SecureQwen: Leveraging LLMs for vulnerability detection in python codebases
Identifying vulnerabilities in software code is crucial for ensuring the security of modern systems. However, manual detection requires expert knowledge and is time-consuming, underscoring the need for automated techniques. In this paper, we present SecureQwen, a novel vulnerability detection tool l...
Saved in:
| Published in | Computers & security Vol. 148; p. 104151 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.01.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-4048 |
| DOI | 10.1016/j.cose.2024.104151 |
Cover
| Abstract | Identifying vulnerabilities in software code is crucial for ensuring the security of modern systems. However, manual detection requires expert knowledge and is time-consuming, underscoring the need for automated techniques. In this paper, we present SecureQwen, a novel vulnerability detection tool leveraging large language models (LLMs) with a context length of 64K tokens to identify potential security threats in large-scale Python codebases. Utilizing a decoder-only transformer architecture, SecureQwen captures complex relationships between code tokens, enabling accurate classification of vulnerable code sequences across 14 common weakness enumerations (CWEs), including OS Command Injection, SQL Injection, Improper Check or Handling of Exceptional Conditions, Path Traversal, Broken or Risky Cryptographic Algorithm, Deserialization of Untrusted Data, and Cleartext Transmission of Sensitive Information. Therefore, we evaluate SecureQwen on a large Python dataset with over 1.875 million function-level code snippets from different sources, including GitHub repositories, Codeparrot’s dataset, and synthetic data generated by GPT4-o. The experimental evaluation demonstrates high accuracy, with F1 scores ranging from 84% to 99%. The results indicate that SecureQwen effectively detects vulnerabilities in human-written and AI-generated code. |
|---|---|
| AbstractList | Identifying vulnerabilities in software code is crucial for ensuring the security of modern systems. However, manual detection requires expert knowledge and is time-consuming, underscoring the need for automated techniques. In this paper, we present SecureQwen, a novel vulnerability detection tool leveraging large language models (LLMs) with a context length of 64K tokens to identify potential security threats in large-scale Python codebases. Utilizing a decoder-only transformer architecture, SecureQwen captures complex relationships between code tokens, enabling accurate classification of vulnerable code sequences across 14 common weakness enumerations (CWEs), including OS Command Injection, SQL Injection, Improper Check or Handling of Exceptional Conditions, Path Traversal, Broken or Risky Cryptographic Algorithm, Deserialization of Untrusted Data, and Cleartext Transmission of Sensitive Information. Therefore, we evaluate SecureQwen on a large Python dataset with over 1.875 million function-level code snippets from different sources, including GitHub repositories, Codeparrot’s dataset, and synthetic data generated by GPT4-o. The experimental evaluation demonstrates high accuracy, with F1 scores ranging from 84% to 99%. The results indicate that SecureQwen effectively detects vulnerabilities in human-written and AI-generated code. |
| ArticleNumber | 104151 |
| Author | Debbah, Merouane Mechri, Abdechakour Ferrag, Mohamed Amine |
| Author_xml | – sequence: 1 givenname: Abdechakour orcidid: 0009-0002-6937-9373 surname: Mechri fullname: Mechri, Abdechakour email: a.mechri@esi-sba.dz organization: École supérieure en informatique 08 Mai 1945 de Sidi Bel Abbès (ESI-SBA), Algeria – sequence: 2 givenname: Mohamed Amine orcidid: 0000-0002-0632-3172 surname: Ferrag fullname: Ferrag, Mohamed Amine email: ferrag.mohamedamine@univ-guelma.dz organization: Technology Innovation Institute, 9639 Masdar City, Abu Dhabi, United Arab Emirates – sequence: 3 givenname: Merouane orcidid: 0000-0001-8941-8080 surname: Debbah fullname: Debbah, Merouane email: merouane.debbah@ku.ac.ae organization: Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates |
| BookMark | eNp9kE1LAzEQhnOoYKv-AU_5A1vztWkqXqT4hSsi6jlkk2lNWZOSpJX-e3epJw89zfAOzzDzTNAoxAAIXVIypYTKq_XUxgxTRpjoA0FrOkLjfjCrBBHqFE1yXhNCZ1KpMXp-B7tN8PYD4Ro3sINkVj6scNO8ZLyMCe-2XejD1ne-7LGDArb4GLAPeLMvX31no4PWZMjn6GRpugwXf_UMfd7ffSweq-b14Wlx21SWE1IqI6RRvDbztmaMCyokk5ZQ4MCVq40ExTllNRBjpGu5E8oIwySnLZ21czrnZ0gd9toUc06w1NYXM1xVkvGdpkQPIvRaDyL0IEIfRPQo-4dukv82aX8cujlA0D-185B0th6CBedTb0O76I_hv20mex0 |
| CitedBy_id | crossref_primary_10_3390_s25061666 crossref_primary_10_1016_j_iotcps_2025_01_001 |
| Cites_doi | 10.1145/3597926.3598145 10.1145/3551349.3559534 10.1109/TIFS.2024.3374558 10.1145/3556974 10.1049/sfw2.12066 10.1109/TDSC.2021.3051525 10.1007/s10664-022-10278-4 10.1145/3436877 10.1145/3597503.3639121 10.1016/j.jss.2024.112031 10.1145/3379597.3387513 10.1145/3643651.3659892 10.1145/3590777.3590780 10.1145/3585009 10.1145/3650105.3652299 10.1109/JPROC.2020.2993293 10.1145/2597073.2597074 10.1016/j.infsof.2021.106809 10.1145/3475960.3475985 10.1016/j.cose.2024.103802 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cose.2024.104151 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_cose_2024_104151 S0167404824004565 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABFSI ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADHUB ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 E.L EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLX HLZ HVGLF HZ~ IHE J1W KOM LG8 LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SBM SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TAE TN5 TWZ WH7 WUQ XJE XPP XSW YK3 ZMT ~G- AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-a46a835a9b5223414626c01e3e38d5a6e833125e0aa6db3d48a4a2631b17b9193 |
| IEDL.DBID | .~1 |
| ISSN | 0167-4048 |
| IngestDate | Wed Oct 01 04:27:34 EDT 2025 Thu Apr 24 22:51:20 EDT 2025 Sat Feb 01 16:09:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Vulnerability detection Static analysis Large language model Codebase Security Generative pre-trained transformers Software security |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-a46a835a9b5223414626c01e3e38d5a6e833125e0aa6db3d48a4a2631b17b9193 |
| ORCID | 0000-0002-0632-3172 0009-0002-6937-9373 0000-0001-8941-8080 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cose_2024_104151 crossref_primary_10_1016_j_cose_2024_104151 elsevier_sciencedirect_doi_10_1016_j_cose_2024_104151 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2025 2025-01-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & security |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bhandari, G., Naseer, A., Moonen, L., 2021. CVEfixes: automated collection of vulnerabilities and their fixes from open-source software. In: Proceedings of the 17th International Conference on Predictive Models and Data Analytics in Software Engineering. pp. 30–39. Russell, Kim, Hamilton, Lazovich, Harer, Ozdemir, Ellingwood, McConley (b51) 2018 Wartschinski, Noller, Vogel, Kehrer, Grunske (b60) 2022; 144 Zhou, Tran, Le-Cong, Zhang, Irsan, Sumarlin, Le, Lo (b73) 2024 Antal, G., Keleti, M., Hegedŭs, P., 2020. Exploring the security awareness of the python and javascript open source communities. In: Proceedings of the 17th International Conference on Mining Software Repositories. pp. 16–20. Mikolov, Sutskever, Chen, Corrado, Dean (b43) 2013; Vol. 26 Zhang, Fang, Sun, Liu, He, Hao, Chen (b66) 2024 Black (b10) 2017 Farasat, Posegga (b17) 2024 Zhang, Sennrich (b67) 2019 Jiang, Gu, Zhu, Pan (b29) 2024; 36 Zhou, Pacheco, Wan, Xia, Lo, Wang, Hassan (b72) 2021 Shestov, Levichev, Mussabayev, Maslov, Cheshkov, Zadorozhny (b54) 2024 Alammar (b2) 2018 Elfwing, Uchibe, Doya (b15) 2017 Mamede, C., Pinconschi, E., Abreu, R., 2022. A transformer-based IDE plugin for vulnerability detection. In: Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. pp. 1–4. Zhao, Zhou, Li, Tang, Wang, Hou, Min, Zhang, Zhang, Dong (b69) 2023 Lu, Ju, Chen, Pei, Cai (b37) 2024; 212 Zhou, Liu, Siow, Du, Liu (b71) 2019 Li, J., Sangalay, A., Cheng, C., Tian, Y., Yang, J., 2024. Fine Tuning Large Language Model for Secure Code Generation. In: Proceedings of the 2024 IEEE/ACM First International Conference on AI Foundation Models and Software Engineering. pp. 86–90. Popescu, Balas, Perescu-Popescu, Mastorakis (b49) 2009; 8 Ehrenberg, Sarkani, Mazzuchi (b14) 2024; 140 Bai, Bai, Yang, Wang, Tan, Wang, Lin, Zhou, Zhou (b6) 2023 Su, Lu, Pan, Murtadha, Wen, Liu (b56) 2021 Kingma, Ba (b31) 2017 Mathews, Brus, Aafer, Nagappan, McIntosh (b41) 2024 Phan, Tran, Le, Nguyen, Anibal, Peltekian, Ye (b48) 2021 Touvron, Lavril, Izacard, Martinet, Lachaux, Lacroix, Rozière, Goyal, Hambro, Azhar (b58) 2023 Zheng, Pujar, Lewis, Buratti, Epstein, Yang, Laredo, Morari, Su (b70) 2021 Zhang, Arcuri, Li, Liu, Xue (b65) 2023; 32 Finamore (b21) 2024 Xie, Raskar, Emani (b63) 2022 Feng, Guo, Tang, Duan, Feng, Gong, Shou, Qin, Liu, Jiang (b19) 2020 Zhang, L., Zou, Q., Singhal, A., Sun, X., Liu, P., 2024b. Evaluating Large Language Models for Real-World Vulnerability Repair in C/C++ Code. In: Proceedings of the 10th ACM International Workshop on Security and Privacy Analytics. pp. 49–58. Hanif, Maffeis (b24) 2022 Ferrag, Battah, Tihanyi, Jain, Maimut, Alwahedi, Lestable, Thandi, Mechri, Debbah, Cordeiro (b20) 2024 Yusuf, Jiang (b64) 2024 Menezes, Aldughaim, Farias, Li, Manino, Shmarov, Song, Brauß e, Gadelha, Tihanyi (b42) 2024 Mao, Li, Li, Tei (b40) 2024 Rozière, Gehring, Gloeckle, Sootla, Gat, Tan, Adi, Liu, Sauvestre, Remez, Rapin, Kozhevnikov, Evtimov, Bitton, Bhatt, Ferrer, Grattafiori, Xiong, Défossez, Copet, Azhar, Touvron, Martin, Usunier, Scialom, Synnaeve (b50) 2024 Lin, Wen, Han, Zhang, Xiang (b35) 2020; 108 Bai, Bai (b7) 2023 OpenAI (b46) 2023 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b59) 2017; 30 Bai, Men, Yang, Ren, Dang, Zhang, Zhou, Wang, Tan, Yang (b8) 2022 Luo, Xu, Zhao, Sun, Geng, Hu, Tao, Ma, Lin, Jiang (b38) 2023 Ozturk, O.S., Ekmekcioglu, E., Cetin, O., Arief, B., Hernandez-Castro, J., 2023. New tricks to old codes: can AI chatbots replace static code analysis tools?. In: Proceedings of the 2023 European Interdisciplinary Cybersecurity Conference. pp. 13–18. Cheng, Wang, Hua, Xu, Sui (b12) 2021; 30 Wu, Zhang, Jha, McDaniel, Xiao (b61) 2024 Alfadel, Costa, Shihab (b3) 2023; 28 Guo, Ren, Lu, Feng, Tang, Liu, Zhou, Duan, Svyatkovskiy, Fu (b23) 2020 Li, Zou, Xu, Jin, Zhu, Chen (b33) 2021; 19 Lu, Guo, Ren, Huang, Svyatkovskiy, Blanco, Clement, Drain, Jiang, Tang (b36) 2021 Zou, Wang, Xu, Li, Jin (b74) 2019; 18 Chowdhery, Narang, Devlin, Bosma, Mishra, Roberts, Barham, Chung, Sutton, Gehrmann (b13) 2023; 24 Hu, Y., Wang, S., Li, W., Peng, J., Wu, Y., Zou, D., Jin, H., 2023. Interpreters for GNN-based vulnerability detection: Are we there yet?. In: Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. pp. 1407–1419. Subhan, Wu, Bo, Sun, Rahman (b57) 2022; 16 OpenAI (b45) 2023 Alikhanifard, Tsantalis (b4) 2024 Mohammed, Lal, Rastogi, Roy, Sharma (b44) 2024 Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D., 2014. The promises and perils of mining github. In: Proceedings of the 11th Working Conference on Mining Software Repositories. pp. 92–101. Shazeer (b53) 2020 Farias, Menezes, Sun, Cordeiro (b18) 2024 Senanayake, Kalutarage, Al-Kadri, Petrovski, Piras (b52) 2023; 55 Buratti, Pujar, Bornea, McCarley, Zheng, Rossiello, Morari, Laredo, Thost, Zhuang (b11) 2020 Gao, Wang, Zhou, Zhu, Zhang (b22) 2023 Hovsepyan, Scandariato, Joosen, Walden (b26) 2012 Jensen, Tawosi, Alamir (b28) 2024 Eniser, Zhang, David, Wang, Paulsen, Dodds, Kroening (b16) 2024 Hashemi Chaleshtori, Ray (b25) 2022 Ahmad, Thakur, Tan, Karri, Pearce (b1) 2024 Xia, C.S., Paltenghi, M., Le Tian, J., Pradel, M., Zhang, L., 2024. Fuzz4all: Universal fuzzing with large language models. In: Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. pp. 1–13. Li, Zou, Xu, Ou, Jin, Wang, Deng, Zhong (b34) 2018 Silva, Fang, Monperrus (b55) 2023 Zou (10.1016/j.cose.2024.104151_b74) 2019; 18 Phan (10.1016/j.cose.2024.104151_b48) 2021 Russell (10.1016/j.cose.2024.104151_b51) 2018 Buratti (10.1016/j.cose.2024.104151_b11) 2020 Zhang (10.1016/j.cose.2024.104151_b66) 2024 Bai (10.1016/j.cose.2024.104151_b6) 2023 Yusuf (10.1016/j.cose.2024.104151_b64) 2024 Li (10.1016/j.cose.2024.104151_b34) 2018 10.1016/j.cose.2024.104151_b5 Jensen (10.1016/j.cose.2024.104151_b28) 2024 Feng (10.1016/j.cose.2024.104151_b19) 2020 Ferrag (10.1016/j.cose.2024.104151_b20) 2024 Silva (10.1016/j.cose.2024.104151_b55) 2023 Zhou (10.1016/j.cose.2024.104151_b72) 2021 Ehrenberg (10.1016/j.cose.2024.104151_b14) 2024; 140 Mohammed (10.1016/j.cose.2024.104151_b44) 2024 Hovsepyan (10.1016/j.cose.2024.104151_b26) 2012 Vaswani (10.1016/j.cose.2024.104151_b59) 2017; 30 Cheng (10.1016/j.cose.2024.104151_b12) 2021; 30 Chowdhery (10.1016/j.cose.2024.104151_b13) 2023; 24 Su (10.1016/j.cose.2024.104151_b56) 2021 Guo (10.1016/j.cose.2024.104151_b23) 2020 Zhou (10.1016/j.cose.2024.104151_b71) 2019 Mikolov (10.1016/j.cose.2024.104151_b43) 2013; Vol. 26 Touvron (10.1016/j.cose.2024.104151_b58) 2023 10.1016/j.cose.2024.104151_b62 Hanif (10.1016/j.cose.2024.104151_b24) 2022 Xie (10.1016/j.cose.2024.104151_b63) 2022 Alfadel (10.1016/j.cose.2024.104151_b3) 2023; 28 10.1016/j.cose.2024.104151_b27 Wu (10.1016/j.cose.2024.104151_b61) 2024 Popescu (10.1016/j.cose.2024.104151_b49) 2009; 8 Alammar (10.1016/j.cose.2024.104151_b2) 2018 Bai (10.1016/j.cose.2024.104151_b7) 2023 10.1016/j.cose.2024.104151_b9 Zhao (10.1016/j.cose.2024.104151_b69) 2023 Menezes (10.1016/j.cose.2024.104151_b42) 2024 10.1016/j.cose.2024.104151_b68 Wartschinski (10.1016/j.cose.2024.104151_b60) 2022; 144 Lu (10.1016/j.cose.2024.104151_b37) 2024; 212 Kingma (10.1016/j.cose.2024.104151_b31) 2017 OpenAI (10.1016/j.cose.2024.104151_b46) 2023 Alikhanifard (10.1016/j.cose.2024.104151_b4) 2024 10.1016/j.cose.2024.104151_b30 OpenAI (10.1016/j.cose.2024.104151_b45) 2023 Senanayake (10.1016/j.cose.2024.104151_b52) 2023; 55 Farasat (10.1016/j.cose.2024.104151_b17) 2024 Zhang (10.1016/j.cose.2024.104151_b65) 2023; 32 Li (10.1016/j.cose.2024.104151_b33) 2021; 19 10.1016/j.cose.2024.104151_b39 10.1016/j.cose.2024.104151_b32 Luo (10.1016/j.cose.2024.104151_b38) 2023 Jiang (10.1016/j.cose.2024.104151_b29) 2024; 36 Zheng (10.1016/j.cose.2024.104151_b70) 2021 Bai (10.1016/j.cose.2024.104151_b8) 2022 Finamore (10.1016/j.cose.2024.104151_b21) 2024 Zhang (10.1016/j.cose.2024.104151_b67) 2019 Elfwing (10.1016/j.cose.2024.104151_b15) 2017 Eniser (10.1016/j.cose.2024.104151_b16) 2024 Hashemi Chaleshtori (10.1016/j.cose.2024.104151_b25) 2022 Gao (10.1016/j.cose.2024.104151_b22) 2023 Ahmad (10.1016/j.cose.2024.104151_b1) 2024 Rozière (10.1016/j.cose.2024.104151_b50) 2024 10.1016/j.cose.2024.104151_b47 Subhan (10.1016/j.cose.2024.104151_b57) 2022; 16 Mao (10.1016/j.cose.2024.104151_b40) 2024 Lin (10.1016/j.cose.2024.104151_b35) 2020; 108 Lu (10.1016/j.cose.2024.104151_b36) 2021 Shestov (10.1016/j.cose.2024.104151_b54) 2024 Shazeer (10.1016/j.cose.2024.104151_b53) 2020 Zhou (10.1016/j.cose.2024.104151_b73) 2024 Mathews (10.1016/j.cose.2024.104151_b41) 2024 Black (10.1016/j.cose.2024.104151_b10) 2017 Farias (10.1016/j.cose.2024.104151_b18) 2024 |
| References_xml | – year: 2024 ident: b1 article-title: On hardware security bug code fixes by prompting large language models publication-title: IEEE Trans. Inf. Forensics Secur. – year: 2024 ident: b41 article-title: Llbezpeky: Leveraging large language models for vulnerability detection – volume: 30 start-page: 1 year: 2021 end-page: 33 ident: b12 article-title: Deepwukong: Statically detecting software vulnerabilities using deep graph neural network publication-title: ACM Trans. Softw. Eng. Methodol. (TOSEM) – year: 2018 ident: b34 article-title: VulDeePecker: A deep learning-based system for vulnerability detection publication-title: Proceedings 2018 Network and Distributed System Security Symposium – year: 2020 ident: b19 article-title: Codebert: A pre-trained model for programming and natural languages – year: 2024 ident: b16 article-title: Towards translating real-world code with LLMs: A study of translating to rust – reference: Zhang, L., Zou, Q., Singhal, A., Sun, X., Liu, P., 2024b. Evaluating Large Language Models for Real-World Vulnerability Repair in C/C++ Code. In: Proceedings of the 10th ACM International Workshop on Security and Privacy Analytics. pp. 49–58. – start-page: 7 year: 2012 end-page: 10 ident: b26 article-title: Software vulnerability prediction using text analysis techniques publication-title: Proceedings of the 4th International Workshop on Security Measurements and Metrics – reference: Xia, C.S., Paltenghi, M., Le Tian, J., Pradel, M., Zhang, L., 2024. Fuzz4all: Universal fuzzing with large language models. In: Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. pp. 1–13. – volume: 18 start-page: 2224 year: 2019 end-page: 2236 ident: b74 article-title: VulDeePecker: A deep learning-based system for multiclass vulnerability detection publication-title: IEEE Trans. Dependable Secure Comput. – year: 2018 ident: b2 article-title: The illustrated transformer – year: 2021 ident: b36 article-title: Codexglue: A machine learning benchmark dataset for code understanding and generation – volume: 30 year: 2017 ident: b59 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – reference: Hu, Y., Wang, S., Li, W., Peng, J., Wu, Y., Zou, D., Jin, H., 2023. Interpreters for GNN-based vulnerability detection: Are we there yet?. In: Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. pp. 1407–1419. – year: 2024 ident: b64 article-title: Your instructions are not always helpful: Assessing the efficacy of instruction fine-tuning for software vulnerability detection – year: 2024 ident: b44 article-title: Enabling memory safety of c programs using LLMs – volume: 140 year: 2024 ident: b14 article-title: Python source code vulnerability detection with named entity recognition publication-title: Comput. Secur. – year: 2023 ident: b45 article-title: ChatGPT – start-page: 645 year: 2022 end-page: 665 ident: b25 article-title: Automation of vulnerability information extraction using transformer-based language models publication-title: European Symposium on Research in Computer Security – volume: 55 start-page: 1 year: 2023 end-page: 37 ident: b52 article-title: Android source code vulnerability detection: a systematic literature review publication-title: ACM Comput. Surv. – reference: Ozturk, O.S., Ekmekcioglu, E., Cetin, O., Arief, B., Hernandez-Castro, J., 2023. New tricks to old codes: can AI chatbots replace static code analysis tools?. In: Proceedings of the 2023 European Interdisciplinary Cybersecurity Conference. pp. 13–18. – year: 2019 ident: b71 article-title: Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks publication-title: Proceedings of the 33rd International Conference on Neural Information Processing Systems – year: 2021 ident: b56 article-title: Roformer: Enhanced transformer with rotary position embedding – volume: 32 start-page: 1 year: 2023 end-page: 38 ident: b65 article-title: White-box fuzzing RPC-based APIs with EvoMaster: An industrial case study publication-title: ACM Trans. Softw. Eng. Methodol. – year: 2022 ident: b8 article-title: Ofasys: A multi-modal multi-task learning system for building generalist models – year: 2023 ident: b7 article-title: Qwen technical report – year: 2024 ident: b4 article-title: A novel refactoring and semantic aware abstract syntax tree differencing tool and a benchmark for evaluating the accuracy of diff tools publication-title: ACM Trans. Softw. Eng. Methodol. – year: 2024 ident: b21 article-title: Abstract syntax trees in python – year: 2024 ident: b17 article-title: Machine learning techniques for python source code vulnerability detection – reference: Bhandari, G., Naseer, A., Moonen, L., 2021. CVEfixes: automated collection of vulnerabilities and their fixes from open-source software. In: Proceedings of the 17th International Conference on Predictive Models and Data Analytics in Software Engineering. pp. 30–39. – reference: Mamede, C., Pinconschi, E., Abreu, R., 2022. A transformer-based IDE plugin for vulnerability detection. In: Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. pp. 1–4. – volume: 144 year: 2022 ident: b60 article-title: VUDENC: vulnerability detection with deep learning on a natural codebase for python publication-title: Inf. Softw. Technol. – volume: 19 start-page: 2244 year: 2021 end-page: 2258 ident: b33 article-title: Sysevr: A framework for using deep learning to detect software vulnerabilities publication-title: IEEE Trans. Dependable Secure Comput. – volume: 16 start-page: 516 year: 2022 end-page: 526 ident: b57 article-title: A deep learning-based approach for software vulnerability detection using code metrics publication-title: IET Softw. – year: 2023 ident: b46 article-title: GPT-4 Technical Report – start-page: 757 year: 2018 end-page: 762 ident: b51 article-title: Automated vulnerability detection in source code using deep representation learning publication-title: 2018 17th IEEE International Conference on Machine Learning and Applications – year: 2024 ident: b20 article-title: SecureFalcon: Are we there yet in automated software vulnerability detection with LLMs? – reference: Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D., 2014. The promises and perils of mining github. In: Proceedings of the 11th Working Conference on Mining Software Repositories. pp. 92–101. – year: 2020 ident: b53 article-title: Glu variants improve transformer – year: 2023 ident: b6 article-title: Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond – start-page: 111 year: 2021 end-page: 120 ident: b70 article-title: D2a: A dataset built for ai-based vulnerability detection methods using differential analysis publication-title: 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice – year: 2023 ident: b38 article-title: WizardCoder: Empowering code large language models with evol-instruct – year: 2024 ident: b40 article-title: Multi-role consensus through LLMs discussions for vulnerability detection – year: 2024 ident: b61 article-title: A new era in LLM security: Exploring security concerns in real-world LLM-based systems – volume: 8 start-page: 579 year: 2009 end-page: 588 ident: b49 article-title: Multilayer perceptron and neural networks publication-title: WSEAS Trans. Circuits Syst. – year: 2023 ident: b69 article-title: A survey of large language models – start-page: 1084 year: 2022 end-page: 1087 ident: b63 article-title: Throughput-oriented and accuracy-aware DNN training with bfloat16 on GPU publication-title: 2022 IEEE International Parallel and Distributed Processing Symposium Workshops – volume: Vol. 26 year: 2013 ident: b43 article-title: Distributed representations of words and phrases and their compositionality publication-title: Advances in Neural Information Processing Systems – year: 2017 ident: b10 article-title: SARD: Thousands of Reference Programs for Software Assurance – year: 2020 ident: b23 article-title: Graphcodebert: Pre-training code representations with data flow – start-page: 705 year: 2021 end-page: 716 ident: b72 article-title: Finding a needle in a haystack: Automated mining of silent vulnerability fixes publication-title: 2021 36th IEEE/ACM International Conference on Automated Software Engineering – reference: Antal, G., Keleti, M., Hegedŭs, P., 2020. Exploring the security awareness of the python and javascript open source communities. In: Proceedings of the 17th International Conference on Mining Software Repositories. pp. 16–20. – year: 2023 ident: b58 article-title: Llama: Open and efficient foundation language models – year: 2024 ident: b18 article-title: ESBMC-python: A bounded model checker for python programs – year: 2019 ident: b67 article-title: Root mean square layer normalization – year: 2017 ident: b15 article-title: Sigmoid-weighted linear units for neural network function approximation in reinforcement learning – year: 2024 ident: b66 article-title: APPT: Boosting automated patch correctness prediction via fine-tuning pre-trained models publication-title: IEEE Trans. Softw. Eng. – volume: 28 start-page: 59 year: 2023 ident: b3 article-title: Empirical analysis of security vulnerabilities in python packages publication-title: Empir. Softw. Eng. – volume: 36 year: 2024 ident: b29 article-title: Pre-RMSNorm and pre-CRMSNorm transformers: equivalent and efficient pre-LN transformers publication-title: Adv. Neural Inf. Process. Syst. – reference: Li, J., Sangalay, A., Cheng, C., Tian, Y., Yang, J., 2024. Fine Tuning Large Language Model for Secure Code Generation. In: Proceedings of the 2024 IEEE/ACM First International Conference on AI Foundation Models and Software Engineering. pp. 86–90. – year: 2023 ident: b55 article-title: RepairLLaMA: Efficient representations and fine-tuned adapters for program repair – year: 2021 ident: b48 article-title: Cotext: Multi-task learning with code-text transformer – year: 2024 ident: b50 article-title: Code llama: Open foundation models for code – start-page: 1 year: 2022 end-page: 8 ident: b24 article-title: Vulberta: Simplified source code pre-training for vulnerability detection publication-title: 2022 International Joint Conference on Neural Networks – year: 2024 ident: b73 article-title: Comparison of static application security testing tools and large language models for repo-level vulnerability detection – year: 2024 ident: b28 article-title: Software vulnerability and functionality assessment using llms – year: 2017 ident: b31 article-title: Adam: A method for stochastic optimization – volume: 24 start-page: 1 year: 2023 end-page: 113 ident: b13 article-title: Palm: Scaling language modeling with pathways publication-title: J. Mach. Learn. Res. – year: 2023 ident: b22 article-title: How far have we gone in vulnerability detection using large language models – volume: 212 year: 2024 ident: b37 article-title: GRACE: Empowering LLM-based software vulnerability detection with graph structure and in-context learning publication-title: J. Syst. Softw. – start-page: 376 year: 2024 end-page: 380 ident: b42 article-title: ESBMC v7. 4: Harnessing the power of intervals: (competition contribution) publication-title: International Conference on Tools and Algorithms for the Construction and Analysis of Systems – year: 2024 ident: b54 article-title: Finetuning large language models for vulnerability detection – year: 2020 ident: b11 article-title: Exploring software naturalness through neural language models – volume: 108 start-page: 1825 year: 2020 end-page: 1848 ident: b35 article-title: Software vulnerability detection using deep neural networks: a survey publication-title: Proc. IEEE – year: 2017 ident: 10.1016/j.cose.2024.104151_b15 – year: 2020 ident: 10.1016/j.cose.2024.104151_b23 – ident: 10.1016/j.cose.2024.104151_b27 doi: 10.1145/3597926.3598145 – year: 2020 ident: 10.1016/j.cose.2024.104151_b19 – year: 2024 ident: 10.1016/j.cose.2024.104151_b40 – ident: 10.1016/j.cose.2024.104151_b39 doi: 10.1145/3551349.3559534 – year: 2024 ident: 10.1016/j.cose.2024.104151_b1 article-title: On hardware security bug code fixes by prompting large language models publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2024.3374558 – start-page: 1 year: 2022 ident: 10.1016/j.cose.2024.104151_b24 article-title: Vulberta: Simplified source code pre-training for vulnerability detection – year: 2024 ident: 10.1016/j.cose.2024.104151_b61 – start-page: 376 year: 2024 ident: 10.1016/j.cose.2024.104151_b42 article-title: ESBMC v7. 4: Harnessing the power of intervals: (competition contribution) – year: 2023 ident: 10.1016/j.cose.2024.104151_b55 – volume: 55 start-page: 1 issue: 9 year: 2023 ident: 10.1016/j.cose.2024.104151_b52 article-title: Android source code vulnerability detection: a systematic literature review publication-title: ACM Comput. Surv. doi: 10.1145/3556974 – start-page: 7 year: 2012 ident: 10.1016/j.cose.2024.104151_b26 article-title: Software vulnerability prediction using text analysis techniques – year: 2017 ident: 10.1016/j.cose.2024.104151_b31 – year: 2019 ident: 10.1016/j.cose.2024.104151_b67 – year: 2023 ident: 10.1016/j.cose.2024.104151_b69 – year: 2021 ident: 10.1016/j.cose.2024.104151_b48 – volume: 16 start-page: 516 issue: 5 year: 2022 ident: 10.1016/j.cose.2024.104151_b57 article-title: A deep learning-based approach for software vulnerability detection using code metrics publication-title: IET Softw. doi: 10.1049/sfw2.12066 – volume: 19 start-page: 2244 issue: 4 year: 2021 ident: 10.1016/j.cose.2024.104151_b33 article-title: Sysevr: A framework for using deep learning to detect software vulnerabilities publication-title: IEEE Trans. Dependable Secure Comput. doi: 10.1109/TDSC.2021.3051525 – volume: 18 start-page: 2224 issue: 5 year: 2019 ident: 10.1016/j.cose.2024.104151_b74 article-title: VulDeePecker: A deep learning-based system for multiclass vulnerability detection publication-title: IEEE Trans. Dependable Secure Comput. – year: 2024 ident: 10.1016/j.cose.2024.104151_b64 – volume: 28 start-page: 59 issue: 3 year: 2023 ident: 10.1016/j.cose.2024.104151_b3 article-title: Empirical analysis of security vulnerabilities in python packages publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-022-10278-4 – volume: 24 start-page: 1 issue: 240 year: 2023 ident: 10.1016/j.cose.2024.104151_b13 article-title: Palm: Scaling language modeling with pathways publication-title: J. Mach. Learn. Res. – volume: 30 start-page: 1 issue: 3 year: 2021 ident: 10.1016/j.cose.2024.104151_b12 article-title: Deepwukong: Statically detecting software vulnerabilities using deep graph neural network publication-title: ACM Trans. Softw. Eng. Methodol. (TOSEM) doi: 10.1145/3436877 – ident: 10.1016/j.cose.2024.104151_b62 doi: 10.1145/3597503.3639121 – volume: 212 year: 2024 ident: 10.1016/j.cose.2024.104151_b37 article-title: GRACE: Empowering LLM-based software vulnerability detection with graph structure and in-context learning publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2024.112031 – year: 2024 ident: 10.1016/j.cose.2024.104151_b16 – year: 2019 ident: 10.1016/j.cose.2024.104151_b71 article-title: Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks – year: 2020 ident: 10.1016/j.cose.2024.104151_b11 – start-page: 1084 year: 2022 ident: 10.1016/j.cose.2024.104151_b63 article-title: Throughput-oriented and accuracy-aware DNN training with bfloat16 on GPU – volume: 36 year: 2024 ident: 10.1016/j.cose.2024.104151_b29 article-title: Pre-RMSNorm and pre-CRMSNorm transformers: equivalent and efficient pre-LN transformers publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.cose.2024.104151_b5 doi: 10.1145/3379597.3387513 – year: 2024 ident: 10.1016/j.cose.2024.104151_b18 – ident: 10.1016/j.cose.2024.104151_b68 doi: 10.1145/3643651.3659892 – ident: 10.1016/j.cose.2024.104151_b47 doi: 10.1145/3590777.3590780 – year: 2024 ident: 10.1016/j.cose.2024.104151_b50 – year: 2023 ident: 10.1016/j.cose.2024.104151_b7 – year: 2023 ident: 10.1016/j.cose.2024.104151_b6 – year: 2023 ident: 10.1016/j.cose.2024.104151_b46 – year: 2018 ident: 10.1016/j.cose.2024.104151_b2 – year: 2024 ident: 10.1016/j.cose.2024.104151_b21 – year: 2023 ident: 10.1016/j.cose.2024.104151_b45 – year: 2024 ident: 10.1016/j.cose.2024.104151_b20 – year: 2023 ident: 10.1016/j.cose.2024.104151_b58 – start-page: 705 year: 2021 ident: 10.1016/j.cose.2024.104151_b72 article-title: Finding a needle in a haystack: Automated mining of silent vulnerability fixes – start-page: 757 year: 2018 ident: 10.1016/j.cose.2024.104151_b51 article-title: Automated vulnerability detection in source code using deep representation learning – volume: 32 start-page: 1 issue: 5 year: 2023 ident: 10.1016/j.cose.2024.104151_b65 article-title: White-box fuzzing RPC-based APIs with EvoMaster: An industrial case study publication-title: ACM Trans. Softw. Eng. Methodol. doi: 10.1145/3585009 – year: 2024 ident: 10.1016/j.cose.2024.104151_b28 – year: 2024 ident: 10.1016/j.cose.2024.104151_b44 – ident: 10.1016/j.cose.2024.104151_b32 doi: 10.1145/3650105.3652299 – volume: 108 start-page: 1825 issue: 10 year: 2020 ident: 10.1016/j.cose.2024.104151_b35 article-title: Software vulnerability detection using deep neural networks: a survey publication-title: Proc. IEEE doi: 10.1109/JPROC.2020.2993293 – year: 2024 ident: 10.1016/j.cose.2024.104151_b41 – year: 2021 ident: 10.1016/j.cose.2024.104151_b56 – year: 2024 ident: 10.1016/j.cose.2024.104151_b66 article-title: APPT: Boosting automated patch correctness prediction via fine-tuning pre-trained models publication-title: IEEE Trans. Softw. Eng. – year: 2021 ident: 10.1016/j.cose.2024.104151_b36 – ident: 10.1016/j.cose.2024.104151_b30 doi: 10.1145/2597073.2597074 – year: 2024 ident: 10.1016/j.cose.2024.104151_b4 article-title: A novel refactoring and semantic aware abstract syntax tree differencing tool and a benchmark for evaluating the accuracy of diff tools publication-title: ACM Trans. Softw. Eng. Methodol. – year: 2020 ident: 10.1016/j.cose.2024.104151_b53 – year: 2024 ident: 10.1016/j.cose.2024.104151_b54 – volume: 8 start-page: 579 issue: 7 year: 2009 ident: 10.1016/j.cose.2024.104151_b49 article-title: Multilayer perceptron and neural networks publication-title: WSEAS Trans. Circuits Syst. – start-page: 111 year: 2021 ident: 10.1016/j.cose.2024.104151_b70 article-title: D2a: A dataset built for ai-based vulnerability detection methods using differential analysis – volume: 144 year: 2022 ident: 10.1016/j.cose.2024.104151_b60 article-title: VUDENC: vulnerability detection with deep learning on a natural codebase for python publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2021.106809 – year: 2024 ident: 10.1016/j.cose.2024.104151_b73 – year: 2023 ident: 10.1016/j.cose.2024.104151_b22 – year: 2022 ident: 10.1016/j.cose.2024.104151_b8 – volume: Vol. 26 year: 2013 ident: 10.1016/j.cose.2024.104151_b43 article-title: Distributed representations of words and phrases and their compositionality – volume: 30 year: 2017 ident: 10.1016/j.cose.2024.104151_b59 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.cose.2024.104151_b9 doi: 10.1145/3475960.3475985 – start-page: 645 year: 2022 ident: 10.1016/j.cose.2024.104151_b25 article-title: Automation of vulnerability information extraction using transformer-based language models – year: 2017 ident: 10.1016/j.cose.2024.104151_b10 – year: 2024 ident: 10.1016/j.cose.2024.104151_b17 – volume: 140 year: 2024 ident: 10.1016/j.cose.2024.104151_b14 article-title: Python source code vulnerability detection with named entity recognition publication-title: Comput. Secur. doi: 10.1016/j.cose.2024.103802 – year: 2023 ident: 10.1016/j.cose.2024.104151_b38 – year: 2018 ident: 10.1016/j.cose.2024.104151_b34 article-title: VulDeePecker: A deep learning-based system for vulnerability detection |
| SSID | ssj0017688 |
| Score | 2.431338 |
| Snippet | Identifying vulnerabilities in software code is crucial for ensuring the security of modern systems. However, manual detection requires expert knowledge and is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104151 |
| SubjectTerms | Codebase Generative pre-trained transformers Large language model Security Software security Static analysis Vulnerability detection |
| Title | SecureQwen: Leveraging LLMs for vulnerability detection in python codebases |
| URI | https://dx.doi.org/10.1016/j.cose.2024.104151 |
| Volume | 148 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0167-4048 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017688 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0167-4048 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017688 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0167-4048 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017688 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0167-4048 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017688 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0167-4048 databaseCode: AKRWK dateStart: 19820101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017688 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fp8lB2-ydrN57K63UizVPkC00NuSZCNUylpsq_Tib3eSzRYF6cHrksAyO5n5JvvNfAhdaZFybSIRwNfNA8aoDlSo4iDmSvNEAsYgtsF5MBTdEXsY83ENtateGEur9LG_jOkuWvsnTW_N5mwyaT45Aj04oGVBWlxiO9hZbFUMbr7WNA8CcDpZz_eG1b5xpuR4WU441IgRs786CSd_J6cfCaezh3Y8UsSt8mX2Uc0UB2i3UmHA_lAeop67MjePn6a4xX0DrumEh3C_P5hjgKT4Yzm1o6UdC3aFc7Nw7KsCTwo8W9nRAdj2tdt0Nj9Co87dc7sbeImEQNMwXASSCQkYSqYKcBQkJAb1iQ6JoYYmOZfCJJQChDGhlCJXNGeJZDISlCgSqxTA2zGqF2-FOUHYABZJkzTWBCo-koSSS5bHlFOhX9I8VqeIVLbJtJ8fbmUspllFFHvNrD0za8-stOcpul7vmZXTMzau5pXJs18-kEF437Dv7J_7ztF2ZNV83YXKBaov3pfmEiDGQjWcDzXQVuu-1x1-Aw1gzgw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW6zPHLzJ2s0m2Yc3KZZqtwWxhd5Cko1QKWuxrdKLv91JdrcoiAevSwLLt5OZb7LfzCB0qcOEaxOEHnzdzGOMak_5KvIirjSPJXAMYguce_2wM2QPIz6qoVZVC2NllaXvL3y689blk2aJZnM6HjefnIAeDNCqIC0vWUPrjAeRzcCuP1c6DwJ8Ol41-IblZeVMIfKyonBIEgNm_3USTn6PTt8iTnsHbZVUEd8Wb7OLaibfQ9vVGAZcnsp91HV35ubxw-Q3ODVgm27yEE7T3gwDJ8Xvi4ntLe1ksEucmbmTX-V4nOPp0vYOwLaw3caz2QEatu8GrY5XzkjwNPX9uSdZKIFEyUQBkYKIxCBB0T4x1NA44zI0MaXAYYwvZZgpmrFYMhmElCgSqQTY2yGq56-5OULYABlJ4iTSBFI-EvuSS5ZFlNNQPydZpBqIVNgIXTYQt3MsJqJSir0Ii6eweIoCzwa6Wu2ZFu0z_lzNK8jFDyMQ4N__2Hf8z30XaKMz6KUive93T9BmYEf7utuVU1Sfvy3MGfCNuTp39vQFBI3PoQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SecureQwen%3A+Leveraging+LLMs+for+vulnerability+detection+in+python+codebases&rft.jtitle=Computers+%26+security&rft.au=Mechri%2C+Abdechakour&rft.au=Ferrag%2C+Mohamed+Amine&rft.au=Debbah%2C+Merouane&rft.date=2025-01-01&rft.issn=0167-4048&rft.volume=148&rft.spage=104151&rft_id=info:doi/10.1016%2Fj.cose.2024.104151&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cose_2024_104151 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon |