Analysis of high-dimensional genomic data employing a novel bio-inspired algorithm
Over the last decade, there has been a rapid growth in the generation and analysis of the genomics data. Though the existing data analysis methods are capable of handling a particular problem, they cannot guarantee to solve all problems with different nature. Therefore, there always lie a scope of a...
Saved in:
| Published in | Applied soft computing Vol. 77; pp. 520 - 532 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.04.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 |
| DOI | 10.1016/j.asoc.2019.01.007 |
Cover
| Abstract | Over the last decade, there has been a rapid growth in the generation and analysis of the genomics data. Though the existing data analysis methods are capable of handling a particular problem, they cannot guarantee to solve all problems with different nature. Therefore, there always lie a scope of a new algorithm to solve a problem which cannot be efficiently solved by the existing algorithms. In the present work, a novel hybrid approach is proposed based on the improved version of a recently developed bio-inspired optimization technique, namely, salp swarm algorithm (SSA) for microarray classification. Initially, the Fisher score filter is employed to pre-select a subset of relevant genes from the original high-dimensional microarray dataset. Later, a weighted-chaotic SSA (WCSSA) is proposed for the simultaneous optimal gene selection and parameter optimization of the kernel extreme learning machine (KELM) classifier. The proposed scheme is experimented on both binary-class and multi-class microarray datasets. An extensive comparison is performed against original SSA-KELM, particle swarm optimized-KELM (PSO-KELM), and genetic algorithm-KELM (GA-KELM). Lastly, the proposed method is also compared against the results of sixteen existing techniques to emphasize its capacity and competitiveness to successfully reduce the number of original genes by more than 98%. The experimental results show that the genes selected by the proposed method yield higher classification accuracy compared to the alternative techniques. The performance of the proposed scheme demonstrates its effectiveness in terms of number of selected genes (NSG), accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and F-measure. The proposed WCSSA-KELM method is validated using a ten-fold cross-validation technique.
•We propose a method for simultaneous gene selection and parameter optimization.•A novel chaotic-weighted salp swarm algorithm is presented.•The proposed method is compared with original SSA-KELM, PSO-KELM, and GA-KELM.•Results show higher classification accuracy compared to the alternative techniques.•Validation is done on seven binary-class and multi-class microarray datasets. |
|---|---|
| AbstractList | Over the last decade, there has been a rapid growth in the generation and analysis of the genomics data. Though the existing data analysis methods are capable of handling a particular problem, they cannot guarantee to solve all problems with different nature. Therefore, there always lie a scope of a new algorithm to solve a problem which cannot be efficiently solved by the existing algorithms. In the present work, a novel hybrid approach is proposed based on the improved version of a recently developed bio-inspired optimization technique, namely, salp swarm algorithm (SSA) for microarray classification. Initially, the Fisher score filter is employed to pre-select a subset of relevant genes from the original high-dimensional microarray dataset. Later, a weighted-chaotic SSA (WCSSA) is proposed for the simultaneous optimal gene selection and parameter optimization of the kernel extreme learning machine (KELM) classifier. The proposed scheme is experimented on both binary-class and multi-class microarray datasets. An extensive comparison is performed against original SSA-KELM, particle swarm optimized-KELM (PSO-KELM), and genetic algorithm-KELM (GA-KELM). Lastly, the proposed method is also compared against the results of sixteen existing techniques to emphasize its capacity and competitiveness to successfully reduce the number of original genes by more than 98%. The experimental results show that the genes selected by the proposed method yield higher classification accuracy compared to the alternative techniques. The performance of the proposed scheme demonstrates its effectiveness in terms of number of selected genes (NSG), accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and F-measure. The proposed WCSSA-KELM method is validated using a ten-fold cross-validation technique.
•We propose a method for simultaneous gene selection and parameter optimization.•A novel chaotic-weighted salp swarm algorithm is presented.•The proposed method is compared with original SSA-KELM, PSO-KELM, and GA-KELM.•Results show higher classification accuracy compared to the alternative techniques.•Validation is done on seven binary-class and multi-class microarray datasets. |
| Author | Vipsita, Swati Bakshi, Sambit Muhammad, Khan Baliarsingh, Santos Kumar Dash, Bodhisattva |
| Author_xml | – sequence: 1 givenname: Santos Kumar surname: Baliarsingh fullname: Baliarsingh, Santos Kumar email: baliarsingh.santosh@gmail.com organization: Department of Computer Science and Engineering, International Institute of Information Technology, Bhubaneswar, India – sequence: 2 givenname: Swati surname: Vipsita fullname: Vipsita, Swati email: swati@iiit-bh.ac.in organization: Department of Computer Science and Engineering, International Institute of Information Technology, Bhubaneswar, India – sequence: 3 givenname: Khan surname: Muhammad fullname: Muhammad, Khan email: khanmuhammad@sju.ac.kr organization: Department of Software, Sejong University, Seoul, Republic of Korea – sequence: 4 givenname: Bodhisattva surname: Dash fullname: Dash, Bodhisattva email: bdash.fac@gmail.com organization: Department of Electronics and Communication Engineering, Silicon Institute of Technology, Bhubaneswar, India – sequence: 5 givenname: Sambit orcidid: 0000-0002-6107-114X surname: Bakshi fullname: Bakshi, Sambit email: bakshisambit@nitrkl.ac.in, sambitbaksi@gmail.com organization: Department of Computer Science and Engineering, National Institute of Technology Rourkela, Odisha, India |
| BookMark | eNp9kMtqwzAQAEVJoUnaH-hJP2BXsvyQoJcQ-oJAobRnIcnrZIMtBcsE8vdVSE895LTLwizMLMjMBw-EPHKWc8brp31uYnB5wbjKGc8Za27InMumyFQt-SztVS2zUpX1HVnEuGcJUoWck6-VN_0pYqShozvc7rIWB_ARQ7rTLfgwoKOtmQyF4dCHE_otNdSHI_TUYsjQxwOO0FLTb8OI0264J7ed6SM8_M0l-Xl9-V6_Z5vPt4_1apM5wdiUWbBlqyxrLBOgZOWYKMrKVMCkLKUqFAgrpZCdstBYV1nhJG9LXjQGQHAllqS4_HVjiHGETh9GHMx40pzpcxW91-cq-lxFM65TlQTJf5DDyUxJdxoN9tfR5wsKSeqIMOroELyDNvm7SbcBr-G_gOKA9w |
| CitedBy_id | crossref_primary_10_1007_s12065_021_00642_6 crossref_primary_10_1002_cpe_6310 crossref_primary_10_1016_j_jbi_2021_103766 crossref_primary_10_1155_2021_6315010 crossref_primary_10_1007_s00170_019_04689_9 crossref_primary_10_3390_app12178468 crossref_primary_10_1016_j_asoc_2019_105773 crossref_primary_10_1515_jib_2019_0097 crossref_primary_10_1016_j_eij_2023_03_004 crossref_primary_10_1007_s44196_022_00083_8 crossref_primary_10_1109_ACCESS_2023_3262167 crossref_primary_10_1016_j_swevo_2019_04_010 crossref_primary_10_32604_cmc_2022_027369 crossref_primary_10_1109_ACCESS_2020_3023090 crossref_primary_10_1016_j_biortech_2025_132434 crossref_primary_10_1080_13682199_2023_2207277 crossref_primary_10_3233_JIFS_189743 crossref_primary_10_3390_sym14101955 crossref_primary_10_1016_j_jpdc_2020_12_002 crossref_primary_10_1007_s12652_022_04482_9 crossref_primary_10_1007_s11053_023_10259_4 crossref_primary_10_1109_ACCESS_2020_3003366 crossref_primary_10_1016_j_apm_2019_07_046 crossref_primary_10_1016_j_eswa_2019_113103 crossref_primary_10_1007_s00521_019_04355_x crossref_primary_10_1080_0952813X_2021_1960633 crossref_primary_10_1016_j_compbiomed_2021_105015 crossref_primary_10_1016_j_compbiomed_2021_105137 crossref_primary_10_1007_s00521_021_06459_9 crossref_primary_10_1109_TCBB_2023_3314432 crossref_primary_10_1007_s00521_019_04629_4 crossref_primary_10_1016_j_patcog_2020_107697 crossref_primary_10_1007_s12065_021_00593_y crossref_primary_10_1016_j_asoc_2020_106672 crossref_primary_10_3390_biomimetics8030306 crossref_primary_10_1016_j_jksuci_2020_12_014 crossref_primary_10_1142_S1793962322500581 crossref_primary_10_1109_ACCESS_2019_2945842 |
| Cites_doi | 10.1016/j.eswa.2007.02.002 10.4238/gmr.15028798 10.1016/j.neucom.2016.09.023 10.1007/s10489-011-0325-9 10.3390/en11040781 10.1016/0005-2795(75)90109-9 10.4238/2013.October.10.12 10.1016/j.asoc.2015.01.035 10.1109/TSMCB.2011.2168604 10.1016/j.asoc.2015.10.037 10.1016/j.compbiolchem.2015.03.001 10.1016/j.future.2018.04.024 10.1016/j.asoc.2017.05.002 10.1016/j.jocs.2013.10.002 10.1016/S0140-6736(02)07746-2 10.1155/2015/604910 10.1016/j.cogsys.2018.06.006 10.1016/j.ins.2016.02.028 10.1016/j.eswa.2014.08.014 10.1016/j.patcog.2012.02.001 10.1016/j.asoc.2016.07.006 10.1016/j.swevo.2016.02.002 10.1126/science.286.5439.531 10.1007/s00138-013-0577-y 10.1007/s10489-018-1158-6 10.1016/j.neucom.2005.12.126 10.1016/j.patcog.2007.02.007 10.1007/s00521-014-1597-x 10.1073/pnas.191502998 10.1016/j.asoc.2018.04.056 10.1155/2017/9512741 10.1016/j.neucom.2015.05.022 10.1016/j.asoc.2009.11.010 10.1016/j.cam.2006.09.008 10.1016/j.compeleceng.2018.04.014 10.1016/j.knosys.2018.05.009 10.1007/s00521-007-0110-1 10.1016/j.advengsoft.2017.07.002 10.1016/j.imu.2017.10.004 10.1016/j.ygeno.2017.01.004 10.1109/ACCESS.2018.2812835 10.1016/j.neucom.2017.04.083 10.1073/pnas.96.12.6745 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2019.01.007 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 532 |
| ExternalDocumentID | 10_1016_j_asoc_2019_01_007 S1568494619300110 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-beb4d9b07b03e985c03245a5e08848929e3b8838f9be7bc5b3c81d4127aee3193 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Thu Apr 24 23:01:05 EDT 2025 Wed Oct 01 02:32:13 EDT 2025 Fri Feb 23 02:24:52 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fisher score Kernel extreme learning machine (KELM) Microarray Salp swarm optimization algorithm (SSA) Classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-beb4d9b07b03e985c03245a5e08848929e3b8838f9be7bc5b3c81d4127aee3193 |
| ORCID | 0000-0002-6107-114X |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2019_01_007 crossref_citationtrail_10_1016_j_asoc_2019_01_007 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_01_007 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2019 2019-04-00 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Vong, Liu, Cao, Yin (b7) 2017; 58 Wu, Pirbhulal, Sangaiah, Mukhopadhyay, Li (b58) 2018; 86 Muhammad, Ahmad, Lv, Bellavista, Yang, Baik (b55) 2018 Tavazoei, Haeri (b43) 2007; 206 Apolloni, Leguizamón, Alba (b10) 2016; 38 Saremi, Mirjalili, Lewis (b35) 2014; 25 Petricoin III, Ardekani, Hitt, Levine, Fusaro, Steinberg, Mills, Simone, Fishman, Kohn, LA (b49) 2002; 359 Alon, Barkai, Notterman, Gish, Ybarra, Mack, Levine (b48) 1999; 96 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b38) 2017; 114 Gu, Li, Han (b39) 2011 Zhao, Huang, Yan (b29) 2018; 11 Lee, Leu (b8) 2011; 11 Wang, An, Chen, Yang, Li, Alterovitz (b5) 2014 Alshamlan, Badr, Alohali (b18) 2015; 2015 Hernandez, Duval, Hao (b14) 2007 Liu, Zeng, Ng (b26) 2016; 349 Tabakhi, Najafi, Ranjbar, Moradi (b19) 2015; 168 Sannino, De Falco, De Pietro (b16) 2015 Zhang, Dong, Chen, Jia, Du, Muhammad, Wang (b54) 2017 Shankar, Lakshmanaprabu, Gupta, Maseleno, de Albuquerque (b9) 2018 Wu, Pirbhulal, Zhang, Mukhopadhyay (b25) 2018 Kohli, Arora (b45) 2018; 5 Huang, Zhou, Ding, Zhang (b27) 2012; 42 Gandomi, Yang (b42) 2014; 5 Ibrahim, Ahmed, Hussein, Hassanien (b32) 2018 Gupta, Sundaram, Khanna, Hassanien, de Albuquerque (b21) 2018; 68 Zhu, Ong, Dash (b47) 2007; 40 Huang, Zhu, Siew (b6) 2006; 70 Li, Chen, Huang, Zhao, Cai, Tong, Liu, Tian (b28) 2017; 2017 Sharma, Paliwal, Imoto, Miyano (b24) 2014; 25 Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (b1) 2015; 30 Golub, Slonim, Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loh, Downing, Caligiuri (b46) 1999; 286 Gupta, Julka, Jain, Aggarwal, Khanna, Arunkumar, de Albuquerque (b22) 2018; 52 Sayed, Khoriba, Haggag (b34) 2018; 48 Alshamlan, Badr, Alohali (b17) 2015; 56 Matthews (b51) 1975; 405 Mohapatra, Chakravarty, Dash (b20) 2016; 28 Faris, Mafarja, Heidari, Aljarah, Mirjalili, Fujita (b33) 2018; 154 Hadi, Al-Radaideh, Alhawari (b4) 2018; 69 Motieghader, Najafi, Sadeghi, Masoudi-Nejad (b15) 2017; 9 Yang, Liu, Feng, Zhu (b41) 2016; 15 Baygi, Karsaz, Elahi (b30) 2018 Zhang, Li, Zhou, Wei (b44) 2013; 12 Bhattacharjee, Richards, Staunton, Li, Monti, Vasa, Ladd, Beheshti, Bueno, Gillette, Loda, Weber, J. Mark, Lander, Wong, Johnson, Golub, Sugarbaker, Meyerson (b50) 2001; 98 Sun, Liu, Li, Zhu, Chen, Liu (b2) 2012; 45 García-Nieto, Alba (b12) 2012; 37 dos Santos Coelho, Mariani (b36) 2008; 34 Iosifidis, Tefas, Pitas (b52) 2017; 219 Muhammad, Ahmad, Mehmood, Rho, Baik (b56) 2018; 6 Dash, Misra (b3) 2016; 48 Pang, Havukkala, Hu, Kasabov (b23) 2007; 16 Chinnaswamy, Srinivasan (b11) 2016 Muhammad, Ahmad, Baik (b57) 2018; 288 Hussien, Hassanien, Houssein (b31) 2017 Kar, Sharma, Maitra (b13) 2015; 42 Dashtban, Balafar (b40) 2017; 109 Chunyue Li, Xiong, Sandeep Pirbhulal, Dan Wu, Li, Huang, Zhang, Wu (b53) 2015; 94 Huang, Siew (b37) 2004 Bolón-Canedo (10.1016/j.asoc.2019.01.007_b1) 2015; 30 Hadi (10.1016/j.asoc.2019.01.007_b4) 2018; 69 Kar (10.1016/j.asoc.2019.01.007_b13) 2015; 42 Sannino (10.1016/j.asoc.2019.01.007_b16) 2015 García-Nieto (10.1016/j.asoc.2019.01.007_b12) 2012; 37 Dashtban (10.1016/j.asoc.2019.01.007_b40) 2017; 109 Alon (10.1016/j.asoc.2019.01.007_b48) 1999; 96 Shankar (10.1016/j.asoc.2019.01.007_b9) 2018 Gupta (10.1016/j.asoc.2019.01.007_b22) 2018; 52 Iosifidis (10.1016/j.asoc.2019.01.007_b52) 2017; 219 Mirjalili (10.1016/j.asoc.2019.01.007_b38) 2017; 114 Muhammad (10.1016/j.asoc.2019.01.007_b57) 2018; 288 Golub (10.1016/j.asoc.2019.01.007_b46) 1999; 286 Hussien (10.1016/j.asoc.2019.01.007_b31) 2017 Huang (10.1016/j.asoc.2019.01.007_b27) 2012; 42 Mohapatra (10.1016/j.asoc.2019.01.007_b20) 2016; 28 Tabakhi (10.1016/j.asoc.2019.01.007_b19) 2015; 168 Vong (10.1016/j.asoc.2019.01.007_b7) 2017; 58 dos Santos Coelho (10.1016/j.asoc.2019.01.007_b36) 2008; 34 Huang (10.1016/j.asoc.2019.01.007_b6) 2006; 70 Chinnaswamy (10.1016/j.asoc.2019.01.007_b11) 2016 Ibrahim (10.1016/j.asoc.2019.01.007_b32) 2018 Apolloni (10.1016/j.asoc.2019.01.007_b10) 2016; 38 Huang (10.1016/j.asoc.2019.01.007_b37) 2004 Sun (10.1016/j.asoc.2019.01.007_b2) 2012; 45 Zhu (10.1016/j.asoc.2019.01.007_b47) 2007; 40 Chunyue Li (10.1016/j.asoc.2019.01.007_b53) 2015; 94 Wang (10.1016/j.asoc.2019.01.007_b5) 2014 Alshamlan (10.1016/j.asoc.2019.01.007_b17) 2015; 56 Li (10.1016/j.asoc.2019.01.007_b28) 2017; 2017 Bhattacharjee (10.1016/j.asoc.2019.01.007_b50) 2001; 98 Dash (10.1016/j.asoc.2019.01.007_b3) 2016; 48 Hernandez (10.1016/j.asoc.2019.01.007_b14) 2007 Yang (10.1016/j.asoc.2019.01.007_b41) 2016; 15 Pang (10.1016/j.asoc.2019.01.007_b23) 2007; 16 Gandomi (10.1016/j.asoc.2019.01.007_b42) 2014; 5 Zhang (10.1016/j.asoc.2019.01.007_b54) 2017 Lee (10.1016/j.asoc.2019.01.007_b8) 2011; 11 Baygi (10.1016/j.asoc.2019.01.007_b30) 2018 Gupta (10.1016/j.asoc.2019.01.007_b21) 2018; 68 Sharma (10.1016/j.asoc.2019.01.007_b24) 2014; 25 Kohli (10.1016/j.asoc.2019.01.007_b45) 2018; 5 Muhammad (10.1016/j.asoc.2019.01.007_b56) 2018; 6 Alshamlan (10.1016/j.asoc.2019.01.007_b18) 2015; 2015 Sayed (10.1016/j.asoc.2019.01.007_b34) 2018; 48 Motieghader (10.1016/j.asoc.2019.01.007_b15) 2017; 9 Zhao (10.1016/j.asoc.2019.01.007_b29) 2018; 11 Gu (10.1016/j.asoc.2019.01.007_b39) 2011 Wu (10.1016/j.asoc.2019.01.007_b25) 2018 Saremi (10.1016/j.asoc.2019.01.007_b35) 2014; 25 Faris (10.1016/j.asoc.2019.01.007_b33) 2018; 154 Tavazoei (10.1016/j.asoc.2019.01.007_b43) 2007; 206 Liu (10.1016/j.asoc.2019.01.007_b26) 2016; 349 Matthews (10.1016/j.asoc.2019.01.007_b51) 1975; 405 Zhang (10.1016/j.asoc.2019.01.007_b44) 2013; 12 Wu (10.1016/j.asoc.2019.01.007_b58) 2018; 86 Petricoin III (10.1016/j.asoc.2019.01.007_b49) 2002; 359 Muhammad (10.1016/j.asoc.2019.01.007_b55) 2018 |
| References_xml | – volume: 405 start-page: 442 year: 1975 end-page: 451 ident: b51 article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme publication-title: Biochimica Biophys. Acta (BBA)-Protein Struct. – volume: 30 start-page: 136 year: 2015 end-page: 150 ident: b1 article-title: Distributed feature selection: An application to microarray data classification publication-title: Appl. Soft Comput. – start-page: 229 year: 2016 end-page: 239 ident: b11 article-title: Hybrid feature selection using correlation coefficient and particle swarm optimization on microarray gene expression data publication-title: Innovations in Bio-Inspired Computing and Applications – volume: 98 start-page: 13790 year: 2001 end-page: 13795 ident: b50 article-title: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses publication-title: Proc. Natl. Acad. Sci. – volume: 109 start-page: 91 year: 2017 end-page: 107 ident: b40 article-title: Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts publication-title: Genomics – volume: 42 start-page: 612 year: 2015 end-page: 627 ident: b13 article-title: Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique publication-title: Expert Syst. Appl. – volume: 6 start-page: 18174 year: 2018 end-page: 18183 ident: b56 article-title: Convolutional neural networks based fire detection in surveillance videos publication-title: IEEE Access – volume: 94 year: 2015 ident: b53 article-title: Heart-Carotid Pulse Wave Velocity a Useful Index of Atherosclerosis in Chinese Hypertensive Patients publication-title: Medicine – start-page: 1 year: 2017 end-page: 20 ident: b54 article-title: Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation publication-title: Multimedia Tools Appl. – volume: 96 start-page: 6745 year: 1999 end-page: 6750 ident: b48 article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays publication-title: Proc. Natl. Acad. Sci. – volume: 68 start-page: 412 year: 2018 end-page: 424 ident: b21 article-title: Improved diagnosis of Parkinson’s disease using optimized crow search algorithm publication-title: Comput. Electr. Eng. – volume: 58 start-page: 681 year: 2017 end-page: 689 ident: b7 article-title: Cascaded re-ranking modelling of translation hypotheses using extreme learning machines publication-title: Appl. Soft Comput. – volume: 37 start-page: 255 year: 2012 end-page: 266 ident: b12 article-title: Parallel multi-swarm optimizer for gene selection in DNA microarrays publication-title: Appl. Intell. – volume: 25 start-page: 775 year: 2014 end-page: 786 ident: b24 article-title: A feature selection method using improved regularized linear discriminant analysis publication-title: Mach. Vis. Appl. – volume: 11 start-page: 208 year: 2011 end-page: 213 ident: b8 article-title: A novel hybrid feature selection method for microarray data analysis publication-title: Appl. Soft Comput. – volume: 219 start-page: 210 year: 2017 end-page: 220 ident: b52 article-title: Approximate kernel extreme learning machine for large scale data classification publication-title: Neurocomputing – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b6 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 16 start-page: 527 year: 2007 end-page: 539 ident: b23 article-title: Classification consistency analysis for bootstrapping gene selection publication-title: Neural Comput. Appl. – start-page: 266 year: 2011 end-page: 273 ident: b39 article-title: Generalized Fisher score for feature selection publication-title: Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence – volume: 2015 year: 2015 ident: b18 article-title: mRMR-ABC: A hybrid gene selection algorithm for cancer classification using microarray gene expression profiling publication-title: BioMed Res. Int. – volume: 42 start-page: 513 year: 2012 end-page: 529 ident: b27 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans. Syst. Man Cybern. B – start-page: 42 year: 2018 end-page: 51 ident: b32 article-title: Fish image segmentation using salp swarm algorithm publication-title: International Conference on Advanced Machine Learning Technologies and Applications – start-page: 775 year: 2015 end-page: 783 ident: b16 article-title: Genetic programming for a wearable approach to estimate blood pressure embedded in a mobile-based health system publication-title: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI) – volume: 349 start-page: 102 year: 2016 end-page: 118 ident: b26 article-title: A Hierarchical ensemble of ECOC for cancer classification based on multi-class microarray data publication-title: Inform. Sci. – volume: 359 start-page: 572 year: 2002 end-page: 577 ident: b49 article-title: Use of proteomic patterns in serum to identify ovarian cancer publication-title: Lancet – volume: 286 start-page: 531 year: 1999 end-page: 537 ident: b46 article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring publication-title: Science – volume: 56 start-page: 49 year: 2015 end-page: 60 ident: b17 article-title: Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification publication-title: Comput. Biol. Chem. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b38 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – volume: 40 start-page: 3236 year: 2007 end-page: 3248 ident: b47 article-title: Markov blanket-embedded genetic algorithm for gene selection publication-title: Pattern Recognit. – volume: 15 year: 2016 ident: b41 article-title: Applying the Fisher score to identify Alzheimers disease-related genes publication-title: Genet. Mol. Res.: GMR – volume: 168 start-page: 1024 year: 2015 end-page: 1036 ident: b19 article-title: Gene selection for microarray data classification using a novel ant colony optimization publication-title: Neurocomputing – volume: 48 start-page: 298 year: 2016 end-page: 316 ident: b3 article-title: Pipelining the ranking techniques for microarray data classification: A case study publication-title: Appl. Soft Comput. – volume: 25 start-page: 1077 year: 2014 end-page: 1097 ident: b35 article-title: Biogeography-based optimisation with chaos publication-title: Neural Comput. Appl. – volume: 2017 year: 2017 ident: b28 article-title: An enhanced Grey Wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis publication-title: Comput. Math. Methods Med. – volume: 38 start-page: 922 year: 2016 end-page: 932 ident: b10 article-title: Two hybrid wrapper-filter feature selection algorithms applied to high-dimensional microarray experiments publication-title: Appl. Soft Comput. – volume: 34 start-page: 1905 year: 2008 end-page: 1913 ident: b36 article-title: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization publication-title: Expert Syst. Appl. – start-page: 315 year: 2017 end-page: 320 ident: b31 article-title: Swarming behaviour of salps algorithm for predicting chemical compound activities publication-title: Intelligent Computing and Information Systems (ICICIS), 2017 Eighth International Conference on – volume: 288 start-page: 30 year: 2018 end-page: 42 ident: b57 article-title: Early fire detection using convolutional neural networks during surveillance for effective disaster management publication-title: Neurocomputing – start-page: 90 year: 2007 end-page: 101 ident: b14 article-title: A genetic embedded approach for gene selection and classification of microarray data publication-title: European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics – volume: 69 start-page: 344 year: 2018 end-page: 356 ident: b4 article-title: Integrating associative rule-based classification with Naïve Bayes for text classification publication-title: Appl. Soft Comput. – volume: 48 start-page: 1 year: 2018 end-page: 20 ident: b34 article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection publication-title: Appl. Intell. – volume: 45 start-page: 2992 year: 2012 end-page: 3002 ident: b2 article-title: Feature evaluation and selection with cooperative game theory publication-title: Pattern Recognit. – volume: 11 start-page: 781 year: 2018 ident: b29 article-title: Forecasting energy-related publication-title: Energies – volume: 206 start-page: 1070 year: 2007 end-page: 1081 ident: b43 article-title: An optimization algorithm based on chaotic behavior and fractal nature publication-title: J. Comput. Appl. Math. – start-page: 74 year: 2014 end-page: 79 ident: b5 article-title: Incremental wrapper based gene selection with Markov blanket publication-title: Bioinformatics and Biomedicine (BIBM), 2014 IEEE International Conference on – start-page: 1 year: 2018 end-page: 16 ident: b9 article-title: Optimal feature-based multi-kernel SVM approach for thyroid disease classification publication-title: J. Supercomput. – volume: 12 start-page: 4468 year: 2013 end-page: 4479 ident: b44 article-title: Bayesian network structure learning based on the chaotic particle swarm optimization algorithm publication-title: Genet. Mol. Res. – volume: 52 start-page: 36 year: 2018 end-page: 48 ident: b22 article-title: Optimized cuttlefish algorithm for diagnosis of Parkinsons disease publication-title: Cognit. Syst. Res. – start-page: 1 year: 2018 end-page: 16 ident: b55 article-title: Efficient deep CNN-based fire detection and localization in video surveillance applications publication-title: IEEE Trans. Syst. Man Cybern.: Syst. – year: 2018 ident: b25 article-title: Quantitative assessment for self-tracking of acute stress based on triangulation principle in a wearable sensor system publication-title: IEEE J. Biomed. Health Inf. – volume: 154 start-page: 43 year: 2018 end-page: 67 ident: b33 article-title: An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems publication-title: Knowl.-Based Syst. – start-page: 1029 year: 2004 end-page: 1036 ident: b37 article-title: Extreme learning machine: RBF network case. publication-title: International Conference on Control, Automation, Robotics and Vision (ICARCV), Vol. 2 – start-page: 220 year: 2018 end-page: 225 ident: b30 article-title: A hybrid optimal PID-Fuzzy control design for seismic exited structural system against earthquake: A salp swarm algorithm publication-title: Fuzzy and Intelligent Systems (CFIS), 2018 6th Iranian Joint Congress on – volume: 5 start-page: 458 year: 2018 end-page: 472 ident: b45 article-title: Chaotic grey wolf optimization algorithm for constrained optimization problems publication-title: J. Comput. Des. Eng. – volume: 9 start-page: 246 year: 2017 end-page: 254 ident: b15 article-title: A hybrid gene selection algorithm for microarray cancer classification using genetic algorithm and learning automata publication-title: Informat. Med. Unlocked – volume: 28 start-page: 144 year: 2016 end-page: 160 ident: b20 article-title: Microarray medical data classification using kernel ridge regression and modified cat swarm optimization based gene selection system publication-title: Swarm Evol. Comput. – volume: 5 start-page: 224 year: 2014 end-page: 232 ident: b42 article-title: Chaotic bat algorithm publication-title: J. Comput. Sci. – volume: 86 start-page: 515 year: 2018 end-page: 526 ident: b58 article-title: Optimization of signal quality over comfortability of textile electrodes for ECG monitoring in fog computing based medical applications publication-title: Future Gener. Comput. Syst. – volume: 34 start-page: 1905 issue: 3 year: 2008 ident: 10.1016/j.asoc.2019.01.007_b36 article-title: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.02.002 – start-page: 229 year: 2016 ident: 10.1016/j.asoc.2019.01.007_b11 article-title: Hybrid feature selection using correlation coefficient and particle swarm optimization on microarray gene expression data – volume: 15 issue: 2 year: 2016 ident: 10.1016/j.asoc.2019.01.007_b41 article-title: Applying the Fisher score to identify Alzheimers disease-related genes publication-title: Genet. Mol. Res.: GMR doi: 10.4238/gmr.15028798 – volume: 219 start-page: 210 year: 2017 ident: 10.1016/j.asoc.2019.01.007_b52 article-title: Approximate kernel extreme learning machine for large scale data classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.023 – volume: 5 start-page: 458 issue: 4 year: 2018 ident: 10.1016/j.asoc.2019.01.007_b45 article-title: Chaotic grey wolf optimization algorithm for constrained optimization problems publication-title: J. Comput. Des. Eng. – volume: 37 start-page: 255 issue: 2 year: 2012 ident: 10.1016/j.asoc.2019.01.007_b12 article-title: Parallel multi-swarm optimizer for gene selection in DNA microarrays publication-title: Appl. Intell. doi: 10.1007/s10489-011-0325-9 – volume: 11 start-page: 781 issue: 4 year: 2018 ident: 10.1016/j.asoc.2019.01.007_b29 article-title: Forecasting energy-related CO2 emissions employing a novel SSA-LSSVM model: Considering structural factors in China publication-title: Energies doi: 10.3390/en11040781 – volume: 405 start-page: 442 issue: 2 year: 1975 ident: 10.1016/j.asoc.2019.01.007_b51 article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme publication-title: Biochimica Biophys. Acta (BBA)-Protein Struct. doi: 10.1016/0005-2795(75)90109-9 – volume: 12 start-page: 4468 issue: 4 year: 2013 ident: 10.1016/j.asoc.2019.01.007_b44 article-title: Bayesian network structure learning based on the chaotic particle swarm optimization algorithm publication-title: Genet. Mol. Res. doi: 10.4238/2013.October.10.12 – volume: 30 start-page: 136 year: 2015 ident: 10.1016/j.asoc.2019.01.007_b1 article-title: Distributed feature selection: An application to microarray data classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.01.035 – start-page: 90 year: 2007 ident: 10.1016/j.asoc.2019.01.007_b14 article-title: A genetic embedded approach for gene selection and classification of microarray data – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 10.1016/j.asoc.2019.01.007_b27 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2011.2168604 – volume: 94 issue: 51 year: 2015 ident: 10.1016/j.asoc.2019.01.007_b53 article-title: Heart-Carotid Pulse Wave Velocity a Useful Index of Atherosclerosis in Chinese Hypertensive Patients publication-title: Medicine – start-page: 74 year: 2014 ident: 10.1016/j.asoc.2019.01.007_b5 article-title: Incremental wrapper based gene selection with Markov blanket – volume: 38 start-page: 922 year: 2016 ident: 10.1016/j.asoc.2019.01.007_b10 article-title: Two hybrid wrapper-filter feature selection algorithms applied to high-dimensional microarray experiments publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.037 – volume: 56 start-page: 49 year: 2015 ident: 10.1016/j.asoc.2019.01.007_b17 article-title: Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2015.03.001 – start-page: 220 year: 2018 ident: 10.1016/j.asoc.2019.01.007_b30 article-title: A hybrid optimal PID-Fuzzy control design for seismic exited structural system against earthquake: A salp swarm algorithm – volume: 86 start-page: 515 year: 2018 ident: 10.1016/j.asoc.2019.01.007_b58 article-title: Optimization of signal quality over comfortability of textile electrodes for ECG monitoring in fog computing based medical applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.04.024 – start-page: 42 year: 2018 ident: 10.1016/j.asoc.2019.01.007_b32 article-title: Fish image segmentation using salp swarm algorithm – volume: 58 start-page: 681 year: 2017 ident: 10.1016/j.asoc.2019.01.007_b7 article-title: Cascaded re-ranking modelling of translation hypotheses using extreme learning machines publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.002 – start-page: 775 year: 2015 ident: 10.1016/j.asoc.2019.01.007_b16 article-title: Genetic programming for a wearable approach to estimate blood pressure embedded in a mobile-based health system – volume: 5 start-page: 224 issue: 2 year: 2014 ident: 10.1016/j.asoc.2019.01.007_b42 article-title: Chaotic bat algorithm publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2013.10.002 – volume: 359 start-page: 572 issue: 9306 year: 2002 ident: 10.1016/j.asoc.2019.01.007_b49 article-title: Use of proteomic patterns in serum to identify ovarian cancer publication-title: Lancet doi: 10.1016/S0140-6736(02)07746-2 – volume: 2015 year: 2015 ident: 10.1016/j.asoc.2019.01.007_b18 article-title: mRMR-ABC: A hybrid gene selection algorithm for cancer classification using microarray gene expression profiling publication-title: BioMed Res. Int. doi: 10.1155/2015/604910 – volume: 52 start-page: 36 year: 2018 ident: 10.1016/j.asoc.2019.01.007_b22 article-title: Optimized cuttlefish algorithm for diagnosis of Parkinsons disease publication-title: Cognit. Syst. Res. doi: 10.1016/j.cogsys.2018.06.006 – volume: 349 start-page: 102 year: 2016 ident: 10.1016/j.asoc.2019.01.007_b26 article-title: A Hierarchical ensemble of ECOC for cancer classification based on multi-class microarray data publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.02.028 – start-page: 315 year: 2017 ident: 10.1016/j.asoc.2019.01.007_b31 article-title: Swarming behaviour of salps algorithm for predicting chemical compound activities – volume: 42 start-page: 612 issue: 1 year: 2015 ident: 10.1016/j.asoc.2019.01.007_b13 article-title: Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.08.014 – volume: 45 start-page: 2992 issue: 8 year: 2012 ident: 10.1016/j.asoc.2019.01.007_b2 article-title: Feature evaluation and selection with cooperative game theory publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.02.001 – volume: 48 start-page: 298 year: 2016 ident: 10.1016/j.asoc.2019.01.007_b3 article-title: Pipelining the ranking techniques for microarray data classification: A case study publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.07.006 – volume: 28 start-page: 144 year: 2016 ident: 10.1016/j.asoc.2019.01.007_b20 article-title: Microarray medical data classification using kernel ridge regression and modified cat swarm optimization based gene selection system publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2016.02.002 – volume: 286 start-page: 531 issue: 5439 year: 1999 ident: 10.1016/j.asoc.2019.01.007_b46 article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 25 start-page: 775 issue: 3 year: 2014 ident: 10.1016/j.asoc.2019.01.007_b24 article-title: A feature selection method using improved regularized linear discriminant analysis publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-013-0577-y – volume: 48 start-page: 1 issue: 10 year: 2018 ident: 10.1016/j.asoc.2019.01.007_b34 article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection publication-title: Appl. Intell. doi: 10.1007/s10489-018-1158-6 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 10.1016/j.asoc.2019.01.007_b6 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 40 start-page: 3236 issue: 11 year: 2007 ident: 10.1016/j.asoc.2019.01.007_b47 article-title: Markov blanket-embedded genetic algorithm for gene selection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.02.007 – start-page: 1029 year: 2004 ident: 10.1016/j.asoc.2019.01.007_b37 article-title: Extreme learning machine: RBF network case. – volume: 25 start-page: 1077 issue: 5 year: 2014 ident: 10.1016/j.asoc.2019.01.007_b35 article-title: Biogeography-based optimisation with chaos publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1597-x – volume: 98 start-page: 13790 issue: 24 year: 2001 ident: 10.1016/j.asoc.2019.01.007_b50 article-title: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.191502998 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2019.01.007_b55 article-title: Efficient deep CNN-based fire detection and localization in video surveillance applications publication-title: IEEE Trans. Syst. Man Cybern.: Syst. – volume: 69 start-page: 344 year: 2018 ident: 10.1016/j.asoc.2019.01.007_b4 article-title: Integrating associative rule-based classification with Naïve Bayes for text classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.056 – volume: 2017 year: 2017 ident: 10.1016/j.asoc.2019.01.007_b28 article-title: An enhanced Grey Wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis publication-title: Comput. Math. Methods Med. doi: 10.1155/2017/9512741 – volume: 168 start-page: 1024 year: 2015 ident: 10.1016/j.asoc.2019.01.007_b19 article-title: Gene selection for microarray data classification using a novel ant colony optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.05.022 – volume: 11 start-page: 208 issue: 1 year: 2011 ident: 10.1016/j.asoc.2019.01.007_b8 article-title: A novel hybrid feature selection method for microarray data analysis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.11.010 – year: 2018 ident: 10.1016/j.asoc.2019.01.007_b25 article-title: Quantitative assessment for self-tracking of acute stress based on triangulation principle in a wearable sensor system publication-title: IEEE J. Biomed. Health Inf. – volume: 206 start-page: 1070 issue: 2 year: 2007 ident: 10.1016/j.asoc.2019.01.007_b43 article-title: An optimization algorithm based on chaotic behavior and fractal nature publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2006.09.008 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2019.01.007_b9 article-title: Optimal feature-based multi-kernel SVM approach for thyroid disease classification publication-title: J. Supercomput. – volume: 68 start-page: 412 year: 2018 ident: 10.1016/j.asoc.2019.01.007_b21 article-title: Improved diagnosis of Parkinson’s disease using optimized crow search algorithm publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2018.04.014 – volume: 154 start-page: 43 year: 2018 ident: 10.1016/j.asoc.2019.01.007_b33 article-title: An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.05.009 – volume: 16 start-page: 527 issue: 6 year: 2007 ident: 10.1016/j.asoc.2019.01.007_b23 article-title: Classification consistency analysis for bootstrapping gene selection publication-title: Neural Comput. Appl. doi: 10.1007/s00521-007-0110-1 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.asoc.2019.01.007_b38 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2019.01.007_b54 article-title: Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation publication-title: Multimedia Tools Appl. – volume: 9 start-page: 246 year: 2017 ident: 10.1016/j.asoc.2019.01.007_b15 article-title: A hybrid gene selection algorithm for microarray cancer classification using genetic algorithm and learning automata publication-title: Informat. Med. Unlocked doi: 10.1016/j.imu.2017.10.004 – start-page: 266 year: 2011 ident: 10.1016/j.asoc.2019.01.007_b39 article-title: Generalized Fisher score for feature selection – volume: 109 start-page: 91 issue: 2 year: 2017 ident: 10.1016/j.asoc.2019.01.007_b40 article-title: Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts publication-title: Genomics doi: 10.1016/j.ygeno.2017.01.004 – volume: 6 start-page: 18174 year: 2018 ident: 10.1016/j.asoc.2019.01.007_b56 article-title: Convolutional neural networks based fire detection in surveillance videos publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2812835 – volume: 288 start-page: 30 year: 2018 ident: 10.1016/j.asoc.2019.01.007_b57 article-title: Early fire detection using convolutional neural networks during surveillance for effective disaster management publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.083 – volume: 96 start-page: 6745 issue: 12 year: 1999 ident: 10.1016/j.asoc.2019.01.007_b48 article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.96.12.6745 |
| SSID | ssj0016928 |
| Score | 2.4342651 |
| Snippet | Over the last decade, there has been a rapid growth in the generation and analysis of the genomics data. Though the existing data analysis methods are capable... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 520 |
| SubjectTerms | Classification Fisher score Kernel extreme learning machine (KELM) Microarray Salp swarm optimization algorithm (SSA) |
| Title | Analysis of high-dimensional genomic data employing a novel bio-inspired algorithm |
| URI | https://dx.doi.org/10.1016/j.asoc.2019.01.007 |
| Volume | 77 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3WZu4m2RzLMVSX0Wqhd7C7majkTYpJXr0tzuTR1EQD55Cwi4kH7uzM-Sb7yPkPJGQ1DrY-Wu4ZSIOEyYVd5kJlC9jI6BkwUbhh7E_morbmTdrkUHTC4O0yjr2VzG9jNb1k16NZm-Zpr0nqDykCAVUALxUPsMOdhGgi8Hl55rm4fph6a-KgxmOrhtnKo6XAgSQ3hWW0p1oKfvb4fTtwBnukK06U6T96mV2Sctme2S7cWGg9abcJ5NGV4TmCUX1YRajYn-ltkFRg3WRGopMUGpLe184rKiiWf5h51SnOUsz_NtuY6rmL_kqLV4XB2Q6vH4ejFjtlMAMfHvBtNUAs3YC7XAbSs84kCd5yrMQQ4SEDMhyLSWXSahtoI2nuYE8VbhXgbIWNiE_JO0sz-wRocpAxeXZ0BexFjoIIBiGMU9ixa2rtO93iNtAFJlaRhzdLOZRwxd7ixDWCGGNHDcCWDvkYj1nWYlo_Dnaa5CPfiyFCKL8H_OO_znvhGziXUXHOSXtYvVuzyDTKHS3XEpdstEfTO4f8XpzNxp_AXvv1HU |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDnBhR5TVB27INKmdxDkiRFWW9sAi9WbZjgNBJUFV4Mi3M5OlAgn1wDXxSM6TPYvy5g0hp6mEpNbDzl_LHRNJnDKpuc9spEOZWAElCzYKD0fh4EncjIPxArlse2GQVtn4_tqnV966edJt0Oy-Z1n3ASoPKWIBFQCvlM8WybIIehFWYOdfM56HH8bVgFVczXB50zlTk7w0QID8rrjS7sSZsn9Fpx8Rp79B1ppUkV7Uu9kkCy7fIuvtGAba3Mptct8Ki9AipSg_zBKU7K_lNiiKsL5lliIVlLpqvi9EK6ppXny6CTVZwbIcf7e7hOrJczHNype3HfLUv3q8HLBmVAKz8PElM84AzsaLjMddLAPrQaIU6MCBExESUiDHjZRcprFxkbGB4RYSVeH3Iu0c3EK-S5byInd7hGoLJVfg4lAkRpgoAm8YJzxNNHe-NmHYIX4LkbKNjjiOs5ioljD2qhBWhbAqz1cAa4eczWzeaxWNuauDFnn16ywocPNz7Pb_aXdCVgaPwzt1dz26PSCr-Kbm5hySpXL64Y4g7SjNcXWsvgHq29R1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+high-dimensional+genomic+data+employing+a+novel+bio-inspired+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Baliarsingh%2C+Santos+Kumar&rft.au=Vipsita%2C+Swati&rft.au=Muhammad%2C+Khan&rft.au=Dash%2C+Bodhisattva&rft.date=2019-04-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=77&rft.spage=520&rft.epage=532&rft_id=info:doi/10.1016%2Fj.asoc.2019.01.007&rft.externalDocID=S1568494619300110 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |