comput. Struct.
– year: 2018
  ident: b36
  article-title: Ludo Game, Wikipedia
– volume: 26
  start-page: 1257
  year: 2015
  end-page: 1263
  ident: b55
  article-title: Evolutionary population dynamics and grey wolf optimizer
  publication-title: Neural Comput. Appl.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b30
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 1
  start-page: 59
  year: 2007
  end-page: 79
  ident: b100
  article-title: Mathematical runtime analysis of ACO algorithms: survey on an emerging issue
  publication-title: Swarm Intell.
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: b89
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput. J.
– start-page: 1629
  year: 2006
  end-page: 1636
  ident: b110
  article-title: Innovization: Innovating design principles through optimization
  publication-title: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation
– reference: I. Kassabalidis, M.A. El-Sharkawi, R.J.I. Marks, P. Arabshahi, A.A. Gray, Swarm intelligence for routing in communication networks, in: GLOBECOM’01. IEEE Glob. Telecommun. Conf. (Cat. No.01CH37270), vol. 6, 2001, pp. 3613–3617.
– volume: 2017
  year: 2017
  ident: b9
  article-title: Mereg: Managing energy-SLA tradeoff for green mobile cloud computing
  publication-title: Wirel. Commun. Mob. Comput.
– volume: 44
  start-page: 101
  year: 2019
  end-page: 112
  ident: b60
  article-title: A novel random walk grey wolf optimizer
  publication-title: Swarm Evol. Comput.
– start-page: 76
  year: 2005
  end-page: 83
  ident: b6
  article-title: Swarm intelligence for routing in mobile ad hoc networks
  publication-title: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005
– volume: 28
  start-page: 191
  year: 2017
  end-page: 206
  ident: b15
  article-title: A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network
  publication-title: J. Intell. Manuf.
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: b103
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput. Des.
– volume: 62
  start-page: 1019
  year: 2018
  end-page: 1043
  ident: b66
  article-title: Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking
  publication-title: Appl. Soft Comput. J.
– volume: 26
  start-page: 317
  year: 2015
  end-page: 328
  ident: b56
  article-title: Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked soc
  publication-title: J. Syst. Eng. Electron.
– volume: 60
  start-page: 115
  year: 2017
  end-page: 134
  ident: b57
  article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks
  publication-title: Appl. Soft Comput. J.
– reference: S.A. Parmar, Optimal active and reactive power dispatch problem solution using moth-flame optimizer algorithm, in: 2016 International Conference on Energy Efficient Technologies for Sustainability, ICEETS, 2016, pp. 491–496.
– reference: A.I. Hafez, H.M. Zawbaa, E. Emary, A.E. Hassanien, Sine cosine optimization algorithm for feature selection, in: Proc. 2016 Int. Symp. Innov. Intell. Syst. Appl. INISTA 2016, 2016, pp. 1–5.
– volume: 68
  start-page: 63
  year: 2018
  end-page: 80
  ident: b62
  article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 48
  start-page: 2268
  year: 2018
  end-page: 2283
  ident: b46
  article-title: MOGOA algorithm for constrained and unconstrained multi-objective optimization problems
  publication-title: Appl. Intell.
– volume: 110
  start-page: 264
  year: 2018
  end-page: 289
  ident: b23
  article-title: Modified spider monkey optimization based on nelder–mead method for global optimization
  publication-title: Expert Syst. Appl.
– year: 2015
  ident: b90
  article-title: TSA: Tree-seed algorithm for continuous optimization
  publication-title: Expert Syst. Appl.
– volume: 129
  start-page: 135
  year: 2019
  end-page: 155
  ident: b49
  article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks
  publication-title: Expert Syst. Appl.
– year: 1999
  ident: b77
  article-title: Artificial immune systems: Part I - Basic theory and applications
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b108
  article-title: Advances in engineering software grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– start-page: 1
  year: 2018
  end-page: 21
  ident: b71
  article-title: Chaotic grasshopper optimization algorithm for global optimization
  publication-title: Neural Comput. Appl.
– reference: K.R. Das, Optimal tuning of PID controller using GWO algorithm for speed control in DC motor, in: Int. Conf. Soft Conputing Tech. Implementations, 2015, pp. 108–112.
– volume: 90
  start-page: 484
  year: 2017
  end-page: 500
  ident: b63
  article-title: An improved opposition-based sine cosine algorithm for global optimization
  publication-title: Expert Syst. Appl.
– volume: 30
  start-page: 851
  year: 1996
  end-page: 870
  ident: b96
  article-title: Evolutionary algorithms for constrained engineering problems
  publication-title: Comput. Ind. Eng.
– volume: 76
  start-page: 22
  year: 2017
  end-page: 33
  ident: b97
  article-title: AAO as a new strategy in modeling and simulation of constructional problems optimization
  publication-title: Simul. Model. Pract. Theory
– volume: 110–111
  start-page: 151
  year: 2012
  end-page: 166
  ident: b111
  article-title: Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
– year: 1999
  ident: b35
  article-title: The Oxford History of Board Games
– volume: 41
  start-page: 262
  year: 2011
  end-page: 267
  ident: b18
  article-title: Particle swarm optimization in wireless-sensor networks: A brief survey
  publication-title: IEEE Trans. Syst. Man Cybern. C
– start-page: 1
  year: 2018
  end-page: 10
  ident: b13
  article-title: An heuristic cloud based segmentation technique using edge and texture based two dimensional entropy
  publication-title: Cluster Comput.
– volume: 186
  start-page: 340
  year: 2007
  end-page: 356
  ident: b87
  article-title: An effective co-evolutionary differential evolution for constrained optimization
  publication-title: Appl. Math. Comput.
– volume: 32
  year: 2008
  ident: b109
  article-title: Solving engineering optimization problems with the simple constrained particle swarm optimizer
  publication-title: Information
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE International Conference on Particle Swarm Optimization, vol. 4, 1995, pp. 1942–1948.
– volume: 110–111
  start-page: 151
  year: 2012
  end-page: 166
  ident: b102
  article-title: Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
– volume: 60
  start-page: 1
  year: 2012
  end-page: 6
  ident: b4
  article-title: A fast-multiplying PSO algorithm for real-time multiple object tracking
  publication-title: Int. J. Comput. Appl.
– volume: 10
  start-page: 629
  year: 2010
  end-page: 640
  ident: b98
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl. Soft Comput. J.
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  ident: b94
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
– volume: 83
  start-page: 242
  year: 2017
  end-page: 256
  ident: b40
  article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 31
  year: 2014
  end-page: 47
  ident: b25
  article-title: Spider monkey optimization algorithm for numerical optimization
  publication-title: Memetic Comput.
– volume: 929
  year: 1995
  ident: b105
  publication-title: Lecture Notes in Artificial Intelligence
– volume: 34
  start-page: 2129
  year: 2018
  end-page: 2141
  ident: b69
  article-title: An improved sine cosine water wave optimization algorithm for global optimization
  publication-title: J. Intell. Fuzzy Syst.
– reference: R. Kaur, P. Luthra, Load balancing in cloud computing, 5 (8) (2017) 375–381.
– reference: S. Łukasik, P.A. Kowalski, M. Charytanowicz, P. Kulczycki, Data clustering with grasshopper optimization algorithm, 11 (2017) 71–74.
– volume: 43
  start-page: 1
  year: 2018
  end-page: 30
  ident: b67
  article-title: A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking
  publication-title: Swarm Evol. Comput.
– volume: 56
  start-page: 119
  year: 2009
  end-page: 141
  ident: b17
  article-title: Effectiveness and efficiency of particle swarm optimization technique in inverse heat conduction analysis
  publication-title: Numer. Heat Transfer B
– volume: 2016
  start-page: 8
  year: 2016
  ident: b54
  article-title: Modified grey wolf optimizer for global engineering optimization
  publication-title: Appl. Comput. Intell. Soft Comput.
– start-page: 1
  year: 2005
  end-page: 50
  ident: b79
  article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization
  publication-title: Nat. Comput.
– volume: 37
  start-page: 396
  year: 2015
  end-page: 415
  ident: b104
  article-title: Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems - Part 2: Constrained optimization
  publication-title: Appl. Soft Comput. J.
– start-page: 1
  year: 2018
  end-page: 27
  ident: b70
  article-title: An improved sine–cosine algorithm based on orthogonal parallel information for global optimization
  publication-title: Soft Comput.
– volume: 7
  start-page: 386
  year: 2003
  end-page: 396
  ident: b88
  article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Trans. Evol. Comput.
– volume: 10
  start-page: 478
  year: 2018
  end-page: 495
  ident: b48
  article-title: Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm
  publication-title: Cognit. Comput.
– year: 2017
  ident: b65
  article-title: A hybrid method of sine cosine algorithm and differential evolution for feature selection
  publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b81
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 06
  year: 2017
  ident: b45
  article-title: Application of grasshopper optimization algorithm for constrained and unconstrained test functions
  publication-title: Int. J. Swarm Intell. Evol. Comput.
– start-page: 132
  year: 2017
  end-page: 136
  ident: b8
  article-title: Mums: Energy-aware vm selection scheme for cloud data center
  publication-title: 2017 28th International Workshop on Database and Expert Systems Applications, DEXA
– start-page: 6879
  year: 2016
  end-page: 6886
  ident: b7
  article-title: Managing a mobile agricultural robot swarm for a seeding task
  publication-title: IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: b28
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Adv. Eng. Softw.
– volume: 2018
  year: 2018
  ident: b64
  article-title: A modified sine-cosine algorithm based on neighborhood search and greedy levy mutation
  publication-title: Comput. Intell. Neurosci.
– volume: 30
  start-page: 614
  year: 2015
  end-page: 627
  ident: b21
  article-title: A social spider algorithm for global optimization
  publication-title: Appl. Soft Comput.
– year: 2018
  ident: b72
  article-title: Application and development of enhanced chaotic grasshopper optimization algorithms
  publication-title: Model. Simul. Eng.
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: b80
  article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
– volume: 194
  start-page: 3902
  year: 2005
  end-page: 3933
  ident: b86
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b27
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
– reference: E. Mezura-Montes, J. Velázquez-Reyes, C.A. Coello Coello, Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization, in: Proc. 2005 Conf. Genet. Evol. Comput. - GECCO ’05, 2005, pp. 225–232.
– start-page: 1
  year: 2017
  end-page: 6
  ident: b2
  article-title: Object tracking based on quantum particle swarm optimization
  publication-title: 2017 Ninth International Conference on Advances in Pattern Recognition, ICAPR
– reference: S. Kirkpatrick, C.D. Gelatt, M.P. Vecch, Optimization by simulated annealing, 220 (4598) (2007) 671–680.
– start-page: 1
  year: 2017
  end-page: 16
  ident: b3
  article-title: Detection, recognition and tracking of moving objects from real-time video via SP theory of intelligence and species inspired PSO
– volume: 492
  start-page: 181
  year: 2019
  end-page: 203
  ident: b50
  article-title: Enhanced moth-flame optimizer with mutation strategy for global optimization
  publication-title: Inf. Sci. (Ny)
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  ident: b91
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
– volume: 12
  start-page: 573
  year: 1998
  end-page: 617
  ident: b19
  article-title: The art of designing socially intelligent agents: science, fiction, and the human in the loop
  publication-title: Appl. Artif. Intell.
– reference: D. Jitkongchuen, U. Ampant, Integrated optimization of differential evolution with grasshopper optimization algorithm, in: Proc. Int. Conf. Artif. Life Robot., vol. 23, 2019, pp. 88–91.
– volume: 23
  start-page: 1
  year: 2007
  end-page: 12
  ident: b34
  article-title: Principles of tabu search
  publication-title: Approx. Algorithms Metaheuristics
– volume: 4
  start-page: 22
  year: 2015
  end-page: 37
  ident: b12
  article-title: Supervised feature selection: A tutorial
  publication-title: Artif. Intell. Res.
– volume: 12
  start-page: 2010
  year: 2006
  ident: b31
  article-title: Cellular automata, PDEs, and pattern formation
  publication-title: Handb. Bioinspired Algorithms Appl.
– start-page: 10
  year: 2005
  ident: b76
  article-title: An Idea Based on Honey Bee Swarm for Numerical Optimization
– volume: 67
  start-page: 197
  year: 2018
  end-page: 214
  ident: b61
  article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer
  publication-title: Appl. Soft Comput. J.
– year: 2017
  ident: b52
  article-title: Intelligence Science and Big Data Engineering, vol. 10559
– volume: 108
  start-page: 27
  year: 2018
  ident: b53
  article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization
  publication-title: Expert Syst. Appl.
– volume: 10
  start-page: 625
  year: 2016
  end-page: 637
  ident: b42
  article-title: Grey wolf optimisation for optimal sizing of battery energy storage device to minimise operation cost of microgrid
  publication-title: IET Gener. Transm. Distrib.
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b29
  article-title: SCA: A Sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 2015
  year: 2015
  ident: b58
  article-title: Grey wolf optimizer based on Powell local optimization method for clustering analysis
  publication-title: Discrete Dyn. Nat. Soc.
– volume: 2017
  year: 2017
  ident: b41
  article-title: GWO-LPWSN: Grey wolf optimization algorithm for node localization problem in wireless sensor networks
  publication-title: J. Comput. Netw. Commun.
– volume: 117
  start-page: 82
  year: 2013
  end-page: 94
  ident: b93
  article-title: Ray optimization for size and shape optimization of truss structures
  publication-title: Comput. Struct.
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: b99
  article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
– volume: 43
  start-page: 1656
  year: 2012
  end-page: 1671
  ident: b10
  article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach
  publication-title: IEEE Trans. Cybern.
– volume: 32
  start-page: 238
  year: 2017
  end-page: 252
  ident: b11
  article-title: Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets
  publication-title: Cancer Cell
– volume: 112
  start-page: 156
  year: 2018
  end-page: 172
  ident: b75
  article-title: Improved grasshopper optimization algorithm using opposition-based learning
  publication-title: Expert Syst. Appl.
– volume: 36
  start-page: 1407
  year: 2006
  end-page: 1416
  ident: b95
  article-title: Coevolutionary particle swarm optimization using gaussian distribution for solving constrained optimization problems
  publication-title: IEEE Trans. Syst. Man Cybern. B
– reference: H.M. Zawbaa, E. Emary, B. Parv, M. Sharawi, Feature selection approach based on whale optimization algorithm, in: 2016 IEEE Congr. Evol. Comput. CEC 2016, 2016, pp. 4612–4617.
– year: 2018
  ident: b51
  article-title: Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization
  publication-title: Soft Comput.
– volume: 64
  start-page: 654
  year: 2018
  end-page: 668
  ident: b73
  article-title: An improved grasshopper optimization algorithm with application to financial stress prediction
  publication-title: Appl. Math. Model.
– volume: 28
  start-page: 58
  year: 2016
  end-page: 77
  ident: b24
  article-title: Ageist spider monkey optimization algorithm
  publication-title: Swarm Evol. Comput.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b82
  article-title: GSA: A gravitational search algorithm
  publication-title: Inf. Sci. (Ny).
– volume: 20
  start-page: 89
  year: 2007
  end-page: 99
  ident: b85
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 17
  start-page: 5.1
  year: 2016
  end-page: 5.7
  ident: b92
  article-title: Solving design of pressure vessel engineering problem using a fruit fly optimization algorithm
  publication-title: Int. J. Simul. Syst. Sci. Technol.
– volume: 10
  start-page: 478
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b48
  article-title: Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm
  publication-title: Cognit. Comput.
  doi: 10.1007/s12559-017-9542-9
– volume: 2018
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b64
  article-title: A modified sine-cosine algorithm based on neighborhood search and greedy levy mutation
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/4231647
– volume: 194
  start-page: 3902
  issue: 36–38
  year: 2005
  ident: 10.1016/j.asoc.2019.105723_b86
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.09.007
– start-page: 6879
  year: 2016
  ident: 10.1016/j.asoc.2019.105723_b7
  article-title: Managing a mobile agricultural robot swarm for a seeding task
– volume: 36
  start-page: 2592
  issue: 2 Part 2
  year: 2009
  ident: 10.1016/j.asoc.2019.105723_b16
  article-title: Application of data mining techniques in customer relationship management: A literature review and classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.02.021
– year: 2018
  ident: 10.1016/j.asoc.2019.105723_b36
– volume: 2017
  year: 2017
  ident: 10.1016/j.asoc.2019.105723_b41
  article-title: GWO-LPWSN: Grey wolf optimization algorithm for node localization problem in wireless sensor networks
  publication-title: J. Comput. Netw. Commun.
– volume: 37
  start-page: 395
  issue: 4
  year: 2009
  ident: 10.1016/j.asoc.2019.105723_b106
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-008-0238-3
– ident: 10.1016/j.asoc.2019.105723_b37
  doi: 10.1109/SCEECS.2016.7509293
– volume: 64
  start-page: 654
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b73
  article-title: An improved grasshopper optimization algorithm with application to financial stress prediction
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.07.044
– volume: 4
  start-page: 22
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2019.105723_b12
  article-title: Supervised feature selection: A tutorial
  publication-title: Artif. Intell. Res.
  doi: 10.5430/air.v4n2p22
– volume: 60
  start-page: 115
  year: 2017
  ident: 10.1016/j.asoc.2019.105723_b57
  article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2017.06.044
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2019.105723_b3
– ident: 10.1016/j.asoc.2019.105723_b107
– volume: 28
  start-page: 58
  year: 2016
  ident: 10.1016/j.asoc.2019.105723_b24
  article-title: Ageist spider monkey optimization algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.01.002
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.asoc.2019.105723_b28
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 10
  start-page: 629
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2019.105723_b98
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2009.08.031
– volume: 2017
  year: 2017
  ident: 10.1016/j.asoc.2019.105723_b9
  article-title: Mereg: Managing energy-SLA tradeoff for green mobile cloud computing
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2017/6741972
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2019.105723_b2
  article-title: Object tracking based on quantum particle swarm optimization
– ident: 10.1016/j.asoc.2019.105723_b39
  doi: 10.1109/CEC.2016.7744378
– start-page: 10
  year: 2005
  ident: 10.1016/j.asoc.2019.105723_b76
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2019.105723_b103
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput. Des.
– start-page: 132
  year: 2017
  ident: 10.1016/j.asoc.2019.105723_b8
  article-title: Mums: Energy-aware vm selection scheme for cloud data center
– volume: 12
  start-page: 573
  issue: 7–8
  year: 1998
  ident: 10.1016/j.asoc.2019.105723_b19
  article-title: The art of designing socially intelligent agents: science, fiction, and the human in the loop
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/088395198117550
– volume: 186
  start-page: 340
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2019.105723_b87
  article-title: An effective co-evolutionary differential evolution for constrained optimization
  publication-title: Appl. Math. Comput.
– volume: 29
  start-page: 17
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2019.105723_b91
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-011-0241-y
– volume: 73
  start-page: 697
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b68
  article-title: PSOSCALF: A new hybrid PSO based on sine cosine algorithm and levy flight for solving optimization problems
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2018.09.019
– volume: 29
  start-page: 17
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2019.105723_b94
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-011-0241-y
– year: 2016
  ident: 10.1016/j.asoc.2019.105723_b59
  article-title: Grey wolf optimizer based on nonlinear adjustment control parameter
– volume: 36
  start-page: 1407
  issue: 6
  year: 2006
  ident: 10.1016/j.asoc.2019.105723_b95
  article-title: Coevolutionary particle swarm optimization using gaussian distribution for solving constrained optimization problems
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2006.873185
– volume: 13
  start-page: 2592
  issue: 5
  year: 2013
  ident: 10.1016/j.asoc.2019.105723_b89
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2012.11.026
– start-page: 1
  issue: May
  year: 2005
  ident: 10.1016/j.asoc.2019.105723_b79
  article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization
  publication-title: Nat. Comput.
– volume: 1
  start-page: 59
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2019.105723_b100
  article-title: Mathematical runtime analysis of ACO algorithms: survey on an emerging issue
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0001-1
– volume: 129
  start-page: 135
  year: 2019
  ident: 10.1016/j.asoc.2019.105723_b49
  article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.043
– volume: 28
  start-page: 191
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2019.105723_b15
  article-title: A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-014-0970-z
– year: 1999
  ident: 10.1016/j.asoc.2019.105723_b35
– volume: 139
  start-page: 18
  year: 2014
  ident: 10.1016/j.asoc.2019.105723_b83
  article-title: Colliding bodies optimization: a novel meta-heuristic method
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2014.04.005
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.asoc.2019.105723_b27
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– volume: 2015
  year: 2015
  ident: 10.1016/j.asoc.2019.105723_b58
  article-title: Grey wolf optimizer based on Powell local optimization method for clustering analysis
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2015/481360
– volume: 32
  start-page: 238
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2019.105723_b11
  article-title: Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.07.004
– start-page: 1629
  year: 2006
  ident: 10.1016/j.asoc.2019.105723_b110
  article-title: Innovization: Innovating design principles through optimization
– ident: 10.1016/j.asoc.2019.105723_b14
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2019.105723_b80
  article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.asoc.2019.105723_b81
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.asoc.2019.105723_b82
  article-title: GSA: A gravitational search algorithm
  publication-title: Inf. Sci. (Ny).
  doi: 10.1016/j.ins.2009.03.004
– start-page: 76
  year: 2005
  ident: 10.1016/j.asoc.2019.105723_b6
  article-title: Swarm intelligence for routing in mobile ad hoc networks
– ident: 10.1016/j.asoc.2019.105723_b20
– volume: 43
  start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b67
  article-title: A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.02.011
– ident: 10.1016/j.asoc.2019.105723_b74
  doi: 10.5954/ICAROB.2018.GS3-2
– year: 2018
  ident: 10.1016/j.asoc.2019.105723_b51
  article-title: Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization
  publication-title: Soft Comput.
– volume: 30
  start-page: 851
  issue: 4
  year: 1996
  ident: 10.1016/j.asoc.2019.105723_b96
  article-title: Evolutionary algorithms for constrained engineering problems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/0360-8352(96)00037-X
– volume: 110–111
  start-page: 151
  year: 2012
  ident: 10.1016/j.asoc.2019.105723_b102
  article-title: Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.07.010
– volume: 83
  start-page: 242
  year: 2017
  ident: 10.1016/j.asoc.2019.105723_b40
  article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.023
– year: 1999
  ident: 10.1016/j.asoc.2019.105723_b77
– volume: 06
  issue: 03
  year: 2017
  ident: 10.1016/j.asoc.2019.105723_b45
  article-title: Application of grasshopper optimization algorithm for constrained and unconstrained test functions
  publication-title: Int. J. Swarm Intell. Evol. Comput.
– ident: 10.1016/j.asoc.2019.105723_b32
  doi: 10.1126/science.220.4598.671
– volume: 20
  start-page: 89
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2019.105723_b85
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2006.03.003
– volume: 62
  start-page: 1019
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b66
  article-title: Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2017.09.039
– volume: 17
  start-page: 5.1
  issue: 43
  year: 2016
  ident: 10.1016/j.asoc.2019.105723_b92
  article-title: Solving design of pressure vessel engineering problem using a fruit fly optimization algorithm
  publication-title: Int. J. Simul. Syst. Sci. Technol.
– volume: 60
  start-page: 1
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2019.105723_b4
  article-title: A fast-multiplying PSO algorithm for real-time multiple object tracking
  publication-title: Int. J. Comput. Appl.
– volume: 68
  start-page: 63
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b62
  article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.10.024
– volume: 2
  start-page: 4
  issue: 1
  year: 1990
  ident: 10.1016/j.asoc.2019.105723_b33
  article-title: Tabu search—Part II
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.2.1.4
– volume: 33
  start-page: 210
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2019.105723_b26
  article-title: Improving the local search ability of spider monkey optimization algorithm using quadratic approximation for unconstrained optimization
  publication-title: Comput. Intell.
  doi: 10.1111/coin.12081
– ident: 10.1016/j.asoc.2019.105723_b5
– volume: 34
  start-page: 2129
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b69
  article-title: An improved sine cosine water wave optimization algorithm for global optimization
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-171001
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2019.105723_b99
  article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– volume: 2016
  start-page: 8
  year: 2016
  ident: 10.1016/j.asoc.2019.105723_b54
  article-title: Modified grey wolf optimizer for global engineering optimization
  publication-title: Appl. Comput. Intell. Soft Comput.
  doi: 10.1155/2016/7950348
– volume: 186
  start-page: 1407
  issue: 2
  year: 2007
  ident: 10.1016/j.asoc.2019.105723_b101
  article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization
  publication-title: Appl. Math. Comput.
– volume: 44
  start-page: 101
  year: 2019
  ident: 10.1016/j.asoc.2019.105723_b60
  article-title: A novel random walk grey wolf optimizer
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.01.001
– ident: 10.1016/j.asoc.2019.105723_b43
  doi: 10.1109/ICSCTI.2015.7489575
– volume: 26
  start-page: 317
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2019.105723_b56
  article-title: Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked soc
  publication-title: J. Syst. Eng. Electron.
  doi: 10.1109/JSEE.2015.00037
– volume: 37
  start-page: 396
  year: 2015
  ident: 10.1016/j.asoc.2019.105723_b104
  article-title: Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems - Part 2: Constrained optimization
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2015.08.052
– volume: 90
  start-page: 484
  year: 2017
  ident: 10.1016/j.asoc.2019.105723_b63
  article-title: An improved opposition-based sine cosine algorithm for global optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.07.043
– ident: 10.1016/j.asoc.2019.105723_b38
  doi: 10.1109/ICEETS.2016.7583804
– volume: 56
  start-page: 119
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2019.105723_b17
  article-title: Effectiveness and efficiency of particle swarm optimization technique in inverse heat conduction analysis
  publication-title: Numer. Heat Transfer B
  doi: 10.1080/10407790903116469
– volume: 10
  start-page: 625
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2019.105723_b42
  article-title: Grey wolf optimisation for optimal sizing of battery energy storage device to minimise operation cost of microgrid
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2015.0429
– ident: 10.1016/j.asoc.2019.105723_b47
– start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b70
  article-title: An improved sine–cosine algorithm based on orthogonal parallel information for global optimization
  publication-title: Soft Comput.
– ident: 10.1016/j.asoc.2019.105723_b1
  doi: 10.1109/SOCPAR.2014.7008044
– volume: 110
  start-page: 264
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b23
  article-title: Modified spider monkey optimization based on nelder–mead method for global optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.05.040
– year: 2018
  ident: 10.1016/j.asoc.2019.105723_b72
  article-title: Application and development of enhanced chaotic grasshopper optimization algorithms
  publication-title: Model. Simul. Eng.
  doi: 10.1155/2018/4945157
– volume: 67
  start-page: 197
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b61
  article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2018.02.049
– year: 2015
  ident: 10.1016/j.asoc.2019.105723_b90
  article-title: TSA: Tree-seed algorithm for continuous optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.055
– volume: 0
  start-page: 0
  issue: 0
  year: 2017
  ident: 10.1016/j.asoc.2019.105723_b84
  article-title: A hybrid WOA-CBO algorithm for construction site layout planning problem
  publication-title: Sci. Iran.
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b13
  article-title: An heuristic cloud based segmentation technique using edge and texture based two dimensional entropy
  publication-title: Cluster Comput.
– volume: 41
  start-page: 262
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2019.105723_b18
  article-title: Particle swarm optimization in wireless-sensor networks: A brief survey
  publication-title: IEEE Trans. Syst. Man Cybern. C
  doi: 10.1109/TSMCC.2010.2054080
– ident: 10.1016/j.asoc.2019.105723_b22
– volume: 23
  start-page: 1
  year: 2007
  ident: 10.1016/j.asoc.2019.105723_b34
  article-title: Principles of tabu search
  publication-title: Approx. Algorithms Metaheuristics
– volume: 76
  start-page: 22
  year: 2017
  ident: 10.1016/j.asoc.2019.105723_b97
  article-title: AAO as a new strategy in modeling and simulation of constructional problems optimization
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2017.04.001
– volume: 30
  start-page: 614
  year: 2015
  ident: 10.1016/j.asoc.2019.105723_b21
  article-title: A social spider algorithm for global optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.02.014
– volume: 117
  start-page: 82
  year: 2013
  ident: 10.1016/j.asoc.2019.105723_b93
  article-title: Ray optimization for size and shape optimization of truss structures
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.12.010
– volume: 12
  start-page: 2010
  year: 2006
  ident: 10.1016/j.asoc.2019.105723_b31
  article-title: Cellular automata, PDEs, and pattern formation
  publication-title: Handb. Bioinspired Algorithms Appl.
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b71
  article-title: Chaotic grasshopper optimization algorithm for global optimization
  publication-title: Neural Comput. Appl.
– volume: 48
  start-page: 2268
  issue: 8
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b46
  article-title: MOGOA algorithm for constrained and unconstrained multi-objective optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-1074-1
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.asoc.2019.105723_b30
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 110–111
  start-page: 151
  year: 2012
  ident: 10.1016/j.asoc.2019.105723_b111
  article-title: Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.07.010
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.asoc.2019.105723_b108
  article-title: Advances in engineering software grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 10.1016/j.asoc.2019.105723_b44
– year: 1999
  ident: 10.1016/j.asoc.2019.105723_b78
– volume: 26
  start-page: 1257
  issue: 5
  year: 2015
  ident: 10.1016/j.asoc.2019.105723_b55
  article-title: Evolutionary population dynamics and grey wolf optimizer
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1806-7
– volume: 43
  start-page: 1656
  issue: 6
  year: 2012
  ident: 10.1016/j.asoc.2019.105723_b10
  article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2227469
– volume: 6
  start-page: 31
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2019.105723_b25
  article-title: Spider monkey optimization algorithm for numerical optimization
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-013-0128-0
– volume: 32
  issue: 3
  year: 2008
  ident: 10.1016/j.asoc.2019.105723_b109
  article-title: Solving engineering optimization problems with the simple constrained particle swarm optimizer
  publication-title: Information
– volume: 108
  start-page: 27
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b53
  article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization
  publication-title: Expert Syst. Appl.
– volume: 492
  start-page: 181
  year: 2019
  ident: 10.1016/j.asoc.2019.105723_b50
  article-title: Enhanced moth-flame optimizer with mutation strategy for global optimization
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2019.04.022
– volume: 7
  start-page: 386
  issue: 4
  year: 2003
  ident: 10.1016/j.asoc.2019.105723_b88
  article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.814902
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.asoc.2019.105723_b29
  article-title: SCA: A Sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 112
  start-page: 156
  year: 2018
  ident: 10.1016/j.asoc.2019.105723_b75
  article-title: Improved grasshopper optimization algorithm using opposition-based learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.06.023
– year: 2017
  ident: 10.1016/j.asoc.2019.105723_b65
  article-title: A hybrid method of sine cosine algorithm and differential evolution for feature selection
  doi: 10.1007/978-3-319-70139-4_15
– volume: 929
  year: 1995
  ident: 10.1016/j.asoc.2019.105723_b105
  publication-title: Lecture Notes in Artificial Intelligence
– year: 2017
  ident: 10.1016/j.asoc.2019.105723_b52
SSID ssj0016928
Score 2.4329681
Snippet This paper proposes a Ludo game-based strategy to enhance the ability of swarm algorithms to solve numerous global optimization problems. The proposed strategy...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105723
SubjectTerms Engineering problems
Global optimization
Ludo game strategy
Swarm intelligence
Title Ludo game-based metaheuristics for global and engineering optimization
URI https://dx.doi.org/10.1016/j.asoc.2019.105723
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KvXjxW6wfZQ_eJHaTbJLNsRRL1VpELfQWdrMbbbFpkfTqb3c22VQF6cFTSDIL4WV35g3MmwG4zNADYuLAHV-60mE8LIsAMGvNOGWKpoqXorCHUTgYs7tJMGlAr9bCmLJK6_srn156a_ukY9HsLKfTzjNmHpzFDDMA3LOY5hkFO4vMFIPrz3WZhxvG5XxVY-wYayucqWq8BCJgyrvictyt5_8dnH4EnP4e7FimSLrVx-xDQ-cHsFtPYSD2UB5Cf7hSC_Iq5toxIUmRuS7Em17ZFswEWSmp2n4QkSuivxsQkgX6i7kVYh7BuH_z0hs4djqCk_qUFo7MshCje-DKTIcREpVIuClH-sM01ciraKQiKnzlpaYnWRDFyJXwpeCBDl0tqX8MzXyR6xMgqSdjPMeRyGLJZBBL7WFeKANPUc6Qb7TArWFJUts63EyweE_qGrFZYqBMDJRJBWULrtZrllXjjI3WQY128uv3J-jZN6w7_ee6M9g2d5Wo8ByaxcdKXyC7KGS73D5t2Or2noaP5np7Pxh9AV4yzWE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2wo1EnsxBlRRVWg7UIrdbPs2IEimlYoXfntnBOngIQ6sMY-yfpi332fdA-ErjPwgCAcuBcqX3mUR2USAKjWjBOqSap5WRQ2GEa9MX2csEkDdepaGJtW6Xx_5dNLb-2-tB2a7cV02n4G5cFpQkEBwJ0FmbeBNikLYqvAbj9XeR5-lJQDVu1uz253lTNVkpcECGx-V1LOuw3Cv6PTj4jT3UM7jiriu-o0-6hh8gO0W49hwO5VHqJuf6nn-EXOjGdjksYzU8hXs3Q9mDHQUlz1_cAy19h8dyDEc3AYM1eJeYTG3ftRp-e58QheGhJSeCrLIgjvzFeZiWJgKrH0Uw78hxpigFiRWMdEhjpIbVMyFidAlmBRcmYi3ygSHqNmPs_NCcJpoBJ4yLHMEkUVS5QJQBgqFmjCKRCOFvJrWETqeofbERbvok4SexMWSmGhFBWULXSzsllUnTPW7mY12uLX_xfg2tfYnf7T7gpt9UaDvug_DJ_O0LZdqSoMz1Gz-FiaC6Aahbosr9IX5h7NYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ludo+game-based+metaheuristics+for+global+and+engineering+optimization&rft.jtitle=Applied+soft+computing&rft.au=Singh%2C+Prabhat+R.&rft.au=Elaziz%2C+Mohamed+Abd&rft.au=Xiong%2C+Shengwu&rft.date=2019-11-01&rft.issn=1568-4946&rft.volume=84&rft.spage=105723&rft_id=info:doi/10.1016%2Fj.asoc.2019.105723&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon