Rule-based OneClass-DS learning algorithm

•One-class learning algorithms are used in situations when training data are available only for one class, called target class. Data for other class(es), called outliers, are not available.•One-class learning algorithms are used for detecting outliers, or novelty, in the data.•The common approaching...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 35; pp. 267 - 279
Main Authors Nguyen, Dat T., Cios, Krzysztof J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2015
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2015.05.043

Cover

Abstract •One-class learning algorithms are used in situations when training data are available only for one class, called target class. Data for other class(es), called outliers, are not available.•One-class learning algorithms are used for detecting outliers, or novelty, in the data.•The common approaching one-class learning is to use density estimation techniques or adapt standard classification algorithms to define a decision boundary that encompasses the target data.•In this paper we introduce OneClass-DS learning algorithm that combines rule-based classification with greedy search algorithm based on density of features.•Its performance is tested on 25 data sets and compared with eight one-class algorithms; the results show that it performs on par with the eight algorithms. One-class learning algorithms are used in situations when training data are available only for one class, called target class. Data for other class(es), called outliers, are not available. One-class learning algorithms are used for detecting outliers, or novelty, in the data. The common approach in one-class learning is to use density estimation techniques or adapt standard classification algorithms to define a decision boundary that encompasses only the target data. In this paper, we introduce OneClass-DS learning algorithm that combines rule-based classification with greedy search algorithm based on density of features. Its performance is tested on 25 data sets and compared with eight other one-class algorithms; the results show that it performs on par with those algorithms.
AbstractList •One-class learning algorithms are used in situations when training data are available only for one class, called target class. Data for other class(es), called outliers, are not available.•One-class learning algorithms are used for detecting outliers, or novelty, in the data.•The common approaching one-class learning is to use density estimation techniques or adapt standard classification algorithms to define a decision boundary that encompasses the target data.•In this paper we introduce OneClass-DS learning algorithm that combines rule-based classification with greedy search algorithm based on density of features.•Its performance is tested on 25 data sets and compared with eight one-class algorithms; the results show that it performs on par with the eight algorithms. One-class learning algorithms are used in situations when training data are available only for one class, called target class. Data for other class(es), called outliers, are not available. One-class learning algorithms are used for detecting outliers, or novelty, in the data. The common approach in one-class learning is to use density estimation techniques or adapt standard classification algorithms to define a decision boundary that encompasses only the target data. In this paper, we introduce OneClass-DS learning algorithm that combines rule-based classification with greedy search algorithm based on density of features. Its performance is tested on 25 data sets and compared with eight other one-class algorithms; the results show that it performs on par with those algorithms.
Author Cios, Krzysztof J.
Nguyen, Dat T.
Author_xml – sequence: 1
  givenname: Dat T.
  surname: Nguyen
  fullname: Nguyen, Dat T.
  email: dat.nguyentien1780@hoasen.edu.vn
  organization: Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
– sequence: 2
  givenname: Krzysztof J.
  surname: Cios
  fullname: Cios, Krzysztof J.
  email: kcios@vcu.edu
  organization: Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
BookMark eNp9z0tLAzEQwPEgFWyrX8DTXj1kzbtZ8CL1CYWCj3PITmZrynZXklXw27ulnjwUBmYuv4H_jEy6vkNCLjkrOePmelv63EMpGNclG0fJEzLldiFoZSyfjLc2lqpKmTMyy3nLRlQJOyVXL18t0tpnDMW6w2Xrc6Z3r0WLPnWx2xS-3fQpDh-7c3La-Dbjxd-ek_eH-7flE12tH5-XtysKkrGB1hKMNlqZIKypQNdSqDoYw7QHAA2NkqiDUJKbBnkNFmq-8A2zQfBgOcg5EYe_kPqcEzbuM8WdTz-OM7ePdVu3j3X7WMfGUXJE9h-COPgh9t2QfGyP05sDxTHqO2JyGSJ2gCEmhMGFPh7jvyFOcV0
CitedBy_id crossref_primary_10_1016_j_ins_2021_02_031
crossref_primary_10_1016_j_asoc_2020_106250
crossref_primary_10_1007_s10044_017_0646_3
Cites_doi 10.1007/s007780050006
10.1109/TPAMI.2002.1033211
10.1007/s12530-012-9060-7
10.1109/TSMCB.2005.852983
10.1016/0893-6080(91)90045-7
10.1016/S0004-3702(96)00034-3
10.1007/s12530-010-9008-8
10.1109/TKDE.2004.1269594
10.1016/j.fss.2008.06.019
10.1023/B:MACH.0000008084.60811.49
10.1214/aoms/1177704472
10.1109/TFUZZ.2012.2226892
10.1016/0893-6080(89)90014-2
10.1007/s10489-005-4610-3
10.1142/S021848850700490X
ContentType Journal Article
Copyright 2015
Copyright_xml – notice: 2015
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2015.05.043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 279
ExternalDocumentID 10_1016_j_asoc_2015_05_043
S1568494615003889
GrantInformation_xml – fundername: NASA
  funderid: http://dx.doi.org/10.13039/100000104
– fundername: National Institutes of Health
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: U.S. Air Force
  funderid: http://dx.doi.org/10.13039/100006831
– fundername: North Atlantic Treaty Organization
  funderid: http://dx.doi.org/10.13039/501100000830
– fundername: National Science Foundation
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-b3c656546d2869c5b324bd6605accc5cf43e5d24316fe1bc8cb17af08d21d81c3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Wed Oct 29 21:27:45 EDT 2025
Thu Apr 24 23:02:47 EDT 2025
Fri Feb 23 02:27:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Outlier detection
One-class learning algorithm: OneClass-DS
Anomaly detection
Novelty detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-b3c656546d2869c5b324bd6605accc5cf43e5d24316fe1bc8cb17af08d21d81c3
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_asoc_2015_05_043
crossref_citationtrail_10_1016_j_asoc_2015_05_043
elsevier_sciencedirect_doi_10_1016_j_asoc_2015_05_043
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kraaijveld, Duin (bib0280) 1991
Barbará, Wu, Jajodia (bib0385) 2001
John (bib0370) 1995
Parzen (bib0275) 1962; 33
Kurgan, Cios (bib0455) 2004; 16
Brause, Langsdorf, Hepp (bib0405) 1999
Lughofer (bib0245) 2012; 3
Ypma, Duin (bib0295) 1998
Zengyou, Xiaofei, Huang, Deng (bib0415) 2004
Lughofer, Buchtala (bib0435) 2013; 21
Japkowicz, Myers, Gluck (bib0340) 1995
Dietterich, Lathrop, Lozano-Perez (bib0235) 1997; 89
Bishop (bib0270) 2007
Salvador, Chan (bib0350) 2005; 23
Alimoglu, Alpaydin (bib0460) 1996
Ullman (bib0265) 1978
Manevitz, Yousef (bib0445) 2001; 2
Bishop (bib0260) 1995
Barbará, Couto, Jajodia, Wu (bib0380) 2001
Hu, Liao, Vemuri (bib0315) 2002
Hastie, Tibshirani, Friedman (bib0355) 2009
Carpenter, Grossberg, Rosen (bib0320) 1991; 4
Nguyen, Nguyen, Hobson, Kurgan, Cios (bib0240) 2013; 43
Cohen (bib0360) 1995
Hertz, Krogh, Palmer (bib0330) 1991
Fan, Miller, Stolfo, Lee, Chan (bib0365) 2001
Iglesias, Angelov, Ledezma, Sanchis (bib0420) 2010; 1
Abe, Zadrozny, Langford (bib0375) 2006
Tarassenko, Hayton, Brady (bib0250) 1995; vol. 409
Vapnik (bib0290) 1998
Ratsch, Mika, Schokopf, Muller (bib0310) 2002; 24
Yairi, Kato, Hori (bib0410) 2001
Rehm, Klawonn, Kruse (bib0430) 2007; 15
Knorr, Ng, Tucakov (bib0300) 2000; 8
Kohonen (bib0325) 1995
Hempstalk, Frank, Witten (bib0285) 2007
Angelov, Lughofer, Zhou (bib0425) 2008; 159
Kurgan, Cios, Dick (bib0440) 2006; 36
Mahoney, Chan (bib0400) 2002
Otey, Parthasarathy, Ghoting, Li, Narravula, Panda (bib0395) 2003
Tax, Duin (bib0450) 2004; 54
Skalak, Rissland (bib0345) 1990
Baldi, Hornik (bib0335) 1989; 2
Duda, Hart (bib0255) 1973
Breunig, Kriegel, Ng, Sander (bib0305) 2000
Tandon, Chan (bib0390) 2007
Bishop (10.1016/j.asoc.2015.05.043_bib0270) 2007
Kohonen (10.1016/j.asoc.2015.05.043_bib0325) 1995
Bishop (10.1016/j.asoc.2015.05.043_bib0260) 1995
Vapnik (10.1016/j.asoc.2015.05.043_bib0290) 1998
Abe (10.1016/j.asoc.2015.05.043_bib0375) 2006
Iglesias (10.1016/j.asoc.2015.05.043_bib0420) 2010; 1
Nguyen (10.1016/j.asoc.2015.05.043_bib0240) 2013; 43
Yairi (10.1016/j.asoc.2015.05.043_bib0410) 2001
Tax (10.1016/j.asoc.2015.05.043_bib0450) 2004; 54
Carpenter (10.1016/j.asoc.2015.05.043_bib0320) 1991; 4
Tarassenko (10.1016/j.asoc.2015.05.043_bib0250) 1995; vol. 409
Alimoglu (10.1016/j.asoc.2015.05.043_bib0460) 1996
Hertz (10.1016/j.asoc.2015.05.043_bib0330) 1991
Kraaijveld (10.1016/j.asoc.2015.05.043_bib0280) 1991
Kurgan (10.1016/j.asoc.2015.05.043_bib0455) 2004; 16
Hempstalk (10.1016/j.asoc.2015.05.043_bib0285) 2007
Baldi (10.1016/j.asoc.2015.05.043_bib0335) 1989; 2
Manevitz (10.1016/j.asoc.2015.05.043_bib0445) 2001; 2
Kurgan (10.1016/j.asoc.2015.05.043_bib0440) 2006; 36
Tandon (10.1016/j.asoc.2015.05.043_bib0390) 2007
Mahoney (10.1016/j.asoc.2015.05.043_bib0400) 2002
Brause (10.1016/j.asoc.2015.05.043_bib0405) 1999
Zengyou (10.1016/j.asoc.2015.05.043_bib0415) 2004
Ratsch (10.1016/j.asoc.2015.05.043_bib0310) 2002; 24
Lughofer (10.1016/j.asoc.2015.05.043_bib0245) 2012; 3
Barbará (10.1016/j.asoc.2015.05.043_bib0385) 2001
Cohen (10.1016/j.asoc.2015.05.043_bib0360) 1995
Lughofer (10.1016/j.asoc.2015.05.043_bib0435) 2013; 21
Skalak (10.1016/j.asoc.2015.05.043_bib0345) 1990
Hastie (10.1016/j.asoc.2015.05.043_bib0355) 2009
John (10.1016/j.asoc.2015.05.043_bib0370) 1995
Otey (10.1016/j.asoc.2015.05.043_bib0395) 2003
Barbará (10.1016/j.asoc.2015.05.043_bib0380) 2001
Ypma (10.1016/j.asoc.2015.05.043_bib0295) 1998
Knorr (10.1016/j.asoc.2015.05.043_bib0300) 2000; 8
Japkowicz (10.1016/j.asoc.2015.05.043_bib0340) 1995
Dietterich (10.1016/j.asoc.2015.05.043_bib0235) 1997; 89
Ullman (10.1016/j.asoc.2015.05.043_bib0265) 1978
Parzen (10.1016/j.asoc.2015.05.043_bib0275) 1962; 33
Rehm (10.1016/j.asoc.2015.05.043_bib0430) 2007; 15
Salvador (10.1016/j.asoc.2015.05.043_bib0350) 2005; 23
Fan (10.1016/j.asoc.2015.05.043_bib0365) 2001
Angelov (10.1016/j.asoc.2015.05.043_bib0425) 2008; 159
Duda (10.1016/j.asoc.2015.05.043_bib0255) 1973
Breunig (10.1016/j.asoc.2015.05.043_bib0305) 2000
Hu (10.1016/j.asoc.2015.05.043_bib0315) 2002
References_xml – volume: 16
  start-page: 145
  year: 2004
  end-page: 153
  ident: bib0455
  article-title: CAIM discretization algorithm
  publication-title: IEEE Trans. Knowledge Data Eng.
– start-page: 726
  year: 2004
  end-page: 732
  ident: bib0415
  article-title: A Frequent Pattern Discovery Method for Outlier Detection
– volume: 4
  start-page: 493
  year: 1991
  end-page: 504
  ident: bib0320
  article-title: ART 2-A: an adaptive resonance algorithm for rapid category learning and recognition
  publication-title: Neural Netw.
– volume: 2
  start-page: 53
  year: 1989
  end-page: 58
  ident: bib0335
  article-title: Neural networks and principal component analysis: learning from examples without local minima
  publication-title: Neural Netw.
– volume: 21
  start-page: 625
  year: 2013
  end-page: 641
  ident: bib0435
  article-title: Reliable all-pairs evolving fuzzy classifiers
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 1998
  ident: bib0290
  article-title: Statistical Learning Theory
– start-page: 697
  year: 2007
  end-page: 706
  ident: bib0390
  article-title: Weighting versus pruning in rule validation for detecting network and host anomalies
  publication-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 2
  start-page: 139
  year: 2001
  end-page: 154
  ident: bib0445
  article-title: One-Class SVMs for document classification
  publication-title: J. Mach. Learn. Res.
– year: 2000
  ident: bib0305
  article-title: LOF: indentifying density-based local outliers
  publication-title: Proceedings of the ACM SIGMOD 2000 International Conference on Management of Data
– start-page: 504
  year: 2006
  end-page: 509
  ident: bib0375
  article-title: Outlier detection by active learning
  publication-title: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2007
  ident: bib0270
  article-title: Pattern Recognition and Machine Learning
– volume: 8
  start-page: 237
  year: 2000
  end-page: 253
  ident: bib0300
  article-title: Distance-based outliers: algorithms and applications
  publication-title: VLDB J.
– volume: 15
  start-page: 615
  year: 2007
  end-page: 624
  ident: bib0430
  article-title: Visualization of fuzzy classifiers
  publication-title: Int. J. Uncertainty, Fuzziness Knowledge-Based Syst.
– volume: 89
  start-page: 31
  year: 1997
  end-page: 71
  ident: bib0235
  article-title: Solving the multi-instance problem with Axis—parallel rectangles
  publication-title: Artif. Intell. J.
– start-page: 723
  year: 2003
  end-page: 728
  ident: bib0395
  article-title: Towards NIC-based intrusion detection
  publication-title: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 376
  year: 2002
  end-page: 385
  ident: bib0400
  article-title: Learning non-stationary models of normal network track for detecting novel attacks
  publication-title: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 103
  year: 1999
  end-page: 106
  ident: bib0405
  article-title: Neural data mining for credit card fraud detection
  publication-title: Proceedings of IEEE International Conference on Tools with Artificial Intelligence
– volume: 24
  start-page: 1184
  year: 2002
  end-page: 1199
  ident: bib0310
  article-title: Constructing boosting algorithms from SVMS: an application to one-class classification
  publication-title: Pattern Anal. Mach. Intell.
– year: 1998
  ident: bib0295
  article-title: Support objects for domain approximation
  publication-title: Proceedings of the International Conference on Artificial Neural Networks
– volume: 43
  start-page: 143
  year: 2013
  end-page: 154
  ident: bib0240
  article-title: mi-DS: Multiple-instance learning algorithm
  publication-title: IEEE Syst., Man, Cybern., B: Cybern.
– year: 1995
  ident: bib0325
  article-title: Self-organizing Maps
– start-page: 840
  year: 1990
  end-page: 847
  ident: bib0345
  article-title: Inductive learning in a mixed paradigm setting
  publication-title: Proceedings of National Conference of American Association for Artificial Intelligence
– year: 2001
  ident: bib0410
  article-title: Fault detection by mining association rules from house-keeping data
  publication-title: Proceedings of International Symposium on Artificial Intelligence, Robotics and Automation in Space
– volume: 23
  start-page: 241
  year: 2005
  end-page: 255
  ident: bib0350
  article-title: Learning states and rules for detecting anomalies in time series
  publication-title: Appl. Intell.
– volume: 1
  start-page: 161
  year: 2010
  end-page: 172
  ident: bib0420
  article-title: Evolving classification of agent's behaviors: a general approach
  publication-title: Evol. Syst.
– start-page: 123
  year: 2001
  end-page: 130
  ident: bib0365
  article-title: Using artificial anomalies to detect unknown and known network intrusions
  publication-title: Proceedings of the 2001 IEEE International Conference on Data Mining
– year: 2002
  ident: bib0315
  article-title: Robust anomaly detection using support vector machines
  publication-title: Proceedings of the International Conference on Machine Learning
– year: 2001
  ident: bib0385
  article-title: Detecting novel network intrusions using Bayes estimators
  publication-title: Proceeding of the First SIAM Conference on Data Mining
– year: 1991
  ident: bib0330
  article-title: Introduction to the Theory of Neural Computation
– year: 1991
  ident: bib0280
  article-title: A criterion for the smoothing parameter for parzen-estimators of probability density functions
  publication-title: Technical Report
– start-page: 115
  year: 1995
  end-page: 123
  ident: bib0360
  article-title: Fast effective rule induction
  publication-title: Proceeding 12th International Conference Machine Learning
– start-page: 174
  year: 1995
  end-page: 179
  ident: bib0370
  article-title: Robust decision trees: removing outliers from databases
  publication-title: Proceeding of Knowledge Discovery and Data Mining
– volume: 36
  start-page: 32
  year: 2006
  end-page: 53
  ident: bib0440
  article-title: Highly scalable and robust rule learner: performance evaluation and comparison
  publication-title: IEEE Syst., Man, Cybern., B: Cybern.
– start-page: 15
  year: 2001
  end-page: 24
  ident: bib0380
  article-title: Adam: a testbed for exploring the use of data mining in intrusion detection
  publication-title: Proceedings of the ACM SIGMOD 2001 International Conference on Management of Data
– year: 2009
  ident: bib0355
  article-title: The Elements of Statistical Learning: Data Mining, Inference and Prediction
– volume: 3
  start-page: 251
  year: 2012
  end-page: 271
  ident: bib0245
  article-title: Single-pass active learning with conflict and ignorance
  publication-title: Evol. Syst.
– year: 1996
  ident: bib0460
  article-title: Methods of combining classifiers based on different representations for pen-based handwritten digit recognition
  publication-title: Proceeding of Fifth Turkish Artificial Intelligence and Artificial Neural Networks Symposium (TAINN)
– year: 1973
  ident: bib0255
  article-title: Pattern Classification and Scene Analysis
– volume: 54
  start-page: 45
  year: 2004
  end-page: 66
  ident: bib0450
  article-title: Support vector data description
  publication-title: Mach. Learn.
– year: 1995
  ident: bib0260
  article-title: Neural Networks for Pattern Recognition
– volume: vol. 409
  start-page: 442
  year: 1995
  end-page: 447
  ident: bib0250
  article-title: Novelty detection for the identification of masses in mammograms
  publication-title: Proc. of the Fourth International IEE Conference on Artificial Neural Networks
– volume: 159
  start-page: 3160
  year: 2008
  end-page: 3182
  ident: bib0425
  article-title: Evolving fuzzy classifiers using different model architectures
  publication-title: Fuzzy Sets Syst.
– year: 2007
  ident: bib0285
  article-title: One-class Classification by Combining Density and Class Probability Estimation
– year: 1978
  ident: bib0265
  article-title: Elementary Statistics: An Applied Approach
– volume: 33
  start-page: 1065
  year: 1962
  end-page: 1076
  ident: bib0275
  article-title: On estimation of a probability density function and mode
  publication-title: Ann. Math. Stat.
– start-page: 518
  year: 1995
  end-page: 523
  ident: bib0340
  article-title: A novelty detection approach to classification
  publication-title: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence
– volume: 8
  start-page: 237
  issue: 3
  year: 2000
  ident: 10.1016/j.asoc.2015.05.043_bib0300
  article-title: Distance-based outliers: algorithms and applications
  publication-title: VLDB J.
  doi: 10.1007/s007780050006
– year: 1998
  ident: 10.1016/j.asoc.2015.05.043_bib0290
– volume: 24
  start-page: 1184
  year: 2002
  ident: 10.1016/j.asoc.2015.05.043_bib0310
  article-title: Constructing boosting algorithms from SVMS: an application to one-class classification
  publication-title: Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1033211
– start-page: 697
  year: 2007
  ident: 10.1016/j.asoc.2015.05.043_bib0390
  article-title: Weighting versus pruning in rule validation for detecting network and host anomalies
– start-page: 504
  year: 2006
  ident: 10.1016/j.asoc.2015.05.043_bib0375
  article-title: Outlier detection by active learning
– volume: 3
  start-page: 251
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2015.05.043_bib0245
  article-title: Single-pass active learning with conflict and ignorance
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-012-9060-7
– volume: 36
  start-page: 32
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2015.05.043_bib0440
  article-title: Highly scalable and robust rule learner: performance evaluation and comparison
  publication-title: IEEE Syst., Man, Cybern., B: Cybern.
  doi: 10.1109/TSMCB.2005.852983
– year: 1996
  ident: 10.1016/j.asoc.2015.05.043_bib0460
  article-title: Methods of combining classifiers based on different representations for pen-based handwritten digit recognition
– volume: vol. 409
  start-page: 442
  year: 1995
  ident: 10.1016/j.asoc.2015.05.043_bib0250
  article-title: Novelty detection for the identification of masses in mammograms
– volume: 4
  start-page: 493
  issue: 4
  year: 1991
  ident: 10.1016/j.asoc.2015.05.043_bib0320
  article-title: ART 2-A: an adaptive resonance algorithm for rapid category learning and recognition
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(91)90045-7
– start-page: 376
  year: 2002
  ident: 10.1016/j.asoc.2015.05.043_bib0400
  article-title: Learning non-stationary models of normal network track for detecting novel attacks
– start-page: 726
  year: 2004
  ident: 10.1016/j.asoc.2015.05.043_bib0415
– volume: 89
  start-page: 31
  issue: 1/2
  year: 1997
  ident: 10.1016/j.asoc.2015.05.043_bib0235
  article-title: Solving the multi-instance problem with Axis—parallel rectangles
  publication-title: Artif. Intell. J.
  doi: 10.1016/S0004-3702(96)00034-3
– year: 2009
  ident: 10.1016/j.asoc.2015.05.043_bib0355
– year: 1998
  ident: 10.1016/j.asoc.2015.05.043_bib0295
  article-title: Support objects for domain approximation
– start-page: 115
  year: 1995
  ident: 10.1016/j.asoc.2015.05.043_bib0360
  article-title: Fast effective rule induction
– start-page: 15
  year: 2001
  ident: 10.1016/j.asoc.2015.05.043_bib0380
  article-title: Adam: a testbed for exploring the use of data mining in intrusion detection
– year: 1978
  ident: 10.1016/j.asoc.2015.05.043_bib0265
– year: 2000
  ident: 10.1016/j.asoc.2015.05.043_bib0305
  article-title: LOF: indentifying density-based local outliers
– volume: 1
  start-page: 161
  issue: 3
  year: 2010
  ident: 10.1016/j.asoc.2015.05.043_bib0420
  article-title: Evolving classification of agent's behaviors: a general approach
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-010-9008-8
– volume: 16
  start-page: 145
  issue: 2
  year: 2004
  ident: 10.1016/j.asoc.2015.05.043_bib0455
  article-title: CAIM discretization algorithm
  publication-title: IEEE Trans. Knowledge Data Eng.
  doi: 10.1109/TKDE.2004.1269594
– start-page: 518
  year: 1995
  ident: 10.1016/j.asoc.2015.05.043_bib0340
  article-title: A novelty detection approach to classification
– year: 1973
  ident: 10.1016/j.asoc.2015.05.043_bib0255
– volume: 159
  start-page: 3160
  issue: 23
  year: 2008
  ident: 10.1016/j.asoc.2015.05.043_bib0425
  article-title: Evolving fuzzy classifiers using different model architectures
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2008.06.019
– volume: 54
  start-page: 45
  issue: 1
  year: 2004
  ident: 10.1016/j.asoc.2015.05.043_bib0450
  article-title: Support vector data description
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000008084.60811.49
– year: 1995
  ident: 10.1016/j.asoc.2015.05.043_bib0325
– year: 1995
  ident: 10.1016/j.asoc.2015.05.043_bib0260
– start-page: 174
  year: 1995
  ident: 10.1016/j.asoc.2015.05.043_bib0370
  article-title: Robust decision trees: removing outliers from databases
– volume: 43
  start-page: 143
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2015.05.043_bib0240
  article-title: mi-DS: Multiple-instance learning algorithm
  publication-title: IEEE Syst., Man, Cybern., B: Cybern.
– year: 2001
  ident: 10.1016/j.asoc.2015.05.043_bib0385
  article-title: Detecting novel network intrusions using Bayes estimators
– volume: 2
  start-page: 139
  year: 2001
  ident: 10.1016/j.asoc.2015.05.043_bib0445
  article-title: One-Class SVMs for document classification
  publication-title: J. Mach. Learn. Res.
– year: 2007
  ident: 10.1016/j.asoc.2015.05.043_bib0285
– volume: 33
  start-page: 1065
  year: 1962
  ident: 10.1016/j.asoc.2015.05.043_bib0275
  article-title: On estimation of a probability density function and mode
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704472
– volume: 21
  start-page: 625
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2015.05.043_bib0435
  article-title: Reliable all-pairs evolving fuzzy classifiers
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2012.2226892
– start-page: 123
  year: 2001
  ident: 10.1016/j.asoc.2015.05.043_bib0365
  article-title: Using artificial anomalies to detect unknown and known network intrusions
– volume: 2
  start-page: 53
  year: 1989
  ident: 10.1016/j.asoc.2015.05.043_bib0335
  article-title: Neural networks and principal component analysis: learning from examples without local minima
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90014-2
– volume: 23
  start-page: 241
  issue: 3
  year: 2005
  ident: 10.1016/j.asoc.2015.05.043_bib0350
  article-title: Learning states and rules for detecting anomalies in time series
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-005-4610-3
– year: 1991
  ident: 10.1016/j.asoc.2015.05.043_bib0280
  article-title: A criterion for the smoothing parameter for parzen-estimators of probability density functions
– year: 1991
  ident: 10.1016/j.asoc.2015.05.043_bib0330
– year: 2002
  ident: 10.1016/j.asoc.2015.05.043_bib0315
  article-title: Robust anomaly detection using support vector machines
– start-page: 723
  year: 2003
  ident: 10.1016/j.asoc.2015.05.043_bib0395
  article-title: Towards NIC-based intrusion detection
– volume: 15
  start-page: 615
  issue: 5
  year: 2007
  ident: 10.1016/j.asoc.2015.05.043_bib0430
  article-title: Visualization of fuzzy classifiers
  publication-title: Int. J. Uncertainty, Fuzziness Knowledge-Based Syst.
  doi: 10.1142/S021848850700490X
– start-page: 840
  year: 1990
  ident: 10.1016/j.asoc.2015.05.043_bib0345
  article-title: Inductive learning in a mixed paradigm setting
– year: 2001
  ident: 10.1016/j.asoc.2015.05.043_bib0410
  article-title: Fault detection by mining association rules from house-keeping data
– year: 2007
  ident: 10.1016/j.asoc.2015.05.043_bib0270
– start-page: 103
  year: 1999
  ident: 10.1016/j.asoc.2015.05.043_bib0405
  article-title: Neural data mining for credit card fraud detection
SSID ssj0016928
Score 2.1343365
Snippet •One-class learning algorithms are used in situations when training data are available only for one class, called target class. Data for other class(es),...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 267
SubjectTerms Anomaly detection
Novelty detection
One-class learning algorithm: OneClass-DS
Outlier detection
Title Rule-based OneClass-DS learning algorithm
URI https://dx.doi.org/10.1016/j.asoc.2015.05.043
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Complete Freedom Collection
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvXjxLdZHycGLyNpsskk3x1It9VWltdBb2EdSK7UtJb36291JNkVBehBCQsIsbCabeSTfzAdwmRq3pTgXhGuzY5FPiUgjSqjSjDNhFkn-Mee5F3aH7GEUjCrQLmthEFZpbX9h03Nrba80rDYbi8mkMTCZB2cRw47m2NIEi_gYayKLwc3XGuZBwyjnV0VhgtK2cKbAeAmjAYR3BXn3Tub_7Zx-OJzOHuzYSNFpFZPZh0oyO4DdkoXBsS_lIVz1V9OEoDfSzsssyVkuye3AsXwQY0dMx_PlJHv_PIJh5-6t3SWWAIEo33UzIn1lwq2AhdrjYaQCaaIfqUOTgQilVKBS5ieB9rCaPU2oVFxJ2hSpy7VHNafKP4bqbD5LTsAxcYDJRj2aCukxTpsSC3CZkhH-eTY5TQ1oeeexst3BkaRiGpcwsI8YtRWjtmLXbMyvwfV6zKLojbFROigVGv96wrEx3hvGnf5z3Bls41kBvDuHarZcJRcmgMhkPV8hddhqtftPr3i8f-z2vgEixcNa
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHvTi24jPHrwYs9Jtd8v2aFCCCpgIJNw23d0WMVgIKVd_u7vtlmhiOJg0PbQzSTvdzqP9Zj6A60SHLclYhJjSOxL6GEVJiBGWijAS6UWSf8zp9oL2kDyP6KgCzbIXxsAqre8vfHrure2RurVmfT6Z1Pu68mAkJGaiuRlpEm7AJqFew1Rgd18rnAcOwpxg1UgjI247ZwqQV6RNYPBdNB_fSfy_o9OPiNPagx2bKjr3xdXsQyVOD2C3pGFw7Ft5CDdvy2mMTDhSzmsa5zSX6KHvWEKIsRNNx7PFJHv_PIJh63HQbCPLgICk77oZEr7U-RYlgfJYEEoqdPojVKBLkEhKSWVC_Jgqz7SzJzEWkkmBG1HiMuVhxbD0j6GaztL4BBydCOhy1MNJJDzCcEOYDlwiRWh-Peuipga4vHMu7Xhww1Ix5SUO7IMba3FjLe7qjfg1uF3pzIvhGGulaWlQ_usRc-291-id_lPvCrbag26Hd556L2ewbc4UKLxzqGaLZXyhs4lMXOar5RvNOcNa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rule-based+OneClass-DS+learning+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Nguyen%2C+Dat+T.&rft.au=Cios%2C+Krzysztof+J.&rft.date=2015-10-01&rft.issn=1568-4946&rft.volume=35&rft.spage=267&rft.epage=279&rft_id=info:doi/10.1016%2Fj.asoc.2015.05.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2015_05_043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon