A novel Bayesian deep learning method for fast wake field prediction of the DARPA SUBOFF
The accurate and rapid prediction of wake flow characteristics is of great significance for the design of underwater vehicles. This paper develops a data driven Bayesian deep learning framework, named WakeNet, to accurately and quickly predict the wake velocity field on the paddle disk surface of th...
        Saved in:
      
    
          | Published in | Applied ocean research Vol. 150; p. 104074 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.09.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0141-1187 | 
| DOI | 10.1016/j.apor.2024.104074 | 
Cover
| Abstract | The accurate and rapid prediction of wake flow characteristics is of great significance for the design of underwater vehicles. This paper develops a data driven Bayesian deep learning framework, named WakeNet, to accurately and quickly predict the wake velocity field on the paddle disk surface of the DARPA SUBOFF model under varying geometry configurations. Specifically, (i) the proposed WakeNet presents a coordinate affine transformation technique to address the issue of handling unstructured wake flow data with varying geometries; (ii) it develops a residual modeling strategy built upon a modern version of the U-net architecture to capture the multi-scale wake flow characteristics; and finally, (iii) it exploits the MC dropout method to achieve uncertainty quantification of the prediction, and builds the uncertainty based active learning framework to effectively update the model. Numerical experiments have verified the capability of the proposed WakeNet model for the accurate prediction and uncertainty quantification of the wake flow field with varying geometries. Besides, the proposed model yields a speed up factor of 7000× compared to the conventional numerical simulation solver.
•A novel Bayesian deep learning method for fast prediction of the wake field of DARPA SUBOFF.•A coordinate affine transformation method for tackling the unstructured wake flow data under varying geometries.•A residual modeling strategy built on the U-net architecture to capture the multi-scale wake flow characteristics.•A Monte Carlo (MC) dropout based uncertainty quantification and active learning framework have been built.•The proposed model achieves comparable yet 7000× faster wake field predictions in comparison to the CFD solver. | 
    
|---|---|
| AbstractList | The accurate and rapid prediction of wake flow characteristics is of great significance for the design of underwater vehicles. This paper develops a data driven Bayesian deep learning framework, named WakeNet, to accurately and quickly predict the wake velocity field on the paddle disk surface of the DARPA SUBOFF model under varying geometry configurations. Specifically, (i) the proposed WakeNet presents a coordinate affine transformation technique to address the issue of handling unstructured wake flow data with varying geometries; (ii) it develops a residual modeling strategy built upon a modern version of the U-net architecture to capture the multi-scale wake flow characteristics; and finally, (iii) it exploits the MC dropout method to achieve uncertainty quantification of the prediction, and builds the uncertainty based active learning framework to effectively update the model. Numerical experiments have verified the capability of the proposed WakeNet model for the accurate prediction and uncertainty quantification of the wake flow field with varying geometries. Besides, the proposed model yields a speed up factor of 7000× compared to the conventional numerical simulation solver.
•A novel Bayesian deep learning method for fast prediction of the wake field of DARPA SUBOFF.•A coordinate affine transformation method for tackling the unstructured wake flow data under varying geometries.•A residual modeling strategy built on the U-net architecture to capture the multi-scale wake flow characteristics.•A Monte Carlo (MC) dropout based uncertainty quantification and active learning framework have been built.•The proposed model achieves comparable yet 7000× faster wake field predictions in comparison to the CFD solver. | 
    
| ArticleNumber | 104074 | 
    
| Author | Xia, Linsheng Bian, Chao Liu, Haitao Ding, Jiaqi Wang, Xiaofang Xie, Xinyu Zhao, Pu  | 
    
| Author_xml | – sequence: 1 givenname: Xinyu orcidid: 0000-0003-4624-5380 surname: Xie fullname: Xie, Xinyu email: xyxie@mail.dlut.edu.cn organization: School of Energy and Power Engineering, Dalian University of Technology, 116024, China – sequence: 2 givenname: Pu surname: Zhao fullname: Zhao, Pu email: zhaopua@mail.dlut.edu.cn organization: School of Energy and Power Engineering, Dalian University of Technology, 116024, China – sequence: 3 givenname: Chao surname: Bian fullname: Bian, Chao email: bc2019@mail.dlut.edu.cn organization: School of Energy and Power Engineering, Dalian University of Technology, 116024, China – sequence: 4 givenname: Linsheng surname: Xia fullname: Xia, Linsheng email: xialinsheng@whu.edu.cn organization: China Ship Scientific Research Center, 430064, China – sequence: 5 givenname: Jiaqi surname: Ding fullname: Ding, Jiaqi email: jqding@mail.dlut.edu.cn organization: School of Energy and Power Engineering, Dalian University of Technology, 116024, China – sequence: 6 givenname: Xiaofang surname: Wang fullname: Wang, Xiaofang email: dlwxf@dlut.edu.cn organization: School of Energy and Power Engineering, Dalian University of Technology, 116024, China – sequence: 7 givenname: Haitao orcidid: 0000-0003-1187-5374 surname: Liu fullname: Liu, Haitao email: htliu@dlut.edu.cn organization: School of Energy and Power Engineering, Dalian University of Technology, 116024, China  | 
    
| BookMark | eNp9kM1KAzEUhbOoYKu-gKu8wNQkM50fcDOtVoVCRS24C3cyNzZ1mgyZUOnbO0NduejqwIHvcs83ISPrLBJyy9mUM57e7abQOj8VTCR9kbAsGZEx4wmPOM-zSzLpuh1jXORpPiafJbXugA2dwxE7A5bWiC1tELw19ovuMWxdTbXzVEMX6A98I9UGm5q2HmujgnGWOk3DFulD-fZa0vfNfL1cXpMLDU2HN395RTbLx4_Fc7RaP70sylWkYsZCVBUAiZqJTGS5ggLSHASr00JVVcw4JgohE7EuCiEE8qxiM12prN-p47QW8Sy-IvnprvKu6zxqqUyA4avgwTSSMzlYkTs5WJGDFXmy0qPiH9p6swd_PA_dnyDsRx0Metkpg1b1LjyqIGtnzuG_Cy5-oQ | 
    
| CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2025_126247 crossref_primary_10_1088_1742_6596_2939_1_012013 crossref_primary_10_1016_j_apor_2024_104158 crossref_primary_10_1063_5_0255738  | 
    
| Cites_doi | 10.1073/pnas.2101784118 10.1038/s42254-023-00622-y 10.1016/j.compfluid.2023.105867 10.1063/5.0033376 10.1017/S0022112010002715 10.1016/j.apor.2022.103173 10.1016/j.apacoust.2018.12.004 10.1007/s00348-015-1924-8 10.1007/s00466-019-01740-0 10.1007/s10994-021-06003-9 10.1016/j.oceaneng.2020.107285 10.1016/j.oceaneng.2023.115585 10.1016/j.energy.2023.128880 10.1134/S1063771013020097 10.1145/3580305.3599300 10.1016/j.inffus.2021.05.008 10.1016/j.apor.2020.102343 10.1016/j.oceaneng.2022.113107 10.1016/j.ast.2022.108081 10.2514/1.J058291 10.1016/j.oceaneng.2014.12.028 10.1016/j.compfluid.2018.01.013 10.1038/s41592-019-0686-2 10.1017/jfm.2016.47 10.1016/j.jsv.2014.11.033 10.1146/annurev-fluid-010719-060214 10.1063/1.5094943 10.1016/j.compfluid.2010.02.005 10.4028/www.scientific.net/AMM.467.293 10.1063/5.0073419 10.1109/TIP.2003.819861 10.1016/j.oceaneng.2022.113300 10.1016/j.compfluid.2022.105707 10.1016/j.energy.2022.125907 10.1038/nature14539 10.1145/3472291 10.1007/s00773-021-00828-8 10.1016/j.oceaneng.2020.107111 10.1016/j.oceaneng.2023.113693  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2024 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.apor.2024.104074 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Oceanography  | 
    
| ExternalDocumentID | 10_1016_j_apor_2024_104074 S0141118724001962  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE J1W JJJVA KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 UAO WUQ XPP ZMT ~02 ~A~ ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG GROUPED_DOAJ ~HD  | 
    
| ID | FETCH-LOGICAL-c300t-b9aa4c527278ca9a68a20d69cbb301e4cea723f99222e17b05fbc7101f36d2353 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0141-1187 | 
    
| IngestDate | Thu Apr 24 22:55:49 EDT 2025 Wed Oct 29 21:15:10 EDT 2025 Sun Apr 06 06:54:48 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | SUBOFF Uncertainty quantification Bayesian deep learning Paddle disk surface Convolutional neural network Wake field  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c300t-b9aa4c527278ca9a68a20d69cbb301e4cea723f99222e17b05fbc7101f36d2353 | 
    
| ORCID | 0000-0003-4624-5380 0000-0003-1187-5374  | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_apor_2024_104074 crossref_primary_10_1016_j_apor_2024_104074 elsevier_sciencedirect_doi_10_1016_j_apor_2024_104074  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | September 2024 2024-09-00  | 
    
| PublicationDateYYYYMMDD | 2024-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Applied ocean research | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Ebrahimi, Razaghian, Seif, Zahedi, Nouri-Borujerdi (b11) 2019; 150 Pfaff, Fortunato, Sanchez-Gonzalez, Battaglia (b33) 2020 Vaz, Toxopeus, Holmes (b42) 2010; vol. 49149 Wagner, Casper, Beresh, Henfling, Spillers, Pruett (b45) 2015; 56 Hao, Xie, Zhao, Wang, Ding, Xie, Liu (b15) 2023; 282 Chen, Thuerey (b9) 2023; 250 Moon, Seo, Bae, Roger, Becker (b28) 2010; 39 Gal, Ghahramani (b12) 2016 Kudashev, Kolyshnitsyn, Marshov, Tkachenko, Tsvetkov (b23) 2013; 59 Peng, Aubry, Zhu, Chen, Wu (b32) 2021; 33 Yu, Bi, Fan (b50) 2023; 271 Nguyen, Shaker, Hüllermeier (b30) 2022; 111 Ren, Xiao, Chang, Huang, Li, Gupta, Chen, Wang (b38) 2021; 54 Hendrycks, Gimpel (b17) 2016 Groves, Huang, Chang (b14) 1989 Zagoruyko, Komodakis (b52) 2016 Ahmed, Xiang, Jiang, Xiang, Yang (b3) 2023; 268 Lee, You (b25) 2019 Deng, Liu, Shi, Wang, Yu, Liu, Chen (b10) 2023; 134 Brunton, Noack, Koumoutsakos (b7) 2020; 52 Gao, Liu, Zhang, Feng, He, Zio (b13) 2023; 286 Abdar, Pourpanah, Hussain, Rezazadegan, Liu, Ghavamzadeh, Fieguth, Cao, Khosravi, Acharya (b1) 2021; 76 He, Zhang, Ren, Sun (b16) 2015 Liu, Hu, Balaprakash (b26) 2021; vol. 84782 Bhatnagar, Afshar, Pan, Duraisamy, Kaushik (b6) 2019; 64 LeCun, Bengio, Hinton (b24) 2015; 521 Vinuesa, Brunton, McKeon (b43) 2023; 5 Yu, Wang, Zhang, Li (b51) 2020; 201 Chen, Pan, Peng, Xia, Qiu, Li (b8) 2020; 15 Kashefi, Rempe, Guibas (b20) 2021; 33 Xu, Zhang, Xiao (b49) 2019 Sekar, Jiang, Shu, Khoo (b40) 2019; 31 Posa, Balaras (b34) 2016; 792 Xie, Wang, Zhao, Hao, Xie, Liu (b48) 2023; 263 Jiménez, Hultmark, Smits (b19) 2010; 659 Belbute-Peres, Economon, Kolter (b4) 2020 Jiang, Li, Wu, Qing, Zhang (b18) 2022; 27 Bennaya, Zhang, Hegaze (b5) 2014; 467 Wang, Bovik, Sheikh, Simoncelli (b46) 2004; 13 Wu, D., Niu, R., Chinazzi, M., Vespignani, A., Ma, Y.-A., Yu, R., 2023. Deep Bayesian active learning for accelerating stochastic simulation. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. pp. 2559–2569. Zhou, Li, Yang, Wang, Xu (b53) 2022; 266 Ronneberger, Fischer, Brox (b39) 2015 Posa, Balaras (b35) 2018; 165 Kingma, Ba (b21) 2014 Lu, Wang, Qin (b27) 2020; 103 Kochkov, Smith, Alieva, Wang, Brenner, Hoyer (b22) 2021; 118 Qiu, Huang, Pan, Shi, Dong (b37) 2020; 209 Abshagen, Schäfer, Will, Pfister (b2) 2015; 340 Thuerey, Weißenow, Prantl, Hu (b41) 2020; 58 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright (b44) 2020; 17 Qiu, Huang, Pan, He (b36) 2022; 123 Nematollahi, Dadvand, Dawoodian (b29) 2015; 96 Parekh, Verstappen (b31) 2023; 257 Chen (10.1016/j.apor.2024.104074_b9) 2023; 250 Ebrahimi (10.1016/j.apor.2024.104074_b11) 2019; 150 Groves (10.1016/j.apor.2024.104074_b14) 1989 Zhou (10.1016/j.apor.2024.104074_b53) 2022; 266 Kingma (10.1016/j.apor.2024.104074_b21) 2014 10.1016/j.apor.2024.104074_b47 Xie (10.1016/j.apor.2024.104074_b48) 2023; 263 Abshagen (10.1016/j.apor.2024.104074_b2) 2015; 340 Virtanen (10.1016/j.apor.2024.104074_b44) 2020; 17 Thuerey (10.1016/j.apor.2024.104074_b41) 2020; 58 Kochkov (10.1016/j.apor.2024.104074_b22) 2021; 118 Yu (10.1016/j.apor.2024.104074_b51) 2020; 201 Zagoruyko (10.1016/j.apor.2024.104074_b52) 2016 Posa (10.1016/j.apor.2024.104074_b35) 2018; 165 Vaz (10.1016/j.apor.2024.104074_b42) 2010; vol. 49149 Bennaya (10.1016/j.apor.2024.104074_b5) 2014; 467 Nematollahi (10.1016/j.apor.2024.104074_b29) 2015; 96 Ronneberger (10.1016/j.apor.2024.104074_b39) 2015 Parekh (10.1016/j.apor.2024.104074_b31) 2023; 257 Moon (10.1016/j.apor.2024.104074_b28) 2010; 39 Pfaff (10.1016/j.apor.2024.104074_b33) 2020 Vinuesa (10.1016/j.apor.2024.104074_b43) 2023; 5 Liu (10.1016/j.apor.2024.104074_b26) 2021; vol. 84782 Ren (10.1016/j.apor.2024.104074_b38) 2021; 54 Lu (10.1016/j.apor.2024.104074_b27) 2020; 103 Yu (10.1016/j.apor.2024.104074_b50) 2023; 271 Hao (10.1016/j.apor.2024.104074_b15) 2023; 282 Hendrycks (10.1016/j.apor.2024.104074_b17) 2016 Jiménez (10.1016/j.apor.2024.104074_b19) 2010; 659 LeCun (10.1016/j.apor.2024.104074_b24) 2015; 521 Nguyen (10.1016/j.apor.2024.104074_b30) 2022; 111 Ahmed (10.1016/j.apor.2024.104074_b3) 2023; 268 Wang (10.1016/j.apor.2024.104074_b46) 2004; 13 Gao (10.1016/j.apor.2024.104074_b13) 2023; 286 He (10.1016/j.apor.2024.104074_b16) 2015 Peng (10.1016/j.apor.2024.104074_b32) 2021; 33 Sekar (10.1016/j.apor.2024.104074_b40) 2019; 31 Chen (10.1016/j.apor.2024.104074_b8) 2020; 15 Kashefi (10.1016/j.apor.2024.104074_b20) 2021; 33 Bhatnagar (10.1016/j.apor.2024.104074_b6) 2019; 64 Xu (10.1016/j.apor.2024.104074_b49) 2019 Jiang (10.1016/j.apor.2024.104074_b18) 2022; 27 Qiu (10.1016/j.apor.2024.104074_b37) 2020; 209 Belbute-Peres (10.1016/j.apor.2024.104074_b4) 2020 Posa (10.1016/j.apor.2024.104074_b34) 2016; 792 Abdar (10.1016/j.apor.2024.104074_b1) 2021; 76 Wagner (10.1016/j.apor.2024.104074_b45) 2015; 56 Brunton (10.1016/j.apor.2024.104074_b7) 2020; 52 Gal (10.1016/j.apor.2024.104074_b12) 2016 Deng (10.1016/j.apor.2024.104074_b10) 2023; 134 Qiu (10.1016/j.apor.2024.104074_b36) 2022; 123 Lee (10.1016/j.apor.2024.104074_b25) 2019 Kudashev (10.1016/j.apor.2024.104074_b23) 2013; 59  | 
    
| References_xml | – volume: 286 year: 2023 ident: b13 article-title: Physics-guided generative adversarial networks for fault detection of underwater thruster publication-title: Ocean Eng. – year: 1989 ident: b14 article-title: Geometric characteristics of DARPA (Defense Advanced Research Projects Agency) SUBOFF Models (DTRC Model Numbers 5470 and 5471) publication-title: Geometr. Charact. Darpa Suboff Models – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b24 article-title: Deep learning publication-title: Nature – volume: 282 year: 2023 ident: b15 article-title: Forecasting three-dimensional unsteady multi-phase flow fields in the coal-supercritical water fluidized bed reactor via graph neural networks publication-title: Energy – volume: 59 start-page: 187 year: 2013 end-page: 196 ident: b23 article-title: Experimental simulation of hydrodynamic flow noises in an autonomous marine laboratory publication-title: Acoust. Phys. – volume: 58 start-page: 25 year: 2020 end-page: 36 ident: b41 article-title: Deep learning methods for Reynolds-averaged Navier–Stokes simulations of airfoil flows publication-title: AIAA J. – start-page: 2402 year: 2020 end-page: 2411 ident: b4 article-title: Combining differentiable PDE solvers and graph neural networks for fluid flow prediction publication-title: International Conference on Machine Learning – volume: 64 start-page: 525 year: 2019 end-page: 545 ident: b6 article-title: Prediction of aerodynamic flow fields using convolutional neural networks publication-title: Comput. Mech. – start-page: 234 year: 2015 end-page: 241 ident: b39 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 – volume: 54 start-page: 1 year: 2021 end-page: 40 ident: b38 article-title: A survey of deep active learning publication-title: ACM Comput. Surv. – volume: 792 start-page: 470 year: 2016 end-page: 498 ident: b34 article-title: A numerical investigation of the wake of an axisymmetric body with appendages publication-title: J. Fluid Mech. – volume: 467 start-page: 293 year: 2014 end-page: 299 ident: b5 article-title: Estimation of the induced hydrodynamic periodic forces of marine propeller under non-uniform inflow via CFD publication-title: Appl. Mech. Mater. – volume: 27 start-page: 226 year: 2022 end-page: 244 ident: b18 article-title: Assessment of RANS and DES turbulence models for the underwater vehicle wake flow field and propeller excitation force publication-title: J. Mar. Sci. Technol. – volume: 250 year: 2023 ident: b9 article-title: Towards high-accuracy deep learning inference of compressible flows over aerofoils publication-title: Comput. & Fluids – year: 2019 ident: b25 article-title: Mechanisms of a convolutional neural network for learning three-dimensional unsteady wake flow – volume: vol. 49149 start-page: 621 year: 2010 end-page: 633 ident: b42 article-title: Calculation of manoeuvring forces on submarines using two viscous-flow solvers publication-title: International Conference on Offshore Mechanics and Arctic Engineering – volume: vol. 84782 year: 2021 ident: b26 article-title: Uncertainty quantification of deep neural network-based turbulence model for reactor transient analysis publication-title: Verification and Validation – volume: 209 year: 2020 ident: b37 article-title: Numerical simulation of hydrodynamic and cavitation performance of pumpjet propulsor with different tip clearances in oblique flow publication-title: Ocean Eng. – volume: 263 year: 2023 ident: b48 article-title: Learning time-aware multi-phase flow fields in coal-supercritical water fluidized bed reactor with deep learning publication-title: Energy – start-page: 264 year: 2019 end-page: 274 ident: b49 article-title: Training behavior of deep neural network in frequency domain publication-title: Neural Information Processing: 26th International Conference, ICONIP 2019, Sydney, NSW, Australia, December 12–15, 2019, Proceedings, Part I 26 – start-page: 1026 year: 2015 end-page: 1034 ident: b16 article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 111 start-page: 89 year: 2022 end-page: 122 ident: b30 article-title: How to measure uncertainty in uncertainty sampling for active learning publication-title: Mach. Learn. – volume: 5 start-page: 536 year: 2023 end-page: 545 ident: b43 article-title: The transformative potential of machine learning for experiments in fluid mechanics publication-title: Nat. Rev. Phys. – volume: 52 start-page: 477 year: 2020 end-page: 508 ident: b7 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. – year: 2016 ident: b17 article-title: Gaussian error linear units (GELUs) – volume: 31 year: 2019 ident: b40 article-title: Fast flow field prediction over airfoils using deep learning approach publication-title: Phys. Fluids – reference: Wu, D., Niu, R., Chinazzi, M., Vespignani, A., Ma, Y.-A., Yu, R., 2023. Deep Bayesian active learning for accelerating stochastic simulation. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. pp. 2559–2569. – volume: 56 start-page: 1 year: 2015 end-page: 12 ident: b45 article-title: Mitigation of wind tunnel wall interactions in subsonic cavity flows publication-title: Exp. Fluids – volume: 39 start-page: 1125 year: 2010 end-page: 1135 ident: b28 article-title: A hybrid prediction method for low-subsonic turbulent flow noise publication-title: Comput. & Fluids – year: 2016 ident: b52 article-title: Wide residual networks – volume: 33 year: 2021 ident: b20 article-title: A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries publication-title: Phys. Fluids – volume: 150 start-page: 55 year: 2019 end-page: 69 ident: b11 article-title: A comprehensive study on noise reduction methods of marine propellers and design procedures publication-title: Appl. Acoust. – volume: 118 year: 2021 ident: b22 article-title: Machine learning–accelerated computational fluid dynamics publication-title: Proc. Natl. Acad. Sci. – volume: 268 year: 2023 ident: b3 article-title: Survey on traditional and AI based estimation techniques for hydrodynamic coefficients of autonomous underwater vehicle publication-title: Ocean Eng. – volume: 96 start-page: 205 year: 2015 end-page: 214 ident: b29 article-title: An axisymmetric underwater vehicle-free surface interaction: A numerical study publication-title: Ocean Eng. – volume: 76 start-page: 243 year: 2021 end-page: 297 ident: b1 article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges publication-title: Inf. Fusion – year: 2020 ident: b33 article-title: Learning mesh-based simulation with graph networks – volume: 165 start-page: 116 year: 2018 end-page: 126 ident: b35 article-title: Large-eddy simulations of a notional submarine in towed and self-propelled configurations publication-title: Comput. & Fluids – volume: 134 year: 2023 ident: b10 article-title: Temporal predictions of periodic flows using a mesh transformation and deep learning-based strategy publication-title: Aerosp. Sci. Technol. – volume: 33 year: 2021 ident: b32 article-title: Geometry and boundary condition adaptive data-driven model of fluid flow based on deep convolutional neural networks publication-title: Phys. Fluids – start-page: 1050 year: 2016 end-page: 1059 ident: b12 article-title: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning publication-title: International Conference on Machine Learning – volume: 103 year: 2020 ident: b27 article-title: Numerical investigations of flow characteristics of a pumpjet propulsor in oblique inflow publication-title: Appl. Ocean Res. – volume: 257 year: 2023 ident: b31 article-title: Uncertainty quantification analysis for simulation of wakes in wind-farms using a stochastic RANS solver, compared with a deep learning approach publication-title: Comput. & Fluids – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: b44 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python publication-title: Nature Methods – year: 2014 ident: b21 article-title: Adam: A method for stochastic optimization – volume: 659 start-page: 516 year: 2010 end-page: 539 ident: b19 article-title: The intermediate wake of a body of revolution at high Reynolds numbers publication-title: J. Fluid Mech. – volume: 123 year: 2022 ident: b36 article-title: Multi-path deep learning framework on discrete pressure points to predict velocity field of pump-jet propulsor publication-title: Appl. Ocean Res. – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: b46 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 266 year: 2022 ident: b53 article-title: Investigation of the wake characteristics of an underwater vehicle with and without a propeller publication-title: Ocean Eng. – volume: 15 start-page: 8 year: 2020 end-page: 16 ident: b8 article-title: Comparison of hydrodynamic characteristics of SUBOFF with cruciform and X-form rudder arrangement publication-title: Chin. J. Ship Res. – volume: 340 start-page: 211 year: 2015 end-page: 220 ident: b2 article-title: Coherent flow noise beneath a flat plate in a water tunnel experiment publication-title: J. Sound Vib. – volume: 271 year: 2023 ident: b50 article-title: Deep learning for fluid velocity field estimation: A review publication-title: Ocean Eng. – volume: 201 year: 2020 ident: b51 article-title: Experimental and numerical study on underwater radiated noise of AUV publication-title: Ocean Eng. – volume: 118 issue: 21 year: 2021 ident: 10.1016/j.apor.2024.104074_b22 article-title: Machine learning–accelerated computational fluid dynamics publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2101784118 – volume: 5 start-page: 536 issue: 9 year: 2023 ident: 10.1016/j.apor.2024.104074_b43 article-title: The transformative potential of machine learning for experiments in fluid mechanics publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-023-00622-y – volume: 257 year: 2023 ident: 10.1016/j.apor.2024.104074_b31 article-title: Uncertainty quantification analysis for simulation of wakes in wind-farms using a stochastic RANS solver, compared with a deep learning approach publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2023.105867 – volume: 33 issue: 2 year: 2021 ident: 10.1016/j.apor.2024.104074_b20 article-title: A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries publication-title: Phys. Fluids doi: 10.1063/5.0033376 – year: 1989 ident: 10.1016/j.apor.2024.104074_b14 article-title: Geometric characteristics of DARPA (Defense Advanced Research Projects Agency) SUBOFF Models (DTRC Model Numbers 5470 and 5471) publication-title: Geometr. Charact. Darpa Suboff Models – volume: 659 start-page: 516 year: 2010 ident: 10.1016/j.apor.2024.104074_b19 article-title: The intermediate wake of a body of revolution at high Reynolds numbers publication-title: J. Fluid Mech. doi: 10.1017/S0022112010002715 – volume: 123 year: 2022 ident: 10.1016/j.apor.2024.104074_b36 article-title: Multi-path deep learning framework on discrete pressure points to predict velocity field of pump-jet propulsor publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2022.103173 – year: 2020 ident: 10.1016/j.apor.2024.104074_b33 – volume: 150 start-page: 55 year: 2019 ident: 10.1016/j.apor.2024.104074_b11 article-title: A comprehensive study on noise reduction methods of marine propellers and design procedures publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2018.12.004 – volume: 56 start-page: 1 year: 2015 ident: 10.1016/j.apor.2024.104074_b45 article-title: Mitigation of wind tunnel wall interactions in subsonic cavity flows publication-title: Exp. Fluids doi: 10.1007/s00348-015-1924-8 – start-page: 234 year: 2015 ident: 10.1016/j.apor.2024.104074_b39 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 64 start-page: 525 year: 2019 ident: 10.1016/j.apor.2024.104074_b6 article-title: Prediction of aerodynamic flow fields using convolutional neural networks publication-title: Comput. Mech. doi: 10.1007/s00466-019-01740-0 – year: 2019 ident: 10.1016/j.apor.2024.104074_b25 – volume: 111 start-page: 89 issue: 1 year: 2022 ident: 10.1016/j.apor.2024.104074_b30 article-title: How to measure uncertainty in uncertainty sampling for active learning publication-title: Mach. Learn. doi: 10.1007/s10994-021-06003-9 – year: 2014 ident: 10.1016/j.apor.2024.104074_b21 – volume: 209 year: 2020 ident: 10.1016/j.apor.2024.104074_b37 article-title: Numerical simulation of hydrodynamic and cavitation performance of pumpjet propulsor with different tip clearances in oblique flow publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107285 – start-page: 264 year: 2019 ident: 10.1016/j.apor.2024.104074_b49 article-title: Training behavior of deep neural network in frequency domain – volume: 286 year: 2023 ident: 10.1016/j.apor.2024.104074_b13 article-title: Physics-guided generative adversarial networks for fault detection of underwater thruster publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115585 – volume: 282 year: 2023 ident: 10.1016/j.apor.2024.104074_b15 article-title: Forecasting three-dimensional unsteady multi-phase flow fields in the coal-supercritical water fluidized bed reactor via graph neural networks publication-title: Energy doi: 10.1016/j.energy.2023.128880 – volume: 59 start-page: 187 year: 2013 ident: 10.1016/j.apor.2024.104074_b23 article-title: Experimental simulation of hydrodynamic flow noises in an autonomous marine laboratory publication-title: Acoust. Phys. doi: 10.1134/S1063771013020097 – ident: 10.1016/j.apor.2024.104074_b47 doi: 10.1145/3580305.3599300 – volume: 76 start-page: 243 year: 2021 ident: 10.1016/j.apor.2024.104074_b1 article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.05.008 – volume: 103 year: 2020 ident: 10.1016/j.apor.2024.104074_b27 article-title: Numerical investigations of flow characteristics of a pumpjet propulsor in oblique inflow publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2020.102343 – volume: 266 year: 2022 ident: 10.1016/j.apor.2024.104074_b53 article-title: Investigation of the wake characteristics of an underwater vehicle with and without a propeller publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.113107 – volume: 134 year: 2023 ident: 10.1016/j.apor.2024.104074_b10 article-title: Temporal predictions of periodic flows using a mesh transformation and deep learning-based strategy publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2022.108081 – volume: 58 start-page: 25 issue: 1 year: 2020 ident: 10.1016/j.apor.2024.104074_b41 article-title: Deep learning methods for Reynolds-averaged Navier–Stokes simulations of airfoil flows publication-title: AIAA J. doi: 10.2514/1.J058291 – volume: 96 start-page: 205 year: 2015 ident: 10.1016/j.apor.2024.104074_b29 article-title: An axisymmetric underwater vehicle-free surface interaction: A numerical study publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2014.12.028 – volume: 165 start-page: 116 year: 2018 ident: 10.1016/j.apor.2024.104074_b35 article-title: Large-eddy simulations of a notional submarine in towed and self-propelled configurations publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2018.01.013 – volume: 17 start-page: 261 issue: 3 year: 2020 ident: 10.1016/j.apor.2024.104074_b44 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python publication-title: Nature Methods doi: 10.1038/s41592-019-0686-2 – volume: 792 start-page: 470 year: 2016 ident: 10.1016/j.apor.2024.104074_b34 article-title: A numerical investigation of the wake of an axisymmetric body with appendages publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.47 – volume: 340 start-page: 211 year: 2015 ident: 10.1016/j.apor.2024.104074_b2 article-title: Coherent flow noise beneath a flat plate in a water tunnel experiment publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2014.11.033 – volume: 52 start-page: 477 year: 2020 ident: 10.1016/j.apor.2024.104074_b7 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010719-060214 – volume: 31 issue: 5 year: 2019 ident: 10.1016/j.apor.2024.104074_b40 article-title: Fast flow field prediction over airfoils using deep learning approach publication-title: Phys. Fluids doi: 10.1063/1.5094943 – volume: 39 start-page: 1125 issue: 7 year: 2010 ident: 10.1016/j.apor.2024.104074_b28 article-title: A hybrid prediction method for low-subsonic turbulent flow noise publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2010.02.005 – volume: 467 start-page: 293 year: 2014 ident: 10.1016/j.apor.2024.104074_b5 article-title: Estimation of the induced hydrodynamic periodic forces of marine propeller under non-uniform inflow via CFD publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.467.293 – volume: 33 issue: 12 year: 2021 ident: 10.1016/j.apor.2024.104074_b32 article-title: Geometry and boundary condition adaptive data-driven model of fluid flow based on deep convolutional neural networks publication-title: Phys. Fluids doi: 10.1063/5.0073419 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.apor.2024.104074_b46 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: vol. 84782 year: 2021 ident: 10.1016/j.apor.2024.104074_b26 article-title: Uncertainty quantification of deep neural network-based turbulence model for reactor transient analysis – year: 2016 ident: 10.1016/j.apor.2024.104074_b52 – volume: 268 year: 2023 ident: 10.1016/j.apor.2024.104074_b3 article-title: Survey on traditional and AI based estimation techniques for hydrodynamic coefficients of autonomous underwater vehicle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.113300 – volume: vol. 49149 start-page: 621 year: 2010 ident: 10.1016/j.apor.2024.104074_b42 article-title: Calculation of manoeuvring forces on submarines using two viscous-flow solvers – start-page: 1026 year: 2015 ident: 10.1016/j.apor.2024.104074_b16 article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification – volume: 250 year: 2023 ident: 10.1016/j.apor.2024.104074_b9 article-title: Towards high-accuracy deep learning inference of compressible flows over aerofoils publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2022.105707 – volume: 15 start-page: 8 issue: 2 year: 2020 ident: 10.1016/j.apor.2024.104074_b8 article-title: Comparison of hydrodynamic characteristics of SUBOFF with cruciform and X-form rudder arrangement publication-title: Chin. J. Ship Res. – volume: 263 year: 2023 ident: 10.1016/j.apor.2024.104074_b48 article-title: Learning time-aware multi-phase flow fields in coal-supercritical water fluidized bed reactor with deep learning publication-title: Energy doi: 10.1016/j.energy.2022.125907 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.apor.2024.104074_b24 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 54 start-page: 1 issue: 9 year: 2021 ident: 10.1016/j.apor.2024.104074_b38 article-title: A survey of deep active learning publication-title: ACM Comput. Surv. doi: 10.1145/3472291 – start-page: 2402 year: 2020 ident: 10.1016/j.apor.2024.104074_b4 article-title: Combining differentiable PDE solvers and graph neural networks for fluid flow prediction – year: 2016 ident: 10.1016/j.apor.2024.104074_b17 – volume: 27 start-page: 226 year: 2022 ident: 10.1016/j.apor.2024.104074_b18 article-title: Assessment of RANS and DES turbulence models for the underwater vehicle wake flow field and propeller excitation force publication-title: J. Mar. Sci. Technol. doi: 10.1007/s00773-021-00828-8 – volume: 201 year: 2020 ident: 10.1016/j.apor.2024.104074_b51 article-title: Experimental and numerical study on underwater radiated noise of AUV publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107111 – start-page: 1050 year: 2016 ident: 10.1016/j.apor.2024.104074_b12 article-title: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning – volume: 271 year: 2023 ident: 10.1016/j.apor.2024.104074_b50 article-title: Deep learning for fluid velocity field estimation: A review publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.113693  | 
    
| SSID | ssj0012868 | 
    
| Score | 2.4060578 | 
    
| Snippet | The accurate and rapid prediction of wake flow characteristics is of great significance for the design of underwater vehicles. This paper develops a data... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 104074 | 
    
| SubjectTerms | Bayesian deep learning Convolutional neural network Paddle disk surface SUBOFF Uncertainty quantification Wake field  | 
    
| Title | A novel Bayesian deep learning method for fast wake field prediction of the DARPA SUBOFF | 
    
| URI | https://dx.doi.org/10.1016/j.apor.2024.104074 | 
    
| Volume | 150 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0141-1187 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012868 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection unibz issn: 0141-1187 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012868 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0141-1187 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012868 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0141-1187 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012868 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0141-1187 databaseCode: AKRWK dateStart: 19790101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012868 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yLyqITsX5Y-TgTer642Vdj920TMVN1MFuJU0TmY6uzKl48W83r83GBNnBY0sehJeXL1_I994j5KzVSj2mQFi25MwCUJ7FXWAWS3071XxXqKKU0l2v2R3AzZAN10hnnguDskqD_SWmF2ht_jSMNxv5aNRAWZKDzbJRBanjCHEYwMcuBhffC5mHht8iHQ4HWzjaJM6UGi-uOa6-I7qAT522D38fTksHTrRDtg1TpGE5mV2yJrMq2VyqH1glW30heWaKTu-RYUizyYcc0zb_kpgcSVMpc2oaQzzTsls01TSVKv42o5_8VdJCwkbzKT7Y4CLRiaKaFNLL8OE-pI-Ddj-K9skgunrqdC3TOcESnm3PrCTgHARzNTlpCR7wZou72vWBSBK9oSXoyfmup7AmrSsdP7GZSoTmGo7ymqnrMe-AVLJJJg8JhSD1OXCQNihgoA2FkKrpcydI9V1H1ogzd1ksTFlx7G4xjuf6sZcY3Ryjm-PSzTVyvrDJy6IaK0ez-UrEv0Ij1qi_wu7on3bHZAO_SiHZCanMpu_yVDOPWVIvQqtO1sPr227vB3eH1b0 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jPngB0ak4r3nwTep6Sdb1sZuWqbuIbrC3kqaJTEdXZlV88bd70mZjguzB1zYHwpeTky_kO-cgdNFoxA6VhBumYNQgRDoGswk1aOyaMfBdLvNSSt1evT0kdyM6KqHWPBdGySp17C9ieh6t9ZeaRrOWjsc1JUuyVLNspYIEP4I4vEao7aob2NX3QucB8TfPh1OjDTVcZ84UIi8GJBcuiTZRb52mS_4-nZZOnGAHbWuqiP1iNruoJJIK2lwqIFhBW30uWKKrTu-hkY-T6YeY4Cb7Eio7EsdCpFh3hnjGRbtoDDwVS_aW4U_2KnCuYcPpTL3YqFXCU4mBFeJr__HBx0_DZj8I9tEwuBm02oZunWBwxzQzI_IYIxzQsN0GZx6rN5gN2Hs8imBHCwKTc21HqqK0trDcyKQy4kA2LOnUY9uhzgEqJ9NEHCJMvNhlhBFhEkkoAUPOhay7zPJiuOyIKrLmkIVc1xVX7S0m4VxA9hIqmEMFc1jAXEWXC5u0qKqxcjSdr0T4yzdCCPsr7I7-aXeO1tuDbifs3Pbuj9GG-lOoyk5QOZu9i1OgIVl0lrvZD5I511I | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+Bayesian+deep+learning+method+for+fast+wake+field+prediction+of+the+DARPA+SUBOFF&rft.jtitle=Applied+ocean+research&rft.au=Xie%2C+Xinyu&rft.au=Zhao%2C+Pu&rft.au=Bian%2C+Chao&rft.au=Xia%2C+Linsheng&rft.date=2024-09-01&rft.issn=0141-1187&rft.volume=150&rft.spage=104074&rft_id=info:doi/10.1016%2Fj.apor.2024.104074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apor_2024_104074 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-1187&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-1187&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-1187&client=summon |