An improved capuchin search algorithm optimized hybrid CNN-LSTM architecture for malignant lung nodule detection
[Display omitted] •Hybrid CNN-LSTM architecture is proposed to improve the unbalanced class problem.•pulmonary parenchyma region is segmented using the entropy-based K-means clustering technique.•The Opposition based learning are used in the ICSA algorithm to enhance its convergence rate.•This study...
Saved in:
| Published in | Biomedical signal processing and control Vol. 78; p. 103973 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.09.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1746-8094 1746-8108 |
| DOI | 10.1016/j.bspc.2022.103973 |
Cover
| Abstract | [Display omitted]
•Hybrid CNN-LSTM architecture is proposed to improve the unbalanced class problem.•pulmonary parenchyma region is segmented using the entropy-based K-means clustering technique.•The Opposition based learning are used in the ICSA algorithm to enhance its convergence rate.•This study presents novel and effective methods for classifying lung nodule abnormalities.
For the early diagnosis of lung cancer, radiologists assisted computer-aided detection (CAD) systems are used. The false-positive reduction (FPR) is important in feature representation and classification based on lung nodule CAD. The region of interest (ROI) in lung computer-aided detection comprises an extra imbalance between negative and positive samples, as well as false positives. To tackle image recognition challenges, specific machine learning or deep learning models are utilized in the existing research. This study presents novel and effective methods for classifying lung nodule abnormalities. In the original computed tomography (CT) image, the binary operation is done first for pre-processing. The lung nodules are then located using an entropy-based K-means clustering approach, and these nodules are segmented using an automated active contour level set. Finally, the Improved Capuchin Search Algorithm (ICSA) optimized hybrid convolutional neural network (CNN) based long and short term memory (LSTM) is used to classify abnormalities of lung nodules into Juxtapleural pulmonary nodules, Juxtavascular pulmonary nodules, Ground-glass opaque (GGO) pulmonary nodules, and Small pulmonary nodules categories. The Opposition based learning and chaotic local search strategy are used in the ICSA algorithm to minimize the complexity of the hybrid CNN-LSTM architecture by optimizing the hyperparameters. The overall pulmonary nodule identification accuracy is improved and it is measured using different metrics such as accuracy, sensitivity, and precision. F1-score, dice, Jaccard, and Hausdorff. The simulation results show that the proposed method outperforms the existing state-of-the-art methods. |
|---|---|
| AbstractList | [Display omitted]
•Hybrid CNN-LSTM architecture is proposed to improve the unbalanced class problem.•pulmonary parenchyma region is segmented using the entropy-based K-means clustering technique.•The Opposition based learning are used in the ICSA algorithm to enhance its convergence rate.•This study presents novel and effective methods for classifying lung nodule abnormalities.
For the early diagnosis of lung cancer, radiologists assisted computer-aided detection (CAD) systems are used. The false-positive reduction (FPR) is important in feature representation and classification based on lung nodule CAD. The region of interest (ROI) in lung computer-aided detection comprises an extra imbalance between negative and positive samples, as well as false positives. To tackle image recognition challenges, specific machine learning or deep learning models are utilized in the existing research. This study presents novel and effective methods for classifying lung nodule abnormalities. In the original computed tomography (CT) image, the binary operation is done first for pre-processing. The lung nodules are then located using an entropy-based K-means clustering approach, and these nodules are segmented using an automated active contour level set. Finally, the Improved Capuchin Search Algorithm (ICSA) optimized hybrid convolutional neural network (CNN) based long and short term memory (LSTM) is used to classify abnormalities of lung nodules into Juxtapleural pulmonary nodules, Juxtavascular pulmonary nodules, Ground-glass opaque (GGO) pulmonary nodules, and Small pulmonary nodules categories. The Opposition based learning and chaotic local search strategy are used in the ICSA algorithm to minimize the complexity of the hybrid CNN-LSTM architecture by optimizing the hyperparameters. The overall pulmonary nodule identification accuracy is improved and it is measured using different metrics such as accuracy, sensitivity, and precision. F1-score, dice, Jaccard, and Hausdorff. The simulation results show that the proposed method outperforms the existing state-of-the-art methods. |
| ArticleNumber | 103973 |
| Author | Kanipriya, M. SriVidhya, S.R. Jany Shabu, S.L. Sridevi, N. Hemalatha, C. |
| Author_xml | – sequence: 1 givenname: M. surname: Kanipriya fullname: Kanipriya, M. organization: Assistant Professor Department of Computational Intelligence, SRM Institute of Science and Technology, Kattankulathur, India – sequence: 2 givenname: C. surname: Hemalatha fullname: Hemalatha, C. email: heamalathac@gmail.com organization: Assistant Professor Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, India – sequence: 3 givenname: N. surname: Sridevi fullname: Sridevi, N. organization: Assistant Professor Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, India – sequence: 4 givenname: S.R. surname: SriVidhya fullname: SriVidhya, S.R. organization: Assistant Professor Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, India – sequence: 5 givenname: S.L. surname: Jany Shabu fullname: Jany Shabu, S.L. organization: Associate Professor Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, India |
| BookMark | eNp9kMtqwzAQRUVJoUnaH-hKP-BUshRbhm5C6AvSdNF0LfRyrGBLRrID6dfXJu2mi6xmGO4ZZs4MTJx3BoB7jBYY4ezhsJCxVYsUpekwIEVOrsAU5zRLGEZs8tejgt6AWYwHhCjLMZ2CduWgbdrgj0ZDJdpeVdbBaERQFRT13gfbVQ30bWcb-z1kqpMMVsP1dptsPnfvcAzazqiuDwaWPsBG1HbvhOtg3bs9dF73tYHajBnr3S24LkUdzd1vnYOv56fd-jXZfLy8rVebRBGEukRIhFlBJCIly2RuUJFKwWhBZZoTIrTATGRMYmSWBcVlnuklRjmikiyVZISROUjPe1XwMQZT8jbYRoQTx4iPzviBj8746IyfnQ0Q-wcp24nx7C4IW19GH8-oGZ46WhN4VNY4ZbQNw-dce3sJ_wHi04rk |
| CitedBy_id | crossref_primary_10_36222_ejt_1391524 crossref_primary_10_1080_19427867_2024_2313832 crossref_primary_10_1088_2631_8695_ad22be crossref_primary_10_1155_2022_2126518 crossref_primary_10_1109_ACCESS_2025_3531001 crossref_primary_10_17798_bitlisfen_1422869 crossref_primary_10_1016_j_csi_2023_103780 crossref_primary_10_1155_2023_3563696 crossref_primary_10_1007_s11227_023_05540_5 crossref_primary_10_1080_13682199_2022_2163538 crossref_primary_10_1109_TCBB_2023_3315303 crossref_primary_10_1007_s10278_023_00822_z crossref_primary_10_1016_j_bspc_2023_105849 crossref_primary_10_1007_s11831_024_10141_3 crossref_primary_10_1007_s10278_024_01074_1 crossref_primary_10_1016_j_eswa_2023_121128 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1007_s11831_023_10056_5 crossref_primary_10_1109_ACCESS_2023_3285821 |
| Cites_doi | 10.1016/j.jacr.2017.12.028 10.1016/j.procs.2017.12.016 10.1016/j.bspc.2021.102480 10.1016/j.compbiomed.2021.104811 10.1109/ICMIPE.2013.6864494 10.3390/s20154301 10.1007/s12652-020-02329-9 10.1002/ima.22539 10.1016/j.swevo.2021.100863 10.1016/j.egyr.2021.09.001 10.1016/j.neucom.2020.07.154 10.1148/rg.2018180017 10.1016/j.patrec.2019.03.004 10.1109/ACCESS.2021.3054117 10.1016/j.jtho.2020.05.002 10.1007/s00521-020-05471-9 10.1109/TSG.2016.2598872 10.1007/s11277-020-07732-1 10.1007/s11042-018-6082-6 10.1007/s11045-020-00703-6 10.1371/journal.pone.0248541 10.1109/TPAMI.2021.3065086 10.1067/j.cpradiol.2020.07.006 10.1109/TSMC.2015.2435702 10.1109/CIMCA.2005.1631345 10.1007/s10278-015-9801-9 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2022.103973 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2022_103973 S1746809422004724 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-ab01893b03f86b7e092ba8494b2733ada18a68b10e5941f76d510704b35cb8383 |
| IEDL.DBID | .~1 |
| ISSN | 1746-8094 |
| IngestDate | Wed Oct 29 21:17:39 EDT 2025 Thu Apr 24 22:52:21 EDT 2025 Fri Feb 23 02:38:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Capuchin search algorithm Active contour level set Convolutional neural network K-means clustering Lung nodule Oppositional learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-ab01893b03f86b7e092ba8494b2733ada18a68b10e5941f76d510704b35cb8383 |
| ParticipantIDs | crossref_primary_10_1016_j_bspc_2022_103973 crossref_citationtrail_10_1016_j_bspc_2022_103973 elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103973 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhou, Feng, Li (b0120) 2021; 7 Chowdhury, Chaudhuri, Pal (b0095) 2021; 33 Ahmed, Darwish (b0145) 2021; 9 Singh, Chaudhury, Panigrahi (b0150) 2021; 63 (2021). Sahu, Londhe, Verma (b0135) 2019 Flatworld Solutions. (n.d.). Retrieved January 28, 2022, from https://www.flatworldsolutions.com/healthcare/articles/top-10-applications-of-machine-learning-in-healthcare.php. Li, Kao, Kuo (b0090) 2015; 46 He, Stankovic, Liao, Stankovic (b0115) 2016; 9 Roy, Chakraborti, Chowdhury (b0055) 2019; 123 Wang, Zhao, Li, Pan, Liu, Gao, Han, Wang, Qi, Liang (b0030) 2018; 26 Li, Zhu, Hou, Zhao, Liu, Zhang (b0035) 2018 Wang, Zhang, Chae, Choi, Jin, Ko (b0070) 2020; 31 F.Han, G.Zhang, H.Wang, B.Song, H.Lu, D.Zhao, H.Zhao, Z.Liang. A texture feature analysis for diagnosis of pulmonary nodules using LIDC-IDRI database. In Smeltzer, Wynes, Lantuejoul, Soo, Ramalingam, Varella-Garcia, Taylor, Richeimer, Wood, Howell, Dalurzo (b0010) 2020; 15 Jose, Gautam, Tiwari, Tiwari, Suresh, Sundararaj, Rejeesh (b101) 2021; 66 Grove, Berglund, Schabath, Aerts, Dekker, Wang, Velazquez, Lambin, Gu, Balagurunathan, Eikman (b0165) 2021; 16 (2013 october) 14-18. IEEE. Sundararaj (b106) 2016; 9 Chi, Zhang, Yu, Wu, Jiang (b0040) 2020; 20 J.Mei, M.M.Cheng, G.Xu, L.R.Wan, H.Zhang. SANet: A Slice-Aware Network for Pulmonary Nodule Detection. Naik, Edla (b0075) 2021; 116 Mukhopadhyay (b0170) 2016; 29 Tan, Cheong, Chan, Tham (b0080) 2021; 50 H.R.Tizhoosh. Opposition-based learning: a new scheme for machine intelligence. In Kim, Cho (b0155) 2021; 456 World Health Organization. (n.d.). LeCun, Bengio, Hinton (b0110) 2015; 521 Shi, Hao, Zhao, Feng, He, Wang, Suzuki (b0065) 2019; 78 Sahu, Londhe, Verma, Singh, Banchhor (b0140) 2021; 31 Jain, Indora, Atal (b0085) 2021; 137 Bueno, Landeras, Chung (b0025) 2018; 38 Makaju, Prasad, Alsadoon, Singh, Elchouemi (b0050) 2018; 125 Rastgarpour, Shanbehzadeh (b0100) 2014 Devi, Sasikala (b0105) 2021; 12 The Cancer Imaging Archive (TCIA) Public Access - Cancer Imaging Archive Wiki. (n.d.). Retrieved January 29, 2022, from https://wiki.cancerimagingarchive.net/display/Public/LIDCIDRI#:∼:text=The%20Lung%20Image%20Database%20Consortium,with%20marked%2Dup%20annotated%20lesions.&text=Seven%20academic%20centers%20and%20eight,set%20which%20contains%201018%20cases. Giger (b0015) 2018; 15 Li, Chang, Tian (b0045) 2022 International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06),1(2005 november) 695-701. IEEE. World Health Organization. Retrieved January 28, 2022, from https://www.who.int/news-room/fact-sheets/detail/cancer. Grove (10.1016/j.bspc.2022.103973_b0165) 2021; 16 Singh (10.1016/j.bspc.2022.103973_b0150) 2021; 63 Zhou (10.1016/j.bspc.2022.103973_b0120) 2021; 7 He (10.1016/j.bspc.2022.103973_b0115) 2016; 9 Sahu (10.1016/j.bspc.2022.103973_b0140) 2021; 31 Sahu (10.1016/j.bspc.2022.103973_b0135) 2019 Chowdhury (10.1016/j.bspc.2022.103973_b0095) 2021; 33 Rastgarpour (10.1016/j.bspc.2022.103973_b0100) 2014 Jain (10.1016/j.bspc.2022.103973_b0085) 2021; 137 Chi (10.1016/j.bspc.2022.103973_b0040) 2020; 20 Makaju (10.1016/j.bspc.2022.103973_b0050) 2018; 125 10.1016/j.bspc.2022.103973_b0130 Li (10.1016/j.bspc.2022.103973_b0035) 2018 Smeltzer (10.1016/j.bspc.2022.103973_b0010) 2020; 15 Wang (10.1016/j.bspc.2022.103973_b0030) 2018; 26 Li (10.1016/j.bspc.2022.103973_b0090) 2015; 46 Mukhopadhyay (10.1016/j.bspc.2022.103973_b0170) 2016; 29 Kim (10.1016/j.bspc.2022.103973_b0155) 2021; 456 Bueno (10.1016/j.bspc.2022.103973_b0025) 2018; 38 Devi (10.1016/j.bspc.2022.103973_b0105) 2021; 12 Giger (10.1016/j.bspc.2022.103973_b0015) 2018; 15 Ahmed (10.1016/j.bspc.2022.103973_b0145) 2021; 9 Li (10.1016/j.bspc.2022.103973_b0045) 2022 10.1016/j.bspc.2022.103973_b0060 Roy (10.1016/j.bspc.2022.103973_b0055) 2019; 123 10.1016/j.bspc.2022.103973_b0160 Naik (10.1016/j.bspc.2022.103973_b0075) 2021; 116 10.1016/j.bspc.2022.103973_b0020 Wang (10.1016/j.bspc.2022.103973_b0070) 2020; 31 10.1016/j.bspc.2022.103973_b0125 10.1016/j.bspc.2022.103973_b0005 LeCun (10.1016/j.bspc.2022.103973_b0110) 2015; 521 Shi (10.1016/j.bspc.2022.103973_b0065) 2019; 78 Tan (10.1016/j.bspc.2022.103973_b0080) 2021; 50 Jose (10.1016/j.bspc.2022.103973_b101) 2021; 66 Sundararaj (10.1016/j.bspc.2022.103973_b106) 2016; 9 |
| References_xml | – volume: 31 start-page: 1163 year: 2020 end-page: 1183 ident: b0070 article-title: Novel convolutional neural network architecture for improved pulmonary nodule classification on computed tomography publication-title: Multidimensional Systems and Signal Processing – volume: 137 year: 2021 ident: b0085 article-title: Lung nodule segmentation using salp shuffled shepherd optimization algorithm-based generative adversarial network publication-title: Computers in Biology and Medicine – volume: 9 start-page: 117 year: 2016 end-page: 126 ident: b106 article-title: An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm publication-title: Int J Intell Eng Syst – volume: 63 year: 2021 ident: b0150 article-title: Hybrid MPSO-CNN: Multi-level particle swarm optimized hyperparameters of convolutional neural network publication-title: Swarm and Evolutionary Computation – volume: 16 start-page: e0248541 year: 2021 ident: b0165 article-title: Correction: Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma publication-title: Plos one – start-page: 1 year: 2022 end-page: 15 ident: b0045 article-title: Improved cost-sensitive multikernel learning support vector machine algorithm based on particle swarm optimization in pulmonary nodule recognition publication-title: Soft Computing – reference: . World Health Organization. Retrieved January 28, 2022, from https://www.who.int/news-room/fact-sheets/detail/cancer. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0110 publication-title: Deep learning. nature – volume: 29 start-page: 86 year: 2016 end-page: 103 ident: b0170 article-title: A segmentation framework of pulmonary nodules in lung CT images publication-title: Journal of digital imaging – volume: 46 start-page: 150 year: 2015 end-page: 162 ident: b0090 article-title: Recognition System for Home-Service-Related Sign Language Using Entropy-Based $ K $-Means Algorithm and ABC-Based HMM publication-title: IEEE transactions on systems, man, and Cybernetics: systems – reference: F.Han, G.Zhang, H.Wang, B.Song, H.Lu, D.Zhao, H.Zhao, Z.Liang. A texture feature analysis for diagnosis of pulmonary nodules using LIDC-IDRI database. In – reference: ,(2013 october) 14-18. IEEE. – volume: 123 start-page: 31 year: 2019 end-page: 38 ident: b0055 article-title: A deep learning-shape driven level set synergism for pulmonary nodule segmentation publication-title: Pattern Recognition Letters – volume: 50 start-page: 119 year: 2021 end-page: 122 ident: b0080 article-title: Implementation of an Artificial Intelligence-Based Double Read System in Capturing Pulmonary Nodule Discrepancy in CT Studies publication-title: Current Problems in Diagnostic Radiology – volume: 12 start-page: 2299 year: 2021 end-page: 2309 ident: b0105 article-title: Labeling and clustering-based level set method for automated segmentation of lung tumor stages in CT images publication-title: Journal of Ambient Intelligence and Humanized Computing – volume: 20 start-page: 4301 year: 2020 ident: b0040 article-title: A novel pulmonary nodule detection model based on multi-step cascaded networks publication-title: Sensors – volume: 33 start-page: 6965 year: 2021 end-page: 6982 ident: b0095 article-title: An entropy-based initialization method of K-means clustering on the optimal number of clusters publication-title: Neural Computing and Applications – reference: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06),1(2005 november) 695-701. IEEE. – reference: The Cancer Imaging Archive (TCIA) Public Access - Cancer Imaging Archive Wiki. (n.d.). Retrieved January 29, 2022, from https://wiki.cancerimagingarchive.net/display/Public/LIDCIDRI#:∼:text=The%20Lung%20Image%20Database%20Consortium,with%20marked%2Dup%20annotated%20lesions.&text=Seven%20academic%20centers%20and%20eight,set%20which%20contains%201018%20cases. – reference: H.R.Tizhoosh. Opposition-based learning: a new scheme for machine intelligence. In – reference: J.Mei, M.M.Cheng, G.Xu, L.R.Wan, H.Zhang. SANet: A Slice-Aware Network for Pulmonary Nodule Detection. – start-page: 1 year: 2019 end-page: 18 ident: b0135 article-title: Pulmonary nodule detection in CT images using optimal multilevel thresholds and rule-based filtering publication-title: IETE Journal of Research – volume: 26 start-page: 171 year: 2018 end-page: 187 ident: b0030 article-title: A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation publication-title: Journal of X-ray Science and Technology – volume: 38 start-page: 1337 year: 2018 end-page: 1350 ident: b0025 article-title: Updated fleischner society guidelines for managing incidental pulmonary nodules: common questions and challenging scenarios publication-title: Radiographics – reference: World Health Organization. (n.d.). – volume: 9 start-page: 16975 year: 2021 end-page: 16987 ident: b0145 article-title: A meta-heuristic automatic CNN architecture design approach based on ensemble learning publication-title: IEEE Access – reference: . Flatworld Solutions. (n.d.). Retrieved January 28, 2022, from https://www.flatworldsolutions.com/healthcare/articles/top-10-applications-of-machine-learning-in-healthcare.php. – reference: (2021). – volume: 9 start-page: 1739 year: 2016 end-page: 1747 ident: b0115 article-title: Non-intrusive load disaggregation using graph signal processing publication-title: IEEE Transactions on Smart Grid – volume: 125 start-page: 107 year: 2018 end-page: 114 ident: b0050 article-title: Lung cancer detection using CT scan images publication-title: Procedia Computer Science – volume: 78 start-page: 1017 year: 2019 end-page: 1103 ident: b0065 article-title: A deep CNN-based transfer learning method for false-positive reduction publication-title: Multimedia Tools and Applications – year: 2014 ident: b0100 article-title: A new kernel-based fuzzy level set method for automated segmentation of medical images in the presence of intensity inhomogeneity publication-title: Computational and Mathematical Methods in Medicine – volume: 31 start-page: 1503 year: 2021 end-page: 1518 ident: b0140 article-title: Improved pulmonary lung nodules risk stratification in computed tomography images by fusing shape and texture features in a machine-learning paradigm publication-title: International Journal of Imaging Systems and Technology – volume: 456 start-page: 666 year: 2021 end-page: 677 ident: b0155 article-title: Optimizing CNN-LSTM neural networks with PSO for anomalous query access control publication-title: Neurocomputing – volume: 15 start-page: 512 year: 2018 end-page: 520 ident: b0015 article-title: Machine learning in medical imaging publication-title: Journal of the American College of Radiology – year: 2018 ident: b0035 article-title: Pulmonary nodule recognition based on multiple kernels learning support vector machine-pso publication-title: Computational and Mathematical Methods in Medicine – volume: 15 start-page: 1434 year: 2020 end-page: 1448 ident: b0010 article-title: The International Association for the Study of Lung Cancer global survey on molecular testing in lung cancer publication-title: Journal of Thoracic Oncology – volume: 116 start-page: 655 year: 2021 end-page: 690 ident: b0075 article-title: Lung nodule classification on computed tomography images using deep learning publication-title: Wireless Personal Communications – volume: 7 start-page: 5762 year: 2021 end-page: 5771 ident: b0120 article-title: Non-intrusive load decomposition based on CNN–LSTM hybrid deep learning model publication-title: Energy Reports – volume: 66 start-page: 102480 year: 2021 ident: b101 article-title: An image quality enhancement scheme employing adolescent identity search algorithm in the NSST domain for multimodal medical image fusion publication-title: Biomedical Signal Processing and Control – volume: 15 start-page: 512 issue: 3 year: 2018 ident: 10.1016/j.bspc.2022.103973_b0015 article-title: Machine learning in medical imaging publication-title: Journal of the American College of Radiology doi: 10.1016/j.jacr.2017.12.028 – volume: 125 start-page: 107 year: 2018 ident: 10.1016/j.bspc.2022.103973_b0050 article-title: Lung cancer detection using CT scan images publication-title: Procedia Computer Science doi: 10.1016/j.procs.2017.12.016 – volume: 26 start-page: 171 issue: 2 year: 2018 ident: 10.1016/j.bspc.2022.103973_b0030 article-title: A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation publication-title: Journal of X-ray Science and Technology – volume: 66 start-page: 102480 year: 2021 ident: 10.1016/j.bspc.2022.103973_b101 article-title: An image quality enhancement scheme employing adolescent identity search algorithm in the NSST domain for multimodal medical image fusion publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.102480 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.bspc.2022.103973_b0110 publication-title: Deep learning. nature – volume: 137 year: 2021 ident: 10.1016/j.bspc.2022.103973_b0085 article-title: Lung nodule segmentation using salp shuffled shepherd optimization algorithm-based generative adversarial network publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.104811 – ident: 10.1016/j.bspc.2022.103973_b0160 doi: 10.1109/ICMIPE.2013.6864494 – ident: 10.1016/j.bspc.2022.103973_b0020 – volume: 20 start-page: 4301 issue: 15 year: 2020 ident: 10.1016/j.bspc.2022.103973_b0040 article-title: A novel pulmonary nodule detection model based on multi-step cascaded networks publication-title: Sensors doi: 10.3390/s20154301 – volume: 12 start-page: 2299 issue: 2 year: 2021 ident: 10.1016/j.bspc.2022.103973_b0105 article-title: Labeling and clustering-based level set method for automated segmentation of lung tumor stages in CT images publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-020-02329-9 – volume: 31 start-page: 1503 issue: 3 year: 2021 ident: 10.1016/j.bspc.2022.103973_b0140 article-title: Improved pulmonary lung nodules risk stratification in computed tomography images by fusing shape and texture features in a machine-learning paradigm publication-title: International Journal of Imaging Systems and Technology doi: 10.1002/ima.22539 – volume: 63 year: 2021 ident: 10.1016/j.bspc.2022.103973_b0150 article-title: Hybrid MPSO-CNN: Multi-level particle swarm optimized hyperparameters of convolutional neural network publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2021.100863 – volume: 7 start-page: 5762 year: 2021 ident: 10.1016/j.bspc.2022.103973_b0120 article-title: Non-intrusive load decomposition based on CNN–LSTM hybrid deep learning model publication-title: Energy Reports doi: 10.1016/j.egyr.2021.09.001 – volume: 456 start-page: 666 year: 2021 ident: 10.1016/j.bspc.2022.103973_b0155 article-title: Optimizing CNN-LSTM neural networks with PSO for anomalous query access control publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.154 – year: 2014 ident: 10.1016/j.bspc.2022.103973_b0100 article-title: A new kernel-based fuzzy level set method for automated segmentation of medical images in the presence of intensity inhomogeneity – volume: 38 start-page: 1337 issue: 5 year: 2018 ident: 10.1016/j.bspc.2022.103973_b0025 article-title: Updated fleischner society guidelines for managing incidental pulmonary nodules: common questions and challenging scenarios publication-title: Radiographics doi: 10.1148/rg.2018180017 – volume: 123 start-page: 31 year: 2019 ident: 10.1016/j.bspc.2022.103973_b0055 article-title: A deep learning-shape driven level set synergism for pulmonary nodule segmentation publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2019.03.004 – volume: 9 start-page: 117 issue: 3 year: 2016 ident: 10.1016/j.bspc.2022.103973_b106 article-title: An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm publication-title: Int J Intell Eng Syst – volume: 9 start-page: 16975 year: 2021 ident: 10.1016/j.bspc.2022.103973_b0145 article-title: A meta-heuristic automatic CNN architecture design approach based on ensemble learning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3054117 – volume: 15 start-page: 1434 issue: 9 year: 2020 ident: 10.1016/j.bspc.2022.103973_b0010 article-title: The International Association for the Study of Lung Cancer global survey on molecular testing in lung cancer publication-title: Journal of Thoracic Oncology doi: 10.1016/j.jtho.2020.05.002 – volume: 33 start-page: 6965 issue: 12 year: 2021 ident: 10.1016/j.bspc.2022.103973_b0095 article-title: An entropy-based initialization method of K-means clustering on the optimal number of clusters publication-title: Neural Computing and Applications doi: 10.1007/s00521-020-05471-9 – volume: 9 start-page: 1739 issue: 3 year: 2016 ident: 10.1016/j.bspc.2022.103973_b0115 article-title: Non-intrusive load disaggregation using graph signal processing publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2016.2598872 – volume: 116 start-page: 655 issue: 1 year: 2021 ident: 10.1016/j.bspc.2022.103973_b0075 article-title: Lung nodule classification on computed tomography images using deep learning publication-title: Wireless Personal Communications doi: 10.1007/s11277-020-07732-1 – volume: 78 start-page: 1017 issue: 1 year: 2019 ident: 10.1016/j.bspc.2022.103973_b0065 article-title: A deep CNN-based transfer learning method for false-positive reduction publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-6082-6 – volume: 31 start-page: 1163 issue: 3 year: 2020 ident: 10.1016/j.bspc.2022.103973_b0070 article-title: Novel convolutional neural network architecture for improved pulmonary nodule classification on computed tomography publication-title: Multidimensional Systems and Signal Processing doi: 10.1007/s11045-020-00703-6 – volume: 16 start-page: e0248541 issue: 3 year: 2021 ident: 10.1016/j.bspc.2022.103973_b0165 article-title: Correction: Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma publication-title: Plos one doi: 10.1371/journal.pone.0248541 – ident: 10.1016/j.bspc.2022.103973_b0005 – ident: 10.1016/j.bspc.2022.103973_b0060 doi: 10.1109/TPAMI.2021.3065086 – volume: 50 start-page: 119 issue: 2 year: 2021 ident: 10.1016/j.bspc.2022.103973_b0080 article-title: Implementation of an Artificial Intelligence-Based Double Read System in Capturing Pulmonary Nodule Discrepancy in CT Studies publication-title: Current Problems in Diagnostic Radiology doi: 10.1067/j.cpradiol.2020.07.006 – volume: 46 start-page: 150 issue: 1 year: 2015 ident: 10.1016/j.bspc.2022.103973_b0090 article-title: Recognition System for Home-Service-Related Sign Language Using Entropy-Based $ K $-Means Algorithm and ABC-Based HMM publication-title: IEEE transactions on systems, man, and Cybernetics: systems doi: 10.1109/TSMC.2015.2435702 – year: 2018 ident: 10.1016/j.bspc.2022.103973_b0035 article-title: Pulmonary nodule recognition based on multiple kernels learning support vector machine-pso – ident: 10.1016/j.bspc.2022.103973_b0130 doi: 10.1109/CIMCA.2005.1631345 – volume: 29 start-page: 86 issue: 1 year: 2016 ident: 10.1016/j.bspc.2022.103973_b0170 article-title: A segmentation framework of pulmonary nodules in lung CT images publication-title: Journal of digital imaging doi: 10.1007/s10278-015-9801-9 – start-page: 1 year: 2019 ident: 10.1016/j.bspc.2022.103973_b0135 article-title: Pulmonary nodule detection in CT images using optimal multilevel thresholds and rule-based filtering publication-title: IETE Journal of Research – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2022.103973_b0045 article-title: Improved cost-sensitive multikernel learning support vector machine algorithm based on particle swarm optimization in pulmonary nodule recognition publication-title: Soft Computing – ident: 10.1016/j.bspc.2022.103973_b0125 |
| SSID | ssj0048714 |
| Score | 2.3905394 |
| Snippet | [Display omitted]
•Hybrid CNN-LSTM architecture is proposed to improve the unbalanced class problem.•pulmonary parenchyma region is segmented using the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103973 |
| SubjectTerms | Active contour level set Capuchin search algorithm Convolutional neural network K-means clustering Lung nodule Oppositional learning |
| Title | An improved capuchin search algorithm optimized hybrid CNN-LSTM architecture for malignant lung nodule detection |
| URI | https://dx.doi.org/10.1016/j.bspc.2022.103973 |
| Volume | 78 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Complete Freedom Collection customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b4MwELaidmmHqk81fUQeulU0gA2YMYoapY-wJJGyIduYhCoB1JKhHfrbe-YRpVKVoRMC3UnoOM7fwXefEbqzObEjP_LKWSeDSuUYTElucI_Bai25JLEecB4F7nBKn2fOrIX6zSyMplXWtb-q6WW1rq9062h28yTpjgFLuwy6E9suJQ-1JiiFI-T0w_eG5gF4vNT31saGtq4HZyqOl_jItYyhbevZc98jfy9OWwvO4Bgd1UgR96qbOUEtlZ6iwy39wDOU91KclF8FVIQlz_XGJimukhfz5TyDzn-xwhmUhVXyBTaLTz2ghftBYLyOJyO8_RsBA3zFK4Dlc82NwUuoAjjNovVS4UgVJWMrPUfTweOkPzTqLRQMSUyzMLgwLUAkwiQxc4WnTN8WnFGfCoAthEfcYtxlwjKV41Mr9twI3lHPpII4UjDoXi_QXpql6hJhDv5aqsXhcUwd6FqUhMdPPS6IBJyg2shqYhfKWl9cb3OxDBsi2Vuo4x3qeIdVvNvofuOTV-oaO62d5pGEv3IkhPK_w-_qn37X6ECfVYyyG7RXvK_VLUCQQnTKHOug_d7TyzD4AX-726U |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YENheZh5zFWFVWBNktbqVtkO04b1CYRpAMM_HbOeVRFQh1YkzspOl_O3yXffUbo3mSWGXqhU8w6aURIqrlSMI05LuzWggkrUgPOQ9_uT8jLlE4bqFvPwihaZVX7y5peVOvqSruKZjuL4_YIsLTtQndimoXkIdlBu4SajurAHr_XPA8A5IXAt7LWlHk1OVOSvPhHpnQMTVMNn3uO9ffutLHj9I7QYQUVcad8mmPUkMkJOtgQEDxFWSfBcfFZQIZYsEydbJLgMnsxW8xSaP3nS5xCXVjGX2Az_1QTWrjr-9pgNB7izf8IGPArXgIunylyDF5AGcBJGq4WEocyLyhbyRma9J7G3b5WnaGgCUvXc41x3QBIwnUrcm3uSN0zOXOJRzjgFouFzHCZ7XJDl9QjRuTYIbykjk64RQV3oX09R80kTeQFwgz8lVYLZVFEKLQtUsD6E4dxSwBQkC1k1LELRCUwrs65WAQ1k-wtUPEOVLyDMt4t9LD2yUp5ja3WtF6S4FeSBFD_t_hd_tPvDu31x8NBMHj2X6_QvrpT0suuUTN_X8kbwCM5vy3y7Qe0wd06 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+capuchin+search+algorithm+optimized+hybrid+CNN-LSTM+architecture+for+malignant+lung+nodule+detection&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Kanipriya%2C+M.&rft.au=Hemalatha%2C+C.&rft.au=Sridevi%2C+N.&rft.au=SriVidhya%2C+S.R.&rft.date=2022-09-01&rft.issn=1746-8094&rft.volume=78&rft.spage=103973&rft_id=info:doi/10.1016%2Fj.bspc.2022.103973&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_103973 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |