A Novel Evolutionary Kernel Intuitionistic Fuzzy C -means Clustering Algorithm

This study proposes a novel evolutionary kernel intuitionistic fuzzy c-means clustering algorithm (EKIFCM) that combines Atanassov's intuitionistic fuzzy sets (IFSs) with kernel-based fuzzy c-means (KFCM), and genetic algorithms (GA) are optimally used simultaneously to select the parameters of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 22; no. 5; pp. 1074 - 1087
Main Author Lin, Kuo-Ping
Format Journal Article
LanguageEnglish
Published IEEE 01.10.2014
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
DOI10.1109/TFUZZ.2013.2280141

Cover

Abstract This study proposes a novel evolutionary kernel intuitionistic fuzzy c-means clustering algorithm (EKIFCM) that combines Atanassov's intuitionistic fuzzy sets (IFSs) with kernel-based fuzzy c-means (KFCM), and genetic algorithms (GA) are optimally used simultaneously to select the parameters of the EKIFCM. The EKIFCM can obtain the advantages of intuitionistic fuzzy sets, kernel functions, and GA in actual clustering problems. Experiments on 2-D synthetic datasets and machine learning repository (http://archive.ics.uci.edu/beta/) datasets show that the proposed EKIFCM is more efficient than conventional algorithms such as the k-means (KM), FCM, Gustafson-Kessel (GK) clustering algorithm, Gath-Geva (GG) clustering algorithm, Chaira's intuitionistic fuzzy c-means (IFCM), and kernel-based fuzzy c-means with Gaussian kernel functions [KFCM(G)] in standard measurement indexes.
AbstractList This study proposes a novel evolutionary kernel intuitionistic fuzzy c-means clustering algorithm (EKIFCM) that combines Atanassov's intuitionistic fuzzy sets (IFSs) with kernel-based fuzzy c-means (KFCM), and genetic algorithms (GA) are optimally used simultaneously to select the parameters of the EKIFCM. The EKIFCM can obtain the advantages of intuitionistic fuzzy sets, kernel functions, and GA in actual clustering problems. Experiments on 2-D synthetic datasets and machine learning repository (http://archive.ics.uci.edu/beta/) datasets show that the proposed EKIFCM is more efficient than conventional algorithms such as the k-means (KM), FCM, Gustafson-Kessel (GK) clustering algorithm, Gath-Geva (GG) clustering algorithm, Chaira's intuitionistic fuzzy c-means (IFCM), and kernel-based fuzzy c-means with Gaussian kernel functions [KFCM(G)] in standard measurement indexes.
Author Kuo-Ping Lin
Author_xml – sequence: 1
  givenname: Kuo-Ping
  surname: Lin
  fullname: Lin, Kuo-Ping
BookMark eNp9kD1PwzAURS1UJNrCH4DFI0uKv-I4Y1W1UFGVpV26WI7jFKN8FNtBan89Ca0YGJje09U9T3pnBAZ1UxsA7jGaYIzSp81iu9tNCMJ0QohAmOErMMQpwxFClA26HXEa8QTxGzDy_gN1lRiLIVhP4br5MiWcfzVlG2xTK3eEr8bVXbasQ2v7zPpgNVy0p9MRzmBUGVV7OCtbH4yz9R5Oy33jbHivbsF1oUpv7i5zDLaL-Wb2Eq3enpez6SrSFKEQZcqQXAuRc841p7ESNNMM40xplGcq1bEoDNEqyRXPNUEFZ3lKKc9QmhvFMjoGj-e7B9d8tsYHWVmvTVmq2jStl5iTlHLeqemq4lzVrvHemUJqG1T_VXDKlhIj2SuUPwplr1BeFHYo-YMenK06Qf9DD2fIGmN-AR6LJGGMfgPc6oDJ
CODEN IEFSEV
CitedBy_id crossref_primary_10_1007_s40747_021_00319_8
crossref_primary_10_1002_srin_202400896
crossref_primary_10_1109_TBME_2016_2624306
crossref_primary_10_1007_s40747_024_01459_3
crossref_primary_10_1007_s41066_021_00259_1
crossref_primary_10_1109_TCYB_2019_2925130
crossref_primary_10_1007_s00034_022_02175_4
crossref_primary_10_1016_j_procs_2017_12_100
crossref_primary_10_1038_srep35760
crossref_primary_10_1002_stc_3071
crossref_primary_10_1109_TFUZZ_2020_2966167
crossref_primary_10_1016_j_asoc_2018_02_039
crossref_primary_10_1016_j_eswa_2023_121554
crossref_primary_10_3389_fnbot_2022_715440
crossref_primary_10_1007_s11277_017_5203_2
crossref_primary_10_1109_ACCESS_2017_2715861
crossref_primary_10_1016_j_jngse_2021_104135
crossref_primary_10_1007_s10278_023_00899_6
crossref_primary_10_1109_JBHI_2018_2884208
crossref_primary_10_1109_TIE_2023_3239864
crossref_primary_10_1109_TFUZZ_2015_2501408
crossref_primary_10_1109_TFUZZ_2020_2985930
crossref_primary_10_1007_s11042_023_14512_z
crossref_primary_10_3390_app12157385
crossref_primary_10_1016_j_asoc_2017_07_026
crossref_primary_10_1007_s00500_019_04169_y
crossref_primary_10_1007_s10032_020_00352_2
crossref_primary_10_1016_j_optlastec_2025_112475
crossref_primary_10_1109_TFUZZ_2018_2852289
crossref_primary_10_1016_j_neucom_2018_11_016
crossref_primary_10_3390_a8020128
crossref_primary_10_1007_s00500_020_04879_8
crossref_primary_10_1016_j_neucom_2018_05_116
crossref_primary_10_3390_rs14153713
crossref_primary_10_1109_ACCESS_2018_2889185
crossref_primary_10_1016_j_ins_2017_03_001
crossref_primary_10_3390_ijerph13090896
crossref_primary_10_1007_s13042_020_01206_3
crossref_primary_10_1007_s41066_023_00446_2
crossref_primary_10_1016_j_neucom_2017_01_017
crossref_primary_10_3390_sym12040562
crossref_primary_10_1007_s10462_022_10236_y
crossref_primary_10_1007_s00521_016_2292_x
crossref_primary_10_1016_j_eswa_2016_07_040
crossref_primary_10_1007_s40815_023_01644_5
crossref_primary_10_1109_TCYB_2016_2634599
crossref_primary_10_1109_TCYB_2019_2902603
crossref_primary_10_1007_s43684_023_00055_5
crossref_primary_10_1109_JBHI_2018_2803020
crossref_primary_10_1016_j_future_2017_06_010
crossref_primary_10_1016_j_eswa_2015_04_008
crossref_primary_10_1109_TIM_2022_3196702
crossref_primary_10_1016_j_eswa_2019_113102
crossref_primary_10_1109_ACCESS_2024_3462443
crossref_primary_10_1080_1206212X_2019_1662984
crossref_primary_10_1109_TFUZZ_2016_2612300
crossref_primary_10_3233_JIFS_212647
crossref_primary_10_1080_21681163_2022_2156927
crossref_primary_10_1515_jisys_2016_0241
crossref_primary_10_1109_TFUZZ_2016_2639565
crossref_primary_10_1016_j_engappai_2019_05_004
crossref_primary_10_3390_electronics9010046
crossref_primary_10_1016_j_neucom_2019_01_042
crossref_primary_10_1007_s41060_023_00474_w
crossref_primary_10_1109_TFUZZ_2020_3029296
crossref_primary_10_1016_j_bspc_2021_103260
crossref_primary_10_1109_TITS_2018_2875159
crossref_primary_10_1007_s42979_021_00722_5
crossref_primary_10_1109_TFUZZ_2019_2956900
crossref_primary_10_2139_ssrn_4158293
crossref_primary_10_1109_ACCESS_2019_2963444
crossref_primary_10_1109_TFUZZ_2016_2637373
crossref_primary_10_3233_JIFS_211093
crossref_primary_10_1016_j_asoc_2021_107755
crossref_primary_10_3390_rs14051117
crossref_primary_10_1109_TFUZZ_2018_2809691
crossref_primary_10_1016_j_cmpb_2015_08_001
crossref_primary_10_1016_j_asoc_2019_105838
crossref_primary_10_1109_JAS_2020_1003420
crossref_primary_10_1109_JSEN_2018_2813984
crossref_primary_10_1109_ACCESS_2018_2809456
crossref_primary_10_1088_1361_6501_adbb0a
crossref_primary_10_1155_2019_5092147
crossref_primary_10_1007_s13042_016_0614_z
crossref_primary_10_1109_ACCESS_2024_3512416
crossref_primary_10_1109_ACCESS_2020_2968936
crossref_primary_10_1109_TFUZZ_2017_2756827
crossref_primary_10_5004_dwt_2019_23360
crossref_primary_10_1007_s00500_015_1712_7
crossref_primary_10_3390_sym9110266
crossref_primary_10_1016_j_asoc_2023_111196
crossref_primary_10_3390_sym14071442
crossref_primary_10_3923_jse_2017_172_182
crossref_primary_10_1109_TCYB_2019_2909037
crossref_primary_10_1016_j_asoc_2024_112639
crossref_primary_10_1016_j_eswa_2017_07_048
crossref_primary_10_1016_j_asoc_2017_05_025
crossref_primary_10_1109_TCYB_2018_2861211
crossref_primary_10_1007_s10489_016_0759_1
crossref_primary_10_5391_IJFIS_2013_13_4_254
crossref_primary_10_1109_TCYB_2022_3217897
crossref_primary_10_1109_TSMC_2017_2756447
crossref_primary_10_1007_s00371_021_02319_8
crossref_primary_10_1007_s00500_023_09533_7
crossref_primary_10_1109_TCYB_2021_3099503
crossref_primary_10_1007_s00500_023_09367_3
crossref_primary_10_1080_18756891_2016_1175814
crossref_primary_10_3390_e19110578
crossref_primary_10_1007_s11063_018_9881_x
crossref_primary_10_1109_TCYB_2019_2921779
crossref_primary_10_1109_TFUZZ_2019_2917809
crossref_primary_10_1007_s42835_022_01074_7
crossref_primary_10_1142_S0219622021500607
Cites_doi 10.1023/B:NEPL.0000011135.19145.1b
10.1016/j.artmed.2004.01.012
10.1109/TFUZZ.2011.2174366
10.1016/j.asoc.2010.05.005
10.1016/j.fss.2008.03.018
10.1016/j.patrec.2008.05.019
10.1016/0165-0114(95)00154-9
10.1109/34.192473
10.1016/j.patcog.2011.02.009
10.1109/JSTSP.2010.2096797
10.1016/j.fss.2010.07.005
10.1109/TFUZZ.2012.2187062
10.1109/TFUZZ.2012.2187453
10.1109/TSMCB.2011.2124455
10.1109/TSMCB.2002.1033180
10.1023/A:1007608224229
10.1093/bioinformatics/btl560
10.1016/0167-8655(93)90058-L
10.1109/T-C.1969.222678
10.1007/s00500-005-0043-5
10.1016/S0167-8655(99)00069-0
10.1109/TFUZZ.2012.2201485
10.1016/j.eswa.2011.11.063
10.1007/978-3-540-88458-3_69
10.1007/978-3-642-97966-8
10.1109/TFUZZ.2011.2179303
10.1109/TFUZZ.2011.2182354
10.1111/j.1469-1809.1936.tb02137.x
10.1109/TFUZZ.2011.2170175
10.3969/j.issn.1004-4132.2010.04.009
10.1016/j.amc.2010.11.055
10.1109/TFUZZ.2011.2179659
10.1109/TFUZZ.2012.2226942
10.1109/TFUZZ.2011.2175400
10.1109/TFUZZ.2012.2215331
10.1007/978-3-642-15660-1_45
10.1080/01969727308546046
10.1016/S0165-0114(98)00402-3
10.1016/0165-0114(89)90215-7
10.1007/978-1-4757-0450-1
10.1118/1.597000
10.1109/5326.897072
10.1108/03684929710176502
10.1016/j.fss.2009.10.021
10.1109/TFUZZ.2011.2173693
10.1016/j.fss.2009.10.019
10.1109/91.493905
10.1109/TFUZZ.2006.889763
10.1016/j.patcog.2009.04.013
10.1016/j.fss.2007.12.030
10.1016/j.media.2008.06.014
10.1109/TSMCB.2008.2004818
10.1109/TFUZZ.2013.2255613
10.1109/TFUZZ.2004.825073
10.1109/TSMCC.2008.2007252
10.1016/j.eswa.2012.02.167
10.1007/978-3-7908-1870-3
10.1016/S0019-9958(65)90241-X
10.1016/S0165-0114(86)80034-3
10.1109/34.85677
10.1016/0895-7177(93)90202-A
10.1098/rsta.1909.0016
10.1016/j.fss.2009.06.015
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2013.2280141
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 1087
ExternalDocumentID 10_1109_TFUZZ_2013_2280141
6587744
Genre orig-research
GrantInformation_xml – fundername: National Science Council of the Republic of China
  grantid: NSC 102-2410-H-262 -008
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c300t-bae2dc88d666c635a83bc411bac0dba9c58fe2ca7da6dc20f64d9336b09dea4b3
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Thu Oct 02 05:07:26 EDT 2025
Thu Apr 24 23:06:24 EDT 2025
Wed Oct 01 02:37:20 EDT 2025
Tue Aug 26 16:50:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-bae2dc88d666c635a83bc411bac0dba9c58fe2ca7da6dc20f64d9336b09dea4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1629366109
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1629366109
crossref_citationtrail_10_1109_TFUZZ_2013_2280141
crossref_primary_10_1109_TFUZZ_2013_2280141
ieee_primary_6587744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-Oct.
2014-10-00
20141001
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-Oct.
PublicationDecade 2010
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
(ref68) 0
ref59
ref15
ref58
ref14
ref53
ref52
ref11
ref54
ref10
ref17
ref16
szmidt (ref48) 2006; 4029
ref19
ref18
gustafson (ref57) 1979
chaira (ref37) 2011; 11
(ref64) 0
ref46
ref45
vapnik (ref51) 1998
(ref65) 0
ref47
ref42
ref41
ref44
mangasarian (ref70) 1990; 23
ref43
ref49
ref7
ref9
ref3
ref6
ref5
ref40
ref34
ref36
haberman (ref66) 1976
ref31
ref74
ref30
ref33
ref32
ref2
ref1
ref39
ref38
holland (ref55) 1975
kohonen (ref4) 1997
ref71
ref73
ref72
macqueen (ref56) 1967; 1
iakovidis (ref35) 2008; 5259
ref24
ref67
ref23
ref69
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
zhu (ref26) 2009; 39
atanassov (ref50) 1999
ref60
ref62
ref61
jain (ref8) 1988
References_xml – ident: ref39
  doi: 10.1023/B:NEPL.0000011135.19145.1b
– ident: ref40
  doi: 10.1016/j.artmed.2004.01.012
– ident: ref16
  doi: 10.1109/TFUZZ.2011.2174366
– volume: 11
  start-page: 1711
  year: 2011
  ident: ref37
  article-title: A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.05.005
– ident: ref41
  doi: 10.1016/j.fss.2008.03.018
– ident: ref42
  doi: 10.1016/j.patrec.2008.05.019
– ident: ref46
  doi: 10.1016/0165-0114(95)00154-9
– ident: ref60
  doi: 10.1109/34.192473
– ident: ref44
  doi: 10.1016/j.patcog.2011.02.009
– ident: ref32
  doi: 10.1109/JSTSP.2010.2096797
– ident: ref58
  doi: 10.1016/j.fss.2010.07.005
– ident: ref21
  doi: 10.1109/TFUZZ.2012.2187062
– ident: ref22
  doi: 10.1109/TFUZZ.2012.2187453
– year: 1988
  ident: ref8
  publication-title: Algorithm for Clustering Data
– ident: ref6
  doi: 10.1109/TSMCB.2011.2124455
– ident: ref59
  doi: 10.1109/TSMCB.2002.1033180
– volume: 4029
  start-page: 314
  year: 2006
  ident: ref48
  article-title: An application of intuitionistic fuzzy set
  publication-title: Lect Notes Artif Intell
– ident: ref69
  doi: 10.1023/A:1007608224229
– ident: ref5
  doi: 10.1093/bioinformatics/btl560
– ident: ref74
  doi: 10.1016/0167-8655(93)90058-L
– ident: ref72
  doi: 10.1109/T-C.1969.222678
– start-page: 104
  year: 1976
  ident: ref66
  article-title: Generalized residuals for log-linear models
  publication-title: Proc Int'l Conf Biometrics
– ident: ref54
  doi: 10.1007/s00500-005-0043-5
– ident: ref73
  doi: 10.1016/S0167-8655(99)00069-0
– ident: ref23
  doi: 10.1109/TFUZZ.2012.2201485
– ident: ref33
  doi: 10.1016/j.eswa.2011.11.063
– volume: 5259
  start-page: 764
  year: 2008
  ident: ref35
  article-title: Intuitionistic fuzzy clustering with applications in computer vision
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-540-88458-3_69
– year: 1997
  ident: ref4
  publication-title: Self-Organizing Maps
  doi: 10.1007/978-3-642-97966-8
– ident: ref18
  doi: 10.1109/TFUZZ.2011.2179303
– ident: ref20
  doi: 10.1109/TFUZZ.2011.2182354
– ident: ref67
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– ident: ref14
  doi: 10.1109/TFUZZ.2011.2170175
– ident: ref36
  doi: 10.3969/j.issn.1004-4132.2010.04.009
– ident: ref52
  doi: 10.1016/j.amc.2010.11.055
– ident: ref19
  doi: 10.1109/TFUZZ.2011.2179659
– ident: ref13
  doi: 10.1109/TFUZZ.2012.2226942
– year: 1975
  ident: ref55
  publication-title: Adaptation in Natural and Artificial System
– ident: ref17
  doi: 10.1109/TFUZZ.2011.2175400
– ident: ref12
  doi: 10.1109/TFUZZ.2012.2215331
– ident: ref30
  doi: 10.1007/978-3-642-15660-1_45
– ident: ref63
  doi: 10.1080/01969727308546046
– ident: ref47
  doi: 10.1016/S0165-0114(98)00402-3
– ident: ref49
  doi: 10.1016/0165-0114(89)90215-7
– ident: ref1
  doi: 10.1007/978-1-4757-0450-1
– ident: ref24
  doi: 10.1118/1.597000
– ident: ref10
  doi: 10.1109/5326.897072
– ident: ref71
  doi: 10.1108/03684929710176502
– start-page: 761
  year: 1979
  ident: ref57
  article-title: Fuzzy clustering with a Fuzzy covariance matrix
  publication-title: Proc IEEE Conf Decision Control
– ident: ref43
  doi: 10.1016/j.fss.2009.10.021
– ident: ref15
  doi: 10.1109/TFUZZ.2011.2173693
– ident: ref31
  doi: 10.1016/j.fss.2009.10.019
– ident: ref61
  doi: 10.1109/91.493905
– year: 0
  ident: ref65
– ident: ref9
  doi: 10.1109/TFUZZ.2006.889763
– ident: ref27
  doi: 10.1016/j.patcog.2009.04.013
– ident: ref25
  doi: 10.1016/j.fss.2007.12.030
– year: 0
  ident: ref64
– ident: ref29
  doi: 10.1016/j.media.2008.06.014
– year: 1998
  ident: ref51
  publication-title: Statistical Learning Theory
– volume: 39
  start-page: 578
  year: 2009
  ident: ref26
  article-title: Generalized fuzzy c-means clustering algorithm with improve fuzzy parttions
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.2004818
– ident: ref11
  doi: 10.1109/TFUZZ.2013.2255613
– volume: 23
  start-page: 1
  year: 1990
  ident: ref70
  article-title: Cancer diagnosis via linear programming
  publication-title: SIAM News
– ident: ref3
  doi: 10.1109/TFUZZ.2004.825073
– ident: ref7
  doi: 10.1109/TSMCC.2008.2007252
– ident: ref38
  doi: 10.1016/j.eswa.2012.02.167
– year: 1999
  ident: ref50
  publication-title: Intuitionistic Fuzzy Sets Theory and Applications
  doi: 10.1007/978-3-7908-1870-3
– year: 0
  ident: ref68
– ident: ref45
  doi: 10.1016/S0019-9958(65)90241-X
– ident: ref34
  doi: 10.1016/S0165-0114(86)80034-3
– ident: ref62
  doi: 10.1109/34.85677
– volume: 1
  start-page: 281
  year: 1967
  ident: ref56
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proc 5th Berkeley Symp Math Statist Probability Univ California Press
– ident: ref2
  doi: 10.1016/0895-7177(93)90202-A
– ident: ref53
  doi: 10.1098/rsta.1909.0016
– ident: ref28
  doi: 10.1016/j.fss.2009.06.015
SSID ssj0014518
Score 2.4810758
Snippet This study proposes a novel evolutionary kernel intuitionistic fuzzy c-means clustering algorithm (EKIFCM) that combines Atanassov's intuitionistic fuzzy sets...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1074
SubjectTerms Algorithm design and analysis
Algorithms
Clustering
Clustering algorithms
Evolutionary
Evolutionary kernel intuitionistic fuzzy c -means (EKIFCM)
Fuzzy
fuzzy c -means (FCM)
Fuzzy logic
Fuzzy set theory
Fuzzy sets
genetic algorithm (GA)
Genetic algorithms
Image segmentation
intuitionistic fuzzy sets
Kernel
kernel function
Kernels
Linear programming
Prototypes
Title A Novel Evolutionary Kernel Intuitionistic Fuzzy C -means Clustering Algorithm
URI https://ieeexplore.ieee.org/document/6587744
https://www.proquest.com/docview/1629366109
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PcGBlhbEQouMxA28tWOvYx9Xq67aIvbUlapeIn8FULcJWpJK3V9f20lWfAlxiyI7sfTGmefMzBuA90oqQ7KyxCTPLebCEqy8VdiwzCgnWOCoSe1zIc6X_PJ6cr0DH7e1MN77lHzmx_EyxfJdbdv4q-w0eMvAVvgu7OZSdLVa24gBn9Cu7E0wLHIihgIZok6v5subm5jFxcZR_IVy-osTSl1V_vgUJ_8y34fPw8q6tJLbcduYsd38Jtr4v0s_gGc90UTTzjKew46vDmF_aOKA-j19CE9_UiQ8gsUULep7v0Jn971N6vUD-uTXVbh3EfxTyvBK4s5o3m42D2iG8J0P_g7NVm0UXQiPQdPVl3r9rfl69wKW87Or2TnuWy5gywhpsNE-c1ZKF041NnARLZmxnFKjLXFGKzuRpc-szp0WzmakFNwpxoQhynnNDXsJe1Vd-VeAWBjMS6qpY4GlSKkkV6UynhHLJp64EdABg8L2euSxLcaqSOcSooqEWxFxK3rcRvBhO-d7p8bxz9FHEYjtyB6DEbwboC7CXooBEl35uv1RUBHIj4gC9K__PvUNPAkv4F0y3zHsNevWnwRS0pi3yRofAWgx3mo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a4wAcGGxMFBgYiRu4s2PHjY9VtapjW0-tNO0S-VdgoktQSSatfz22k1T8mBC3KLITS99z3ue8974H8EFmUpOkKDAZjQzmwhAsnZFYs0RLK5jnqFHtcy5mS_75Mr3cgU_bWhjnXEw-c8NwGWP5tjJN-FV27L2lZyv8ATxMOedpW621jRnwlLaFb4JhMSKiL5Eh8ngxXV5dhTwuNgzyL5TT39xQ7Kvy18c4epjpHlz0a2sTS74Nm1oPzeYP2cb_XfwzeNpRTTRubeM57LhyH_b6Ng6o29X78OQXTcIDmI_RvLp1K3Ry21mlWt-hM7cu_b1T76FijleUd0bTZrO5QxOEb5z3eGiyaoLsgn8MGq--VOvr-uvNC1hOTxaTGe6aLmDDCKmxVi6xJsusP9cYz0ZUxrThlGpliNVKmjQrXGLUyCphTUIKwa1kTGgirVNcs0PYLavSvQTE_GBeUEUt8zwly2TGZSG1Y8Sw1BE7ANpjkJtOkTw0xljl8WRCZB5xywNueYfbAD5u53xv9Tj-OfogALEd2WEwgPc91LnfTSFEokpXNT9yKjz9EUGC_tX9U9_Bo9ni4jw_P52fvYbH_mW8Te17A7v1unFHnqLU-m20zJ80KOG3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Evolutionary+Kernel+Intuitionistic+Fuzzy+C+-means+Clustering+Algorithm&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Lin%2C+Kuo-Ping&rft.date=2014-10-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=22&rft.issue=5&rft.spage=1074&rft.epage=1087&rft_id=info:doi/10.1109%2FTFUZZ.2013.2280141&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon