A novel Bayesian deep learning method for fast wake field prediction of the DARPA SUBOFF

The accurate and rapid prediction of wake flow characteristics is of great significance for the design of underwater vehicles. This paper develops a data driven Bayesian deep learning framework, named WakeNet, to accurately and quickly predict the wake velocity field on the paddle disk surface of th...

Full description

Saved in:
Bibliographic Details
Published inApplied ocean research Vol. 150; p. 104074
Main Authors Xie, Xinyu, Zhao, Pu, Bian, Chao, Xia, Linsheng, Ding, Jiaqi, Wang, Xiaofang, Liu, Haitao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2024
Subjects
Online AccessGet full text
ISSN0141-1187
DOI10.1016/j.apor.2024.104074

Cover

Abstract The accurate and rapid prediction of wake flow characteristics is of great significance for the design of underwater vehicles. This paper develops a data driven Bayesian deep learning framework, named WakeNet, to accurately and quickly predict the wake velocity field on the paddle disk surface of the DARPA SUBOFF model under varying geometry configurations. Specifically, (i) the proposed WakeNet presents a coordinate affine transformation technique to address the issue of handling unstructured wake flow data with varying geometries; (ii) it develops a residual modeling strategy built upon a modern version of the U-net architecture to capture the multi-scale wake flow characteristics; and finally, (iii) it exploits the MC dropout method to achieve uncertainty quantification of the prediction, and builds the uncertainty based active learning framework to effectively update the model. Numerical experiments have verified the capability of the proposed WakeNet model for the accurate prediction and uncertainty quantification of the wake flow field with varying geometries. Besides, the proposed model yields a speed up factor of 7000× compared to the conventional numerical simulation solver. •A novel Bayesian deep learning method for fast prediction of the wake field of DARPA SUBOFF.•A coordinate affine transformation method for tackling the unstructured wake flow data under varying geometries.•A residual modeling strategy built on the U-net architecture to capture the multi-scale wake flow characteristics.•A Monte Carlo (MC) dropout based uncertainty quantification and active learning framework have been built.•The proposed model achieves comparable yet 7000× faster wake field predictions in comparison to the CFD solver.
AbstractList The accurate and rapid prediction of wake flow characteristics is of great significance for the design of underwater vehicles. This paper develops a data driven Bayesian deep learning framework, named WakeNet, to accurately and quickly predict the wake velocity field on the paddle disk surface of the DARPA SUBOFF model under varying geometry configurations. Specifically, (i) the proposed WakeNet presents a coordinate affine transformation technique to address the issue of handling unstructured wake flow data with varying geometries; (ii) it develops a residual modeling strategy built upon a modern version of the U-net architecture to capture the multi-scale wake flow characteristics; and finally, (iii) it exploits the MC dropout method to achieve uncertainty quantification of the prediction, and builds the uncertainty based active learning framework to effectively update the model. Numerical experiments have verified the capability of the proposed WakeNet model for the accurate prediction and uncertainty quantification of the wake flow field with varying geometries. Besides, the proposed model yields a speed up factor of 7000× compared to the conventional numerical simulation solver. •A novel Bayesian deep learning method for fast prediction of the wake field of DARPA SUBOFF.•A coordinate affine transformation method for tackling the unstructured wake flow data under varying geometries.•A residual modeling strategy built on the U-net architecture to capture the multi-scale wake flow characteristics.•A Monte Carlo (MC) dropout based uncertainty quantification and active learning framework have been built.•The proposed model achieves comparable yet 7000× faster wake field predictions in comparison to the CFD solver.
ArticleNumber 104074
Author Xia, Linsheng
Bian, Chao
Liu, Haitao
Ding, Jiaqi
Wang, Xiaofang
Xie, Xinyu
Zhao, Pu
Author_xml – sequence: 1
  givenname: Xinyu
  orcidid: 0000-0003-4624-5380
  surname: Xie
  fullname: Xie, Xinyu
  email: xyxie@mail.dlut.edu.cn
  organization: School of Energy and Power Engineering, Dalian University of Technology, 116024, China
– sequence: 2
  givenname: Pu
  surname: Zhao
  fullname: Zhao, Pu
  email: zhaopua@mail.dlut.edu.cn
  organization: School of Energy and Power Engineering, Dalian University of Technology, 116024, China
– sequence: 3
  givenname: Chao
  surname: Bian
  fullname: Bian, Chao
  email: bc2019@mail.dlut.edu.cn
  organization: School of Energy and Power Engineering, Dalian University of Technology, 116024, China
– sequence: 4
  givenname: Linsheng
  surname: Xia
  fullname: Xia, Linsheng
  email: xialinsheng@whu.edu.cn
  organization: China Ship Scientific Research Center, 430064, China
– sequence: 5
  givenname: Jiaqi
  surname: Ding
  fullname: Ding, Jiaqi
  email: jqding@mail.dlut.edu.cn
  organization: School of Energy and Power Engineering, Dalian University of Technology, 116024, China
– sequence: 6
  givenname: Xiaofang
  surname: Wang
  fullname: Wang, Xiaofang
  email: dlwxf@dlut.edu.cn
  organization: School of Energy and Power Engineering, Dalian University of Technology, 116024, China
– sequence: 7
  givenname: Haitao
  orcidid: 0000-0003-1187-5374
  surname: Liu
  fullname: Liu, Haitao
  email: htliu@dlut.edu.cn
  organization: School of Energy and Power Engineering, Dalian University of Technology, 116024, China
BookMark eNp9kM1KAzEUhbOoYKu-gKu8wNQkM50fcDOtVoVCRS24C3cyNzZ1mgyZUOnbO0NduejqwIHvcs83ISPrLBJyy9mUM57e7abQOj8VTCR9kbAsGZEx4wmPOM-zSzLpuh1jXORpPiafJbXugA2dwxE7A5bWiC1tELw19ovuMWxdTbXzVEMX6A98I9UGm5q2HmujgnGWOk3DFulD-fZa0vfNfL1cXpMLDU2HN395RTbLx4_Fc7RaP70sylWkYsZCVBUAiZqJTGS5ggLSHASr00JVVcw4JgohE7EuCiEE8qxiM12prN-p47QW8Sy-IvnprvKu6zxqqUyA4avgwTSSMzlYkTs5WJGDFXmy0qPiH9p6swd_PA_dnyDsRx0Metkpg1b1LjyqIGtnzuG_Cy5-oQ
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2025_126247
crossref_primary_10_1088_1742_6596_2939_1_012013
crossref_primary_10_1016_j_apor_2024_104158
crossref_primary_10_1063_5_0255738
Cites_doi 10.1073/pnas.2101784118
10.1038/s42254-023-00622-y
10.1016/j.compfluid.2023.105867
10.1063/5.0033376
10.1017/S0022112010002715
10.1016/j.apor.2022.103173
10.1016/j.apacoust.2018.12.004
10.1007/s00348-015-1924-8
10.1007/s00466-019-01740-0
10.1007/s10994-021-06003-9
10.1016/j.oceaneng.2020.107285
10.1016/j.oceaneng.2023.115585
10.1016/j.energy.2023.128880
10.1134/S1063771013020097
10.1145/3580305.3599300
10.1016/j.inffus.2021.05.008
10.1016/j.apor.2020.102343
10.1016/j.oceaneng.2022.113107
10.1016/j.ast.2022.108081
10.2514/1.J058291
10.1016/j.oceaneng.2014.12.028
10.1016/j.compfluid.2018.01.013
10.1038/s41592-019-0686-2
10.1017/jfm.2016.47
10.1016/j.jsv.2014.11.033
10.1146/annurev-fluid-010719-060214
10.1063/1.5094943
10.1016/j.compfluid.2010.02.005
10.4028/www.scientific.net/AMM.467.293
10.1063/5.0073419
10.1109/TIP.2003.819861
10.1016/j.oceaneng.2022.113300
10.1016/j.compfluid.2022.105707
10.1016/j.energy.2022.125907
10.1038/nature14539
10.1145/3472291
10.1007/s00773-021-00828-8
10.1016/j.oceaneng.2020.107111
10.1016/j.oceaneng.2023.113693
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.apor.2024.104074
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
ExternalDocumentID 10_1016_j_apor_2024_104074
S0141118724001962
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
UAO
WUQ
XPP
ZMT
~02
~A~
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
GROUPED_DOAJ
~HD
ID FETCH-LOGICAL-c300t-b9aa4c527278ca9a68a20d69cbb301e4cea723f99222e17b05fbc7101f36d2353
IEDL.DBID .~1
ISSN 0141-1187
IngestDate Thu Apr 24 22:55:49 EDT 2025
Wed Oct 29 21:15:10 EDT 2025
Sun Apr 06 06:54:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords SUBOFF
Uncertainty quantification
Bayesian deep learning
Paddle disk surface
Convolutional neural network
Wake field
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-b9aa4c527278ca9a68a20d69cbb301e4cea723f99222e17b05fbc7101f36d2353
ORCID 0000-0003-4624-5380
0000-0003-1187-5374
ParticipantIDs crossref_citationtrail_10_1016_j_apor_2024_104074
crossref_primary_10_1016_j_apor_2024_104074
elsevier_sciencedirect_doi_10_1016_j_apor_2024_104074
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Applied ocean research
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ebrahimi, Razaghian, Seif, Zahedi, Nouri-Borujerdi (b11) 2019; 150
Pfaff, Fortunato, Sanchez-Gonzalez, Battaglia (b33) 2020
Vaz, Toxopeus, Holmes (b42) 2010; vol. 49149
Wagner, Casper, Beresh, Henfling, Spillers, Pruett (b45) 2015; 56
Hao, Xie, Zhao, Wang, Ding, Xie, Liu (b15) 2023; 282
Chen, Thuerey (b9) 2023; 250
Moon, Seo, Bae, Roger, Becker (b28) 2010; 39
Gal, Ghahramani (b12) 2016
Kudashev, Kolyshnitsyn, Marshov, Tkachenko, Tsvetkov (b23) 2013; 59
Peng, Aubry, Zhu, Chen, Wu (b32) 2021; 33
Yu, Bi, Fan (b50) 2023; 271
Nguyen, Shaker, Hüllermeier (b30) 2022; 111
Ren, Xiao, Chang, Huang, Li, Gupta, Chen, Wang (b38) 2021; 54
Hendrycks, Gimpel (b17) 2016
Groves, Huang, Chang (b14) 1989
Zagoruyko, Komodakis (b52) 2016
Ahmed, Xiang, Jiang, Xiang, Yang (b3) 2023; 268
Lee, You (b25) 2019
Deng, Liu, Shi, Wang, Yu, Liu, Chen (b10) 2023; 134
Brunton, Noack, Koumoutsakos (b7) 2020; 52
Gao, Liu, Zhang, Feng, He, Zio (b13) 2023; 286
Abdar, Pourpanah, Hussain, Rezazadegan, Liu, Ghavamzadeh, Fieguth, Cao, Khosravi, Acharya (b1) 2021; 76
He, Zhang, Ren, Sun (b16) 2015
Liu, Hu, Balaprakash (b26) 2021; vol. 84782
Bhatnagar, Afshar, Pan, Duraisamy, Kaushik (b6) 2019; 64
LeCun, Bengio, Hinton (b24) 2015; 521
Vinuesa, Brunton, McKeon (b43) 2023; 5
Yu, Wang, Zhang, Li (b51) 2020; 201
Chen, Pan, Peng, Xia, Qiu, Li (b8) 2020; 15
Kashefi, Rempe, Guibas (b20) 2021; 33
Xu, Zhang, Xiao (b49) 2019
Sekar, Jiang, Shu, Khoo (b40) 2019; 31
Posa, Balaras (b34) 2016; 792
Xie, Wang, Zhao, Hao, Xie, Liu (b48) 2023; 263
Jiménez, Hultmark, Smits (b19) 2010; 659
Belbute-Peres, Economon, Kolter (b4) 2020
Jiang, Li, Wu, Qing, Zhang (b18) 2022; 27
Bennaya, Zhang, Hegaze (b5) 2014; 467
Wang, Bovik, Sheikh, Simoncelli (b46) 2004; 13
Wu, D., Niu, R., Chinazzi, M., Vespignani, A., Ma, Y.-A., Yu, R., 2023. Deep Bayesian active learning for accelerating stochastic simulation. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. pp. 2559–2569.
Zhou, Li, Yang, Wang, Xu (b53) 2022; 266
Ronneberger, Fischer, Brox (b39) 2015
Posa, Balaras (b35) 2018; 165
Kingma, Ba (b21) 2014
Lu, Wang, Qin (b27) 2020; 103
Kochkov, Smith, Alieva, Wang, Brenner, Hoyer (b22) 2021; 118
Qiu, Huang, Pan, Shi, Dong (b37) 2020; 209
Abshagen, Schäfer, Will, Pfister (b2) 2015; 340
Thuerey, Weißenow, Prantl, Hu (b41) 2020; 58
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright (b44) 2020; 17
Qiu, Huang, Pan, He (b36) 2022; 123
Nematollahi, Dadvand, Dawoodian (b29) 2015; 96
Parekh, Verstappen (b31) 2023; 257
Chen (10.1016/j.apor.2024.104074_b9) 2023; 250
Ebrahimi (10.1016/j.apor.2024.104074_b11) 2019; 150
Groves (10.1016/j.apor.2024.104074_b14) 1989
Zhou (10.1016/j.apor.2024.104074_b53) 2022; 266
Kingma (10.1016/j.apor.2024.104074_b21) 2014
10.1016/j.apor.2024.104074_b47
Xie (10.1016/j.apor.2024.104074_b48) 2023; 263
Abshagen (10.1016/j.apor.2024.104074_b2) 2015; 340
Virtanen (10.1016/j.apor.2024.104074_b44) 2020; 17
Thuerey (10.1016/j.apor.2024.104074_b41) 2020; 58
Kochkov (10.1016/j.apor.2024.104074_b22) 2021; 118
Yu (10.1016/j.apor.2024.104074_b51) 2020; 201
Zagoruyko (10.1016/j.apor.2024.104074_b52) 2016
Posa (10.1016/j.apor.2024.104074_b35) 2018; 165
Vaz (10.1016/j.apor.2024.104074_b42) 2010; vol. 49149
Bennaya (10.1016/j.apor.2024.104074_b5) 2014; 467
Nematollahi (10.1016/j.apor.2024.104074_b29) 2015; 96
Ronneberger (10.1016/j.apor.2024.104074_b39) 2015
Parekh (10.1016/j.apor.2024.104074_b31) 2023; 257
Moon (10.1016/j.apor.2024.104074_b28) 2010; 39
Pfaff (10.1016/j.apor.2024.104074_b33) 2020
Vinuesa (10.1016/j.apor.2024.104074_b43) 2023; 5
Liu (10.1016/j.apor.2024.104074_b26) 2021; vol. 84782
Ren (10.1016/j.apor.2024.104074_b38) 2021; 54
Lu (10.1016/j.apor.2024.104074_b27) 2020; 103
Yu (10.1016/j.apor.2024.104074_b50) 2023; 271
Hao (10.1016/j.apor.2024.104074_b15) 2023; 282
Hendrycks (10.1016/j.apor.2024.104074_b17) 2016
Jiménez (10.1016/j.apor.2024.104074_b19) 2010; 659
LeCun (10.1016/j.apor.2024.104074_b24) 2015; 521
Nguyen (10.1016/j.apor.2024.104074_b30) 2022; 111
Ahmed (10.1016/j.apor.2024.104074_b3) 2023; 268
Wang (10.1016/j.apor.2024.104074_b46) 2004; 13
Gao (10.1016/j.apor.2024.104074_b13) 2023; 286
He (10.1016/j.apor.2024.104074_b16) 2015
Peng (10.1016/j.apor.2024.104074_b32) 2021; 33
Sekar (10.1016/j.apor.2024.104074_b40) 2019; 31
Chen (10.1016/j.apor.2024.104074_b8) 2020; 15
Kashefi (10.1016/j.apor.2024.104074_b20) 2021; 33
Bhatnagar (10.1016/j.apor.2024.104074_b6) 2019; 64
Xu (10.1016/j.apor.2024.104074_b49) 2019
Jiang (10.1016/j.apor.2024.104074_b18) 2022; 27
Qiu (10.1016/j.apor.2024.104074_b37) 2020; 209
Belbute-Peres (10.1016/j.apor.2024.104074_b4) 2020
Posa (10.1016/j.apor.2024.104074_b34) 2016; 792
Abdar (10.1016/j.apor.2024.104074_b1) 2021; 76
Wagner (10.1016/j.apor.2024.104074_b45) 2015; 56
Brunton (10.1016/j.apor.2024.104074_b7) 2020; 52
Gal (10.1016/j.apor.2024.104074_b12) 2016
Deng (10.1016/j.apor.2024.104074_b10) 2023; 134
Qiu (10.1016/j.apor.2024.104074_b36) 2022; 123
Lee (10.1016/j.apor.2024.104074_b25) 2019
Kudashev (10.1016/j.apor.2024.104074_b23) 2013; 59
References_xml – volume: 286
  year: 2023
  ident: b13
  article-title: Physics-guided generative adversarial networks for fault detection of underwater thruster
  publication-title: Ocean Eng.
– year: 1989
  ident: b14
  article-title: Geometric characteristics of DARPA (Defense Advanced Research Projects Agency) SUBOFF Models (DTRC Model Numbers 5470 and 5471)
  publication-title: Geometr. Charact. Darpa Suboff Models
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b24
  article-title: Deep learning
  publication-title: Nature
– volume: 282
  year: 2023
  ident: b15
  article-title: Forecasting three-dimensional unsteady multi-phase flow fields in the coal-supercritical water fluidized bed reactor via graph neural networks
  publication-title: Energy
– volume: 59
  start-page: 187
  year: 2013
  end-page: 196
  ident: b23
  article-title: Experimental simulation of hydrodynamic flow noises in an autonomous marine laboratory
  publication-title: Acoust. Phys.
– volume: 58
  start-page: 25
  year: 2020
  end-page: 36
  ident: b41
  article-title: Deep learning methods for Reynolds-averaged Navier–Stokes simulations of airfoil flows
  publication-title: AIAA J.
– start-page: 2402
  year: 2020
  end-page: 2411
  ident: b4
  article-title: Combining differentiable PDE solvers and graph neural networks for fluid flow prediction
  publication-title: International Conference on Machine Learning
– volume: 64
  start-page: 525
  year: 2019
  end-page: 545
  ident: b6
  article-title: Prediction of aerodynamic flow fields using convolutional neural networks
  publication-title: Comput. Mech.
– start-page: 234
  year: 2015
  end-page: 241
  ident: b39
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18
– volume: 54
  start-page: 1
  year: 2021
  end-page: 40
  ident: b38
  article-title: A survey of deep active learning
  publication-title: ACM Comput. Surv.
– volume: 792
  start-page: 470
  year: 2016
  end-page: 498
  ident: b34
  article-title: A numerical investigation of the wake of an axisymmetric body with appendages
  publication-title: J. Fluid Mech.
– volume: 467
  start-page: 293
  year: 2014
  end-page: 299
  ident: b5
  article-title: Estimation of the induced hydrodynamic periodic forces of marine propeller under non-uniform inflow via CFD
  publication-title: Appl. Mech. Mater.
– volume: 27
  start-page: 226
  year: 2022
  end-page: 244
  ident: b18
  article-title: Assessment of RANS and DES turbulence models for the underwater vehicle wake flow field and propeller excitation force
  publication-title: J. Mar. Sci. Technol.
– volume: 250
  year: 2023
  ident: b9
  article-title: Towards high-accuracy deep learning inference of compressible flows over aerofoils
  publication-title: Comput. & Fluids
– year: 2019
  ident: b25
  article-title: Mechanisms of a convolutional neural network for learning three-dimensional unsteady wake flow
– volume: vol. 49149
  start-page: 621
  year: 2010
  end-page: 633
  ident: b42
  article-title: Calculation of manoeuvring forces on submarines using two viscous-flow solvers
  publication-title: International Conference on Offshore Mechanics and Arctic Engineering
– volume: vol. 84782
  year: 2021
  ident: b26
  article-title: Uncertainty quantification of deep neural network-based turbulence model for reactor transient analysis
  publication-title: Verification and Validation
– volume: 209
  year: 2020
  ident: b37
  article-title: Numerical simulation of hydrodynamic and cavitation performance of pumpjet propulsor with different tip clearances in oblique flow
  publication-title: Ocean Eng.
– volume: 263
  year: 2023
  ident: b48
  article-title: Learning time-aware multi-phase flow fields in coal-supercritical water fluidized bed reactor with deep learning
  publication-title: Energy
– start-page: 264
  year: 2019
  end-page: 274
  ident: b49
  article-title: Training behavior of deep neural network in frequency domain
  publication-title: Neural Information Processing: 26th International Conference, ICONIP 2019, Sydney, NSW, Australia, December 12–15, 2019, Proceedings, Part I 26
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: b16
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 111
  start-page: 89
  year: 2022
  end-page: 122
  ident: b30
  article-title: How to measure uncertainty in uncertainty sampling for active learning
  publication-title: Mach. Learn.
– volume: 5
  start-page: 536
  year: 2023
  end-page: 545
  ident: b43
  article-title: The transformative potential of machine learning for experiments in fluid mechanics
  publication-title: Nat. Rev. Phys.
– volume: 52
  start-page: 477
  year: 2020
  end-page: 508
  ident: b7
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– year: 2016
  ident: b17
  article-title: Gaussian error linear units (GELUs)
– volume: 31
  year: 2019
  ident: b40
  article-title: Fast flow field prediction over airfoils using deep learning approach
  publication-title: Phys. Fluids
– reference: Wu, D., Niu, R., Chinazzi, M., Vespignani, A., Ma, Y.-A., Yu, R., 2023. Deep Bayesian active learning for accelerating stochastic simulation. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. pp. 2559–2569.
– volume: 56
  start-page: 1
  year: 2015
  end-page: 12
  ident: b45
  article-title: Mitigation of wind tunnel wall interactions in subsonic cavity flows
  publication-title: Exp. Fluids
– volume: 39
  start-page: 1125
  year: 2010
  end-page: 1135
  ident: b28
  article-title: A hybrid prediction method for low-subsonic turbulent flow noise
  publication-title: Comput. & Fluids
– year: 2016
  ident: b52
  article-title: Wide residual networks
– volume: 33
  year: 2021
  ident: b20
  article-title: A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries
  publication-title: Phys. Fluids
– volume: 150
  start-page: 55
  year: 2019
  end-page: 69
  ident: b11
  article-title: A comprehensive study on noise reduction methods of marine propellers and design procedures
  publication-title: Appl. Acoust.
– volume: 118
  year: 2021
  ident: b22
  article-title: Machine learning–accelerated computational fluid dynamics
  publication-title: Proc. Natl. Acad. Sci.
– volume: 268
  year: 2023
  ident: b3
  article-title: Survey on traditional and AI based estimation techniques for hydrodynamic coefficients of autonomous underwater vehicle
  publication-title: Ocean Eng.
– volume: 96
  start-page: 205
  year: 2015
  end-page: 214
  ident: b29
  article-title: An axisymmetric underwater vehicle-free surface interaction: A numerical study
  publication-title: Ocean Eng.
– volume: 76
  start-page: 243
  year: 2021
  end-page: 297
  ident: b1
  article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges
  publication-title: Inf. Fusion
– year: 2020
  ident: b33
  article-title: Learning mesh-based simulation with graph networks
– volume: 165
  start-page: 116
  year: 2018
  end-page: 126
  ident: b35
  article-title: Large-eddy simulations of a notional submarine in towed and self-propelled configurations
  publication-title: Comput. & Fluids
– volume: 134
  year: 2023
  ident: b10
  article-title: Temporal predictions of periodic flows using a mesh transformation and deep learning-based strategy
  publication-title: Aerosp. Sci. Technol.
– volume: 33
  year: 2021
  ident: b32
  article-title: Geometry and boundary condition adaptive data-driven model of fluid flow based on deep convolutional neural networks
  publication-title: Phys. Fluids
– start-page: 1050
  year: 2016
  end-page: 1059
  ident: b12
  article-title: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning
  publication-title: International Conference on Machine Learning
– volume: 103
  year: 2020
  ident: b27
  article-title: Numerical investigations of flow characteristics of a pumpjet propulsor in oblique inflow
  publication-title: Appl. Ocean Res.
– volume: 257
  year: 2023
  ident: b31
  article-title: Uncertainty quantification analysis for simulation of wakes in wind-farms using a stochastic RANS solver, compared with a deep learning approach
  publication-title: Comput. & Fluids
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: b44
  article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python
  publication-title: Nature Methods
– year: 2014
  ident: b21
  article-title: Adam: A method for stochastic optimization
– volume: 659
  start-page: 516
  year: 2010
  end-page: 539
  ident: b19
  article-title: The intermediate wake of a body of revolution at high Reynolds numbers
  publication-title: J. Fluid Mech.
– volume: 123
  year: 2022
  ident: b36
  article-title: Multi-path deep learning framework on discrete pressure points to predict velocity field of pump-jet propulsor
  publication-title: Appl. Ocean Res.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b46
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 266
  year: 2022
  ident: b53
  article-title: Investigation of the wake characteristics of an underwater vehicle with and without a propeller
  publication-title: Ocean Eng.
– volume: 15
  start-page: 8
  year: 2020
  end-page: 16
  ident: b8
  article-title: Comparison of hydrodynamic characteristics of SUBOFF with cruciform and X-form rudder arrangement
  publication-title: Chin. J. Ship Res.
– volume: 340
  start-page: 211
  year: 2015
  end-page: 220
  ident: b2
  article-title: Coherent flow noise beneath a flat plate in a water tunnel experiment
  publication-title: J. Sound Vib.
– volume: 271
  year: 2023
  ident: b50
  article-title: Deep learning for fluid velocity field estimation: A review
  publication-title: Ocean Eng.
– volume: 201
  year: 2020
  ident: b51
  article-title: Experimental and numerical study on underwater radiated noise of AUV
  publication-title: Ocean Eng.
– volume: 118
  issue: 21
  year: 2021
  ident: 10.1016/j.apor.2024.104074_b22
  article-title: Machine learning–accelerated computational fluid dynamics
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2101784118
– volume: 5
  start-page: 536
  issue: 9
  year: 2023
  ident: 10.1016/j.apor.2024.104074_b43
  article-title: The transformative potential of machine learning for experiments in fluid mechanics
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-023-00622-y
– volume: 257
  year: 2023
  ident: 10.1016/j.apor.2024.104074_b31
  article-title: Uncertainty quantification analysis for simulation of wakes in wind-farms using a stochastic RANS solver, compared with a deep learning approach
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2023.105867
– volume: 33
  issue: 2
  year: 2021
  ident: 10.1016/j.apor.2024.104074_b20
  article-title: A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries
  publication-title: Phys. Fluids
  doi: 10.1063/5.0033376
– year: 1989
  ident: 10.1016/j.apor.2024.104074_b14
  article-title: Geometric characteristics of DARPA (Defense Advanced Research Projects Agency) SUBOFF Models (DTRC Model Numbers 5470 and 5471)
  publication-title: Geometr. Charact. Darpa Suboff Models
– volume: 659
  start-page: 516
  year: 2010
  ident: 10.1016/j.apor.2024.104074_b19
  article-title: The intermediate wake of a body of revolution at high Reynolds numbers
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010002715
– volume: 123
  year: 2022
  ident: 10.1016/j.apor.2024.104074_b36
  article-title: Multi-path deep learning framework on discrete pressure points to predict velocity field of pump-jet propulsor
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2022.103173
– year: 2020
  ident: 10.1016/j.apor.2024.104074_b33
– volume: 150
  start-page: 55
  year: 2019
  ident: 10.1016/j.apor.2024.104074_b11
  article-title: A comprehensive study on noise reduction methods of marine propellers and design procedures
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2018.12.004
– volume: 56
  start-page: 1
  year: 2015
  ident: 10.1016/j.apor.2024.104074_b45
  article-title: Mitigation of wind tunnel wall interactions in subsonic cavity flows
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-015-1924-8
– start-page: 234
  year: 2015
  ident: 10.1016/j.apor.2024.104074_b39
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 64
  start-page: 525
  year: 2019
  ident: 10.1016/j.apor.2024.104074_b6
  article-title: Prediction of aerodynamic flow fields using convolutional neural networks
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01740-0
– year: 2019
  ident: 10.1016/j.apor.2024.104074_b25
– volume: 111
  start-page: 89
  issue: 1
  year: 2022
  ident: 10.1016/j.apor.2024.104074_b30
  article-title: How to measure uncertainty in uncertainty sampling for active learning
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-021-06003-9
– year: 2014
  ident: 10.1016/j.apor.2024.104074_b21
– volume: 209
  year: 2020
  ident: 10.1016/j.apor.2024.104074_b37
  article-title: Numerical simulation of hydrodynamic and cavitation performance of pumpjet propulsor with different tip clearances in oblique flow
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107285
– start-page: 264
  year: 2019
  ident: 10.1016/j.apor.2024.104074_b49
  article-title: Training behavior of deep neural network in frequency domain
– volume: 286
  year: 2023
  ident: 10.1016/j.apor.2024.104074_b13
  article-title: Physics-guided generative adversarial networks for fault detection of underwater thruster
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.115585
– volume: 282
  year: 2023
  ident: 10.1016/j.apor.2024.104074_b15
  article-title: Forecasting three-dimensional unsteady multi-phase flow fields in the coal-supercritical water fluidized bed reactor via graph neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128880
– volume: 59
  start-page: 187
  year: 2013
  ident: 10.1016/j.apor.2024.104074_b23
  article-title: Experimental simulation of hydrodynamic flow noises in an autonomous marine laboratory
  publication-title: Acoust. Phys.
  doi: 10.1134/S1063771013020097
– ident: 10.1016/j.apor.2024.104074_b47
  doi: 10.1145/3580305.3599300
– volume: 76
  start-page: 243
  year: 2021
  ident: 10.1016/j.apor.2024.104074_b1
  article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.05.008
– volume: 103
  year: 2020
  ident: 10.1016/j.apor.2024.104074_b27
  article-title: Numerical investigations of flow characteristics of a pumpjet propulsor in oblique inflow
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2020.102343
– volume: 266
  year: 2022
  ident: 10.1016/j.apor.2024.104074_b53
  article-title: Investigation of the wake characteristics of an underwater vehicle with and without a propeller
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.113107
– volume: 134
  year: 2023
  ident: 10.1016/j.apor.2024.104074_b10
  article-title: Temporal predictions of periodic flows using a mesh transformation and deep learning-based strategy
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2022.108081
– volume: 58
  start-page: 25
  issue: 1
  year: 2020
  ident: 10.1016/j.apor.2024.104074_b41
  article-title: Deep learning methods for Reynolds-averaged Navier–Stokes simulations of airfoil flows
  publication-title: AIAA J.
  doi: 10.2514/1.J058291
– volume: 96
  start-page: 205
  year: 2015
  ident: 10.1016/j.apor.2024.104074_b29
  article-title: An axisymmetric underwater vehicle-free surface interaction: A numerical study
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2014.12.028
– volume: 165
  start-page: 116
  year: 2018
  ident: 10.1016/j.apor.2024.104074_b35
  article-title: Large-eddy simulations of a notional submarine in towed and self-propelled configurations
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2018.01.013
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  ident: 10.1016/j.apor.2024.104074_b44
  article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python
  publication-title: Nature Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 792
  start-page: 470
  year: 2016
  ident: 10.1016/j.apor.2024.104074_b34
  article-title: A numerical investigation of the wake of an axisymmetric body with appendages
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.47
– volume: 340
  start-page: 211
  year: 2015
  ident: 10.1016/j.apor.2024.104074_b2
  article-title: Coherent flow noise beneath a flat plate in a water tunnel experiment
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2014.11.033
– volume: 52
  start-page: 477
  year: 2020
  ident: 10.1016/j.apor.2024.104074_b7
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010719-060214
– volume: 31
  issue: 5
  year: 2019
  ident: 10.1016/j.apor.2024.104074_b40
  article-title: Fast flow field prediction over airfoils using deep learning approach
  publication-title: Phys. Fluids
  doi: 10.1063/1.5094943
– volume: 39
  start-page: 1125
  issue: 7
  year: 2010
  ident: 10.1016/j.apor.2024.104074_b28
  article-title: A hybrid prediction method for low-subsonic turbulent flow noise
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2010.02.005
– volume: 467
  start-page: 293
  year: 2014
  ident: 10.1016/j.apor.2024.104074_b5
  article-title: Estimation of the induced hydrodynamic periodic forces of marine propeller under non-uniform inflow via CFD
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.467.293
– volume: 33
  issue: 12
  year: 2021
  ident: 10.1016/j.apor.2024.104074_b32
  article-title: Geometry and boundary condition adaptive data-driven model of fluid flow based on deep convolutional neural networks
  publication-title: Phys. Fluids
  doi: 10.1063/5.0073419
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.apor.2024.104074_b46
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: vol. 84782
  year: 2021
  ident: 10.1016/j.apor.2024.104074_b26
  article-title: Uncertainty quantification of deep neural network-based turbulence model for reactor transient analysis
– year: 2016
  ident: 10.1016/j.apor.2024.104074_b52
– volume: 268
  year: 2023
  ident: 10.1016/j.apor.2024.104074_b3
  article-title: Survey on traditional and AI based estimation techniques for hydrodynamic coefficients of autonomous underwater vehicle
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.113300
– volume: vol. 49149
  start-page: 621
  year: 2010
  ident: 10.1016/j.apor.2024.104074_b42
  article-title: Calculation of manoeuvring forces on submarines using two viscous-flow solvers
– start-page: 1026
  year: 2015
  ident: 10.1016/j.apor.2024.104074_b16
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
– volume: 250
  year: 2023
  ident: 10.1016/j.apor.2024.104074_b9
  article-title: Towards high-accuracy deep learning inference of compressible flows over aerofoils
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2022.105707
– volume: 15
  start-page: 8
  issue: 2
  year: 2020
  ident: 10.1016/j.apor.2024.104074_b8
  article-title: Comparison of hydrodynamic characteristics of SUBOFF with cruciform and X-form rudder arrangement
  publication-title: Chin. J. Ship Res.
– volume: 263
  year: 2023
  ident: 10.1016/j.apor.2024.104074_b48
  article-title: Learning time-aware multi-phase flow fields in coal-supercritical water fluidized bed reactor with deep learning
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125907
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.apor.2024.104074_b24
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 54
  start-page: 1
  issue: 9
  year: 2021
  ident: 10.1016/j.apor.2024.104074_b38
  article-title: A survey of deep active learning
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3472291
– start-page: 2402
  year: 2020
  ident: 10.1016/j.apor.2024.104074_b4
  article-title: Combining differentiable PDE solvers and graph neural networks for fluid flow prediction
– year: 2016
  ident: 10.1016/j.apor.2024.104074_b17
– volume: 27
  start-page: 226
  year: 2022
  ident: 10.1016/j.apor.2024.104074_b18
  article-title: Assessment of RANS and DES turbulence models for the underwater vehicle wake flow field and propeller excitation force
  publication-title: J. Mar. Sci. Technol.
  doi: 10.1007/s00773-021-00828-8
– volume: 201
  year: 2020
  ident: 10.1016/j.apor.2024.104074_b51
  article-title: Experimental and numerical study on underwater radiated noise of AUV
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107111
– start-page: 1050
  year: 2016
  ident: 10.1016/j.apor.2024.104074_b12
  article-title: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning
– volume: 271
  year: 2023
  ident: 10.1016/j.apor.2024.104074_b50
  article-title: Deep learning for fluid velocity field estimation: A review
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.113693
SSID ssj0012868
Score 2.4060578
Snippet The accurate and rapid prediction of wake flow characteristics is of great significance for the design of underwater vehicles. This paper develops a data...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104074
SubjectTerms Bayesian deep learning
Convolutional neural network
Paddle disk surface
SUBOFF
Uncertainty quantification
Wake field
Title A novel Bayesian deep learning method for fast wake field prediction of the DARPA SUBOFF
URI https://dx.doi.org/10.1016/j.apor.2024.104074
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0141-1187
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012868
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection unibz
  issn: 0141-1187
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012868
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0141-1187
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012868
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0141-1187
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012868
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0141-1187
  databaseCode: AKRWK
  dateStart: 19790101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012868
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yLyqITsX5Y-TgTer642Vdj920TMVN1MFuJU0TmY6uzKl48W83r83GBNnBY0sehJeXL1_I994j5KzVSj2mQFi25MwCUJ7FXWAWS3071XxXqKKU0l2v2R3AzZAN10hnnguDskqD_SWmF2ht_jSMNxv5aNRAWZKDzbJRBanjCHEYwMcuBhffC5mHht8iHQ4HWzjaJM6UGi-uOa6-I7qAT522D38fTksHTrRDtg1TpGE5mV2yJrMq2VyqH1glW30heWaKTu-RYUizyYcc0zb_kpgcSVMpc2oaQzzTsls01TSVKv42o5_8VdJCwkbzKT7Y4CLRiaKaFNLL8OE-pI-Ddj-K9skgunrqdC3TOcESnm3PrCTgHARzNTlpCR7wZou72vWBSBK9oSXoyfmup7AmrSsdP7GZSoTmGo7ymqnrMe-AVLJJJg8JhSD1OXCQNihgoA2FkKrpcydI9V1H1ogzd1ksTFlx7G4xjuf6sZcY3Ryjm-PSzTVyvrDJy6IaK0ez-UrEv0Ij1qi_wu7on3bHZAO_SiHZCanMpu_yVDOPWVIvQqtO1sPr227vB3eH1b0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jPngB0ak4r3nwTep6Sdb1sZuWqbuIbrC3kqaJTEdXZlV88bd70mZjguzB1zYHwpeTky_kO-cgdNFoxA6VhBumYNQgRDoGswk1aOyaMfBdLvNSSt1evT0kdyM6KqHWPBdGySp17C9ieh6t9ZeaRrOWjsc1JUuyVLNspYIEP4I4vEao7aob2NX3QucB8TfPh1OjDTVcZ84UIi8GJBcuiTZRb52mS_4-nZZOnGAHbWuqiP1iNruoJJIK2lwqIFhBW30uWKKrTu-hkY-T6YeY4Cb7Eio7EsdCpFh3hnjGRbtoDDwVS_aW4U_2KnCuYcPpTL3YqFXCU4mBFeJr__HBx0_DZj8I9tEwuBm02oZunWBwxzQzI_IYIxzQsN0GZx6rN5gN2Hs8imBHCwKTc21HqqK0trDcyKQy4kA2LOnUY9uhzgEqJ9NEHCJMvNhlhBFhEkkoAUPOhay7zPJiuOyIKrLmkIVc1xVX7S0m4VxA9hIqmEMFc1jAXEWXC5u0qKqxcjSdr0T4yzdCCPsr7I7-aXeO1tuDbifs3Pbuj9GG-lOoyk5QOZu9i1OgIVl0lrvZD5I511I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+Bayesian+deep+learning+method+for+fast+wake+field+prediction+of+the+DARPA+SUBOFF&rft.jtitle=Applied+ocean+research&rft.au=Xie%2C+Xinyu&rft.au=Zhao%2C+Pu&rft.au=Bian%2C+Chao&rft.au=Xia%2C+Linsheng&rft.date=2024-09-01&rft.issn=0141-1187&rft.volume=150&rft.spage=104074&rft_id=info:doi/10.1016%2Fj.apor.2024.104074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apor_2024_104074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-1187&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-1187&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-1187&client=summon