Data augmentation for cross-subject EEG features using Siamese neural network

•A novel data augmentation method via transfer learning and cross subject Siamese neural network was proposed.•A new experimental paradigm was applied to help researchers evaluate the performance of data augmentation methods.•The experimental results show that the proposed method obtains better perf...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 75; p. 103614
Main Authors Fu, Rongrong, Wang, Yaodong, Jia, Chengcheng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2022
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2022.103614

Cover

Abstract •A novel data augmentation method via transfer learning and cross subject Siamese neural network was proposed.•A new experimental paradigm was applied to help researchers evaluate the performance of data augmentation methods.•The experimental results show that the proposed method obtains better performance on various machine learning methods. Electroencephalography (EEG) motor intention recognition has been extensively used in robot control, brain rehabilitation and other health care fields. Recently, some algorithms have been proposed based on generative adversarial neural network (GAN) to enhance EEG signal, and have achieved high recognition performance. However, these methods utilize the convolutional kernel method of the GAN, while the optimal convolutional scale of CNN varies from subject to subject. This may lead to the data generated by GAN to lack authenticity and produce data that does not match the ideal situation. Particularly, the performance of data augmentation degrades when the original calibrated EEG is insufficient. To address these issues, we proposed a novel cross-subject Siamese Neural Network (SNN) approach to enhance EEG feature data. Specifically, we used our proposed SNN to construct highly similar extended EEG features of different subjects and successfully improved the performance of motor intention recognition. Then, we design an accurate boundary avoidance task to evaluate the effectiveness of the proposed method. Compared with the traditional experimental paradigm, the coding process of this experiment is more complex, which makes the results more reliable when using the SNN. The extended EEG features display significantly better performance than any other common classifiers in the case of small data size, and it demonstrates that this proposed method can effectively address these issues of existing EEG motor intention recognition methods based on data augmentation and improve the classification performance.
AbstractList •A novel data augmentation method via transfer learning and cross subject Siamese neural network was proposed.•A new experimental paradigm was applied to help researchers evaluate the performance of data augmentation methods.•The experimental results show that the proposed method obtains better performance on various machine learning methods. Electroencephalography (EEG) motor intention recognition has been extensively used in robot control, brain rehabilitation and other health care fields. Recently, some algorithms have been proposed based on generative adversarial neural network (GAN) to enhance EEG signal, and have achieved high recognition performance. However, these methods utilize the convolutional kernel method of the GAN, while the optimal convolutional scale of CNN varies from subject to subject. This may lead to the data generated by GAN to lack authenticity and produce data that does not match the ideal situation. Particularly, the performance of data augmentation degrades when the original calibrated EEG is insufficient. To address these issues, we proposed a novel cross-subject Siamese Neural Network (SNN) approach to enhance EEG feature data. Specifically, we used our proposed SNN to construct highly similar extended EEG features of different subjects and successfully improved the performance of motor intention recognition. Then, we design an accurate boundary avoidance task to evaluate the effectiveness of the proposed method. Compared with the traditional experimental paradigm, the coding process of this experiment is more complex, which makes the results more reliable when using the SNN. The extended EEG features display significantly better performance than any other common classifiers in the case of small data size, and it demonstrates that this proposed method can effectively address these issues of existing EEG motor intention recognition methods based on data augmentation and improve the classification performance.
ArticleNumber 103614
Author Wang, Yaodong
Fu, Rongrong
Jia, Chengcheng
Author_xml – sequence: 1
  givenname: Rongrong
  surname: Fu
  fullname: Fu, Rongrong
  email: frr1102@aliyun.com
  organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, Department of Electrical Engineering, Yanshan University, Qinhuangdao, China
– sequence: 2
  givenname: Yaodong
  surname: Wang
  fullname: Wang, Yaodong
  organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, Department of Electrical Engineering, Yanshan University, Qinhuangdao, China
– sequence: 3
  givenname: Chengcheng
  surname: Jia
  fullname: Jia, Chengcheng
  organization: Department of Electrical, Computer & Biomedical Engineering, Ryerson University, Canada
BookMark eNp9kEFOwzAQRS1UJErhAqx8gRTbcZNUYoNKKUhFLIC1NXbGlUPrVLYD4vakBDYsuvqjkd7ozzsnI996JOSKsylnvLhupjruzVQwIfpFXnB5Qsa8lEVWcVaN_mY2l2fkPMaGMVmVXI7J0x0koNBtdugTJNd6attATWhjzGKnGzSJLpcrahFSFzDSLjq_oS8OdhiReuwCbPtIn214vyCnFrYRL39zQt7ul6-Lh2z9vHpc3K4zkzOWMl2j0Bb7apZpO7c5SmY0s0UJkNt6BqbWWuiissyUXADnheSCy1kuSlvjPJ8QMdz96RnQqn1wOwhfijN1EKIadRCiDkLUIKSHqn-QccPLKYDbHkdvBhT7pz4cBhWNQ2-wdqEXpOrWHcO_ASG1f28
CitedBy_id crossref_primary_10_1016_j_inffus_2025_102982
Cites_doi 10.1016/j.eswa.2018.08.031
10.1088/1741-2552/aba162
10.1093/gigascience/giz002
10.1109/TIFS.2020.3013204
10.1016/j.cobme.2017.11.004
10.1016/j.bspc.2014.06.009
10.1016/j.bbr.2020.112904
10.1109/LGRS.2020.2979604
10.1109/TBME.2010.2082540
10.1016/j.eswa.2014.05.013
10.1371/journal.pbio.2003787
10.1109/IJCNN.2008.4634130
10.1088/1741-2552/ab405f
10.1016/j.eswa.2020.114004
10.1109/MCE.2019.2959075
10.1016/j.artmed.2019.101787
10.1109/EMBC.2018.8512865
10.1109/JPROC.2015.2404941
10.1016/j.compbiomed.2018.05.019
10.1109/LGRS.2017.2738149
10.1016/j.bspc.2020.102172
10.1109/TBME.2016.2606595
10.1088/1741-2552/ab0ab5
10.1109/TNNLS.2020.3016666
10.1109/TNSRE.2003.814481
10.1111/1754-9485.13261
10.1016/j.cmpb.2020.105464
10.3390/s20164485
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.103614
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_103614
S1746809422001367
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-bde2bfe810f0bf9f3e40cb0f67aa3fd5acdbb2b68f0c712a116412145327fde93
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Wed Oct 29 21:21:29 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Fri Feb 23 02:39:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data augmentation
Siamese neural network
Similarity measurement
Transfer learning
Complex motor recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-bde2bfe810f0bf9f3e40cb0f67aa3fd5acdbb2b68f0c712a116412145327fde93
ParticipantIDs crossref_primary_10_1016_j_bspc_2022_103614
crossref_citationtrail_10_1016_j_bspc_2022_103614
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103614
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Zhong, Peng, Jiang, Liu (b0120) 2018
Zhang, Lei, Li (b0125) 2018
Huang, Chen (b0180) 2021; 18
Dose, Møller, Iversen, Puthusserypady (b0080) 2018; 114
Perdikis, Tonin, Saeedi, Schneider, del Millán (b0020) 2018; 16
K.K. Ang, Z.Y. Chin, H. Zhang, C. Guan, Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface, in: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008: pp. 2390–2397. 10.1109/IJCNN.2008.4634130.
Luo, Gao, Zhu, Wang, Lu, Wang (b0065) 2020; 193
Zhan, Fu, Yan, Sun, Wang, Qiu (b0185) 2017; 14
Lemley, Corcoran (b0110) 2020; 9
Zhang, Xu, Han, Ma, Zheng, Chen, Duan, Zhang (b0150) 2020; 20
R. Mane, T. Chouhan, C. Guan, BCI for stroke rehabilitation: motor and beyond, J. Neural Eng. 17 (2020) 041001. 10.1088/1741-2552/aba162.
Lee, Kwon, Kim, Kim, Lee, Williamson, Fazli, Lee (b0030) 2019; 8
You, Zhang, Zhao (b0175) 2021; 16
Paris, Atia, Vosoughi, Berman (b0005) 2017; 64
K.G. Hartmann, R.T. Schirrmeister, T. Ball, EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals, ArXiv:1806.01875 [Cs, Eess, q-Bio, Stat]. (2018). http://arxiv.org/abs/1806.01875 (accessed September 18, 2021).
Lotte (b0155) 2015; 103
Del Pozo-Banos, Alonso, Ticay-Rivas, Travieso (b0040) 2014; 41
Fahimi, Dosen, Ang, Mrachacz-Kersting, Guan (b0100) 2021; 32
Chlap, Min, Vandenberg, Dowling, Holloway, Haworth (b0115) 2021; 65
Lu, Eng, Guan, Plataniotis, Venetsanopoulos (b0165) 2010; 57
Chaudhary, Mrachacz-Kersting, Birbaumer, Taylor, Farina (b0015) 2020; 9
S. Park, H.S. Cha, J. Kwon, H. Kim, C.H. Im, Development of an Online Home Appliance Control System Using Augmented Reality and an SSVEP-Based Brain-Computer Interface, (n.d.) 2.
S. Saha, K.A. Mamun, K. Ahmed, R. Mostafa, A. Khandoker, S. Darvishi, M. Baumert, Progress in Brain Computer Interfaces: Challenges and Trends, (n.d.) 20.
Sharma, Jayagopi (b0095) 2021; 164
M.M. Krell, A. Seeland, S.K. Kim, Data Augmentation for Brain-Computer Interfaces: Analysis on Event-Related Potentials Data, ArXiv:1801.02730 [Cs, q-Bio]. (2018). http://arxiv.org/abs/1801.02730.
Y. Luo, B.L. Lu, EEG Data Augmentation for Emotion Recognition Using a Conditional Wasserstein GAN, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, Honolulu, HI, 2018: pp. 2535–2538. 10.1109/EMBC.2018.8512865.
Xuan, Peng, Wang, Dong (b0170) 2019
Tsiouris, Pezoulas, Zervakis, Konitsiotis, Koutsouris, Fotiadis (b0085) 2018; 99
Al-Saegh, Dawwd, Abdul-Jabbar (b0070) 2021; 63
Dai, Zhou, Huang, Wang (b0145) 2020; 17
Paitel, Samii, Nielson (b0055) 2021; 396
McFarland, Wolpaw (b0035) 2017; 4
Guger, Edlinger, Harkam, Niedermayer, Pfurtscheller (b0045) 2003; 11
McDonnell, Vladusich (b0090) 2015; 2015
A. Craik, Y. He, J.L. Contreras-Vidal, Deep learning for electroencephalogram (EEG) classification tasks: a review, J. Neural Eng. 16 (2019) 031001. 10.1088/1741-2552/ab0ab5.
Colominas, Schlotthauer, Torres (b0135) 2014; 14
V. K., D. A., M. J., S. M., A. A., S.A. Iraj, A novel method of motor imagery classification using eeg signal, Artificial Intelligence in Medicine. 103 (2020) 101787. 10.1016/j.artmed.2019.101787.
Guger (10.1016/j.bspc.2022.103614_b0045) 2003; 11
Tsiouris (10.1016/j.bspc.2022.103614_b0085) 2018; 99
Al-Saegh (10.1016/j.bspc.2022.103614_b0070) 2021; 63
Paris (10.1016/j.bspc.2022.103614_b0005) 2017; 64
Sharma (10.1016/j.bspc.2022.103614_b0095) 2021; 164
10.1016/j.bspc.2022.103614_b0060
Lemley (10.1016/j.bspc.2022.103614_b0110) 2020; 9
Lu (10.1016/j.bspc.2022.103614_b0165) 2010; 57
Fahimi (10.1016/j.bspc.2022.103614_b0100) 2021; 32
10.1016/j.bspc.2022.103614_b0160
10.1016/j.bspc.2022.103614_b0140
Xuan (10.1016/j.bspc.2022.103614_b0170) 2019
10.1016/j.bspc.2022.103614_b0105
McDonnell (10.1016/j.bspc.2022.103614_b0090) 2015; 2015
Colominas (10.1016/j.bspc.2022.103614_b0135) 2014; 14
Zhan (10.1016/j.bspc.2022.103614_b0185) 2017; 14
Lotte (10.1016/j.bspc.2022.103614_b0155) 2015; 103
Perdikis (10.1016/j.bspc.2022.103614_b0020) 2018; 16
10.1016/j.bspc.2022.103614_b0025
Dose (10.1016/j.bspc.2022.103614_b0080) 2018; 114
Dai (10.1016/j.bspc.2022.103614_b0145) 2020; 17
Zhang (10.1016/j.bspc.2022.103614_b0125) 2018
Chlap (10.1016/j.bspc.2022.103614_b0115) 2021; 65
Zhang (10.1016/j.bspc.2022.103614_b0150) 2020; 20
10.1016/j.bspc.2022.103614_b0075
10.1016/j.bspc.2022.103614_b0130
You (10.1016/j.bspc.2022.103614_b0175) 2021; 16
10.1016/j.bspc.2022.103614_b0010
Chaudhary (10.1016/j.bspc.2022.103614_b0015) 2020; 9
10.1016/j.bspc.2022.103614_b0050
McFarland (10.1016/j.bspc.2022.103614_b0035) 2017; 4
Huang (10.1016/j.bspc.2022.103614_b0180) 2021; 18
Wang (10.1016/j.bspc.2022.103614_b0120) 2018
Luo (10.1016/j.bspc.2022.103614_b0065) 2020; 193
Paitel (10.1016/j.bspc.2022.103614_b0055) 2021; 396
Lee (10.1016/j.bspc.2022.103614_b0030) 2019; 8
Del Pozo-Banos (10.1016/j.bspc.2022.103614_b0040) 2014; 41
References_xml – volume: 14
  start-page: 19
  year: 2014
  end-page: 29
  ident: b0135
  article-title: Improved complete ensemble EMD: A suitable tool for biomedical signal processing
  publication-title: Biomed. Signal Process. Control
– volume: 63
  year: 2021
  ident: b0070
  article-title: Deep learning for motor imagery EEG-based classification: a review
  publication-title: Biomed. Signal Process. Control
– volume: 17
  year: 2020
  ident: b0145
  article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification
  publication-title: J. Neural Eng.
– volume: 41
  start-page: 6537
  year: 2014
  end-page: 6554
  ident: b0040
  article-title: Electroencephalogram subject identification: a review
  publication-title: Expert Syst. Appl.
– reference: Y. Luo, B.L. Lu, EEG Data Augmentation for Emotion Recognition Using a Conditional Wasserstein GAN, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, Honolulu, HI, 2018: pp. 2535–2538. 10.1109/EMBC.2018.8512865.
– reference: M.M. Krell, A. Seeland, S.K. Kim, Data Augmentation for Brain-Computer Interfaces: Analysis on Event-Related Potentials Data, ArXiv:1801.02730 [Cs, q-Bio]. (2018). http://arxiv.org/abs/1801.02730.
– volume: 32
  start-page: 4039
  year: 2021
  end-page: 4051
  ident: b0100
  article-title: Generative adversarial networks-based data augmentation for brain-computer interface
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 103
  start-page: 871
  year: 2015
  end-page: 890
  ident: b0155
  article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces
  publication-title: Proc. IEEE
– volume: 11
  start-page: 145
  year: 2003
  end-page: 147
  ident: b0045
  article-title: How many people are able to operate an EEG-based brain-computer interface (BCI)
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 99
  start-page: 24
  year: 2018
  end-page: 37
  ident: b0085
  article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals
  publication-title: Comput. Biol. Med.
– start-page: 231
  year: 2018
  end-page: 235
  ident: b0125
  article-title: An amplitudes-perturbation data augmentation method in convolutional neural networks for EEG decoding
  publication-title: in: 2018 5th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)
– volume: 193
  year: 2020
  ident: b0065
  article-title: Motor imagery EEG classification based on ensemble support vector learning
  publication-title: Comput. Methods Programs Biomed.
– volume: 57
  start-page: 2936
  year: 2010
  end-page: 2946
  ident: b0165
  article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting
  publication-title: IEEE Trans. Biomed. Eng.
– reference: K.K. Ang, Z.Y. Chin, H. Zhang, C. Guan, Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface, in: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008: pp. 2390–2397. 10.1109/IJCNN.2008.4634130.
– volume: 164
  year: 2021
  ident: b0095
  article-title: Towards efficient unconstrained handwriting recognition using Dilated Temporal Convolution Network
  publication-title: Expert Syst. Appl.
– reference: S. Saha, K.A. Mamun, K. Ahmed, R. Mostafa, A. Khandoker, S. Darvishi, M. Baumert, Progress in Brain Computer Interfaces: Challenges and Trends, (n.d.) 20.
– volume: 8
  start-page: giz002
  year: 2019
  ident: b0030
  article-title: EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy
  publication-title: GigaScience
– start-page: 82
  year: 2018
  end-page: 93
  ident: b0120
  article-title: Data augmentation for EEG-based emotion recognition with deep convolutional neural networks
  publication-title: MultiMedia Modeling
– volume: 20
  start-page: 4485
  year: 2020
  ident: b0150
  article-title: Data augmentation for motor imagery signal classification based on a hybrid neural network
  publication-title: Sensors
– reference: V. K., D. A., M. J., S. M., A. A., S.A. Iraj, A novel method of motor imagery classification using eeg signal, Artificial Intelligence in Medicine. 103 (2020) 101787. 10.1016/j.artmed.2019.101787.
– volume: 65
  start-page: 545
  year: 2021
  end-page: 563
  ident: b0115
  article-title: A review of medical image data augmentation techniques for deep learning applications
  publication-title: J. Med. Imag. Radiat. Oncol.
– volume: 9
  year: 2020
  ident: b0015
  article-title: Neuropsychological and neurophysiological aspects of brain-computer-interface (BCI) control in paralysis
  publication-title: J. Physiol.
– volume: 396
  year: 2021
  ident: b0055
  article-title: A systematic review of cognitive event-related potentials in mild cognitive impairment and Alzheimer’s disease
  publication-title: Behav. Brain Res.
– reference: S. Park, H.S. Cha, J. Kwon, H. Kim, C.H. Im, Development of an Online Home Appliance Control System Using Augmented Reality and an SSVEP-Based Brain-Computer Interface, (n.d.) 2.
– reference: K.G. Hartmann, R.T. Schirrmeister, T. Ball, EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals, ArXiv:1806.01875 [Cs, Eess, q-Bio, Stat]. (2018). http://arxiv.org/abs/1806.01875 (accessed September 18, 2021).
– volume: 9
  start-page: 55
  year: 2020
  end-page: 63
  ident: b0110
  article-title: Deep learning for consumer devices and services 4— A review of learnable data augmentation strategies for improved training of deep neural networks
  publication-title: IEEE Consum. Electron. Mag.
– start-page: 134
  year: 2019
  end-page: 141
  ident: b0170
  article-title: On the generalization of GAN image forensics
  publication-title: Biometric Recognition
– volume: 14
  start-page: 1845
  year: 2017
  end-page: 1849
  ident: b0185
  article-title: Change detection based on deep siamese convolutional network for optical aerial images
  publication-title: IEEE Geosci. Remote Sensing Lett.
– reference: A. Craik, Y. He, J.L. Contreras-Vidal, Deep learning for electroencephalogram (EEG) classification tasks: a review, J. Neural Eng. 16 (2019) 031001. 10.1088/1741-2552/ab0ab5.
– volume: 18
  start-page: 518
  year: 2021
  end-page: 522
  ident: b0180
  article-title: Dual-path siamese CNN for hyperspectral image classification with limited training samples
  publication-title: IEEE Geosci. Remote Sensing Lett.
– reference: R. Mane, T. Chouhan, C. Guan, BCI for stroke rehabilitation: motor and beyond, J. Neural Eng. 17 (2020) 041001. 10.1088/1741-2552/aba162.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 7
  ident: b0090
  article-title: Enhanced image classification with a fast-learning shallow convolutional neural network
  publication-title: Int. Joint Conf. Neural Networks (IJCNN)
– volume: 4
  start-page: 194
  year: 2017
  end-page: 200
  ident: b0035
  article-title: EEG-based brain–computer interfaces
  publication-title: Curr. Opin. Biomed. Eng.
– volume: 64
  start-page: 1688
  year: 2017
  end-page: 1700
  ident: b0005
  article-title: A new statistical model of electroencephalogram noise spectra for real-time brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 16
  year: 2018
  ident: b0020
  article-title: The Cybathlon BCI race: successful longitudinal mutual learning with two tetraplegic users
  publication-title: PLoS Biol.
– volume: 16
  start-page: 291
  year: 2021
  end-page: 306
  ident: b0175
  article-title: A siamese CNN for image steganalysis
  publication-title: IEEE Trans. Inform. Forensic Secur.
– volume: 114
  start-page: 532
  year: 2018
  end-page: 542
  ident: b0080
  article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs
  publication-title: Expert Syst. Appl.
– volume: 114
  start-page: 532
  year: 2018
  ident: 10.1016/j.bspc.2022.103614_b0080
  article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.031
– start-page: 231
  year: 2018
  ident: 10.1016/j.bspc.2022.103614_b0125
  article-title: An amplitudes-perturbation data augmentation method in convolutional neural networks for EEG decoding
– ident: 10.1016/j.bspc.2022.103614_b0010
  doi: 10.1088/1741-2552/aba162
– volume: 8
  start-page: giz002
  year: 2019
  ident: 10.1016/j.bspc.2022.103614_b0030
  article-title: EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy
  publication-title: GigaScience
  doi: 10.1093/gigascience/giz002
– ident: 10.1016/j.bspc.2022.103614_b0130
– volume: 16
  start-page: 291
  year: 2021
  ident: 10.1016/j.bspc.2022.103614_b0175
  article-title: A siamese CNN for image steganalysis
  publication-title: IEEE Trans. Inform. Forensic Secur.
  doi: 10.1109/TIFS.2020.3013204
– start-page: 82
  year: 2018
  ident: 10.1016/j.bspc.2022.103614_b0120
  article-title: Data augmentation for EEG-based emotion recognition with deep convolutional neural networks
– ident: 10.1016/j.bspc.2022.103614_b0050
– volume: 4
  start-page: 194
  year: 2017
  ident: 10.1016/j.bspc.2022.103614_b0035
  article-title: EEG-based brain–computer interfaces
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2017.11.004
– volume: 9
  year: 2020
  ident: 10.1016/j.bspc.2022.103614_b0015
  article-title: Neuropsychological and neurophysiological aspects of brain-computer-interface (BCI) control in paralysis
  publication-title: J. Physiol.
– volume: 14
  start-page: 19
  year: 2014
  ident: 10.1016/j.bspc.2022.103614_b0135
  article-title: Improved complete ensemble EMD: A suitable tool for biomedical signal processing
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.06.009
– volume: 396
  year: 2021
  ident: 10.1016/j.bspc.2022.103614_b0055
  article-title: A systematic review of cognitive event-related potentials in mild cognitive impairment and Alzheimer’s disease
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2020.112904
– volume: 18
  start-page: 518
  year: 2021
  ident: 10.1016/j.bspc.2022.103614_b0180
  article-title: Dual-path siamese CNN for hyperspectral image classification with limited training samples
  publication-title: IEEE Geosci. Remote Sensing Lett.
  doi: 10.1109/LGRS.2020.2979604
– volume: 57
  start-page: 2936
  year: 2010
  ident: 10.1016/j.bspc.2022.103614_b0165
  article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082540
– volume: 41
  start-page: 6537
  year: 2014
  ident: 10.1016/j.bspc.2022.103614_b0040
  article-title: Electroencephalogram subject identification: a review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.05.013
– ident: 10.1016/j.bspc.2022.103614_b0140
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.bspc.2022.103614_b0090
  article-title: Enhanced image classification with a fast-learning shallow convolutional neural network
  publication-title: Int. Joint Conf. Neural Networks (IJCNN)
– volume: 16
  year: 2018
  ident: 10.1016/j.bspc.2022.103614_b0020
  article-title: The Cybathlon BCI race: successful longitudinal mutual learning with two tetraplegic users
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2003787
– ident: 10.1016/j.bspc.2022.103614_b0160
  doi: 10.1109/IJCNN.2008.4634130
– volume: 17
  year: 2020
  ident: 10.1016/j.bspc.2022.103614_b0145
  article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab405f
– volume: 164
  year: 2021
  ident: 10.1016/j.bspc.2022.103614_b0095
  article-title: Towards efficient unconstrained handwriting recognition using Dilated Temporal Convolution Network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114004
– volume: 9
  start-page: 55
  year: 2020
  ident: 10.1016/j.bspc.2022.103614_b0110
  article-title: Deep learning for consumer devices and services 4— A review of learnable data augmentation strategies for improved training of deep neural networks
  publication-title: IEEE Consum. Electron. Mag.
  doi: 10.1109/MCE.2019.2959075
– ident: 10.1016/j.bspc.2022.103614_b0060
  doi: 10.1016/j.artmed.2019.101787
– ident: 10.1016/j.bspc.2022.103614_b0105
  doi: 10.1109/EMBC.2018.8512865
– volume: 103
  start-page: 871
  year: 2015
  ident: 10.1016/j.bspc.2022.103614_b0155
  article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2404941
– volume: 99
  start-page: 24
  year: 2018
  ident: 10.1016/j.bspc.2022.103614_b0085
  article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.05.019
– volume: 14
  start-page: 1845
  year: 2017
  ident: 10.1016/j.bspc.2022.103614_b0185
  article-title: Change detection based on deep siamese convolutional network for optical aerial images
  publication-title: IEEE Geosci. Remote Sensing Lett.
  doi: 10.1109/LGRS.2017.2738149
– start-page: 134
  year: 2019
  ident: 10.1016/j.bspc.2022.103614_b0170
  article-title: On the generalization of GAN image forensics
– volume: 63
  year: 2021
  ident: 10.1016/j.bspc.2022.103614_b0070
  article-title: Deep learning for motor imagery EEG-based classification: a review
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102172
– volume: 64
  start-page: 1688
  year: 2017
  ident: 10.1016/j.bspc.2022.103614_b0005
  article-title: A new statistical model of electroencephalogram noise spectra for real-time brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2606595
– ident: 10.1016/j.bspc.2022.103614_b0075
  doi: 10.1088/1741-2552/ab0ab5
– volume: 32
  start-page: 4039
  year: 2021
  ident: 10.1016/j.bspc.2022.103614_b0100
  article-title: Generative adversarial networks-based data augmentation for brain-computer interface
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3016666
– ident: 10.1016/j.bspc.2022.103614_b0025
– volume: 11
  start-page: 145
  year: 2003
  ident: 10.1016/j.bspc.2022.103614_b0045
  article-title: How many people are able to operate an EEG-based brain-computer interface (BCI)
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2003.814481
– volume: 65
  start-page: 545
  year: 2021
  ident: 10.1016/j.bspc.2022.103614_b0115
  article-title: A review of medical image data augmentation techniques for deep learning applications
  publication-title: J. Med. Imag. Radiat. Oncol.
  doi: 10.1111/1754-9485.13261
– volume: 193
  year: 2020
  ident: 10.1016/j.bspc.2022.103614_b0065
  article-title: Motor imagery EEG classification based on ensemble support vector learning
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105464
– volume: 20
  start-page: 4485
  year: 2020
  ident: 10.1016/j.bspc.2022.103614_b0150
  article-title: Data augmentation for motor imagery signal classification based on a hybrid neural network
  publication-title: Sensors
  doi: 10.3390/s20164485
SSID ssj0048714
Score 2.3063526
Snippet •A novel data augmentation method via transfer learning and cross subject Siamese neural network was proposed.•A new experimental paradigm was applied to help...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103614
SubjectTerms Complex motor recognition
Data augmentation
Siamese neural network
Similarity measurement
Transfer learning
Title Data augmentation for cross-subject EEG features using Siamese neural network
URI https://dx.doi.org/10.1016/j.bspc.2022.103614
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywIdPYeY9VaSmgdimVukW2c66KIFQ0Xfnt-PKoioQ6MCa6S6LP1vku-u47Qm4jiLQfyohJLcAWKKCYDE3KeAxuCDoQjsZu5NE4GE6955k_a5Be3QuDtMoq9pcxvYjW1Z1OhWZnuVh0JjaXDiJbnQhRCo9hB7sX4hSD--8NzcPm44W-NxoztK4aZ0qOl1otUcZQCOw9D7j39-G0deAMjshhlSnSbvkxx6QB2Qk52NIPPCWjB5lLKtfzj6qDKKM2B6XFw9lqrfAfC-33H6mBQr9zRZHmPqeTBXJjgaKYpX1FVlLBz8h00H_tDVk1H4Fp13FyplIQykDEHeMoExsXPIusY4JQStekvtSpUkIFkXF0yIXktjTiqEzuCrscELvnpJl9ZnBBqFEiVoqn4KO-mADJhVAiVQCRikNtWoTXwCS6Eg_HGRbvSc0Se0sQzATBTEowW-Ru47MspTN2Wvs13smvDZDY2L7D7_KffldkH69K7uI1aeZfa7ix-UWu2sUGapO97tPLcPwDmuDQ6A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD-rB-Iz47MGbWdl230eDICpwARJum7Y7JRhdiSxXf7udfRBMDAevuzPbzddmOtN885WQ2xBC5QUitITiYAoUkJYIdGKxCJwAlM9thd3I_YHfHbsvE29SI62qFwZplWXsL2J6Hq3LJ80SzeZ8NmsOTS7th6Y64bwQHtsi267HA6zA7r9XPA-TkOcC32htoXnZOVOQvORijjqGnGPzuc_cv3entR2nc0D2y1SRPhR_c0hqkB6RvTUBwWPSfxSZoGI5_ShbiFJqklCaf9xaLCUestB2-4lqyAU8FxR57lM6nCE5FiiqWZoh0oILfkLGnfao1bXKCxIs5dh2ZskEuNQQMlvbUkfaAddAa2s_EMLRiSdUIiWXfqhtFTAumKmNGEqTO9zMB0TOKamnnymcEaolj6RkCXgoMMZBMM4lTyRAKKNA6QZhFTCxKtXD8RKL97iiib3FCGaMYMYFmA1yt_KZF9oZG629Cu_41wqITXDf4Hf-T78bstMd9Xtx73nwekF28U1BZLwk9exrCVcm2cjkdb6YfgCdu9J9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+augmentation+for+cross-subject+EEG+features+using+Siamese+neural+network&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Fu%2C+Rongrong&rft.au=Wang%2C+Yaodong&rft.au=Jia%2C+Chengcheng&rft.date=2022-05-01&rft.issn=1746-8094&rft.volume=75&rft.spage=103614&rft_id=info:doi/10.1016%2Fj.bspc.2022.103614&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_103614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon