Data augmentation for cross-subject EEG features using Siamese neural network
•A novel data augmentation method via transfer learning and cross subject Siamese neural network was proposed.•A new experimental paradigm was applied to help researchers evaluate the performance of data augmentation methods.•The experimental results show that the proposed method obtains better perf...
Saved in:
| Published in | Biomedical signal processing and control Vol. 75; p. 103614 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.05.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1746-8094 1746-8108 |
| DOI | 10.1016/j.bspc.2022.103614 |
Cover
| Abstract | •A novel data augmentation method via transfer learning and cross subject Siamese neural network was proposed.•A new experimental paradigm was applied to help researchers evaluate the performance of data augmentation methods.•The experimental results show that the proposed method obtains better performance on various machine learning methods.
Electroencephalography (EEG) motor intention recognition has been extensively used in robot control, brain rehabilitation and other health care fields. Recently, some algorithms have been proposed based on generative adversarial neural network (GAN) to enhance EEG signal, and have achieved high recognition performance. However, these methods utilize the convolutional kernel method of the GAN, while the optimal convolutional scale of CNN varies from subject to subject. This may lead to the data generated by GAN to lack authenticity and produce data that does not match the ideal situation. Particularly, the performance of data augmentation degrades when the original calibrated EEG is insufficient. To address these issues, we proposed a novel cross-subject Siamese Neural Network (SNN) approach to enhance EEG feature data. Specifically, we used our proposed SNN to construct highly similar extended EEG features of different subjects and successfully improved the performance of motor intention recognition. Then, we design an accurate boundary avoidance task to evaluate the effectiveness of the proposed method. Compared with the traditional experimental paradigm, the coding process of this experiment is more complex, which makes the results more reliable when using the SNN. The extended EEG features display significantly better performance than any other common classifiers in the case of small data size, and it demonstrates that this proposed method can effectively address these issues of existing EEG motor intention recognition methods based on data augmentation and improve the classification performance. |
|---|---|
| AbstractList | •A novel data augmentation method via transfer learning and cross subject Siamese neural network was proposed.•A new experimental paradigm was applied to help researchers evaluate the performance of data augmentation methods.•The experimental results show that the proposed method obtains better performance on various machine learning methods.
Electroencephalography (EEG) motor intention recognition has been extensively used in robot control, brain rehabilitation and other health care fields. Recently, some algorithms have been proposed based on generative adversarial neural network (GAN) to enhance EEG signal, and have achieved high recognition performance. However, these methods utilize the convolutional kernel method of the GAN, while the optimal convolutional scale of CNN varies from subject to subject. This may lead to the data generated by GAN to lack authenticity and produce data that does not match the ideal situation. Particularly, the performance of data augmentation degrades when the original calibrated EEG is insufficient. To address these issues, we proposed a novel cross-subject Siamese Neural Network (SNN) approach to enhance EEG feature data. Specifically, we used our proposed SNN to construct highly similar extended EEG features of different subjects and successfully improved the performance of motor intention recognition. Then, we design an accurate boundary avoidance task to evaluate the effectiveness of the proposed method. Compared with the traditional experimental paradigm, the coding process of this experiment is more complex, which makes the results more reliable when using the SNN. The extended EEG features display significantly better performance than any other common classifiers in the case of small data size, and it demonstrates that this proposed method can effectively address these issues of existing EEG motor intention recognition methods based on data augmentation and improve the classification performance. |
| ArticleNumber | 103614 |
| Author | Wang, Yaodong Fu, Rongrong Jia, Chengcheng |
| Author_xml | – sequence: 1 givenname: Rongrong surname: Fu fullname: Fu, Rongrong email: frr1102@aliyun.com organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, Department of Electrical Engineering, Yanshan University, Qinhuangdao, China – sequence: 2 givenname: Yaodong surname: Wang fullname: Wang, Yaodong organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, Department of Electrical Engineering, Yanshan University, Qinhuangdao, China – sequence: 3 givenname: Chengcheng surname: Jia fullname: Jia, Chengcheng organization: Department of Electrical, Computer & Biomedical Engineering, Ryerson University, Canada |
| BookMark | eNp9kEFOwzAQRS1UJErhAqx8gRTbcZNUYoNKKUhFLIC1NXbGlUPrVLYD4vakBDYsuvqjkd7ozzsnI996JOSKsylnvLhupjruzVQwIfpFXnB5Qsa8lEVWcVaN_mY2l2fkPMaGMVmVXI7J0x0koNBtdugTJNd6attATWhjzGKnGzSJLpcrahFSFzDSLjq_oS8OdhiReuwCbPtIn214vyCnFrYRL39zQt7ul6-Lh2z9vHpc3K4zkzOWMl2j0Bb7apZpO7c5SmY0s0UJkNt6BqbWWuiissyUXADnheSCy1kuSlvjPJ8QMdz96RnQqn1wOwhfijN1EKIadRCiDkLUIKSHqn-QccPLKYDbHkdvBhT7pz4cBhWNQ2-wdqEXpOrWHcO_ASG1f28 |
| CitedBy_id | crossref_primary_10_1016_j_inffus_2025_102982 |
| Cites_doi | 10.1016/j.eswa.2018.08.031 10.1088/1741-2552/aba162 10.1093/gigascience/giz002 10.1109/TIFS.2020.3013204 10.1016/j.cobme.2017.11.004 10.1016/j.bspc.2014.06.009 10.1016/j.bbr.2020.112904 10.1109/LGRS.2020.2979604 10.1109/TBME.2010.2082540 10.1016/j.eswa.2014.05.013 10.1371/journal.pbio.2003787 10.1109/IJCNN.2008.4634130 10.1088/1741-2552/ab405f 10.1016/j.eswa.2020.114004 10.1109/MCE.2019.2959075 10.1016/j.artmed.2019.101787 10.1109/EMBC.2018.8512865 10.1109/JPROC.2015.2404941 10.1016/j.compbiomed.2018.05.019 10.1109/LGRS.2017.2738149 10.1016/j.bspc.2020.102172 10.1109/TBME.2016.2606595 10.1088/1741-2552/ab0ab5 10.1109/TNNLS.2020.3016666 10.1109/TNSRE.2003.814481 10.1111/1754-9485.13261 10.1016/j.cmpb.2020.105464 10.3390/s20164485 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2022.103614 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2022_103614 S1746809422001367 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-bde2bfe810f0bf9f3e40cb0f67aa3fd5acdbb2b68f0c712a116412145327fde93 |
| IEDL.DBID | .~1 |
| ISSN | 1746-8094 |
| IngestDate | Wed Oct 29 21:21:29 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Fri Feb 23 02:39:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data augmentation Siamese neural network Similarity measurement Transfer learning Complex motor recognition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-bde2bfe810f0bf9f3e40cb0f67aa3fd5acdbb2b68f0c712a116412145327fde93 |
| ParticipantIDs | crossref_primary_10_1016_j_bspc_2022_103614 crossref_citationtrail_10_1016_j_bspc_2022_103614 elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103614 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 2022-05-00 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang, Zhong, Peng, Jiang, Liu (b0120) 2018 Zhang, Lei, Li (b0125) 2018 Huang, Chen (b0180) 2021; 18 Dose, Møller, Iversen, Puthusserypady (b0080) 2018; 114 Perdikis, Tonin, Saeedi, Schneider, del Millán (b0020) 2018; 16 K.K. Ang, Z.Y. Chin, H. Zhang, C. Guan, Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface, in: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008: pp. 2390–2397. 10.1109/IJCNN.2008.4634130. Luo, Gao, Zhu, Wang, Lu, Wang (b0065) 2020; 193 Zhan, Fu, Yan, Sun, Wang, Qiu (b0185) 2017; 14 Lemley, Corcoran (b0110) 2020; 9 Zhang, Xu, Han, Ma, Zheng, Chen, Duan, Zhang (b0150) 2020; 20 R. Mane, T. Chouhan, C. Guan, BCI for stroke rehabilitation: motor and beyond, J. Neural Eng. 17 (2020) 041001. 10.1088/1741-2552/aba162. Lee, Kwon, Kim, Kim, Lee, Williamson, Fazli, Lee (b0030) 2019; 8 You, Zhang, Zhao (b0175) 2021; 16 Paris, Atia, Vosoughi, Berman (b0005) 2017; 64 K.G. Hartmann, R.T. Schirrmeister, T. Ball, EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals, ArXiv:1806.01875 [Cs, Eess, q-Bio, Stat]. (2018). http://arxiv.org/abs/1806.01875 (accessed September 18, 2021). Lotte (b0155) 2015; 103 Del Pozo-Banos, Alonso, Ticay-Rivas, Travieso (b0040) 2014; 41 Fahimi, Dosen, Ang, Mrachacz-Kersting, Guan (b0100) 2021; 32 Chlap, Min, Vandenberg, Dowling, Holloway, Haworth (b0115) 2021; 65 Lu, Eng, Guan, Plataniotis, Venetsanopoulos (b0165) 2010; 57 Chaudhary, Mrachacz-Kersting, Birbaumer, Taylor, Farina (b0015) 2020; 9 S. Park, H.S. Cha, J. Kwon, H. Kim, C.H. Im, Development of an Online Home Appliance Control System Using Augmented Reality and an SSVEP-Based Brain-Computer Interface, (n.d.) 2. S. Saha, K.A. Mamun, K. Ahmed, R. Mostafa, A. Khandoker, S. Darvishi, M. Baumert, Progress in Brain Computer Interfaces: Challenges and Trends, (n.d.) 20. Sharma, Jayagopi (b0095) 2021; 164 M.M. Krell, A. Seeland, S.K. Kim, Data Augmentation for Brain-Computer Interfaces: Analysis on Event-Related Potentials Data, ArXiv:1801.02730 [Cs, q-Bio]. (2018). http://arxiv.org/abs/1801.02730. Y. Luo, B.L. Lu, EEG Data Augmentation for Emotion Recognition Using a Conditional Wasserstein GAN, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, Honolulu, HI, 2018: pp. 2535–2538. 10.1109/EMBC.2018.8512865. Xuan, Peng, Wang, Dong (b0170) 2019 Tsiouris, Pezoulas, Zervakis, Konitsiotis, Koutsouris, Fotiadis (b0085) 2018; 99 Al-Saegh, Dawwd, Abdul-Jabbar (b0070) 2021; 63 Dai, Zhou, Huang, Wang (b0145) 2020; 17 Paitel, Samii, Nielson (b0055) 2021; 396 McFarland, Wolpaw (b0035) 2017; 4 Guger, Edlinger, Harkam, Niedermayer, Pfurtscheller (b0045) 2003; 11 McDonnell, Vladusich (b0090) 2015; 2015 A. Craik, Y. He, J.L. Contreras-Vidal, Deep learning for electroencephalogram (EEG) classification tasks: a review, J. Neural Eng. 16 (2019) 031001. 10.1088/1741-2552/ab0ab5. Colominas, Schlotthauer, Torres (b0135) 2014; 14 V. K., D. A., M. J., S. M., A. A., S.A. Iraj, A novel method of motor imagery classification using eeg signal, Artificial Intelligence in Medicine. 103 (2020) 101787. 10.1016/j.artmed.2019.101787. Guger (10.1016/j.bspc.2022.103614_b0045) 2003; 11 Tsiouris (10.1016/j.bspc.2022.103614_b0085) 2018; 99 Al-Saegh (10.1016/j.bspc.2022.103614_b0070) 2021; 63 Paris (10.1016/j.bspc.2022.103614_b0005) 2017; 64 Sharma (10.1016/j.bspc.2022.103614_b0095) 2021; 164 10.1016/j.bspc.2022.103614_b0060 Lemley (10.1016/j.bspc.2022.103614_b0110) 2020; 9 Lu (10.1016/j.bspc.2022.103614_b0165) 2010; 57 Fahimi (10.1016/j.bspc.2022.103614_b0100) 2021; 32 10.1016/j.bspc.2022.103614_b0160 10.1016/j.bspc.2022.103614_b0140 Xuan (10.1016/j.bspc.2022.103614_b0170) 2019 10.1016/j.bspc.2022.103614_b0105 McDonnell (10.1016/j.bspc.2022.103614_b0090) 2015; 2015 Colominas (10.1016/j.bspc.2022.103614_b0135) 2014; 14 Zhan (10.1016/j.bspc.2022.103614_b0185) 2017; 14 Lotte (10.1016/j.bspc.2022.103614_b0155) 2015; 103 Perdikis (10.1016/j.bspc.2022.103614_b0020) 2018; 16 10.1016/j.bspc.2022.103614_b0025 Dose (10.1016/j.bspc.2022.103614_b0080) 2018; 114 Dai (10.1016/j.bspc.2022.103614_b0145) 2020; 17 Zhang (10.1016/j.bspc.2022.103614_b0125) 2018 Chlap (10.1016/j.bspc.2022.103614_b0115) 2021; 65 Zhang (10.1016/j.bspc.2022.103614_b0150) 2020; 20 10.1016/j.bspc.2022.103614_b0075 10.1016/j.bspc.2022.103614_b0130 You (10.1016/j.bspc.2022.103614_b0175) 2021; 16 10.1016/j.bspc.2022.103614_b0010 Chaudhary (10.1016/j.bspc.2022.103614_b0015) 2020; 9 10.1016/j.bspc.2022.103614_b0050 McFarland (10.1016/j.bspc.2022.103614_b0035) 2017; 4 Huang (10.1016/j.bspc.2022.103614_b0180) 2021; 18 Wang (10.1016/j.bspc.2022.103614_b0120) 2018 Luo (10.1016/j.bspc.2022.103614_b0065) 2020; 193 Paitel (10.1016/j.bspc.2022.103614_b0055) 2021; 396 Lee (10.1016/j.bspc.2022.103614_b0030) 2019; 8 Del Pozo-Banos (10.1016/j.bspc.2022.103614_b0040) 2014; 41 |
| References_xml | – volume: 14 start-page: 19 year: 2014 end-page: 29 ident: b0135 article-title: Improved complete ensemble EMD: A suitable tool for biomedical signal processing publication-title: Biomed. Signal Process. Control – volume: 63 year: 2021 ident: b0070 article-title: Deep learning for motor imagery EEG-based classification: a review publication-title: Biomed. Signal Process. Control – volume: 17 year: 2020 ident: b0145 article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification publication-title: J. Neural Eng. – volume: 41 start-page: 6537 year: 2014 end-page: 6554 ident: b0040 article-title: Electroencephalogram subject identification: a review publication-title: Expert Syst. Appl. – reference: Y. Luo, B.L. Lu, EEG Data Augmentation for Emotion Recognition Using a Conditional Wasserstein GAN, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, Honolulu, HI, 2018: pp. 2535–2538. 10.1109/EMBC.2018.8512865. – reference: M.M. Krell, A. Seeland, S.K. Kim, Data Augmentation for Brain-Computer Interfaces: Analysis on Event-Related Potentials Data, ArXiv:1801.02730 [Cs, q-Bio]. (2018). http://arxiv.org/abs/1801.02730. – volume: 32 start-page: 4039 year: 2021 end-page: 4051 ident: b0100 article-title: Generative adversarial networks-based data augmentation for brain-computer interface publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 103 start-page: 871 year: 2015 end-page: 890 ident: b0155 article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces publication-title: Proc. IEEE – volume: 11 start-page: 145 year: 2003 end-page: 147 ident: b0045 article-title: How many people are able to operate an EEG-based brain-computer interface (BCI) publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 99 start-page: 24 year: 2018 end-page: 37 ident: b0085 article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals publication-title: Comput. Biol. Med. – start-page: 231 year: 2018 end-page: 235 ident: b0125 article-title: An amplitudes-perturbation data augmentation method in convolutional neural networks for EEG decoding publication-title: in: 2018 5th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS) – volume: 193 year: 2020 ident: b0065 article-title: Motor imagery EEG classification based on ensemble support vector learning publication-title: Comput. Methods Programs Biomed. – volume: 57 start-page: 2936 year: 2010 end-page: 2946 ident: b0165 article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting publication-title: IEEE Trans. Biomed. Eng. – reference: K.K. Ang, Z.Y. Chin, H. Zhang, C. Guan, Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface, in: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008: pp. 2390–2397. 10.1109/IJCNN.2008.4634130. – volume: 164 year: 2021 ident: b0095 article-title: Towards efficient unconstrained handwriting recognition using Dilated Temporal Convolution Network publication-title: Expert Syst. Appl. – reference: S. Saha, K.A. Mamun, K. Ahmed, R. Mostafa, A. Khandoker, S. Darvishi, M. Baumert, Progress in Brain Computer Interfaces: Challenges and Trends, (n.d.) 20. – volume: 8 start-page: giz002 year: 2019 ident: b0030 article-title: EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy publication-title: GigaScience – start-page: 82 year: 2018 end-page: 93 ident: b0120 article-title: Data augmentation for EEG-based emotion recognition with deep convolutional neural networks publication-title: MultiMedia Modeling – volume: 20 start-page: 4485 year: 2020 ident: b0150 article-title: Data augmentation for motor imagery signal classification based on a hybrid neural network publication-title: Sensors – reference: V. K., D. A., M. J., S. M., A. A., S.A. Iraj, A novel method of motor imagery classification using eeg signal, Artificial Intelligence in Medicine. 103 (2020) 101787. 10.1016/j.artmed.2019.101787. – volume: 65 start-page: 545 year: 2021 end-page: 563 ident: b0115 article-title: A review of medical image data augmentation techniques for deep learning applications publication-title: J. Med. Imag. Radiat. Oncol. – volume: 9 year: 2020 ident: b0015 article-title: Neuropsychological and neurophysiological aspects of brain-computer-interface (BCI) control in paralysis publication-title: J. Physiol. – volume: 396 year: 2021 ident: b0055 article-title: A systematic review of cognitive event-related potentials in mild cognitive impairment and Alzheimer’s disease publication-title: Behav. Brain Res. – reference: S. Park, H.S. Cha, J. Kwon, H. Kim, C.H. Im, Development of an Online Home Appliance Control System Using Augmented Reality and an SSVEP-Based Brain-Computer Interface, (n.d.) 2. – reference: K.G. Hartmann, R.T. Schirrmeister, T. Ball, EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals, ArXiv:1806.01875 [Cs, Eess, q-Bio, Stat]. (2018). http://arxiv.org/abs/1806.01875 (accessed September 18, 2021). – volume: 9 start-page: 55 year: 2020 end-page: 63 ident: b0110 article-title: Deep learning for consumer devices and services 4— A review of learnable data augmentation strategies for improved training of deep neural networks publication-title: IEEE Consum. Electron. Mag. – start-page: 134 year: 2019 end-page: 141 ident: b0170 article-title: On the generalization of GAN image forensics publication-title: Biometric Recognition – volume: 14 start-page: 1845 year: 2017 end-page: 1849 ident: b0185 article-title: Change detection based on deep siamese convolutional network for optical aerial images publication-title: IEEE Geosci. Remote Sensing Lett. – reference: A. Craik, Y. He, J.L. Contreras-Vidal, Deep learning for electroencephalogram (EEG) classification tasks: a review, J. Neural Eng. 16 (2019) 031001. 10.1088/1741-2552/ab0ab5. – volume: 18 start-page: 518 year: 2021 end-page: 522 ident: b0180 article-title: Dual-path siamese CNN for hyperspectral image classification with limited training samples publication-title: IEEE Geosci. Remote Sensing Lett. – reference: R. Mane, T. Chouhan, C. Guan, BCI for stroke rehabilitation: motor and beyond, J. Neural Eng. 17 (2020) 041001. 10.1088/1741-2552/aba162. – volume: 2015 start-page: 1 year: 2015 end-page: 7 ident: b0090 article-title: Enhanced image classification with a fast-learning shallow convolutional neural network publication-title: Int. Joint Conf. Neural Networks (IJCNN) – volume: 4 start-page: 194 year: 2017 end-page: 200 ident: b0035 article-title: EEG-based brain–computer interfaces publication-title: Curr. Opin. Biomed. Eng. – volume: 64 start-page: 1688 year: 2017 end-page: 1700 ident: b0005 article-title: A new statistical model of electroencephalogram noise spectra for real-time brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. – volume: 16 year: 2018 ident: b0020 article-title: The Cybathlon BCI race: successful longitudinal mutual learning with two tetraplegic users publication-title: PLoS Biol. – volume: 16 start-page: 291 year: 2021 end-page: 306 ident: b0175 article-title: A siamese CNN for image steganalysis publication-title: IEEE Trans. Inform. Forensic Secur. – volume: 114 start-page: 532 year: 2018 end-page: 542 ident: b0080 article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs publication-title: Expert Syst. Appl. – volume: 114 start-page: 532 year: 2018 ident: 10.1016/j.bspc.2022.103614_b0080 article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.031 – start-page: 231 year: 2018 ident: 10.1016/j.bspc.2022.103614_b0125 article-title: An amplitudes-perturbation data augmentation method in convolutional neural networks for EEG decoding – ident: 10.1016/j.bspc.2022.103614_b0010 doi: 10.1088/1741-2552/aba162 – volume: 8 start-page: giz002 year: 2019 ident: 10.1016/j.bspc.2022.103614_b0030 article-title: EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy publication-title: GigaScience doi: 10.1093/gigascience/giz002 – ident: 10.1016/j.bspc.2022.103614_b0130 – volume: 16 start-page: 291 year: 2021 ident: 10.1016/j.bspc.2022.103614_b0175 article-title: A siamese CNN for image steganalysis publication-title: IEEE Trans. Inform. Forensic Secur. doi: 10.1109/TIFS.2020.3013204 – start-page: 82 year: 2018 ident: 10.1016/j.bspc.2022.103614_b0120 article-title: Data augmentation for EEG-based emotion recognition with deep convolutional neural networks – ident: 10.1016/j.bspc.2022.103614_b0050 – volume: 4 start-page: 194 year: 2017 ident: 10.1016/j.bspc.2022.103614_b0035 article-title: EEG-based brain–computer interfaces publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2017.11.004 – volume: 9 year: 2020 ident: 10.1016/j.bspc.2022.103614_b0015 article-title: Neuropsychological and neurophysiological aspects of brain-computer-interface (BCI) control in paralysis publication-title: J. Physiol. – volume: 14 start-page: 19 year: 2014 ident: 10.1016/j.bspc.2022.103614_b0135 article-title: Improved complete ensemble EMD: A suitable tool for biomedical signal processing publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.06.009 – volume: 396 year: 2021 ident: 10.1016/j.bspc.2022.103614_b0055 article-title: A systematic review of cognitive event-related potentials in mild cognitive impairment and Alzheimer’s disease publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2020.112904 – volume: 18 start-page: 518 year: 2021 ident: 10.1016/j.bspc.2022.103614_b0180 article-title: Dual-path siamese CNN for hyperspectral image classification with limited training samples publication-title: IEEE Geosci. Remote Sensing Lett. doi: 10.1109/LGRS.2020.2979604 – volume: 57 start-page: 2936 year: 2010 ident: 10.1016/j.bspc.2022.103614_b0165 article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082540 – volume: 41 start-page: 6537 year: 2014 ident: 10.1016/j.bspc.2022.103614_b0040 article-title: Electroencephalogram subject identification: a review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.05.013 – ident: 10.1016/j.bspc.2022.103614_b0140 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.bspc.2022.103614_b0090 article-title: Enhanced image classification with a fast-learning shallow convolutional neural network publication-title: Int. Joint Conf. Neural Networks (IJCNN) – volume: 16 year: 2018 ident: 10.1016/j.bspc.2022.103614_b0020 article-title: The Cybathlon BCI race: successful longitudinal mutual learning with two tetraplegic users publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2003787 – ident: 10.1016/j.bspc.2022.103614_b0160 doi: 10.1109/IJCNN.2008.4634130 – volume: 17 year: 2020 ident: 10.1016/j.bspc.2022.103614_b0145 article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab405f – volume: 164 year: 2021 ident: 10.1016/j.bspc.2022.103614_b0095 article-title: Towards efficient unconstrained handwriting recognition using Dilated Temporal Convolution Network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114004 – volume: 9 start-page: 55 year: 2020 ident: 10.1016/j.bspc.2022.103614_b0110 article-title: Deep learning for consumer devices and services 4— A review of learnable data augmentation strategies for improved training of deep neural networks publication-title: IEEE Consum. Electron. Mag. doi: 10.1109/MCE.2019.2959075 – ident: 10.1016/j.bspc.2022.103614_b0060 doi: 10.1016/j.artmed.2019.101787 – ident: 10.1016/j.bspc.2022.103614_b0105 doi: 10.1109/EMBC.2018.8512865 – volume: 103 start-page: 871 year: 2015 ident: 10.1016/j.bspc.2022.103614_b0155 article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2404941 – volume: 99 start-page: 24 year: 2018 ident: 10.1016/j.bspc.2022.103614_b0085 article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.05.019 – volume: 14 start-page: 1845 year: 2017 ident: 10.1016/j.bspc.2022.103614_b0185 article-title: Change detection based on deep siamese convolutional network for optical aerial images publication-title: IEEE Geosci. Remote Sensing Lett. doi: 10.1109/LGRS.2017.2738149 – start-page: 134 year: 2019 ident: 10.1016/j.bspc.2022.103614_b0170 article-title: On the generalization of GAN image forensics – volume: 63 year: 2021 ident: 10.1016/j.bspc.2022.103614_b0070 article-title: Deep learning for motor imagery EEG-based classification: a review publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102172 – volume: 64 start-page: 1688 year: 2017 ident: 10.1016/j.bspc.2022.103614_b0005 article-title: A new statistical model of electroencephalogram noise spectra for real-time brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2606595 – ident: 10.1016/j.bspc.2022.103614_b0075 doi: 10.1088/1741-2552/ab0ab5 – volume: 32 start-page: 4039 year: 2021 ident: 10.1016/j.bspc.2022.103614_b0100 article-title: Generative adversarial networks-based data augmentation for brain-computer interface publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3016666 – ident: 10.1016/j.bspc.2022.103614_b0025 – volume: 11 start-page: 145 year: 2003 ident: 10.1016/j.bspc.2022.103614_b0045 article-title: How many people are able to operate an EEG-based brain-computer interface (BCI) publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2003.814481 – volume: 65 start-page: 545 year: 2021 ident: 10.1016/j.bspc.2022.103614_b0115 article-title: A review of medical image data augmentation techniques for deep learning applications publication-title: J. Med. Imag. Radiat. Oncol. doi: 10.1111/1754-9485.13261 – volume: 193 year: 2020 ident: 10.1016/j.bspc.2022.103614_b0065 article-title: Motor imagery EEG classification based on ensemble support vector learning publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105464 – volume: 20 start-page: 4485 year: 2020 ident: 10.1016/j.bspc.2022.103614_b0150 article-title: Data augmentation for motor imagery signal classification based on a hybrid neural network publication-title: Sensors doi: 10.3390/s20164485 |
| SSID | ssj0048714 |
| Score | 2.3063526 |
| Snippet | •A novel data augmentation method via transfer learning and cross subject Siamese neural network was proposed.•A new experimental paradigm was applied to help... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103614 |
| SubjectTerms | Complex motor recognition Data augmentation Siamese neural network Similarity measurement Transfer learning |
| Title | Data augmentation for cross-subject EEG features using Siamese neural network |
| URI | https://dx.doi.org/10.1016/j.bspc.2022.103614 |
| Volume | 75 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywIdPYeY9VaSmgdimVukW2c66KIFQ0Xfnt-PKoioQ6MCa6S6LP1vku-u47Qm4jiLQfyohJLcAWKKCYDE3KeAxuCDoQjsZu5NE4GE6955k_a5Be3QuDtMoq9pcxvYjW1Z1OhWZnuVh0JjaXDiJbnQhRCo9hB7sX4hSD--8NzcPm44W-NxoztK4aZ0qOl1otUcZQCOw9D7j39-G0deAMjshhlSnSbvkxx6QB2Qk52NIPPCWjB5lLKtfzj6qDKKM2B6XFw9lqrfAfC-33H6mBQr9zRZHmPqeTBXJjgaKYpX1FVlLBz8h00H_tDVk1H4Fp13FyplIQykDEHeMoExsXPIusY4JQStekvtSpUkIFkXF0yIXktjTiqEzuCrscELvnpJl9ZnBBqFEiVoqn4KO-mADJhVAiVQCRikNtWoTXwCS6Eg_HGRbvSc0Se0sQzATBTEowW-Ru47MspTN2Wvs13smvDZDY2L7D7_KffldkH69K7uI1aeZfa7ix-UWu2sUGapO97tPLcPwDmuDQ6A |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD-rB-Iz47MGbWdl230eDICpwARJum7Y7JRhdiSxXf7udfRBMDAevuzPbzddmOtN885WQ2xBC5QUitITiYAoUkJYIdGKxCJwAlM9thd3I_YHfHbsvE29SI62qFwZplWXsL2J6Hq3LJ80SzeZ8NmsOTS7th6Y64bwQHtsi267HA6zA7r9XPA-TkOcC32htoXnZOVOQvORijjqGnGPzuc_cv3entR2nc0D2y1SRPhR_c0hqkB6RvTUBwWPSfxSZoGI5_ShbiFJqklCaf9xaLCUestB2-4lqyAU8FxR57lM6nCE5FiiqWZoh0oILfkLGnfao1bXKCxIs5dh2ZskEuNQQMlvbUkfaAddAa2s_EMLRiSdUIiWXfqhtFTAumKmNGEqTO9zMB0TOKamnnymcEaolj6RkCXgoMMZBMM4lTyRAKKNA6QZhFTCxKtXD8RKL97iiib3FCGaMYMYFmA1yt_KZF9oZG629Cu_41wqITXDf4Hf-T78bstMd9Xtx73nwekF28U1BZLwk9exrCVcm2cjkdb6YfgCdu9J9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+augmentation+for+cross-subject+EEG+features+using+Siamese+neural+network&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Fu%2C+Rongrong&rft.au=Wang%2C+Yaodong&rft.au=Jia%2C+Chengcheng&rft.date=2022-05-01&rft.issn=1746-8094&rft.volume=75&rft.spage=103614&rft_id=info:doi/10.1016%2Fj.bspc.2022.103614&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_103614 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |