Ludo game-based metaheuristics for global and engineering optimization
This paper proposes a Ludo game-based strategy to enhance the ability of swarm algorithms to solve numerous global optimization problems. The proposed strategy simulates the rules of playing the game Ludo using two or four players to perform the update process for different swarm intelligent behavio...
        Saved in:
      
    
          | Published in | Applied soft computing Vol. 84; p. 105723 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.11.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1568-4946 1872-9681  | 
| DOI | 10.1016/j.asoc.2019.105723 | 
Cover
| Abstract | This paper proposes a Ludo game-based strategy to enhance the ability of swarm algorithms to solve numerous global optimization problems. The proposed strategy simulates the rules of playing the game Ludo using two or four players to perform the update process for different swarm intelligent behaviors. The proposed approach is named the Ludo Game-based Swarm Intelligence (LGSI) Algorithm. The LGSI algorithm uses the concepts of two and four players to enhance the exploration and exploitation of the optimization methods. In the proposed LGSI, a player is represented by a swarm algorithm, for example, in the two-player concept; Moth Flame Optimization (MFO) and the Grasshopper Optimization Algorithm (GOA) are selected, while in the four-player version, two other algorithms, the Sine Cosine Algorithm (SCA) and Gray Wolf Optimization (GWO), are added. In the proposed LGSI algorithm, the functional behaviors of all the used algorithms are different; also, there is no similarity among algorithmic behaviors except for convergence towards the global optimum, which is a common interest for all. However, the other algorithms share the same platform with this strategy, so in this case, competitive behavior may not be underestimated. The proposed LGSI algorithm shares positions among all the algorithms used during the search for the optimal solution. The performance of the LGSI algorithm is tested on a set of CEC2005 benchmark problems and engineering problems and is compared with the original versions of the utilized algorithms and a variety of other state-of-the-art algorithms. The experimental results show that the LGSI algorithm can provide promising and competitive results.
•There are two sets of hybrid algorithms have used to find global optima.•Ludo game used for maintaining a good balance between exploration and exploitation.•Each algorithm in Ludo method represents a player and population sizes are tokens.•Proposed algorithm is tested on 23 CEC Benchmark and 7 engineering design problems.•Performance of proposed algorithm is compared with well-known algorithms. | 
    
|---|---|
| AbstractList | This paper proposes a Ludo game-based strategy to enhance the ability of swarm algorithms to solve numerous global optimization problems. The proposed strategy simulates the rules of playing the game Ludo using two or four players to perform the update process for different swarm intelligent behaviors. The proposed approach is named the Ludo Game-based Swarm Intelligence (LGSI) Algorithm. The LGSI algorithm uses the concepts of two and four players to enhance the exploration and exploitation of the optimization methods. In the proposed LGSI, a player is represented by a swarm algorithm, for example, in the two-player concept; Moth Flame Optimization (MFO) and the Grasshopper Optimization Algorithm (GOA) are selected, while in the four-player version, two other algorithms, the Sine Cosine Algorithm (SCA) and Gray Wolf Optimization (GWO), are added. In the proposed LGSI algorithm, the functional behaviors of all the used algorithms are different; also, there is no similarity among algorithmic behaviors except for convergence towards the global optimum, which is a common interest for all. However, the other algorithms share the same platform with this strategy, so in this case, competitive behavior may not be underestimated. The proposed LGSI algorithm shares positions among all the algorithms used during the search for the optimal solution. The performance of the LGSI algorithm is tested on a set of CEC2005 benchmark problems and engineering problems and is compared with the original versions of the utilized algorithms and a variety of other state-of-the-art algorithms. The experimental results show that the LGSI algorithm can provide promising and competitive results.
•There are two sets of hybrid algorithms have used to find global optima.•Ludo game used for maintaining a good balance between exploration and exploitation.•Each algorithm in Ludo method represents a player and population sizes are tokens.•Proposed algorithm is tested on 23 CEC Benchmark and 7 engineering design problems.•Performance of proposed algorithm is compared with well-known algorithms. | 
    
| ArticleNumber | 105723 | 
    
| Author | Singh, Prabhat R. Elaziz, Mohamed Abd Xiong, Shengwu  | 
    
| Author_xml | – sequence: 1 givenname: Prabhat R. orcidid: 0000-0003-4847-7417 surname: Singh fullname: Singh, Prabhat R. email: prabhatranjansingh68@gmail.com organization: School of Computer Science, Wuhan University of Technology, Wuhan, China – sequence: 2 givenname: Mohamed Abd orcidid: 0000-0002-7682-6269 surname: Elaziz fullname: Elaziz, Mohamed Abd email: abd_el_aziz_m@yahoo.com organization: Department of mathematics, Faculty of Science, Zagazig University, 44519 Zagazig, Egypt – sequence: 3 givenname: Shengwu surname: Xiong fullname: Xiong, Shengwu email: xiongsw@whut.edu.cn organization: School of Computer Science, Wuhan University of Technology, Wuhan, China  | 
    
| BookMark | eNp9kM9KAzEQh4NUsK2-gKe8wNYku_mz4EWKVaHgRc8hm51dU3aTkqSCPr1b68lDTzPMj2-Y-RZo5oMHhG4pWVFCxd1uZVKwK0ZoPQ24ZOUFmlMlWVELRWdTz4UqqroSV2iR0o5MUM3UHG22hzbg3oxQNCZBi0fI5gMO0aXsbMJdiLgfQmMGbHyLwffOA0Tnexz22Y3u22QX_DW67MyQ4OavLtH75vFt_VxsX59e1g_bwpaE5KLpOqEY47TpQEhBmTTUKlqVFRBQJSeylcSULbNU1orLmld8Co3iICg0pFwiddprY0gpQqety78X5GjcoCnRRx96p48-9NGHPvmYUPYP3Uc3mvh1Hro_QTA99ekg6mQdeAuti2CzboM7h_8AGwd7Uw | 
    
| CitedBy_id | crossref_primary_10_1016_j_asoc_2020_106734 crossref_primary_10_1016_j_eswa_2020_113702 crossref_primary_10_1080_21681163_2021_2024088 crossref_primary_10_1007_s00521_024_10009_4 crossref_primary_10_1007_s00500_022_07604_9 crossref_primary_10_1007_s10586_024_04954_x crossref_primary_10_1007_s10462_023_10403_9 crossref_primary_10_1007_s11831_024_10168_6 crossref_primary_10_1007_s10462_020_09952_0 crossref_primary_10_1016_j_asoc_2019_106002 crossref_primary_10_1016_j_eswa_2021_116468 crossref_primary_10_1007_s12652_022_03765_5 crossref_primary_10_1007_s00500_023_09025_8 crossref_primary_10_3390_e23040491 crossref_primary_10_1080_19942060_2022_2098826 crossref_primary_10_1016_j_asoc_2022_108562 crossref_primary_10_1007_s11831_023_09897_x crossref_primary_10_1007_s10462_024_10981_2 crossref_primary_10_1109_ACCESS_2020_3012597 crossref_primary_10_1016_j_engappai_2022_105622 crossref_primary_10_1016_j_eswa_2023_122070 crossref_primary_10_1016_j_cma_2022_115652 crossref_primary_10_1371_journal_pone_0251204 crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_1007_s11831_022_09766_z crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_1016_j_eswa_2023_120905 crossref_primary_10_1007_s10462_023_10463_x crossref_primary_10_1080_21642583_2024_2385310 crossref_primary_10_1007_s11227_021_03943_w crossref_primary_10_1007_s00500_023_08468_3 crossref_primary_10_1007_s12652_020_02439_4 crossref_primary_10_1016_j_knosys_2020_105709  | 
    
| Cites_doi | 10.1007/s12559-017-9542-9 10.1155/2018/4231647 10.1016/j.cma.2004.09.007 10.1016/j.eswa.2008.02.021 10.1007/s00158-008-0238-3 10.1109/SCEECS.2016.7509293 10.1016/j.apm.2018.07.044 10.5430/air.v4n2p22 10.1016/j.asoc.2017.06.044 10.1016/j.swevo.2016.01.002 10.1016/j.advengsoft.2017.01.004 10.1016/j.asoc.2009.08.031 10.1155/2017/6741972 10.1109/CEC.2016.7744378 10.1080/088395198117550 10.1007/s00366-011-0241-y 10.1016/j.asoc.2018.09.019 10.1109/TSMCB.2006.873185 10.1016/j.asoc.2012.11.026 10.1007/s11721-007-0001-1 10.1016/j.eswa.2019.03.043 10.1007/s10845-014-0970-z 10.1016/j.compstruc.2014.04.005 10.1016/j.knosys.2015.07.006 10.1155/2015/481360 10.1016/j.ccell.2017.07.004 10.1007/s00521-015-1870-7 10.1016/j.advengsoft.2016.01.008 10.1016/j.ins.2009.03.004 10.1016/j.swevo.2018.02.011 10.5954/ICAROB.2018.GS3-2 10.1016/0360-8352(96)00037-X 10.1016/j.compstruc.2012.07.010 10.1016/j.eswa.2017.04.023 10.1126/science.220.4598.671 10.1016/j.engappai.2006.03.003 10.1016/j.asoc.2017.09.039 10.1016/j.engappai.2017.10.024 10.1287/ijoc.2.1.4 10.1111/coin.12081 10.3233/JIFS-171001 10.1155/2016/7950348 10.1016/j.swevo.2018.01.001 10.1109/ICSCTI.2015.7489575 10.1109/JSEE.2015.00037 10.1016/j.asoc.2015.08.052 10.1016/j.eswa.2017.07.043 10.1109/ICEETS.2016.7583804 10.1080/10407790903116469 10.1049/iet-gtd.2015.0429 10.1109/SOCPAR.2014.7008044 10.1016/j.eswa.2018.05.040 10.1155/2018/4945157 10.1016/j.asoc.2018.02.049 10.1016/j.eswa.2015.04.055 10.1109/TSMCC.2010.2054080 10.1016/j.simpat.2017.04.001 10.1016/j.asoc.2015.02.014 10.1016/j.compstruc.2012.12.010 10.1007/s10489-017-1074-1 10.1016/j.advengsoft.2013.12.007 10.1007/s00521-014-1806-7 10.1109/TSMCB.2012.2227469 10.1007/s12293-013-0128-0 10.1016/j.ins.2019.04.022 10.1109/TEVC.2003.814902 10.1016/j.knosys.2015.12.022 10.1016/j.eswa.2018.06.023 10.1007/978-3-319-70139-4_15  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2019 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.asoc.2019.105723 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-9681 | 
    
| ExternalDocumentID | 10_1016_j_asoc_2019_105723 S1568494619305046  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c300t-bff682251bfe676127a1c81434e0e83507d70a3d2c1798579545434a85e61eb03 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1568-4946 | 
    
| IngestDate | Wed Oct 01 02:32:15 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Fri Feb 23 02:24:49 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Ludo game strategy Global optimization Swarm intelligence Engineering problems  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c300t-bff682251bfe676127a1c81434e0e83507d70a3d2c1798579545434a85e61eb03 | 
    
| ORCID | 0000-0003-4847-7417 0000-0002-7682-6269  | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2019_105723 crossref_primary_10_1016_j_asoc_2019_105723 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105723  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | November 2019 2019-11-00  | 
    
| PublicationDateYYYYMMDD | 2019-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2019 text: November 2019  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Applied soft computing | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Liu, Cai, Wang (b98) 2010; 10 Xue, Zhang, Browne (b10) 2012; 43 Nenavath, Kumar Jatoth, Das (b67) 2018; 43 Bhattacharjee, Bhattacharya, Sharma (b42) 2016; 10 Zhang, Kang, Cheng, Wang (b61) 2018; 67 Caro, Ducatelle, Gambardella (b6) 2005 Ibrahim, Elaziz, Lu (b53) 2018; 108 Gutjahr (b100) 2007; 1 El Aziz, Ewees, Hassanien (b40) 2017; 83 Sapre, Mini (b51) 2018 S. Łukasik, P.A. Kowalski, M. Charytanowicz, P. Kulczycki, Data clustering with grasshopper optimization algorithm, 11 (2017) 71–74. Qu, Zeng, Dai, Yi, He (b64) 2018; 2018 J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE International Conference on Particle Swarm Optimization, vol. 4, 1995, pp. 1942–1948. Karaboga (b76) 2005 Saremi, Mirjalili, Lewis (b28) 2017; 105 Mittal, Singh, Sohi (b54) 2016; 2016 Mousavi, Bahreininejad, Musa, Yusof (b15) 2017; 28 S. Kirkpatrick, C.D. Gelatt, M.P. Vecch, Optimization by simulated annealing, 220 (4598) (2007) 671–680. Neve, Kakandikar, Kulkarni (b45) 2017; 06 Xu, Chen, Luo, Zhang, Jiao, Zhang (b50) 2019; 492 R. Kaur, P. Luthra, Load balancing in cloud computing, 5 (8) (2017) 375–381. Abd Elaziz, Ewees, Oliva, Duan, Xiong (b65) 2017 Nenavath, Jatoth (b66) 2018; 62 Dautenhahn (b19) 1998; 12 Zhang, Liu, Li, Jiang (b52) 2017 Cagnina, Esquivel, Coello Coello (b109) 2008; 32 Tharwat, Houssein, Ahmed, Hassanien, Gabel (b46) 2018; 48 Baykasotlu, Akpinar (b104) 2015; 37 (b36) 2018 Mirjalili (b27) 2015; 89 H.M. Zawbaa, E. Emary, B. Parv, M. Sharawi, Feature selection approach based on whale optimization algorithm, in: 2016 IEEE Congr. Evol. Comput. CEC 2016, 2016, pp. 4612–4617. Glover (b33) 1990; 2 Jaganathan, Sabari (b13) 2018 Yang, Young (b31) 2006; 12 Ke, Zhang, Li, Du (b92) 2016; 17 Eskandar, Sadollah, Bahreininejad, Hamdi (b111) 2012; 110–111 Gupta, Deep, Bansal (b26) 2017; 33 Zhu, Xu, Li, Wu, Liu (b56) 2015; 26 Lee, Geem (b86) 2005; 194 Sharma, Sharma, Panigrahi, Kiran, Kumar (b24) 2016; 28 Krohling, Dos Santos Coelho (b95) 2006; 36 I. Kassabalidis, M.A. El-Sharkawi, R.J.I. Marks, P. Arabshahi, A.A. Gray, Swarm intelligence for routing in communication networks, in: GLOBECOM’01. IEEE Glob. Telecommun. Conf. (Cat. No.01CH37270), vol. 6, 2001, pp. 3613–3617. Yadav, Zhang (b9) 2017; 2017 Blender, Buchner, Fernandez, Pichlmaier, Schlegel (b7) 2016 Best (b11) 2017; 32 A.I. Hafez, H.M. Zawbaa, E. Emary, A.E. Hassanien, Sine cosine optimization algorithm for feature selection, in: Proc. 2016 Int. Symp. Innov. Intell. Syst. Appl. INISTA 2016, 2016, pp. 1–5. He, Wang (b85) 2007; 20 Schwefel, Rudolph, Bäck (b105) 1995; 929 Mirjalili (b29) 2016; 96 Arora, Anand (b71) 2018 Long (b59) 2016 Singh, Elaziz, Xiong (b23) 2018; 110 zhuo Huang, Wang, He (b87) 2007; 186 Bonabeau, Dorigo, Theraulaz (b78) 1999 Ray, Liew (b88) 2003; 7 Mirjalili, Mirjalili, Hatamlou (b99) 2016; 27 Misra, Ray (b2) 2017 Ngai, Xiu, Chau (b16) 2009; 36 Rashedi, Nezamabadi-pour, Saryazdi (b82) 2009; 179 Ewees, Abd Elaziz, Houssein (b75) 2018; 112 Zhang, Zhou (b58) 2015; 2015 Aljarah, Al-Zoubi, Faris, Hassonah, Mirjalili, Saadeh (b48) 2018; 10 Rajakumar, Amudhavel, Dhavachelvan, Vengattaraman (b41) 2017; 2017 Michalewicz, Dasgupta, Le Riche, Schoenauer (b96) 1996; 30 He, Wang (b101) 2007; 186 Sadollah, Bahreininejad, Eskandar, Hamdi (b89) 2013; 13 Abd Elaziz, Oliva, Xiong (b63) 2017; 90 Chegini, Bagheri, Najafi (b68) 2018; 73 Bansal, Sharma, Jadon, Clerc (b25) 2014; 6 H. Jemal, Z. Kechaou, M. Ben Ayed, Swarm intelligence and multi agent system in healthcare, in: 6th Int. Conf. Soft Comput. Pattern Recognition, SoCPaR 2014, 2015, pp. 423–427. Kulkarni, Venayagamoorthy (b18) 2011; 41 Czerniak, Zarzycki, Ewald (b97) 2017; 76 Gupta, Deep (b60) 2019; 44 Mirjalili, Mirjalili, Hatamlou (b80) 2016; 27 Huang (b12) 2015; 4 Kaveh, Khayatazad (b93) 2013; 117 D. Jitkongchuen, U. Ampant, Integrated optimization of differential evolution with grasshopper optimization algorithm, in: Proc. Int. Conf. Artif. Life Robot., vol. 23, 2019, pp. 88–91. Mirjalili, Mohammad, Lewis (b108) 2014; 69 Vakili, Gadala (b17) 2009; 56 E. Mezura-Montes, J. Velázquez-Reyes, C.A. Coello Coello, Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization, in: Proc. 2005 Conf. Genet. Evol. Comput. - GECCO ’05, 2005, pp. 225–232. Xu (b49) 2019; 129 Mirjalili, Mirjalili, Lewis (b30) 2014; 69 Deb, Srinivasan (b110) 2006 Wang, Cai, Zhou, Fan (b106) 2009; 37 Long, Jiao, Liang, Tang (b62) 2018; 68 Yadav, Zhang, Chen, Guo (b8) 2017 Suganthan (b79) 2005 Saxena, Shekhawat, Kumar (b72) 2018 Parlett, David (b35) 1999 Ray, Dutta, Chakraborty (b3) 2017 Keyrouz (b4) 2012; 60 K.R. Das, Optimal tuning of PID controller using GWO algorithm for speed control in DC motor, in: Int. Conf. Soft Conputing Tech. Implementations, 2015, pp. 108–112. N. Jangir, M.H. Pandya, I.N. Trivedi, R.H. Bhesdadiya, P. Jangir, A. Kumar, Moth-flame optimization algorithm for solving real challenging constrained engineering optimization problems, in: 2016 IEEE Students’ Conf. Electr. Electron. Comput. Sci. SCEECS 2016, no. 1, 2016. Rao, Savsani, Vakharia (b103) 2011; 43 S.A. Parmar, Optimal active and reactive power dispatch problem solution using moth-flame optimizer algorithm, in: 2016 International Conference on Energy Efficient Technologies for Sustainability, ICEETS, 2016, pp. 491–496. Zhang, Zhou, Luo (b69) 2018; 34 De Castro, Von Zuben (b77) 1999 Luo, Chen, Zhang, Xu, Huang, Zhao (b73) 2018; 64 Saremi, Mirjalili, Mirjalili (b55) 2015; 26 Eskandar, Sadollah, Bahreininejad, Hamdi (b102) 2012; 110–111 iF. Glover, Laguna, Marti (b34) 2007; 23 Heidari, Pahlavani (b57) 2017; 60 Kaveh, Mahdavi (b83) 2014; 139 Rizk-Allah (b70) 2018 Gandomi, Yang, Alavi (b91) 2013; 29 Kiran (b90) 2015 Kaveh, Rastegar Moghaddam (b84) 2017; 0 Mirjalili, Lewis (b81) 2016; 95 Yu, Li (b21) 2015; 30 Y.C. Lin, M. Middendorf, Simple probabilistic population based optimization for combinatorial optimization, in: Proc. 2013 IEEE Symp. Swarm Intell. SIS 2013-2013 IEEE Symp. Ser. Comput. Intell. SSCI 2013, 2013, pp. 213–220. Gandomi, Yang, Alavi (b94) 2013; 29 Cagnina (10.1016/j.asoc.2019.105723_b109) 2008; 32 Blender (10.1016/j.asoc.2019.105723_b7) 2016 Kaveh (10.1016/j.asoc.2019.105723_b93) 2013; 117 Singh (10.1016/j.asoc.2019.105723_b23) 2018; 110 Mirjalili (10.1016/j.asoc.2019.105723_b29) 2016; 96 Keyrouz (10.1016/j.asoc.2019.105723_b4) 2012; 60 De Castro (10.1016/j.asoc.2019.105723_b77) 1999 10.1016/j.asoc.2019.105723_b37 10.1016/j.asoc.2019.105723_b38 10.1016/j.asoc.2019.105723_b39 Misra (10.1016/j.asoc.2019.105723_b2) 2017 10.1016/j.asoc.2019.105723_b32 Karaboga (10.1016/j.asoc.2019.105723_b76) 2005 Aljarah (10.1016/j.asoc.2019.105723_b48) 2018; 10 Gandomi (10.1016/j.asoc.2019.105723_b91) 2013; 29 Mirjalili (10.1016/j.asoc.2019.105723_b81) 2016; 95 Gupta (10.1016/j.asoc.2019.105723_b26) 2017; 33 10.1016/j.asoc.2019.105723_b47 Ke (10.1016/j.asoc.2019.105723_b92) 2016; 17 El Aziz (10.1016/j.asoc.2019.105723_b40) 2017; 83 Saremi (10.1016/j.asoc.2019.105723_b55) 2015; 26 Saxena (10.1016/j.asoc.2019.105723_b72) 2018 Nenavath (10.1016/j.asoc.2019.105723_b66) 2018; 62 10.1016/j.asoc.2019.105723_b43 10.1016/j.asoc.2019.105723_b44 Sadollah (10.1016/j.asoc.2019.105723_b89) 2013; 13 Zhu (10.1016/j.asoc.2019.105723_b56) 2015; 26 Schwefel (10.1016/j.asoc.2019.105723_b105) 1995; 929 Long (10.1016/j.asoc.2019.105723_b59) 2016 He (10.1016/j.asoc.2019.105723_b85) 2007; 20 He (10.1016/j.asoc.2019.105723_b101) 2007; 186 Vakili (10.1016/j.asoc.2019.105723_b17) 2009; 56 Parlett (10.1016/j.asoc.2019.105723_b35) 1999 Baykasotlu (10.1016/j.asoc.2019.105723_b104) 2015; 37 Rizk-Allah (10.1016/j.asoc.2019.105723_b70) 2018 10.1016/j.asoc.2019.105723_b14 Gandomi (10.1016/j.asoc.2019.105723_b94) 2013; 29 Tharwat (10.1016/j.asoc.2019.105723_b46) 2018; 48 Yadav (10.1016/j.asoc.2019.105723_b9) 2017; 2017 Xu (10.1016/j.asoc.2019.105723_b49) 2019; 129 Abd Elaziz (10.1016/j.asoc.2019.105723_b65) 2017 Dautenhahn (10.1016/j.asoc.2019.105723_b19) 1998; 12 Bansal (10.1016/j.asoc.2019.105723_b25) 2014; 6 iF. Glover (10.1016/j.asoc.2019.105723_b34) 2007; 23 Ewees (10.1016/j.asoc.2019.105723_b75) 2018; 112 Long (10.1016/j.asoc.2019.105723_b62) 2018; 68 Rashedi (10.1016/j.asoc.2019.105723_b82) 2009; 179 Kaveh (10.1016/j.asoc.2019.105723_b83) 2014; 139 Ray (10.1016/j.asoc.2019.105723_b88) 2003; 7 Wang (10.1016/j.asoc.2019.105723_b106) 2009; 37 10.1016/j.asoc.2019.105723_b107 10.1016/j.asoc.2019.105723_b20 Arora (10.1016/j.asoc.2019.105723_b71) 2018 Mirjalili (10.1016/j.asoc.2019.105723_b27) 2015; 89 10.1016/j.asoc.2019.105723_b22 Qu (10.1016/j.asoc.2019.105723_b64) 2018; 2018 Xue (10.1016/j.asoc.2019.105723_b10) 2012; 43 Czerniak (10.1016/j.asoc.2019.105723_b97) 2017; 76 10.1016/j.asoc.2019.105723_b5 Best (10.1016/j.asoc.2019.105723_b11) 2017; 32 Rao (10.1016/j.asoc.2019.105723_b103) 2011; 43 Yu (10.1016/j.asoc.2019.105723_b21) 2015; 30 Kiran (10.1016/j.asoc.2019.105723_b90) 2015 Saremi (10.1016/j.asoc.2019.105723_b28) 2017; 105 Mirjalili (10.1016/j.asoc.2019.105723_b80) 2016; 27 Yang (10.1016/j.asoc.2019.105723_b31) 2006; 12 Yadav (10.1016/j.asoc.2019.105723_b8) 2017 10.1016/j.asoc.2019.105723_b1 Nenavath (10.1016/j.asoc.2019.105723_b67) 2018; 43 10.1016/j.asoc.2019.105723_b74 Krohling (10.1016/j.asoc.2019.105723_b95) 2006; 36 Zhang (10.1016/j.asoc.2019.105723_b58) 2015; 2015 Mittal (10.1016/j.asoc.2019.105723_b54) 2016; 2016 Ibrahim (10.1016/j.asoc.2019.105723_b53) 2018; 108 Gupta (10.1016/j.asoc.2019.105723_b60) 2019; 44 Suganthan (10.1016/j.asoc.2019.105723_b79) 2005 Eskandar (10.1016/j.asoc.2019.105723_b102) 2012; 110–111 Lee (10.1016/j.asoc.2019.105723_b86) 2005; 194 Huang (10.1016/j.asoc.2019.105723_b12) 2015; 4 Sharma (10.1016/j.asoc.2019.105723_b24) 2016; 28 Mirjalili (10.1016/j.asoc.2019.105723_b30) 2014; 69 Abd Elaziz (10.1016/j.asoc.2019.105723_b63) 2017; 90 Mousavi (10.1016/j.asoc.2019.105723_b15) 2017; 28 Liu (10.1016/j.asoc.2019.105723_b98) 2010; 10 Zhang (10.1016/j.asoc.2019.105723_b69) 2018; 34 Rajakumar (10.1016/j.asoc.2019.105723_b41) 2017; 2017 Chegini (10.1016/j.asoc.2019.105723_b68) 2018; 73 Gutjahr (10.1016/j.asoc.2019.105723_b100) 2007; 1 Mirjalili (10.1016/j.asoc.2019.105723_b108) 2014; 69 Zhang (10.1016/j.asoc.2019.105723_b61) 2018; 67 Heidari (10.1016/j.asoc.2019.105723_b57) 2017; 60 Caro (10.1016/j.asoc.2019.105723_b6) 2005 Neve (10.1016/j.asoc.2019.105723_b45) 2017; 06 Ray (10.1016/j.asoc.2019.105723_b3) 2017 Kaveh (10.1016/j.asoc.2019.105723_b84) 2017; 0 Ngai (10.1016/j.asoc.2019.105723_b16) 2009; 36 Deb (10.1016/j.asoc.2019.105723_b110) 2006 Xu (10.1016/j.asoc.2019.105723_b50) 2019; 492 Bonabeau (10.1016/j.asoc.2019.105723_b78) 1999 zhuo Huang (10.1016/j.asoc.2019.105723_b87) 2007; 186 Bhattacharjee (10.1016/j.asoc.2019.105723_b42) 2016; 10 Luo (10.1016/j.asoc.2019.105723_b73) 2018; 64 Mirjalili (10.1016/j.asoc.2019.105723_b99) 2016; 27 Glover (10.1016/j.asoc.2019.105723_b33) 1990; 2 Eskandar (10.1016/j.asoc.2019.105723_b111) 2012; 110–111 (10.1016/j.asoc.2019.105723_b36) 2018 Sapre (10.1016/j.asoc.2019.105723_b51) 2018 Kulkarni (10.1016/j.asoc.2019.105723_b18) 2011; 41 Jaganathan (10.1016/j.asoc.2019.105723_b13) 2018 Zhang (10.1016/j.asoc.2019.105723_b52) 2017 Michalewicz (10.1016/j.asoc.2019.105723_b96) 1996; 30  | 
    
| References_xml | – volume: 33 start-page: 210 year: 2017 end-page: 240 ident: b26 article-title: Improving the local search ability of spider monkey optimization algorithm using quadratic approximation for unconstrained optimization publication-title: Comput. Intell. – year: 1999 ident: b78 article-title: Swarm intelligence: from natural to artificial systems – volume: 2 start-page: 4 year: 1990 end-page: 32 ident: b33 article-title: Tabu search—Part II publication-title: ORSA J. Comput. – volume: 186 start-page: 1407 year: 2007 end-page: 1422 ident: b101 article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization publication-title: Appl. Math. Comput. – volume: 0 start-page: 0 year: 2017 ident: b84 article-title: A hybrid WOA-CBO algorithm for construction site layout planning problem publication-title: Sci. Iran. – volume: 37 start-page: 395 year: 2009 end-page: 413 ident: b106 article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique publication-title: Struct. Multidiscip. Optim. – volume: 73 start-page: 697 year: 2018 end-page: 726 ident: b68 article-title: PSOSCALF: A new hybrid PSO based on sine cosine algorithm and levy flight for solving optimization problems publication-title: Appl. Soft Comput. J. – reference: N. Jangir, M.H. Pandya, I.N. Trivedi, R.H. Bhesdadiya, P. Jangir, A. Kumar, Moth-flame optimization algorithm for solving real challenging constrained engineering optimization problems, in: 2016 IEEE Students’ Conf. Electr. Electron. Comput. Sci. SCEECS 2016, no. 1, 2016. – reference: H. Jemal, Z. Kechaou, M. Ben Ayed, Swarm intelligence and multi agent system in healthcare, in: 6th Int. Conf. Soft Comput. Pattern Recognition, SoCPaR 2014, 2015, pp. 423–427. – reference: Y.C. Lin, M. Middendorf, Simple probabilistic population based optimization for combinatorial optimization, in: Proc. 2013 IEEE Symp. Swarm Intell. SIS 2013-2013 IEEE Symp. Ser. Comput. Intell. SSCI 2013, 2013, pp. 213–220. – volume: 36 start-page: 2592 year: 2009 end-page: 2602 ident: b16 article-title: Application of data mining techniques in customer relationship management: A literature review and classification publication-title: Expert Syst. Appl. – year: 2016 ident: b59 article-title: Grey wolf optimizer based on nonlinear adjustment control parameter publication-title: 2016 4th International Conference on Sensors, Mechatronics and Automation, ICSMA 2016 – volume: 139 start-page: 18 year: 2014 end-page: 27 ident: b83 article-title: Colliding bodies optimization: a novel meta-heuristic method publication-title: Comput. Struct. – year: 2018 ident: b36 article-title: Ludo Game, Wikipedia – volume: 26 start-page: 1257 year: 2015 end-page: 1263 ident: b55 article-title: Evolutionary population dynamics and grey wolf optimizer publication-title: Neural Comput. Appl. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b30 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 1 start-page: 59 year: 2007 end-page: 79 ident: b100 article-title: Mathematical runtime analysis of ACO algorithms: survey on an emerging issue publication-title: Swarm Intell. – volume: 13 start-page: 2592 year: 2013 end-page: 2612 ident: b89 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. J. – start-page: 1629 year: 2006 end-page: 1636 ident: b110 article-title: Innovization: Innovating design principles through optimization publication-title: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation – reference: I. Kassabalidis, M.A. El-Sharkawi, R.J.I. Marks, P. Arabshahi, A.A. Gray, Swarm intelligence for routing in communication networks, in: GLOBECOM’01. IEEE Glob. Telecommun. Conf. (Cat. No.01CH37270), vol. 6, 2001, pp. 3613–3617. – volume: 2017 year: 2017 ident: b9 article-title: Mereg: Managing energy-SLA tradeoff for green mobile cloud computing publication-title: Wirel. Commun. Mob. Comput. – volume: 44 start-page: 101 year: 2019 end-page: 112 ident: b60 article-title: A novel random walk grey wolf optimizer publication-title: Swarm Evol. Comput. – start-page: 76 year: 2005 end-page: 83 ident: b6 article-title: Swarm intelligence for routing in mobile ad hoc networks publication-title: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005 – volume: 28 start-page: 191 year: 2017 end-page: 206 ident: b15 article-title: A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network publication-title: J. Intell. Manuf. – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: b103 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Des. – volume: 62 start-page: 1019 year: 2018 end-page: 1043 ident: b66 article-title: Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking publication-title: Appl. Soft Comput. J. – volume: 26 start-page: 317 year: 2015 end-page: 328 ident: b56 article-title: Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked soc publication-title: J. Syst. Eng. Electron. – volume: 60 start-page: 115 year: 2017 end-page: 134 ident: b57 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Appl. Soft Comput. J. – reference: S.A. Parmar, Optimal active and reactive power dispatch problem solution using moth-flame optimizer algorithm, in: 2016 International Conference on Energy Efficient Technologies for Sustainability, ICEETS, 2016, pp. 491–496. – reference: A.I. Hafez, H.M. Zawbaa, E. Emary, A.E. Hassanien, Sine cosine optimization algorithm for feature selection, in: Proc. 2016 Int. Symp. Innov. Intell. Syst. Appl. INISTA 2016, 2016, pp. 1–5. – volume: 68 start-page: 63 year: 2018 end-page: 80 ident: b62 article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization publication-title: Eng. Appl. Artif. Intell. – volume: 48 start-page: 2268 year: 2018 end-page: 2283 ident: b46 article-title: MOGOA algorithm for constrained and unconstrained multi-objective optimization problems publication-title: Appl. Intell. – volume: 110 start-page: 264 year: 2018 end-page: 289 ident: b23 article-title: Modified spider monkey optimization based on nelder–mead method for global optimization publication-title: Expert Syst. Appl. – year: 2015 ident: b90 article-title: TSA: Tree-seed algorithm for continuous optimization publication-title: Expert Syst. Appl. – volume: 129 start-page: 135 year: 2019 end-page: 155 ident: b49 article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks publication-title: Expert Syst. Appl. – year: 1999 ident: b77 article-title: Artificial immune systems: Part I - Basic theory and applications – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b108 article-title: Advances in engineering software grey wolf optimizer publication-title: Adv. Eng. Softw. – start-page: 1 year: 2018 end-page: 21 ident: b71 article-title: Chaotic grasshopper optimization algorithm for global optimization publication-title: Neural Comput. Appl. – reference: K.R. Das, Optimal tuning of PID controller using GWO algorithm for speed control in DC motor, in: Int. Conf. Soft Conputing Tech. Implementations, 2015, pp. 108–112. – volume: 90 start-page: 484 year: 2017 end-page: 500 ident: b63 article-title: An improved opposition-based sine cosine algorithm for global optimization publication-title: Expert Syst. Appl. – volume: 30 start-page: 851 year: 1996 end-page: 870 ident: b96 article-title: Evolutionary algorithms for constrained engineering problems publication-title: Comput. Ind. Eng. – volume: 76 start-page: 22 year: 2017 end-page: 33 ident: b97 article-title: AAO as a new strategy in modeling and simulation of constructional problems optimization publication-title: Simul. Model. Pract. Theory – volume: 110–111 start-page: 151 year: 2012 end-page: 166 ident: b111 article-title: Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. – year: 1999 ident: b35 article-title: The Oxford History of Board Games – volume: 41 start-page: 262 year: 2011 end-page: 267 ident: b18 article-title: Particle swarm optimization in wireless-sensor networks: A brief survey publication-title: IEEE Trans. Syst. Man Cybern. C – start-page: 1 year: 2018 end-page: 10 ident: b13 article-title: An heuristic cloud based segmentation technique using edge and texture based two dimensional entropy publication-title: Cluster Comput. – volume: 186 start-page: 340 year: 2007 end-page: 356 ident: b87 article-title: An effective co-evolutionary differential evolution for constrained optimization publication-title: Appl. Math. Comput. – volume: 32 year: 2008 ident: b109 article-title: Solving engineering optimization problems with the simple constrained particle swarm optimizer publication-title: Information – reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE International Conference on Particle Swarm Optimization, vol. 4, 1995, pp. 1942–1948. – volume: 110–111 start-page: 151 year: 2012 end-page: 166 ident: b102 article-title: Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. – volume: 60 start-page: 1 year: 2012 end-page: 6 ident: b4 article-title: A fast-multiplying PSO algorithm for real-time multiple object tracking publication-title: Int. J. Comput. Appl. – volume: 10 start-page: 629 year: 2010 end-page: 640 ident: b98 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Appl. Soft Comput. J. – volume: 29 start-page: 17 year: 2013 end-page: 35 ident: b94 article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. – volume: 83 start-page: 242 year: 2017 end-page: 256 ident: b40 article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation publication-title: Expert Syst. Appl. – volume: 6 start-page: 31 year: 2014 end-page: 47 ident: b25 article-title: Spider monkey optimization algorithm for numerical optimization publication-title: Memetic Comput. – volume: 929 year: 1995 ident: b105 publication-title: Lecture Notes in Artificial Intelligence – volume: 34 start-page: 2129 year: 2018 end-page: 2141 ident: b69 article-title: An improved sine cosine water wave optimization algorithm for global optimization publication-title: J. Intell. Fuzzy Syst. – reference: R. Kaur, P. Luthra, Load balancing in cloud computing, 5 (8) (2017) 375–381. – reference: S. Łukasik, P.A. Kowalski, M. Charytanowicz, P. Kulczycki, Data clustering with grasshopper optimization algorithm, 11 (2017) 71–74. – volume: 43 start-page: 1 year: 2018 end-page: 30 ident: b67 article-title: A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking publication-title: Swarm Evol. Comput. – volume: 56 start-page: 119 year: 2009 end-page: 141 ident: b17 article-title: Effectiveness and efficiency of particle swarm optimization technique in inverse heat conduction analysis publication-title: Numer. Heat Transfer B – volume: 2016 start-page: 8 year: 2016 ident: b54 article-title: Modified grey wolf optimizer for global engineering optimization publication-title: Appl. Comput. Intell. Soft Comput. – start-page: 1 year: 2005 end-page: 50 ident: b79 article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization publication-title: Nat. Comput. – volume: 37 start-page: 396 year: 2015 end-page: 415 ident: b104 article-title: Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems - Part 2: Constrained optimization publication-title: Appl. Soft Comput. J. – start-page: 1 year: 2018 end-page: 27 ident: b70 article-title: An improved sine–cosine algorithm based on orthogonal parallel information for global optimization publication-title: Soft Comput. – volume: 7 start-page: 386 year: 2003 end-page: 396 ident: b88 article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior publication-title: IEEE Trans. Evol. Comput. – volume: 10 start-page: 478 year: 2018 end-page: 495 ident: b48 article-title: Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm publication-title: Cognit. Comput. – year: 2017 ident: b65 article-title: A hybrid method of sine cosine algorithm and differential evolution for feature selection publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b81 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 06 year: 2017 ident: b45 article-title: Application of grasshopper optimization algorithm for constrained and unconstrained test functions publication-title: Int. J. Swarm Intell. Evol. Comput. – start-page: 132 year: 2017 end-page: 136 ident: b8 article-title: Mums: Energy-aware vm selection scheme for cloud data center publication-title: 2017 28th International Workshop on Database and Expert Systems Applications, DEXA – start-page: 6879 year: 2016 end-page: 6886 ident: b7 article-title: Managing a mobile agricultural robot swarm for a seeding task publication-title: IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: b28 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Adv. Eng. Softw. – volume: 2018 year: 2018 ident: b64 article-title: A modified sine-cosine algorithm based on neighborhood search and greedy levy mutation publication-title: Comput. Intell. Neurosci. – volume: 30 start-page: 614 year: 2015 end-page: 627 ident: b21 article-title: A social spider algorithm for global optimization publication-title: Appl. Soft Comput. – year: 2018 ident: b72 article-title: Application and development of enhanced chaotic grasshopper optimization algorithms publication-title: Model. Simul. Eng. – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: b80 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. – volume: 194 start-page: 3902 year: 2005 end-page: 3933 ident: b86 article-title: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b27 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. – reference: E. Mezura-Montes, J. Velázquez-Reyes, C.A. Coello Coello, Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization, in: Proc. 2005 Conf. Genet. Evol. Comput. - GECCO ’05, 2005, pp. 225–232. – start-page: 1 year: 2017 end-page: 6 ident: b2 article-title: Object tracking based on quantum particle swarm optimization publication-title: 2017 Ninth International Conference on Advances in Pattern Recognition, ICAPR – reference: S. Kirkpatrick, C.D. Gelatt, M.P. Vecch, Optimization by simulated annealing, 220 (4598) (2007) 671–680. – start-page: 1 year: 2017 end-page: 16 ident: b3 article-title: Detection, recognition and tracking of moving objects from real-time video via SP theory of intelligence and species inspired PSO – volume: 492 start-page: 181 year: 2019 end-page: 203 ident: b50 article-title: Enhanced moth-flame optimizer with mutation strategy for global optimization publication-title: Inf. Sci. (Ny) – volume: 29 start-page: 17 year: 2013 end-page: 35 ident: b91 article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. – volume: 12 start-page: 573 year: 1998 end-page: 617 ident: b19 article-title: The art of designing socially intelligent agents: science, fiction, and the human in the loop publication-title: Appl. Artif. Intell. – reference: D. Jitkongchuen, U. Ampant, Integrated optimization of differential evolution with grasshopper optimization algorithm, in: Proc. Int. Conf. Artif. Life Robot., vol. 23, 2019, pp. 88–91. – volume: 23 start-page: 1 year: 2007 end-page: 12 ident: b34 article-title: Principles of tabu search publication-title: Approx. Algorithms Metaheuristics – volume: 4 start-page: 22 year: 2015 end-page: 37 ident: b12 article-title: Supervised feature selection: A tutorial publication-title: Artif. Intell. Res. – volume: 12 start-page: 2010 year: 2006 ident: b31 article-title: Cellular automata, PDEs, and pattern formation publication-title: Handb. Bioinspired Algorithms Appl. – start-page: 10 year: 2005 ident: b76 article-title: An Idea Based on Honey Bee Swarm for Numerical Optimization – volume: 67 start-page: 197 year: 2018 end-page: 214 ident: b61 article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer publication-title: Appl. Soft Comput. J. – year: 2017 ident: b52 article-title: Intelligence Science and Big Data Engineering, vol. 10559 – volume: 108 start-page: 27 year: 2018 ident: b53 article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization publication-title: Expert Syst. Appl. – volume: 10 start-page: 625 year: 2016 end-page: 637 ident: b42 article-title: Grey wolf optimisation for optimal sizing of battery energy storage device to minimise operation cost of microgrid publication-title: IET Gener. Transm. Distrib. – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b29 article-title: SCA: A Sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – volume: 2015 year: 2015 ident: b58 article-title: Grey wolf optimizer based on Powell local optimization method for clustering analysis publication-title: Discrete Dyn. Nat. Soc. – volume: 2017 year: 2017 ident: b41 article-title: GWO-LPWSN: Grey wolf optimization algorithm for node localization problem in wireless sensor networks publication-title: J. Comput. Netw. Commun. – volume: 117 start-page: 82 year: 2013 end-page: 94 ident: b93 article-title: Ray optimization for size and shape optimization of truss structures publication-title: Comput. Struct. – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: b99 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. – volume: 43 start-page: 1656 year: 2012 end-page: 1671 ident: b10 article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach publication-title: IEEE Trans. Cybern. – volume: 32 start-page: 238 year: 2017 end-page: 252 ident: b11 article-title: Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets publication-title: Cancer Cell – volume: 112 start-page: 156 year: 2018 end-page: 172 ident: b75 article-title: Improved grasshopper optimization algorithm using opposition-based learning publication-title: Expert Syst. Appl. – volume: 36 start-page: 1407 year: 2006 end-page: 1416 ident: b95 article-title: Coevolutionary particle swarm optimization using gaussian distribution for solving constrained optimization problems publication-title: IEEE Trans. Syst. Man Cybern. B – reference: H.M. Zawbaa, E. Emary, B. Parv, M. Sharawi, Feature selection approach based on whale optimization algorithm, in: 2016 IEEE Congr. Evol. Comput. CEC 2016, 2016, pp. 4612–4617. – year: 2018 ident: b51 article-title: Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization publication-title: Soft Comput. – volume: 64 start-page: 654 year: 2018 end-page: 668 ident: b73 article-title: An improved grasshopper optimization algorithm with application to financial stress prediction publication-title: Appl. Math. Model. – volume: 28 start-page: 58 year: 2016 end-page: 77 ident: b24 article-title: Ageist spider monkey optimization algorithm publication-title: Swarm Evol. Comput. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b82 article-title: GSA: A gravitational search algorithm publication-title: Inf. Sci. (Ny). – volume: 20 start-page: 89 year: 2007 end-page: 99 ident: b85 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Eng. Appl. Artif. Intell. – volume: 17 start-page: 5.1 year: 2016 end-page: 5.7 ident: b92 article-title: Solving design of pressure vessel engineering problem using a fruit fly optimization algorithm publication-title: Int. J. Simul. Syst. Sci. Technol. – volume: 10 start-page: 478 issue: 3 year: 2018 ident: 10.1016/j.asoc.2019.105723_b48 article-title: Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm publication-title: Cognit. Comput. doi: 10.1007/s12559-017-9542-9 – volume: 2018 year: 2018 ident: 10.1016/j.asoc.2019.105723_b64 article-title: A modified sine-cosine algorithm based on neighborhood search and greedy levy mutation publication-title: Comput. Intell. Neurosci. doi: 10.1155/2018/4231647 – volume: 194 start-page: 3902 issue: 36–38 year: 2005 ident: 10.1016/j.asoc.2019.105723_b86 article-title: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2004.09.007 – start-page: 6879 year: 2016 ident: 10.1016/j.asoc.2019.105723_b7 article-title: Managing a mobile agricultural robot swarm for a seeding task – volume: 36 start-page: 2592 issue: 2 Part 2 year: 2009 ident: 10.1016/j.asoc.2019.105723_b16 article-title: Application of data mining techniques in customer relationship management: A literature review and classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.02.021 – year: 2018 ident: 10.1016/j.asoc.2019.105723_b36 – volume: 2017 year: 2017 ident: 10.1016/j.asoc.2019.105723_b41 article-title: GWO-LPWSN: Grey wolf optimization algorithm for node localization problem in wireless sensor networks publication-title: J. Comput. Netw. Commun. – volume: 37 start-page: 395 issue: 4 year: 2009 ident: 10.1016/j.asoc.2019.105723_b106 article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-008-0238-3 – ident: 10.1016/j.asoc.2019.105723_b37 doi: 10.1109/SCEECS.2016.7509293 – volume: 64 start-page: 654 year: 2018 ident: 10.1016/j.asoc.2019.105723_b73 article-title: An improved grasshopper optimization algorithm with application to financial stress prediction publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.07.044 – volume: 4 start-page: 22 issue: 2 year: 2015 ident: 10.1016/j.asoc.2019.105723_b12 article-title: Supervised feature selection: A tutorial publication-title: Artif. Intell. Res. doi: 10.5430/air.v4n2p22 – volume: 60 start-page: 115 year: 2017 ident: 10.1016/j.asoc.2019.105723_b57 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2017.06.044 – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2019.105723_b3 – ident: 10.1016/j.asoc.2019.105723_b107 – volume: 28 start-page: 58 year: 2016 ident: 10.1016/j.asoc.2019.105723_b24 article-title: Ageist spider monkey optimization algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2016.01.002 – volume: 105 start-page: 30 year: 2017 ident: 10.1016/j.asoc.2019.105723_b28 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.01.004 – volume: 10 start-page: 629 issue: 2 year: 2010 ident: 10.1016/j.asoc.2019.105723_b98 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2009.08.031 – volume: 2017 year: 2017 ident: 10.1016/j.asoc.2019.105723_b9 article-title: Mereg: Managing energy-SLA tradeoff for green mobile cloud computing publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2017/6741972 – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2019.105723_b2 article-title: Object tracking based on quantum particle swarm optimization – ident: 10.1016/j.asoc.2019.105723_b39 doi: 10.1109/CEC.2016.7744378 – start-page: 10 year: 2005 ident: 10.1016/j.asoc.2019.105723_b76 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.asoc.2019.105723_b103 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Des. – start-page: 132 year: 2017 ident: 10.1016/j.asoc.2019.105723_b8 article-title: Mums: Energy-aware vm selection scheme for cloud data center – volume: 12 start-page: 573 issue: 7–8 year: 1998 ident: 10.1016/j.asoc.2019.105723_b19 article-title: The art of designing socially intelligent agents: science, fiction, and the human in the loop publication-title: Appl. Artif. Intell. doi: 10.1080/088395198117550 – volume: 186 start-page: 340 issue: 1 year: 2007 ident: 10.1016/j.asoc.2019.105723_b87 article-title: An effective co-evolutionary differential evolution for constrained optimization publication-title: Appl. Math. Comput. – volume: 29 start-page: 17 issue: 1 year: 2013 ident: 10.1016/j.asoc.2019.105723_b91 article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-011-0241-y – volume: 73 start-page: 697 year: 2018 ident: 10.1016/j.asoc.2019.105723_b68 article-title: PSOSCALF: A new hybrid PSO based on sine cosine algorithm and levy flight for solving optimization problems publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2018.09.019 – volume: 29 start-page: 17 issue: 1 year: 2013 ident: 10.1016/j.asoc.2019.105723_b94 article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-011-0241-y – year: 2016 ident: 10.1016/j.asoc.2019.105723_b59 article-title: Grey wolf optimizer based on nonlinear adjustment control parameter – volume: 36 start-page: 1407 issue: 6 year: 2006 ident: 10.1016/j.asoc.2019.105723_b95 article-title: Coevolutionary particle swarm optimization using gaussian distribution for solving constrained optimization problems publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2006.873185 – volume: 13 start-page: 2592 issue: 5 year: 2013 ident: 10.1016/j.asoc.2019.105723_b89 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2012.11.026 – start-page: 1 issue: May year: 2005 ident: 10.1016/j.asoc.2019.105723_b79 article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization publication-title: Nat. Comput. – volume: 1 start-page: 59 issue: 1 year: 2007 ident: 10.1016/j.asoc.2019.105723_b100 article-title: Mathematical runtime analysis of ACO algorithms: survey on an emerging issue publication-title: Swarm Intell. doi: 10.1007/s11721-007-0001-1 – volume: 129 start-page: 135 year: 2019 ident: 10.1016/j.asoc.2019.105723_b49 article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.03.043 – volume: 28 start-page: 191 issue: 1 year: 2017 ident: 10.1016/j.asoc.2019.105723_b15 article-title: A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network publication-title: J. Intell. Manuf. doi: 10.1007/s10845-014-0970-z – year: 1999 ident: 10.1016/j.asoc.2019.105723_b35 – volume: 139 start-page: 18 year: 2014 ident: 10.1016/j.asoc.2019.105723_b83 article-title: Colliding bodies optimization: a novel meta-heuristic method publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2014.04.005 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.asoc.2019.105723_b27 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 2015 year: 2015 ident: 10.1016/j.asoc.2019.105723_b58 article-title: Grey wolf optimizer based on Powell local optimization method for clustering analysis publication-title: Discrete Dyn. Nat. Soc. doi: 10.1155/2015/481360 – volume: 32 start-page: 238 issue: 2 year: 2017 ident: 10.1016/j.asoc.2019.105723_b11 article-title: Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.07.004 – start-page: 1629 year: 2006 ident: 10.1016/j.asoc.2019.105723_b110 article-title: Innovization: Innovating design principles through optimization – ident: 10.1016/j.asoc.2019.105723_b14 – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 10.1016/j.asoc.2019.105723_b80 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.asoc.2019.105723_b81 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.asoc.2019.105723_b82 article-title: GSA: A gravitational search algorithm publication-title: Inf. Sci. (Ny). doi: 10.1016/j.ins.2009.03.004 – start-page: 76 year: 2005 ident: 10.1016/j.asoc.2019.105723_b6 article-title: Swarm intelligence for routing in mobile ad hoc networks – ident: 10.1016/j.asoc.2019.105723_b20 – volume: 43 start-page: 1 year: 2018 ident: 10.1016/j.asoc.2019.105723_b67 article-title: A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.02.011 – ident: 10.1016/j.asoc.2019.105723_b74 doi: 10.5954/ICAROB.2018.GS3-2 – year: 2018 ident: 10.1016/j.asoc.2019.105723_b51 article-title: Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization publication-title: Soft Comput. – volume: 30 start-page: 851 issue: 4 year: 1996 ident: 10.1016/j.asoc.2019.105723_b96 article-title: Evolutionary algorithms for constrained engineering problems publication-title: Comput. Ind. Eng. doi: 10.1016/0360-8352(96)00037-X – volume: 110–111 start-page: 151 year: 2012 ident: 10.1016/j.asoc.2019.105723_b102 article-title: Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.07.010 – volume: 83 start-page: 242 year: 2017 ident: 10.1016/j.asoc.2019.105723_b40 article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.04.023 – year: 1999 ident: 10.1016/j.asoc.2019.105723_b77 – volume: 06 issue: 03 year: 2017 ident: 10.1016/j.asoc.2019.105723_b45 article-title: Application of grasshopper optimization algorithm for constrained and unconstrained test functions publication-title: Int. J. Swarm Intell. Evol. Comput. – ident: 10.1016/j.asoc.2019.105723_b32 doi: 10.1126/science.220.4598.671 – volume: 20 start-page: 89 issue: 1 year: 2007 ident: 10.1016/j.asoc.2019.105723_b85 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2006.03.003 – volume: 62 start-page: 1019 year: 2018 ident: 10.1016/j.asoc.2019.105723_b66 article-title: Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2017.09.039 – volume: 17 start-page: 5.1 issue: 43 year: 2016 ident: 10.1016/j.asoc.2019.105723_b92 article-title: Solving design of pressure vessel engineering problem using a fruit fly optimization algorithm publication-title: Int. J. Simul. Syst. Sci. Technol. – volume: 60 start-page: 1 issue: 3 year: 2012 ident: 10.1016/j.asoc.2019.105723_b4 article-title: A fast-multiplying PSO algorithm for real-time multiple object tracking publication-title: Int. J. Comput. Appl. – volume: 68 start-page: 63 year: 2018 ident: 10.1016/j.asoc.2019.105723_b62 article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.10.024 – volume: 2 start-page: 4 issue: 1 year: 1990 ident: 10.1016/j.asoc.2019.105723_b33 article-title: Tabu search—Part II publication-title: ORSA J. Comput. doi: 10.1287/ijoc.2.1.4 – volume: 33 start-page: 210 issue: 2 year: 2017 ident: 10.1016/j.asoc.2019.105723_b26 article-title: Improving the local search ability of spider monkey optimization algorithm using quadratic approximation for unconstrained optimization publication-title: Comput. Intell. doi: 10.1111/coin.12081 – ident: 10.1016/j.asoc.2019.105723_b5 – volume: 34 start-page: 2129 issue: 4 year: 2018 ident: 10.1016/j.asoc.2019.105723_b69 article-title: An improved sine cosine water wave optimization algorithm for global optimization publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-171001 – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 10.1016/j.asoc.2019.105723_b99 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 2016 start-page: 8 year: 2016 ident: 10.1016/j.asoc.2019.105723_b54 article-title: Modified grey wolf optimizer for global engineering optimization publication-title: Appl. Comput. Intell. Soft Comput. doi: 10.1155/2016/7950348 – volume: 186 start-page: 1407 issue: 2 year: 2007 ident: 10.1016/j.asoc.2019.105723_b101 article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization publication-title: Appl. Math. Comput. – volume: 44 start-page: 101 year: 2019 ident: 10.1016/j.asoc.2019.105723_b60 article-title: A novel random walk grey wolf optimizer publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.01.001 – ident: 10.1016/j.asoc.2019.105723_b43 doi: 10.1109/ICSCTI.2015.7489575 – volume: 26 start-page: 317 issue: 2 year: 2015 ident: 10.1016/j.asoc.2019.105723_b56 article-title: Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked soc publication-title: J. Syst. Eng. Electron. doi: 10.1109/JSEE.2015.00037 – volume: 37 start-page: 396 year: 2015 ident: 10.1016/j.asoc.2019.105723_b104 article-title: Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems - Part 2: Constrained optimization publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2015.08.052 – volume: 90 start-page: 484 year: 2017 ident: 10.1016/j.asoc.2019.105723_b63 article-title: An improved opposition-based sine cosine algorithm for global optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.07.043 – ident: 10.1016/j.asoc.2019.105723_b38 doi: 10.1109/ICEETS.2016.7583804 – volume: 56 start-page: 119 issue: 2 year: 2009 ident: 10.1016/j.asoc.2019.105723_b17 article-title: Effectiveness and efficiency of particle swarm optimization technique in inverse heat conduction analysis publication-title: Numer. Heat Transfer B doi: 10.1080/10407790903116469 – volume: 10 start-page: 625 issue: 3 year: 2016 ident: 10.1016/j.asoc.2019.105723_b42 article-title: Grey wolf optimisation for optimal sizing of battery energy storage device to minimise operation cost of microgrid publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2015.0429 – ident: 10.1016/j.asoc.2019.105723_b47 – start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.asoc.2019.105723_b70 article-title: An improved sine–cosine algorithm based on orthogonal parallel information for global optimization publication-title: Soft Comput. – ident: 10.1016/j.asoc.2019.105723_b1 doi: 10.1109/SOCPAR.2014.7008044 – volume: 110 start-page: 264 year: 2018 ident: 10.1016/j.asoc.2019.105723_b23 article-title: Modified spider monkey optimization based on nelder–mead method for global optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.05.040 – year: 2018 ident: 10.1016/j.asoc.2019.105723_b72 article-title: Application and development of enhanced chaotic grasshopper optimization algorithms publication-title: Model. Simul. Eng. doi: 10.1155/2018/4945157 – volume: 67 start-page: 197 year: 2018 ident: 10.1016/j.asoc.2019.105723_b61 article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2018.02.049 – year: 2015 ident: 10.1016/j.asoc.2019.105723_b90 article-title: TSA: Tree-seed algorithm for continuous optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.055 – volume: 0 start-page: 0 issue: 0 year: 2017 ident: 10.1016/j.asoc.2019.105723_b84 article-title: A hybrid WOA-CBO algorithm for construction site layout planning problem publication-title: Sci. Iran. – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2019.105723_b13 article-title: An heuristic cloud based segmentation technique using edge and texture based two dimensional entropy publication-title: Cluster Comput. – volume: 41 start-page: 262 issue: 2 year: 2011 ident: 10.1016/j.asoc.2019.105723_b18 article-title: Particle swarm optimization in wireless-sensor networks: A brief survey publication-title: IEEE Trans. Syst. Man Cybern. C doi: 10.1109/TSMCC.2010.2054080 – ident: 10.1016/j.asoc.2019.105723_b22 – volume: 23 start-page: 1 year: 2007 ident: 10.1016/j.asoc.2019.105723_b34 article-title: Principles of tabu search publication-title: Approx. Algorithms Metaheuristics – volume: 76 start-page: 22 year: 2017 ident: 10.1016/j.asoc.2019.105723_b97 article-title: AAO as a new strategy in modeling and simulation of constructional problems optimization publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2017.04.001 – volume: 30 start-page: 614 year: 2015 ident: 10.1016/j.asoc.2019.105723_b21 article-title: A social spider algorithm for global optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.02.014 – volume: 117 start-page: 82 year: 2013 ident: 10.1016/j.asoc.2019.105723_b93 article-title: Ray optimization for size and shape optimization of truss structures publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.12.010 – volume: 12 start-page: 2010 year: 2006 ident: 10.1016/j.asoc.2019.105723_b31 article-title: Cellular automata, PDEs, and pattern formation publication-title: Handb. Bioinspired Algorithms Appl. – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2019.105723_b71 article-title: Chaotic grasshopper optimization algorithm for global optimization publication-title: Neural Comput. Appl. – volume: 48 start-page: 2268 issue: 8 year: 2018 ident: 10.1016/j.asoc.2019.105723_b46 article-title: MOGOA algorithm for constrained and unconstrained multi-objective optimization problems publication-title: Appl. Intell. doi: 10.1007/s10489-017-1074-1 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.asoc.2019.105723_b30 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 110–111 start-page: 151 year: 2012 ident: 10.1016/j.asoc.2019.105723_b111 article-title: Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.07.010 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.asoc.2019.105723_b108 article-title: Advances in engineering software grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – ident: 10.1016/j.asoc.2019.105723_b44 – year: 1999 ident: 10.1016/j.asoc.2019.105723_b78 – volume: 26 start-page: 1257 issue: 5 year: 2015 ident: 10.1016/j.asoc.2019.105723_b55 article-title: Evolutionary population dynamics and grey wolf optimizer publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1806-7 – volume: 43 start-page: 1656 issue: 6 year: 2012 ident: 10.1016/j.asoc.2019.105723_b10 article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2227469 – volume: 6 start-page: 31 issue: 1 year: 2014 ident: 10.1016/j.asoc.2019.105723_b25 article-title: Spider monkey optimization algorithm for numerical optimization publication-title: Memetic Comput. doi: 10.1007/s12293-013-0128-0 – volume: 32 issue: 3 year: 2008 ident: 10.1016/j.asoc.2019.105723_b109 article-title: Solving engineering optimization problems with the simple constrained particle swarm optimizer publication-title: Information – volume: 108 start-page: 27 issue: 1 year: 2018 ident: 10.1016/j.asoc.2019.105723_b53 article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization publication-title: Expert Syst. Appl. – volume: 492 start-page: 181 year: 2019 ident: 10.1016/j.asoc.2019.105723_b50 article-title: Enhanced moth-flame optimizer with mutation strategy for global optimization publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2019.04.022 – volume: 7 start-page: 386 issue: 4 year: 2003 ident: 10.1016/j.asoc.2019.105723_b88 article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.814902 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.asoc.2019.105723_b29 article-title: SCA: A Sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 112 start-page: 156 year: 2018 ident: 10.1016/j.asoc.2019.105723_b75 article-title: Improved grasshopper optimization algorithm using opposition-based learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.06.023 – year: 2017 ident: 10.1016/j.asoc.2019.105723_b65 article-title: A hybrid method of sine cosine algorithm and differential evolution for feature selection doi: 10.1007/978-3-319-70139-4_15 – volume: 929 year: 1995 ident: 10.1016/j.asoc.2019.105723_b105 publication-title: Lecture Notes in Artificial Intelligence – year: 2017 ident: 10.1016/j.asoc.2019.105723_b52  | 
    
| SSID | ssj0016928 | 
    
| Score | 2.4329681 | 
    
| Snippet | This paper proposes a Ludo game-based strategy to enhance the ability of swarm algorithms to solve numerous global optimization problems. The proposed strategy... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 105723 | 
    
| SubjectTerms | Engineering problems Global optimization Ludo game strategy Swarm intelligence  | 
    
| Title | Ludo game-based metaheuristics for global and engineering optimization | 
    
| URI | https://dx.doi.org/10.1016/j.asoc.2019.105723 | 
    
| Volume | 84 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KvXjxW6wfZQ_eJHaTbJLNsRRL1VpELfQWdrMbbbFpkfTqb3c22VQF6cFTSDIL4WV35g3MmwG4zNADYuLAHV-60mE8LIsAMGvNOGWKpoqXorCHUTgYs7tJMGlAr9bCmLJK6_srn156a_ukY9HsLKfTzjNmHpzFDDMA3LOY5hkFO4vMFIPrz3WZhxvG5XxVY-wYayucqWq8BCJgyrvictyt5_8dnH4EnP4e7FimSLrVx-xDQ-cHsFtPYSD2UB5Cf7hSC_Iq5toxIUmRuS7Em17ZFswEWSmp2n4QkSuivxsQkgX6i7kVYh7BuH_z0hs4djqCk_qUFo7MshCje-DKTIcREpVIuClH-sM01ciraKQiKnzlpaYnWRDFyJXwpeCBDl0tqX8MzXyR6xMgqSdjPMeRyGLJZBBL7WFeKANPUc6Qb7TArWFJUts63EyweE_qGrFZYqBMDJRJBWULrtZrllXjjI3WQY128uv3J-jZN6w7_ee6M9g2d5Wo8ByaxcdKXyC7KGS73D5t2Or2noaP5np7Pxh9AV4yzWE | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2wo1EnsxBlRRVWg7UIrdbPs2IEimlYoXfntnBOngIQ6sMY-yfpi332fdA-ErjPwgCAcuBcqX3mUR2USAKjWjBOqSap5WRQ2GEa9MX2csEkDdepaGJtW6Xx_5dNLb-2-tB2a7cV02n4G5cFpQkEBwJ0FmbeBNikLYqvAbj9XeR5-lJQDVu1uz253lTNVkpcECGx-V1LOuw3Cv6PTj4jT3UM7jiriu-o0-6hh8gO0W49hwO5VHqJuf6nn-EXOjGdjksYzU8hXs3Q9mDHQUlz1_cAy19h8dyDEc3AYM1eJeYTG3ftRp-e58QheGhJSeCrLIgjvzFeZiWJgKrH0Uw78hxpigFiRWMdEhjpIbVMyFidAlmBRcmYi3ygSHqNmPs_NCcJpoBJ4yLHMEkUVS5QJQBgqFmjCKRCOFvJrWETqeofbERbvok4SexMWSmGhFBWULXSzsllUnTPW7mY12uLX_xfg2tfYnf7T7gpt9UaDvug_DJ_O0LZdqSoMz1Gz-FiaC6Aahbosr9IX5h7NYQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ludo+game-based+metaheuristics+for+global+and+engineering+optimization&rft.jtitle=Applied+soft+computing&rft.au=Singh%2C+Prabhat+R.&rft.au=Elaziz%2C+Mohamed+Abd&rft.au=Xiong%2C+Shengwu&rft.date=2019-11-01&rft.issn=1568-4946&rft.volume=84&rft.spage=105723&rft_id=info:doi/10.1016%2Fj.asoc.2019.105723&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105723 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |