An improved capuchin search algorithm optimized hybrid CNN-LSTM architecture for malignant lung nodule detection

[Display omitted] •Hybrid CNN-LSTM architecture is proposed to improve the unbalanced class problem.•pulmonary parenchyma region is segmented using the entropy-based K-means clustering technique.•The Opposition based learning are used in the ICSA algorithm to enhance its convergence rate.•This study...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 78; p. 103973
Main Authors Kanipriya, M., Hemalatha, C., Sridevi, N., SriVidhya, S.R., Jany Shabu, S.L.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2022
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2022.103973

Cover

Abstract [Display omitted] •Hybrid CNN-LSTM architecture is proposed to improve the unbalanced class problem.•pulmonary parenchyma region is segmented using the entropy-based K-means clustering technique.•The Opposition based learning are used in the ICSA algorithm to enhance its convergence rate.•This study presents novel and effective methods for classifying lung nodule abnormalities. For the early diagnosis of lung cancer, radiologists assisted computer-aided detection (CAD) systems are used. The false-positive reduction (FPR) is important in feature representation and classification based on lung nodule CAD. The region of interest (ROI) in lung computer-aided detection comprises an extra imbalance between negative and positive samples, as well as false positives. To tackle image recognition challenges, specific machine learning or deep learning models are utilized in the existing research. This study presents novel and effective methods for classifying lung nodule abnormalities. In the original computed tomography (CT) image, the binary operation is done first for pre-processing. The lung nodules are then located using an entropy-based K-means clustering approach, and these nodules are segmented using an automated active contour level set. Finally, the Improved Capuchin Search Algorithm (ICSA) optimized hybrid convolutional neural network (CNN) based long and short term memory (LSTM) is used to classify abnormalities of lung nodules into Juxtapleural pulmonary nodules, Juxtavascular pulmonary nodules, Ground-glass opaque (GGO) pulmonary nodules, and Small pulmonary nodules categories. The Opposition based learning and chaotic local search strategy are used in the ICSA algorithm to minimize the complexity of the hybrid CNN-LSTM architecture by optimizing the hyperparameters. The overall pulmonary nodule identification accuracy is improved and it is measured using different metrics such as accuracy, sensitivity, and precision. F1-score, dice, Jaccard, and Hausdorff. The simulation results show that the proposed method outperforms the existing state-of-the-art methods.
AbstractList [Display omitted] •Hybrid CNN-LSTM architecture is proposed to improve the unbalanced class problem.•pulmonary parenchyma region is segmented using the entropy-based K-means clustering technique.•The Opposition based learning are used in the ICSA algorithm to enhance its convergence rate.•This study presents novel and effective methods for classifying lung nodule abnormalities. For the early diagnosis of lung cancer, radiologists assisted computer-aided detection (CAD) systems are used. The false-positive reduction (FPR) is important in feature representation and classification based on lung nodule CAD. The region of interest (ROI) in lung computer-aided detection comprises an extra imbalance between negative and positive samples, as well as false positives. To tackle image recognition challenges, specific machine learning or deep learning models are utilized in the existing research. This study presents novel and effective methods for classifying lung nodule abnormalities. In the original computed tomography (CT) image, the binary operation is done first for pre-processing. The lung nodules are then located using an entropy-based K-means clustering approach, and these nodules are segmented using an automated active contour level set. Finally, the Improved Capuchin Search Algorithm (ICSA) optimized hybrid convolutional neural network (CNN) based long and short term memory (LSTM) is used to classify abnormalities of lung nodules into Juxtapleural pulmonary nodules, Juxtavascular pulmonary nodules, Ground-glass opaque (GGO) pulmonary nodules, and Small pulmonary nodules categories. The Opposition based learning and chaotic local search strategy are used in the ICSA algorithm to minimize the complexity of the hybrid CNN-LSTM architecture by optimizing the hyperparameters. The overall pulmonary nodule identification accuracy is improved and it is measured using different metrics such as accuracy, sensitivity, and precision. F1-score, dice, Jaccard, and Hausdorff. The simulation results show that the proposed method outperforms the existing state-of-the-art methods.
ArticleNumber 103973
Author Kanipriya, M.
SriVidhya, S.R.
Jany Shabu, S.L.
Sridevi, N.
Hemalatha, C.
Author_xml – sequence: 1
  givenname: M.
  surname: Kanipriya
  fullname: Kanipriya, M.
  organization: Assistant Professor Department of Computational Intelligence, SRM Institute of Science and Technology, Kattankulathur, India
– sequence: 2
  givenname: C.
  surname: Hemalatha
  fullname: Hemalatha, C.
  email: heamalathac@gmail.com
  organization: Assistant Professor Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, India
– sequence: 3
  givenname: N.
  surname: Sridevi
  fullname: Sridevi, N.
  organization: Assistant Professor Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, India
– sequence: 4
  givenname: S.R.
  surname: SriVidhya
  fullname: SriVidhya, S.R.
  organization: Assistant Professor Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, India
– sequence: 5
  givenname: S.L.
  surname: Jany Shabu
  fullname: Jany Shabu, S.L.
  organization: Associate Professor Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, India
BookMark eNp9kMtqwzAQRUVJoUnaH-hKP-BUshRbhm5C6AvSdNF0LfRyrGBLRrID6dfXJu2mi6xmGO4ZZs4MTJx3BoB7jBYY4ezhsJCxVYsUpekwIEVOrsAU5zRLGEZs8tejgt6AWYwHhCjLMZ2CduWgbdrgj0ZDJdpeVdbBaERQFRT13gfbVQ30bWcb-z1kqpMMVsP1dptsPnfvcAzazqiuDwaWPsBG1HbvhOtg3bs9dF73tYHajBnr3S24LkUdzd1vnYOv56fd-jXZfLy8rVebRBGEukRIhFlBJCIly2RuUJFKwWhBZZoTIrTATGRMYmSWBcVlnuklRjmikiyVZISROUjPe1XwMQZT8jbYRoQTx4iPzviBj8746IyfnQ0Q-wcp24nx7C4IW19GH8-oGZ46WhN4VNY4ZbQNw-dce3sJ_wHi04rk
CitedBy_id crossref_primary_10_36222_ejt_1391524
crossref_primary_10_1080_19427867_2024_2313832
crossref_primary_10_1088_2631_8695_ad22be
crossref_primary_10_1155_2022_2126518
crossref_primary_10_1109_ACCESS_2025_3531001
crossref_primary_10_17798_bitlisfen_1422869
crossref_primary_10_1016_j_csi_2023_103780
crossref_primary_10_1155_2023_3563696
crossref_primary_10_1007_s11227_023_05540_5
crossref_primary_10_1080_13682199_2022_2163538
crossref_primary_10_1109_TCBB_2023_3315303
crossref_primary_10_1007_s10278_023_00822_z
crossref_primary_10_1016_j_bspc_2023_105849
crossref_primary_10_1007_s11831_024_10141_3
crossref_primary_10_1007_s10278_024_01074_1
crossref_primary_10_1016_j_eswa_2023_121128
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1007_s11831_023_10056_5
crossref_primary_10_1109_ACCESS_2023_3285821
Cites_doi 10.1016/j.jacr.2017.12.028
10.1016/j.procs.2017.12.016
10.1016/j.bspc.2021.102480
10.1016/j.compbiomed.2021.104811
10.1109/ICMIPE.2013.6864494
10.3390/s20154301
10.1007/s12652-020-02329-9
10.1002/ima.22539
10.1016/j.swevo.2021.100863
10.1016/j.egyr.2021.09.001
10.1016/j.neucom.2020.07.154
10.1148/rg.2018180017
10.1016/j.patrec.2019.03.004
10.1109/ACCESS.2021.3054117
10.1016/j.jtho.2020.05.002
10.1007/s00521-020-05471-9
10.1109/TSG.2016.2598872
10.1007/s11277-020-07732-1
10.1007/s11042-018-6082-6
10.1007/s11045-020-00703-6
10.1371/journal.pone.0248541
10.1109/TPAMI.2021.3065086
10.1067/j.cpradiol.2020.07.006
10.1109/TSMC.2015.2435702
10.1109/CIMCA.2005.1631345
10.1007/s10278-015-9801-9
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.103973
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_103973
S1746809422004724
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-ab01893b03f86b7e092ba8494b2733ada18a68b10e5941f76d510704b35cb8383
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Wed Oct 29 21:17:39 EDT 2025
Thu Apr 24 22:52:21 EDT 2025
Fri Feb 23 02:38:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Capuchin search algorithm
Active contour level set
Convolutional neural network
K-means clustering
Lung nodule
Oppositional learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-ab01893b03f86b7e092ba8494b2733ada18a68b10e5941f76d510704b35cb8383
ParticipantIDs crossref_primary_10_1016_j_bspc_2022_103973
crossref_citationtrail_10_1016_j_bspc_2022_103973
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103973
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhou, Feng, Li (b0120) 2021; 7
Chowdhury, Chaudhuri, Pal (b0095) 2021; 33
Ahmed, Darwish (b0145) 2021; 9
Singh, Chaudhury, Panigrahi (b0150) 2021; 63
(2021).
Sahu, Londhe, Verma (b0135) 2019
Flatworld Solutions. (n.d.). Retrieved January 28, 2022, from https://www.flatworldsolutions.com/healthcare/articles/top-10-applications-of-machine-learning-in-healthcare.php.
Li, Kao, Kuo (b0090) 2015; 46
He, Stankovic, Liao, Stankovic (b0115) 2016; 9
Roy, Chakraborti, Chowdhury (b0055) 2019; 123
Wang, Zhao, Li, Pan, Liu, Gao, Han, Wang, Qi, Liang (b0030) 2018; 26
Li, Zhu, Hou, Zhao, Liu, Zhang (b0035) 2018
Wang, Zhang, Chae, Choi, Jin, Ko (b0070) 2020; 31
F.Han, G.Zhang, H.Wang, B.Song, H.Lu, D.Zhao, H.Zhao, Z.Liang. A texture feature analysis for diagnosis of pulmonary nodules using LIDC-IDRI database. In
Smeltzer, Wynes, Lantuejoul, Soo, Ramalingam, Varella-Garcia, Taylor, Richeimer, Wood, Howell, Dalurzo (b0010) 2020; 15
Jose, Gautam, Tiwari, Tiwari, Suresh, Sundararaj, Rejeesh (b101) 2021; 66
Grove, Berglund, Schabath, Aerts, Dekker, Wang, Velazquez, Lambin, Gu, Balagurunathan, Eikman (b0165) 2021; 16
(2013 october) 14-18. IEEE.
Sundararaj (b106) 2016; 9
Chi, Zhang, Yu, Wu, Jiang (b0040) 2020; 20
J.Mei, M.M.Cheng, G.Xu, L.R.Wan, H.Zhang. SANet: A Slice-Aware Network for Pulmonary Nodule Detection.
Naik, Edla (b0075) 2021; 116
Mukhopadhyay (b0170) 2016; 29
Tan, Cheong, Chan, Tham (b0080) 2021; 50
H.R.Tizhoosh. Opposition-based learning: a new scheme for machine intelligence. In
Kim, Cho (b0155) 2021; 456
World Health Organization. (n.d.).
LeCun, Bengio, Hinton (b0110) 2015; 521
Shi, Hao, Zhao, Feng, He, Wang, Suzuki (b0065) 2019; 78
Sahu, Londhe, Verma, Singh, Banchhor (b0140) 2021; 31
Jain, Indora, Atal (b0085) 2021; 137
Bueno, Landeras, Chung (b0025) 2018; 38
Makaju, Prasad, Alsadoon, Singh, Elchouemi (b0050) 2018; 125
Rastgarpour, Shanbehzadeh (b0100) 2014
Devi, Sasikala (b0105) 2021; 12
The Cancer Imaging Archive (TCIA) Public Access - Cancer Imaging Archive Wiki. (n.d.). Retrieved January 29, 2022, from https://wiki.cancerimagingarchive.net/display/Public/LIDCIDRI#:∼:text=The%20Lung%20Image%20Database%20Consortium,with%20marked%2Dup%20annotated%20lesions.&text=Seven%20academic%20centers%20and%20eight,set%20which%20contains%201018%20cases.
Giger (b0015) 2018; 15
Li, Chang, Tian (b0045) 2022
International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06),1(2005 november) 695-701. IEEE.
World Health Organization. Retrieved January 28, 2022, from https://www.who.int/news-room/fact-sheets/detail/cancer.
Grove (10.1016/j.bspc.2022.103973_b0165) 2021; 16
Singh (10.1016/j.bspc.2022.103973_b0150) 2021; 63
Zhou (10.1016/j.bspc.2022.103973_b0120) 2021; 7
He (10.1016/j.bspc.2022.103973_b0115) 2016; 9
Sahu (10.1016/j.bspc.2022.103973_b0140) 2021; 31
Sahu (10.1016/j.bspc.2022.103973_b0135) 2019
Chowdhury (10.1016/j.bspc.2022.103973_b0095) 2021; 33
Rastgarpour (10.1016/j.bspc.2022.103973_b0100) 2014
Jain (10.1016/j.bspc.2022.103973_b0085) 2021; 137
Chi (10.1016/j.bspc.2022.103973_b0040) 2020; 20
Makaju (10.1016/j.bspc.2022.103973_b0050) 2018; 125
10.1016/j.bspc.2022.103973_b0130
Li (10.1016/j.bspc.2022.103973_b0035) 2018
Smeltzer (10.1016/j.bspc.2022.103973_b0010) 2020; 15
Wang (10.1016/j.bspc.2022.103973_b0030) 2018; 26
Li (10.1016/j.bspc.2022.103973_b0090) 2015; 46
Mukhopadhyay (10.1016/j.bspc.2022.103973_b0170) 2016; 29
Kim (10.1016/j.bspc.2022.103973_b0155) 2021; 456
Bueno (10.1016/j.bspc.2022.103973_b0025) 2018; 38
Devi (10.1016/j.bspc.2022.103973_b0105) 2021; 12
Giger (10.1016/j.bspc.2022.103973_b0015) 2018; 15
Ahmed (10.1016/j.bspc.2022.103973_b0145) 2021; 9
Li (10.1016/j.bspc.2022.103973_b0045) 2022
10.1016/j.bspc.2022.103973_b0060
Roy (10.1016/j.bspc.2022.103973_b0055) 2019; 123
10.1016/j.bspc.2022.103973_b0160
Naik (10.1016/j.bspc.2022.103973_b0075) 2021; 116
10.1016/j.bspc.2022.103973_b0020
Wang (10.1016/j.bspc.2022.103973_b0070) 2020; 31
10.1016/j.bspc.2022.103973_b0125
10.1016/j.bspc.2022.103973_b0005
LeCun (10.1016/j.bspc.2022.103973_b0110) 2015; 521
Shi (10.1016/j.bspc.2022.103973_b0065) 2019; 78
Tan (10.1016/j.bspc.2022.103973_b0080) 2021; 50
Jose (10.1016/j.bspc.2022.103973_b101) 2021; 66
Sundararaj (10.1016/j.bspc.2022.103973_b106) 2016; 9
References_xml – volume: 31
  start-page: 1163
  year: 2020
  end-page: 1183
  ident: b0070
  article-title: Novel convolutional neural network architecture for improved pulmonary nodule classification on computed tomography
  publication-title: Multidimensional Systems and Signal Processing
– volume: 137
  year: 2021
  ident: b0085
  article-title: Lung nodule segmentation using salp shuffled shepherd optimization algorithm-based generative adversarial network
  publication-title: Computers in Biology and Medicine
– volume: 9
  start-page: 117
  year: 2016
  end-page: 126
  ident: b106
  article-title: An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm
  publication-title: Int J Intell Eng Syst
– volume: 63
  year: 2021
  ident: b0150
  article-title: Hybrid MPSO-CNN: Multi-level particle swarm optimized hyperparameters of convolutional neural network
  publication-title: Swarm and Evolutionary Computation
– volume: 16
  start-page: e0248541
  year: 2021
  ident: b0165
  article-title: Correction: Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma
  publication-title: Plos one
– start-page: 1
  year: 2022
  end-page: 15
  ident: b0045
  article-title: Improved cost-sensitive multikernel learning support vector machine algorithm based on particle swarm optimization in pulmonary nodule recognition
  publication-title: Soft Computing
– reference: . World Health Organization. Retrieved January 28, 2022, from https://www.who.int/news-room/fact-sheets/detail/cancer.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0110
  publication-title: Deep learning. nature
– volume: 29
  start-page: 86
  year: 2016
  end-page: 103
  ident: b0170
  article-title: A segmentation framework of pulmonary nodules in lung CT images
  publication-title: Journal of digital imaging
– volume: 46
  start-page: 150
  year: 2015
  end-page: 162
  ident: b0090
  article-title: Recognition System for Home-Service-Related Sign Language Using Entropy-Based $ K $-Means Algorithm and ABC-Based HMM
  publication-title: IEEE transactions on systems, man, and Cybernetics: systems
– reference: F.Han, G.Zhang, H.Wang, B.Song, H.Lu, D.Zhao, H.Zhao, Z.Liang. A texture feature analysis for diagnosis of pulmonary nodules using LIDC-IDRI database. In
– reference: ,(2013 october) 14-18. IEEE.
– volume: 123
  start-page: 31
  year: 2019
  end-page: 38
  ident: b0055
  article-title: A deep learning-shape driven level set synergism for pulmonary nodule segmentation
  publication-title: Pattern Recognition Letters
– volume: 50
  start-page: 119
  year: 2021
  end-page: 122
  ident: b0080
  article-title: Implementation of an Artificial Intelligence-Based Double Read System in Capturing Pulmonary Nodule Discrepancy in CT Studies
  publication-title: Current Problems in Diagnostic Radiology
– volume: 12
  start-page: 2299
  year: 2021
  end-page: 2309
  ident: b0105
  article-title: Labeling and clustering-based level set method for automated segmentation of lung tumor stages in CT images
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 20
  start-page: 4301
  year: 2020
  ident: b0040
  article-title: A novel pulmonary nodule detection model based on multi-step cascaded networks
  publication-title: Sensors
– volume: 33
  start-page: 6965
  year: 2021
  end-page: 6982
  ident: b0095
  article-title: An entropy-based initialization method of K-means clustering on the optimal number of clusters
  publication-title: Neural Computing and Applications
– reference: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06),1(2005 november) 695-701. IEEE.
– reference: The Cancer Imaging Archive (TCIA) Public Access - Cancer Imaging Archive Wiki. (n.d.). Retrieved January 29, 2022, from https://wiki.cancerimagingarchive.net/display/Public/LIDCIDRI#:∼:text=The%20Lung%20Image%20Database%20Consortium,with%20marked%2Dup%20annotated%20lesions.&text=Seven%20academic%20centers%20and%20eight,set%20which%20contains%201018%20cases.
– reference: H.R.Tizhoosh. Opposition-based learning: a new scheme for machine intelligence. In
– reference: J.Mei, M.M.Cheng, G.Xu, L.R.Wan, H.Zhang. SANet: A Slice-Aware Network for Pulmonary Nodule Detection.
– start-page: 1
  year: 2019
  end-page: 18
  ident: b0135
  article-title: Pulmonary nodule detection in CT images using optimal multilevel thresholds and rule-based filtering
  publication-title: IETE Journal of Research
– volume: 26
  start-page: 171
  year: 2018
  end-page: 187
  ident: b0030
  article-title: A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation
  publication-title: Journal of X-ray Science and Technology
– volume: 38
  start-page: 1337
  year: 2018
  end-page: 1350
  ident: b0025
  article-title: Updated fleischner society guidelines for managing incidental pulmonary nodules: common questions and challenging scenarios
  publication-title: Radiographics
– reference: World Health Organization. (n.d.).
– volume: 9
  start-page: 16975
  year: 2021
  end-page: 16987
  ident: b0145
  article-title: A meta-heuristic automatic CNN architecture design approach based on ensemble learning
  publication-title: IEEE Access
– reference: . Flatworld Solutions. (n.d.). Retrieved January 28, 2022, from https://www.flatworldsolutions.com/healthcare/articles/top-10-applications-of-machine-learning-in-healthcare.php.
– reference: (2021).
– volume: 9
  start-page: 1739
  year: 2016
  end-page: 1747
  ident: b0115
  article-title: Non-intrusive load disaggregation using graph signal processing
  publication-title: IEEE Transactions on Smart Grid
– volume: 125
  start-page: 107
  year: 2018
  end-page: 114
  ident: b0050
  article-title: Lung cancer detection using CT scan images
  publication-title: Procedia Computer Science
– volume: 78
  start-page: 1017
  year: 2019
  end-page: 1103
  ident: b0065
  article-title: A deep CNN-based transfer learning method for false-positive reduction
  publication-title: Multimedia Tools and Applications
– year: 2014
  ident: b0100
  article-title: A new kernel-based fuzzy level set method for automated segmentation of medical images in the presence of intensity inhomogeneity
  publication-title: Computational and Mathematical Methods in Medicine
– volume: 31
  start-page: 1503
  year: 2021
  end-page: 1518
  ident: b0140
  article-title: Improved pulmonary lung nodules risk stratification in computed tomography images by fusing shape and texture features in a machine-learning paradigm
  publication-title: International Journal of Imaging Systems and Technology
– volume: 456
  start-page: 666
  year: 2021
  end-page: 677
  ident: b0155
  article-title: Optimizing CNN-LSTM neural networks with PSO for anomalous query access control
  publication-title: Neurocomputing
– volume: 15
  start-page: 512
  year: 2018
  end-page: 520
  ident: b0015
  article-title: Machine learning in medical imaging
  publication-title: Journal of the American College of Radiology
– year: 2018
  ident: b0035
  article-title: Pulmonary nodule recognition based on multiple kernels learning support vector machine-pso
  publication-title: Computational and Mathematical Methods in Medicine
– volume: 15
  start-page: 1434
  year: 2020
  end-page: 1448
  ident: b0010
  article-title: The International Association for the Study of Lung Cancer global survey on molecular testing in lung cancer
  publication-title: Journal of Thoracic Oncology
– volume: 116
  start-page: 655
  year: 2021
  end-page: 690
  ident: b0075
  article-title: Lung nodule classification on computed tomography images using deep learning
  publication-title: Wireless Personal Communications
– volume: 7
  start-page: 5762
  year: 2021
  end-page: 5771
  ident: b0120
  article-title: Non-intrusive load decomposition based on CNN–LSTM hybrid deep learning model
  publication-title: Energy Reports
– volume: 66
  start-page: 102480
  year: 2021
  ident: b101
  article-title: An image quality enhancement scheme employing adolescent identity search algorithm in the NSST domain for multimodal medical image fusion
  publication-title: Biomedical Signal Processing and Control
– volume: 15
  start-page: 512
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2022.103973_b0015
  article-title: Machine learning in medical imaging
  publication-title: Journal of the American College of Radiology
  doi: 10.1016/j.jacr.2017.12.028
– volume: 125
  start-page: 107
  year: 2018
  ident: 10.1016/j.bspc.2022.103973_b0050
  article-title: Lung cancer detection using CT scan images
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2017.12.016
– volume: 26
  start-page: 171
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2022.103973_b0030
  article-title: A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation
  publication-title: Journal of X-ray Science and Technology
– volume: 66
  start-page: 102480
  year: 2021
  ident: 10.1016/j.bspc.2022.103973_b101
  article-title: An image quality enhancement scheme employing adolescent identity search algorithm in the NSST domain for multimodal medical image fusion
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.102480
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.bspc.2022.103973_b0110
  publication-title: Deep learning. nature
– volume: 137
  year: 2021
  ident: 10.1016/j.bspc.2022.103973_b0085
  article-title: Lung nodule segmentation using salp shuffled shepherd optimization algorithm-based generative adversarial network
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.104811
– ident: 10.1016/j.bspc.2022.103973_b0160
  doi: 10.1109/ICMIPE.2013.6864494
– ident: 10.1016/j.bspc.2022.103973_b0020
– volume: 20
  start-page: 4301
  issue: 15
  year: 2020
  ident: 10.1016/j.bspc.2022.103973_b0040
  article-title: A novel pulmonary nodule detection model based on multi-step cascaded networks
  publication-title: Sensors
  doi: 10.3390/s20154301
– volume: 12
  start-page: 2299
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2022.103973_b0105
  article-title: Labeling and clustering-based level set method for automated segmentation of lung tumor stages in CT images
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-020-02329-9
– volume: 31
  start-page: 1503
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2022.103973_b0140
  article-title: Improved pulmonary lung nodules risk stratification in computed tomography images by fusing shape and texture features in a machine-learning paradigm
  publication-title: International Journal of Imaging Systems and Technology
  doi: 10.1002/ima.22539
– volume: 63
  year: 2021
  ident: 10.1016/j.bspc.2022.103973_b0150
  article-title: Hybrid MPSO-CNN: Multi-level particle swarm optimized hyperparameters of convolutional neural network
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2021.100863
– volume: 7
  start-page: 5762
  year: 2021
  ident: 10.1016/j.bspc.2022.103973_b0120
  article-title: Non-intrusive load decomposition based on CNN–LSTM hybrid deep learning model
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2021.09.001
– volume: 456
  start-page: 666
  year: 2021
  ident: 10.1016/j.bspc.2022.103973_b0155
  article-title: Optimizing CNN-LSTM neural networks with PSO for anomalous query access control
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.154
– year: 2014
  ident: 10.1016/j.bspc.2022.103973_b0100
  article-title: A new kernel-based fuzzy level set method for automated segmentation of medical images in the presence of intensity inhomogeneity
– volume: 38
  start-page: 1337
  issue: 5
  year: 2018
  ident: 10.1016/j.bspc.2022.103973_b0025
  article-title: Updated fleischner society guidelines for managing incidental pulmonary nodules: common questions and challenging scenarios
  publication-title: Radiographics
  doi: 10.1148/rg.2018180017
– volume: 123
  start-page: 31
  year: 2019
  ident: 10.1016/j.bspc.2022.103973_b0055
  article-title: A deep learning-shape driven level set synergism for pulmonary nodule segmentation
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2019.03.004
– volume: 9
  start-page: 117
  issue: 3
  year: 2016
  ident: 10.1016/j.bspc.2022.103973_b106
  article-title: An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm
  publication-title: Int J Intell Eng Syst
– volume: 9
  start-page: 16975
  year: 2021
  ident: 10.1016/j.bspc.2022.103973_b0145
  article-title: A meta-heuristic automatic CNN architecture design approach based on ensemble learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3054117
– volume: 15
  start-page: 1434
  issue: 9
  year: 2020
  ident: 10.1016/j.bspc.2022.103973_b0010
  article-title: The International Association for the Study of Lung Cancer global survey on molecular testing in lung cancer
  publication-title: Journal of Thoracic Oncology
  doi: 10.1016/j.jtho.2020.05.002
– volume: 33
  start-page: 6965
  issue: 12
  year: 2021
  ident: 10.1016/j.bspc.2022.103973_b0095
  article-title: An entropy-based initialization method of K-means clustering on the optimal number of clusters
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-05471-9
– volume: 9
  start-page: 1739
  issue: 3
  year: 2016
  ident: 10.1016/j.bspc.2022.103973_b0115
  article-title: Non-intrusive load disaggregation using graph signal processing
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2016.2598872
– volume: 116
  start-page: 655
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2022.103973_b0075
  article-title: Lung nodule classification on computed tomography images using deep learning
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-020-07732-1
– volume: 78
  start-page: 1017
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2022.103973_b0065
  article-title: A deep CNN-based transfer learning method for false-positive reduction
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-6082-6
– volume: 31
  start-page: 1163
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2022.103973_b0070
  article-title: Novel convolutional neural network architecture for improved pulmonary nodule classification on computed tomography
  publication-title: Multidimensional Systems and Signal Processing
  doi: 10.1007/s11045-020-00703-6
– volume: 16
  start-page: e0248541
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2022.103973_b0165
  article-title: Correction: Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma
  publication-title: Plos one
  doi: 10.1371/journal.pone.0248541
– ident: 10.1016/j.bspc.2022.103973_b0005
– ident: 10.1016/j.bspc.2022.103973_b0060
  doi: 10.1109/TPAMI.2021.3065086
– volume: 50
  start-page: 119
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2022.103973_b0080
  article-title: Implementation of an Artificial Intelligence-Based Double Read System in Capturing Pulmonary Nodule Discrepancy in CT Studies
  publication-title: Current Problems in Diagnostic Radiology
  doi: 10.1067/j.cpradiol.2020.07.006
– volume: 46
  start-page: 150
  issue: 1
  year: 2015
  ident: 10.1016/j.bspc.2022.103973_b0090
  article-title: Recognition System for Home-Service-Related Sign Language Using Entropy-Based $ K $-Means Algorithm and ABC-Based HMM
  publication-title: IEEE transactions on systems, man, and Cybernetics: systems
  doi: 10.1109/TSMC.2015.2435702
– year: 2018
  ident: 10.1016/j.bspc.2022.103973_b0035
  article-title: Pulmonary nodule recognition based on multiple kernels learning support vector machine-pso
– ident: 10.1016/j.bspc.2022.103973_b0130
  doi: 10.1109/CIMCA.2005.1631345
– volume: 29
  start-page: 86
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2022.103973_b0170
  article-title: A segmentation framework of pulmonary nodules in lung CT images
  publication-title: Journal of digital imaging
  doi: 10.1007/s10278-015-9801-9
– start-page: 1
  year: 2019
  ident: 10.1016/j.bspc.2022.103973_b0135
  article-title: Pulmonary nodule detection in CT images using optimal multilevel thresholds and rule-based filtering
  publication-title: IETE Journal of Research
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2022.103973_b0045
  article-title: Improved cost-sensitive multikernel learning support vector machine algorithm based on particle swarm optimization in pulmonary nodule recognition
  publication-title: Soft Computing
– ident: 10.1016/j.bspc.2022.103973_b0125
SSID ssj0048714
Score 2.3905394
Snippet [Display omitted] •Hybrid CNN-LSTM architecture is proposed to improve the unbalanced class problem.•pulmonary parenchyma region is segmented using the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103973
SubjectTerms Active contour level set
Capuchin search algorithm
Convolutional neural network
K-means clustering
Lung nodule
Oppositional learning
Title An improved capuchin search algorithm optimized hybrid CNN-LSTM architecture for malignant lung nodule detection
URI https://dx.doi.org/10.1016/j.bspc.2022.103973
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Complete Freedom Collection
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b4MwELaidmmHqk81fUQeulU0gA2YMYoapY-wJJGyIduYhCoB1JKhHfrbe-YRpVKVoRMC3UnoOM7fwXefEbqzObEjP_LKWSeDSuUYTElucI_Bai25JLEecB4F7nBKn2fOrIX6zSyMplXWtb-q6WW1rq9062h28yTpjgFLuwy6E9suJQ-1JiiFI-T0w_eG5gF4vNT31saGtq4HZyqOl_jItYyhbevZc98jfy9OWwvO4Bgd1UgR96qbOUEtlZ6iwy39wDOU91KclF8FVIQlz_XGJimukhfz5TyDzn-xwhmUhVXyBTaLTz2ghftBYLyOJyO8_RsBA3zFK4Dlc82NwUuoAjjNovVS4UgVJWMrPUfTweOkPzTqLRQMSUyzMLgwLUAkwiQxc4WnTN8WnFGfCoAthEfcYtxlwjKV41Mr9twI3lHPpII4UjDoXi_QXpql6hJhDv5aqsXhcUwd6FqUhMdPPS6IBJyg2shqYhfKWl9cb3OxDBsi2Vuo4x3qeIdVvNvofuOTV-oaO62d5pGEv3IkhPK_w-_qn37X6ECfVYyyG7RXvK_VLUCQQnTKHOug_d7TyzD4AX-726U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YENheZh5zFWFVWBNktbqVtkO04b1CYRpAMM_HbOeVRFQh1YkzspOl_O3yXffUbo3mSWGXqhU8w6aURIqrlSMI05LuzWggkrUgPOQ9_uT8jLlE4bqFvPwihaZVX7y5peVOvqSruKZjuL4_YIsLTtQndimoXkIdlBu4SajurAHr_XPA8A5IXAt7LWlHk1OVOSvPhHpnQMTVMNn3uO9ffutLHj9I7QYQUVcad8mmPUkMkJOtgQEDxFWSfBcfFZQIZYsEydbJLgMnsxW8xSaP3nS5xCXVjGX2Az_1QTWrjr-9pgNB7izf8IGPArXgIunylyDF5AGcBJGq4WEocyLyhbyRma9J7G3b5WnaGgCUvXc41x3QBIwnUrcm3uSN0zOXOJRzjgFouFzHCZ7XJDl9QjRuTYIbykjk64RQV3oX09R80kTeQFwgz8lVYLZVFEKLQtUsD6E4dxSwBQkC1k1LELRCUwrs65WAQ1k-wtUPEOVLyDMt4t9LD2yUp5ja3WtF6S4FeSBFD_t_hd_tPvDu31x8NBMHj2X6_QvrpT0suuUTN_X8kbwCM5vy3y7Qe0wd06
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+capuchin+search+algorithm+optimized+hybrid+CNN-LSTM+architecture+for+malignant+lung+nodule+detection&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Kanipriya%2C+M.&rft.au=Hemalatha%2C+C.&rft.au=Sridevi%2C+N.&rft.au=SriVidhya%2C+S.R.&rft.date=2022-09-01&rft.issn=1746-8094&rft.volume=78&rft.spage=103973&rft_id=info:doi/10.1016%2Fj.bspc.2022.103973&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_103973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon