Operating optimization of air-conditioning water system in a subway station using data mining and dynamic system models

Energy-conservation potential in the air-condition water system for subway stations is huge due to its conservative design method. Also, for operation strategy of such systems, the operation modes are formulated with the fixed schedule. This paper presents a data-based optimization method to obtain...

Full description

Saved in:
Bibliographic Details
Published inJournal of Building Engineering Vol. 44; p. 103379
Main Authors Su, Xing, Huang, Yixiang, Wang, Lei, Tian, Shaochen, Luo, Yanping
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2021
Subjects
Online AccessGet full text
ISSN2352-7102
2352-7102
DOI10.1016/j.jobe.2021.103379

Cover

Abstract Energy-conservation potential in the air-condition water system for subway stations is huge due to its conservative design method. Also, for operation strategy of such systems, the operation modes are formulated with the fixed schedule. This paper presents a data-based optimization method to obtain optimal parameters of the system for feedforward control. The data mining models are established by using the data from energy consumption platform of the refrigerating system. The study utilized the box-plot method, kNN algorithm and k-means algorithm to process and repair original data. Then Artificial Neural Network (ANN) model is adopted to developed the forecasting model to assess load, performance and energy consumption of the system. The input features of the models are determined by the existed models and clustering analysis. The optimal parameters under the conditions of different load-ratio range and ambient thermal environments are calculated via Genetic Algorithm and trained equipment models. And the optimal parameters are applied to establish operation schedule based on feedforward control and response time. The optimal feedforward control method is verified by a validated TRNSYS model. When the parameters are optimized, the water system energy consumption can be save by 9.5% in a cooling season. •A data mining model-based optimization process is proposed.•Responses performance of the regulating actions is obtained by dynamic data.•Feedforward control method using optimal operating schedule is adopted.•System energy conservation rate in the cooling season reaches to 9.48%.
AbstractList Energy-conservation potential in the air-condition water system for subway stations is huge due to its conservative design method. Also, for operation strategy of such systems, the operation modes are formulated with the fixed schedule. This paper presents a data-based optimization method to obtain optimal parameters of the system for feedforward control. The data mining models are established by using the data from energy consumption platform of the refrigerating system. The study utilized the box-plot method, kNN algorithm and k-means algorithm to process and repair original data. Then Artificial Neural Network (ANN) model is adopted to developed the forecasting model to assess load, performance and energy consumption of the system. The input features of the models are determined by the existed models and clustering analysis. The optimal parameters under the conditions of different load-ratio range and ambient thermal environments are calculated via Genetic Algorithm and trained equipment models. And the optimal parameters are applied to establish operation schedule based on feedforward control and response time. The optimal feedforward control method is verified by a validated TRNSYS model. When the parameters are optimized, the water system energy consumption can be save by 9.5% in a cooling season. •A data mining model-based optimization process is proposed.•Responses performance of the regulating actions is obtained by dynamic data.•Feedforward control method using optimal operating schedule is adopted.•System energy conservation rate in the cooling season reaches to 9.48%.
ArticleNumber 103379
Author Huang, Yixiang
Luo, Yanping
Wang, Lei
Su, Xing
Tian, Shaochen
Author_xml – sequence: 1
  givenname: Xing
  orcidid: 0000-0001-8532-1142
  surname: Su
  fullname: Su, Xing
  email: suxing@tongji.edu.cn
  organization: School of Mechanical Engineering, Tongji University, Shanghai, 200092, China
– sequence: 2
  givenname: Yixiang
  orcidid: 0000-0002-8695-5857
  surname: Huang
  fullname: Huang, Yixiang
  organization: School of Mechanical Engineering, Tongji University, Shanghai, 200092, China
– sequence: 3
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: School of Mechanical Engineering, Tongji University, Shanghai, 200092, China
– sequence: 4
  givenname: Shaochen
  surname: Tian
  fullname: Tian, Shaochen
  organization: School of Mechanical Engineering, Tongji University, Shanghai, 200092, China
– sequence: 5
  givenname: Yanping
  surname: Luo
  fullname: Luo, Yanping
  organization: Guangzhou Metro Design and Research Institute Company Limited, Guangzhou, 440104, China
BookMark eNp9kEtLAzEUhYNUsNb-AVf5A1PzmCe4keILhG50HTLJjaR0kpKklvHXO-MoiIuu7r2H81045xLNnHeA0DUlK0poebNdbX0LK0YYHQTOq-YMzRkvWFZRwmZ_9gu0jHFLCGFNwesyn6PjZg9BJuvesd8n29nP4fAOe4OlDZnyTttRGA1HmSDg2McEHbYOSxwP7VH2OKYJOsTRpmWSuLPfiHQa697JzqpfsPMadvEKnRu5i7D8mQv09nD_un7KXjaPz-u7l0xxQlImTcF5zihvACgtSQtVnstKs1w3mtNalUTWwBlrVVVDw4gxWjWEF0TXRuWGLxCb_qrgYwxgxD7YToZeUCLG9sRWjO2JsT0xtTdA9T9I2SliCtLuTqO3EzpkhA8LQURlwSnQNoBKQnt7Cv8C1DWPYg
CitedBy_id crossref_primary_10_2174_0122127976290109240228093956
crossref_primary_10_1016_j_enbuild_2023_113667
crossref_primary_10_3390_buildings13092349
crossref_primary_10_1016_j_enbenv_2022_05_001
crossref_primary_10_1016_j_jobe_2025_112413
crossref_primary_10_1177_01436244231186902
crossref_primary_10_2174_0122127976290446240228055313
Cites_doi 10.1016/j.enbuild.2013.02.006
10.1016/j.enbuild.2010.10.017
10.1016/j.enbuild.2006.03.033
10.1016/j.scs.2018.06.009
10.1016/j.apenergy.2009.01.015
10.1016/j.enbuild.2020.110407
10.1080/00207160802033582
10.1016/S0031-3203(02)00060-2
10.1177/0144598719881224
10.1016/j.enbuild.2013.06.007
10.1016/j.apenergy.2014.04.005
10.1016/j.energy.2012.03.063
10.1016/j.cie.2007.12.002
10.1016/j.enbuild.2014.06.052
10.1016/j.enbuild.2012.01.007
10.1016/j.enbuild.2005.02.005
10.1016/j.applthermaleng.2014.04.016
10.1016/j.enbuild.2011.06.043
10.1016/j.jobe.2019.100826
10.1016/S1359-4311(00)00036-3
10.1016/j.enbuild.2015.09.060
10.1016/j.enbuild.2009.10.027
10.1016/j.enbuild.2014.02.005
10.1016/j.autcon.2014.12.006
10.1080/10789669.2002.10391291
10.1016/j.enbuild.2015.03.044
10.1016/j.scs.2018.09.013
10.1016/j.enconman.2005.10.023
10.1016/j.enconman.2004.06.012
10.1016/j.enconman.2004.06.011
10.1016/j.apenergy.2012.12.031
10.1198/004017007000000074
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jobe.2021.103379
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-7102
ExternalDocumentID 10_1016_j_jobe_2021_103379
S2352710221012377
GroupedDBID --M
0R~
4.4
457
7-5
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FYGXN
GBLVA
HVGLF
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSL
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c300t-af53342139ee1160be744a7d24d9d318c60a8e322bc78e920ffdc90350d8fc4f3
IEDL.DBID AIKHN
ISSN 2352-7102
IngestDate Wed Oct 01 04:40:48 EDT 2025
Thu Apr 24 23:08:41 EDT 2025
Fri Feb 23 02:40:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feedforward control
Subway station
Air conditioning water system
Parameters optimizing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-af53342139ee1160be744a7d24d9d318c60a8e322bc78e920ffdc90350d8fc4f3
ORCID 0000-0002-8695-5857
0000-0001-8532-1142
ParticipantIDs crossref_primary_10_1016_j_jobe_2021_103379
crossref_citationtrail_10_1016_j_jobe_2021_103379
elsevier_sciencedirect_doi_10_1016_j_jobe_2021_103379
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Journal of Building Engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yang, Rivard, Zmeureanu (bib20) 2005; 37
Biyik, Kahraman (bib32) 2019; 25
Xiao, Fan (bib8) 2014; 75
Kusiak, Zeng, Xu (bib28) 2013; 60
Pan, Pei, Wei, Wang, Liu, Zhang, Li, Gu (bib5) 2018; 43
Kuo, Yang, Huang (bib34) 2008; 55
Engineers (bib37) 2012
Fan, Xiao, Yan (bib9) 2015; 50
Fan, Xiao, Madsen, Wang (bib7) 2015; 109
Gang, Wang (bib31) 2013; 112
Ye, Jing (bib22) 2010; 42
Braun, Klein, Mitchell, Beckman (bib38) 1989; 95
Bo, Jin, Du (bib23) 2011; 43
Seem (bib12) 2007; 39
Lu, Cai, Chai, Xie (bib26) 2005; 46
Gang, Wang, Wang (bib30) 2014; 136
Reddy, Andersen (bib36) 2002; 8
Li, Zhang, Wang, Yue, Che, Zhao, Wang, Duan (bib4) 2020; 38
Lu, Cai, Soh, Xie (bib27) 2005; 46
Zhao, Shen (bib1) 2019; 81
Yang, Yu, Yu, Ma (bib6) 2014; 69
Li, Li (bib24) 2020; 227
Guan, Zhang, Liu (bib3) 2018; 41
Pardoe, Cook, Yin (bib14) 2007; 49
Hao, Song, Zhou (bib16) 2014; 31
Ongradac, Kuli (bib25) 2012; 47
Schiavon, Lee, Bauman, Webster (bib17) 2011; 43
Yuan (bib33) 2013; 27
Lai, Magoulès, Lherminier (bib19) 2008; 85
Likas, Vlassis, Verbeek (bib15) 2003; 36
Chen, Hao, Zhang, Wang (bib10) 2006; 47
Swider, Browne, Bansal, Kecman (bib35) 2001; 21
Kusiak, Xu (bib29) 2012; 42
Guan, Zhang, Liu (bib2) 2018; 41
Du, Jin, Yang (bib11) 2009; 86
Ogunsola, Song (bib13) 2015; 96
Mena, Rodríguez, Castilla, Arahal (bib21) 2014; 82
Kumar, Aggarwal, Sharma (bib18) 2013; 65
Zhao (10.1016/j.jobe.2021.103379_bib1) 2019; 81
Xiao (10.1016/j.jobe.2021.103379_bib8) 2014; 75
Yuan (10.1016/j.jobe.2021.103379_bib33) 2013; 27
Yang (10.1016/j.jobe.2021.103379_bib20) 2005; 37
Ongradac (10.1016/j.jobe.2021.103379_bib25) 2012; 47
Guan (10.1016/j.jobe.2021.103379_bib2) 2018; 41
Bo (10.1016/j.jobe.2021.103379_bib23) 2011; 43
Ye (10.1016/j.jobe.2021.103379_bib22) 2010; 42
Kumar (10.1016/j.jobe.2021.103379_bib18) 2013; 65
Mena (10.1016/j.jobe.2021.103379_bib21) 2014; 82
Hao (10.1016/j.jobe.2021.103379_bib16) 2014; 31
Du (10.1016/j.jobe.2021.103379_bib11) 2009; 86
Kuo (10.1016/j.jobe.2021.103379_bib34) 2008; 55
Lu (10.1016/j.jobe.2021.103379_bib26) 2005; 46
Gang (10.1016/j.jobe.2021.103379_bib30) 2014; 136
Ogunsola (10.1016/j.jobe.2021.103379_bib13) 2015; 96
Gang (10.1016/j.jobe.2021.103379_bib31) 2013; 112
Engineers (10.1016/j.jobe.2021.103379_bib37) 2012
Pan (10.1016/j.jobe.2021.103379_bib5) 2018; 43
Kusiak (10.1016/j.jobe.2021.103379_bib29) 2012; 42
Li (10.1016/j.jobe.2021.103379_bib4) 2020; 38
Schiavon (10.1016/j.jobe.2021.103379_bib17) 2011; 43
Biyik (10.1016/j.jobe.2021.103379_bib32) 2019; 25
Guan (10.1016/j.jobe.2021.103379_bib3) 2018; 41
Kusiak (10.1016/j.jobe.2021.103379_bib28) 2013; 60
Chen (10.1016/j.jobe.2021.103379_bib10) 2006; 47
Braun (10.1016/j.jobe.2021.103379_bib38) 1989; 95
Seem (10.1016/j.jobe.2021.103379_bib12) 2007; 39
Lu (10.1016/j.jobe.2021.103379_bib27) 2005; 46
Fan (10.1016/j.jobe.2021.103379_bib7) 2015; 109
Likas (10.1016/j.jobe.2021.103379_bib15) 2003; 36
Swider (10.1016/j.jobe.2021.103379_bib35) 2001; 21
Li (10.1016/j.jobe.2021.103379_bib24) 2020; 227
Reddy (10.1016/j.jobe.2021.103379_bib36) 2002; 8
Yang (10.1016/j.jobe.2021.103379_bib6) 2014; 69
Fan (10.1016/j.jobe.2021.103379_bib9) 2015; 50
Pardoe (10.1016/j.jobe.2021.103379_bib14) 2007; 49
Lai (10.1016/j.jobe.2021.103379_bib19) 2008; 85
References_xml – volume: 55
  start-page: 80
  year: 2008
  end-page: 93
  ident: bib34
  article-title: The use of grey relational analysis in solving multiple attribute decision-making problems
  publication-title: Comput. Ind. Eng.
– volume: 96
  start-page: 309
  year: 2015
  end-page: 318
  ident: bib13
  article-title: Application of a simplified thermal network model for real-time thermal load estimation
  publication-title: Energy Build.
– volume: 46
  start-page: 999
  year: 2005
  end-page: 1014
  ident: bib26
  article-title: Global optimization for overall HVAC systems––Part I problem formulation and analysis
  publication-title: Energy Convers. Manag.
– volume: 43
  start-page: 517
  year: 2011
  end-page: 528
  ident: bib17
  article-title: Simplified calculation method for design cooling loads in underfloor air distribution (UFAD) systems
  publication-title: Energy Build.
– volume: 47
  start-page: 651
  year: 2012
  end-page: 658
  ident: bib25
  article-title: Recognition of the importance of using artificial neural networks and genetic algorithms to optimize chiller operation
  publication-title: Energy Build.
– volume: 47
  start-page: 1700
  year: 2006
  end-page: 1710
  ident: bib10
  article-title: Flow meter fault isolation in building central chilling systems using wavelet analysis
  publication-title: Energy Convers. Manag.
– volume: 42
  start-page: 570
  year: 2010
  end-page: 583
  ident: bib22
  article-title: Global optimization of a central air-conditioning system using decomposition–coordination method
  publication-title: Energy Build.
– volume: 25
  start-page: 100826
  year: 2019
  ident: bib32
  article-title: A predictive control strategy for optimal management of peak load, thermal comfort, energy storage and renewables in multi-zone buildings
  publication-title: J. Build. Eng.
– volume: 49
  start-page: 172
  year: 2007
  end-page: 183
  ident: bib14
  article-title: Graphical tools for quadratic discriminant analysis
  publication-title: Technometrics
– volume: 85
  start-page: 1563
  year: 2008
  end-page: 1588
  ident: bib19
  article-title: Vapnik's learning theory applied to energy consumption forecasts in residential buildings
  publication-title: Int. J. Comput. Math.
– volume: 227
  start-page: 110407
  year: 2020
  ident: bib24
  article-title: Model-based optimization of free cooling switchover temperature and cooling tower approach temperature for data center cooling system with water-side economizer
  publication-title: Energy Build.
– volume: 60
  start-page: 355
  year: 2013
  end-page: 363
  ident: bib28
  article-title: Minimizing energy consumption of an air handling unit with a computational intelligence approach
  publication-title: Energy Build.
– volume: 31
  start-page: 264
  year: 2014
  end-page: 268
  ident: bib16
  article-title: Predicting missing values with KNN based on the elimination of neighbor noise
  publication-title: Comput. Simul.
– volume: 82
  start-page: 142
  year: 2014
  end-page: 155
  ident: bib21
  article-title: A prediction model based on neural networks for the energy consumption of a bioclimatic building
  publication-title: Energy Build.
– volume: 50
  start-page: 81
  year: 2015
  end-page: 90
  ident: bib9
  article-title: A framework for knowledge discovery in massive building automation data and its application in building diagnostics
  publication-title: Autom. ConStruct.
– volume: 95
  start-page: 663
  year: 1989
  end-page: 675
  ident: bib38
  article-title: Applications of optimal control to chilled water systems without storage
  publication-title: Ashrae Trans
– volume: 69
  start-page: 123
  year: 2014
  end-page: 129
  ident: bib6
  article-title: Research on frequency conversion technology of metro station's ventilation and air-conditioning system
  publication-title: Appl. Therm. Eng.
– volume: 36
  start-page: 451
  year: 2003
  end-page: 461
  ident: bib15
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recogn.
– volume: 43
  start-page: 2813
  year: 2011
  end-page: 2821
  ident: bib23
  article-title: Optimal control strategies for multi-chiller system based on probability density distribution of cooling load ratio
  publication-title: Energy Build.
– volume: 37
  start-page: 1250
  year: 2005
  end-page: 1259
  ident: bib20
  article-title: On-line building energy prediction using adaptive artificial neural networks
  publication-title: Energy Build.
– volume: 65
  start-page: 352
  year: 2013
  end-page: 358
  ident: bib18
  article-title: Energy analysis of a building using artificial neural network: a review
  publication-title: Energy Build.
– volume: 41
  start-page: 513
  year: 2018
  end-page: 524
  ident: bib2
  article-title: Performance investigation of outdoor air supply and indoor environment related to energy consumption in two subway stations
  publication-title: Sustain. Cities Soc.
– volume: 136
  start-page: 1138
  year: 2014
  end-page: 1144
  ident: bib30
  article-title: Performance analysis of hybrid ground source heat pump systems based on ANN predictive control
  publication-title: Appl. Energy
– year: 2012
  ident: bib37
  article-title: ASHRAE Handbook. Heating, Ventilating, and Air-Conditioning Systems and Applications, ASHRAE Handbook. Heating, Ventilating, and Air-Conditioning Systems and Applications
– volume: 43
  start-page: 550
  year: 2018
  end-page: 562
  ident: bib5
  article-title: Design and experimental study of a novel air conditioning system using evaporative condenser at a subway station in Beijing, China
  publication-title: Sustain. Cities Soc.
– volume: 41
  start-page: 513
  year: 2018
  end-page: 524
  ident: bib3
  article-title: Performance investigation of outdoor air supply and indoor environment related to energy consumption in two subway stations
  publication-title: Sustain. Cities Soc.
– volume: 86
  start-page: 1624
  year: 2009
  end-page: 1631
  ident: bib11
  article-title: Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network
  publication-title: Appl. Energy
– volume: 38
  start-page: 235
  year: 2020
  end-page: 252
  ident: bib4
  article-title: Field investigation on operation parameters and performance of air conditioning system in a subway station
  publication-title: Energy Explor. Exploit.
– volume: 109
  start-page: 75
  year: 2015
  end-page: 89
  ident: bib7
  article-title: Temporal knowledge discovery in big BAS data for building energy management
  publication-title: Energy Build.
– volume: 75
  start-page: 109
  year: 2014
  end-page: 118
  ident: bib8
  article-title: Data mining in building automation system for improving building operational performance
  publication-title: Energy Build.
– volume: 8
  start-page: 101
  year: 2002
  end-page: 124
  ident: bib36
  article-title: An evaluation of classical steady state off line linear parameter estimation methods applied to chiller performance data
  publication-title: HVAC R Res.
– volume: 39
  start-page: 52
  year: 2007
  end-page: 58
  ident: bib12
  article-title: Using intelligent data analysis to detect abnormal energy consumption in buildings
  publication-title: Energy Build.
– volume: 112
  start-page: 1146
  year: 2013
  end-page: 1153
  ident: bib31
  article-title: Predictive ANN models of ground heat exchanger for the control of hybrid ground source heat pump systems
  publication-title: Appl. Energy
– volume: 46
  start-page: 1015
  year: 2005
  end-page: 1028
  ident: bib27
  article-title: Global optimization for overall HVAC systems––Part II problem solution and simulations
  publication-title: Energy Convers. Manag.
– volume: 42
  start-page: 241
  year: 2012
  end-page: 250
  ident: bib29
  article-title: Modeling and optimization of HVAC systems using a dynamic neural network
  publication-title: Energy
– volume: 27
  start-page: 158
  year: 2013
  end-page: 161
  ident: bib33
  article-title: Study of the computational person in public condition system of transfer subway station, refrig
  publication-title: Air Cond
– volume: 81
  start-page: 396
  year: 2019
  end-page: 405
  ident: bib1
  article-title: The impacts of rail transit on future urban land use development: a case study in Wuhan, China, Transp
  publication-title: Policy
– volume: 21
  start-page: 311
  year: 2001
  end-page: 329
  ident: bib35
  article-title: Modelling of vapour-compression liquid chillers with neural networks - ScienceDirect
  publication-title: Appl. Therm. Eng.
– volume: 60
  start-page: 355
  year: 2013
  ident: 10.1016/j.jobe.2021.103379_bib28
  article-title: Minimizing energy consumption of an air handling unit with a computational intelligence approach
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.02.006
– volume: 43
  start-page: 517
  year: 2011
  ident: 10.1016/j.jobe.2021.103379_bib17
  article-title: Simplified calculation method for design cooling loads in underfloor air distribution (UFAD) systems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.10.017
– volume: 39
  start-page: 52
  year: 2007
  ident: 10.1016/j.jobe.2021.103379_bib12
  article-title: Using intelligent data analysis to detect abnormal energy consumption in buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2006.03.033
– volume: 41
  start-page: 513
  year: 2018
  ident: 10.1016/j.jobe.2021.103379_bib3
  article-title: Performance investigation of outdoor air supply and indoor environment related to energy consumption in two subway stations
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.06.009
– volume: 86
  start-page: 1624
  year: 2009
  ident: 10.1016/j.jobe.2021.103379_bib11
  article-title: Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.01.015
– volume: 227
  start-page: 110407
  year: 2020
  ident: 10.1016/j.jobe.2021.103379_bib24
  article-title: Model-based optimization of free cooling switchover temperature and cooling tower approach temperature for data center cooling system with water-side economizer
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110407
– volume: 85
  start-page: 1563
  year: 2008
  ident: 10.1016/j.jobe.2021.103379_bib19
  article-title: Vapnik's learning theory applied to energy consumption forecasts in residential buildings
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160802033582
– volume: 27
  start-page: 158
  year: 2013
  ident: 10.1016/j.jobe.2021.103379_bib33
  article-title: Study of the computational person in public condition system of transfer subway station, refrig
  publication-title: Air Cond
– volume: 41
  start-page: 513
  year: 2018
  ident: 10.1016/j.jobe.2021.103379_bib2
  article-title: Performance investigation of outdoor air supply and indoor environment related to energy consumption in two subway stations
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.06.009
– volume: 36
  start-page: 451
  year: 2003
  ident: 10.1016/j.jobe.2021.103379_bib15
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(02)00060-2
– volume: 38
  start-page: 235
  year: 2020
  ident: 10.1016/j.jobe.2021.103379_bib4
  article-title: Field investigation on operation parameters and performance of air conditioning system in a subway station
  publication-title: Energy Explor. Exploit.
  doi: 10.1177/0144598719881224
– volume: 65
  start-page: 352
  year: 2013
  ident: 10.1016/j.jobe.2021.103379_bib18
  article-title: Energy analysis of a building using artificial neural network: a review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.06.007
– volume: 136
  start-page: 1138
  year: 2014
  ident: 10.1016/j.jobe.2021.103379_bib30
  article-title: Performance analysis of hybrid ground source heat pump systems based on ANN predictive control
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.04.005
– volume: 95
  start-page: 663
  year: 1989
  ident: 10.1016/j.jobe.2021.103379_bib38
  article-title: Applications of optimal control to chilled water systems without storage
  publication-title: Ashrae Trans
– volume: 42
  start-page: 241
  year: 2012
  ident: 10.1016/j.jobe.2021.103379_bib29
  article-title: Modeling and optimization of HVAC systems using a dynamic neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2012.03.063
– volume: 55
  start-page: 80
  year: 2008
  ident: 10.1016/j.jobe.2021.103379_bib34
  article-title: The use of grey relational analysis in solving multiple attribute decision-making problems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2007.12.002
– volume: 82
  start-page: 142
  year: 2014
  ident: 10.1016/j.jobe.2021.103379_bib21
  article-title: A prediction model based on neural networks for the energy consumption of a bioclimatic building
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.06.052
– volume: 47
  start-page: 651
  year: 2012
  ident: 10.1016/j.jobe.2021.103379_bib25
  article-title: Recognition of the importance of using artificial neural networks and genetic algorithms to optimize chiller operation
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.01.007
– volume: 37
  start-page: 1250
  year: 2005
  ident: 10.1016/j.jobe.2021.103379_bib20
  article-title: On-line building energy prediction using adaptive artificial neural networks
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2005.02.005
– volume: 69
  start-page: 123
  year: 2014
  ident: 10.1016/j.jobe.2021.103379_bib6
  article-title: Research on frequency conversion technology of metro station's ventilation and air-conditioning system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.04.016
– volume: 43
  start-page: 2813
  year: 2011
  ident: 10.1016/j.jobe.2021.103379_bib23
  article-title: Optimal control strategies for multi-chiller system based on probability density distribution of cooling load ratio
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.06.043
– volume: 25
  start-page: 100826
  year: 2019
  ident: 10.1016/j.jobe.2021.103379_bib32
  article-title: A predictive control strategy for optimal management of peak load, thermal comfort, energy storage and renewables in multi-zone buildings
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2019.100826
– volume: 31
  start-page: 264
  year: 2014
  ident: 10.1016/j.jobe.2021.103379_bib16
  article-title: Predicting missing values with KNN based on the elimination of neighbor noise
  publication-title: Comput. Simul.
– volume: 21
  start-page: 311
  year: 2001
  ident: 10.1016/j.jobe.2021.103379_bib35
  article-title: Modelling of vapour-compression liquid chillers with neural networks - ScienceDirect
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(00)00036-3
– volume: 109
  start-page: 75
  year: 2015
  ident: 10.1016/j.jobe.2021.103379_bib7
  article-title: Temporal knowledge discovery in big BAS data for building energy management
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.09.060
– volume: 42
  start-page: 570
  year: 2010
  ident: 10.1016/j.jobe.2021.103379_bib22
  article-title: Global optimization of a central air-conditioning system using decomposition–coordination method
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2009.10.027
– volume: 75
  start-page: 109
  year: 2014
  ident: 10.1016/j.jobe.2021.103379_bib8
  article-title: Data mining in building automation system for improving building operational performance
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.02.005
– volume: 50
  start-page: 81
  year: 2015
  ident: 10.1016/j.jobe.2021.103379_bib9
  article-title: A framework for knowledge discovery in massive building automation data and its application in building diagnostics
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2014.12.006
– volume: 8
  start-page: 101
  year: 2002
  ident: 10.1016/j.jobe.2021.103379_bib36
  article-title: An evaluation of classical steady state off line linear parameter estimation methods applied to chiller performance data
  publication-title: HVAC R Res.
  doi: 10.1080/10789669.2002.10391291
– volume: 96
  start-page: 309
  year: 2015
  ident: 10.1016/j.jobe.2021.103379_bib13
  article-title: Application of a simplified thermal network model for real-time thermal load estimation
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.03.044
– year: 2012
  ident: 10.1016/j.jobe.2021.103379_bib37
– volume: 43
  start-page: 550
  year: 2018
  ident: 10.1016/j.jobe.2021.103379_bib5
  article-title: Design and experimental study of a novel air conditioning system using evaporative condenser at a subway station in Beijing, China
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.09.013
– volume: 47
  start-page: 1700
  year: 2006
  ident: 10.1016/j.jobe.2021.103379_bib10
  article-title: Flow meter fault isolation in building central chilling systems using wavelet analysis
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2005.10.023
– volume: 46
  start-page: 999
  year: 2005
  ident: 10.1016/j.jobe.2021.103379_bib26
  article-title: Global optimization for overall HVAC systems––Part I problem formulation and analysis
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2004.06.012
– volume: 81
  start-page: 396
  year: 2019
  ident: 10.1016/j.jobe.2021.103379_bib1
  article-title: The impacts of rail transit on future urban land use development: a case study in Wuhan, China, Transp
  publication-title: Policy
– volume: 46
  start-page: 1015
  year: 2005
  ident: 10.1016/j.jobe.2021.103379_bib27
  article-title: Global optimization for overall HVAC systems––Part II problem solution and simulations
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2004.06.011
– volume: 112
  start-page: 1146
  year: 2013
  ident: 10.1016/j.jobe.2021.103379_bib31
  article-title: Predictive ANN models of ground heat exchanger for the control of hybrid ground source heat pump systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.12.031
– volume: 49
  start-page: 172
  year: 2007
  ident: 10.1016/j.jobe.2021.103379_bib14
  article-title: Graphical tools for quadratic discriminant analysis
  publication-title: Technometrics
  doi: 10.1198/004017007000000074
SSID ssj0002953864
Score 2.3107975
Snippet Energy-conservation potential in the air-condition water system for subway stations is huge due to its conservative design method. Also, for operation strategy...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103379
SubjectTerms Air conditioning water system
Feedforward control
Parameters optimizing
Subway station
Title Operating optimization of air-conditioning water system in a subway station using data mining and dynamic system models
URI https://dx.doi.org/10.1016/j.jobe.2021.103379
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2352-7102
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002953864
  issn: 2352-7102
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 2352-7102
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002953864
  issn: 2352-7102
  databaseCode: ACRLP
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 2352-7102
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002953864
  issn: 2352-7102
  databaseCode: AIKHN
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe_Eiior1xRy8SWiySfM4lmKpivWghd7CPiXFpqUPiv_eneymKEgPHhMyEGZ39pvd_b4ZQu5QxxPQ2IwAp8qLWMg9FovQk6nQsebdTFDUO7-M4uE4epp0Jw3Sr7UwSKt0a79d06vV2r3pOG92FkXReaMmd0B8pFiiKkySA9Iy-JOmTdLqPT4PR7ujFpqZqK4KSaEJsg-pk89YptcUdTfUgB0q0EMkdf0FUT9gZ3BMjly-CD37SyekocpTsn1dYC1kgzowNyE_c1pKmGtgxdIzW1xZuINW2Jpkcgm2YDMUJTBYbfiWfcHKXsIDMt8_AJmiMKu6RQArJUjbqb42rBrmrM7IePDw3h96roOCJ0LfX3tMo9KWmixPqSCIfa6SKGKJpJHMpIlmEfssVSamuUhSlVFfaykyvGyUqRaRDs9Js5yX6oKATv2McY3-iSKVsIyH2gCgFr4KzJ6EtUlQOy0Xrrw4drn4zGse2TRHR-fo6Nw6uk3udzYLW1xj79fdeizyX1MkN6v_HrvLf9pdkUN8styVa9JcLzfqxmQga37rZtg3IKXa1w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61PehFFBXrMwdvsnQ3m30dpVhWq_VgC96WPGWL3Za2Uvz3ZjZZURAPXrMZWCaZR5Lvm0HoCng8AYnNCnCiPMpC7rFYhJ5MhY41jzJBgO_8OIrzCb1_iV5aqN9wYQBW6Xy_9em1t3YjPafN3qIse8_E5A4QHwmUqAqTZAt1aBQmxjo7N3fDfPR11UIyY9V1ISkQAfQhcfQZi_SaAu-GmGAHDPQQQF2_hahvYWewh3Zdvohv7C_to5aqDtDmaQG1kE3UwXNj8jPHpcRzjVm59MwRV5buohVvTDK5xLZgMy4rzPDqnW_YB17ZR3gMyPdXDEhRPKu7RWBWSSxtp_pGsG6YszpEk8HtuJ97roOCJ0LfX3tMA9OWmCxPqSCIfa4SSlkiCZWZNNYsYp-lytg0F0mqMuJrLUUGj40y1YLq8Ai1q3mljhHWqZ8xrkE_lKqEZTzUJgBq4avAnElYFwWN0grhyotDl4u3osGRTQtQdAGKLqyiu-j6S2Zhi2v8OTtq1qL4sUUK4_3_kDv5p9wl2s7Hjw_Fw91oeIp24IvFsZyh9nr5rs5NNrLmF263fQJtUd24
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operating+optimization+of+air-conditioning+water+system+in+a+subway+station+using+data+mining+and+dynamic+system+models&rft.jtitle=Journal+of+Building+Engineering&rft.au=Su%2C+Xing&rft.au=Huang%2C+Yixiang&rft.au=Wang%2C+Lei&rft.au=Tian%2C+Shaochen&rft.date=2021-12-01&rft.issn=2352-7102&rft.eissn=2352-7102&rft.volume=44&rft.spage=103379&rft_id=info:doi/10.1016%2Fj.jobe.2021.103379&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jobe_2021_103379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7102&client=summon