Evidence-based clinical engineering: Machine learning algorithms for prediction of defibrillator performance
•Paper structure was adjusted.•Part with explination of different machine learning algorithms was deleted.•Abstract was adjusted.•Overall english literacy check was performed.•Discussion was corrected in a more comprihensive matter. Poorly regulated and insufficiently supervised medical devices (MDs...
Saved in:
| Published in | Biomedical signal processing and control Vol. 54; p. 101629 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.09.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1746-8094 1746-8108 |
| DOI | 10.1016/j.bspc.2019.101629 |
Cover
| Abstract | •Paper structure was adjusted.•Part with explination of different machine learning algorithms was deleted.•Abstract was adjusted.•Overall english literacy check was performed.•Discussion was corrected in a more comprihensive matter.
Poorly regulated and insufficiently supervised medical devices (MDs) carry high risk of performance accuracy and safety deviations effecting the clinical accuracy and efficiency of patient diagnosis and treatments. Even with the increase of technological sophistication of devices, incidents involving defibrillator malfunction are unfortunately not rare.
To address this, we have developed an automated system based on machine learning algorithms that can predict performance of defibrillators and possible performance failures of the device which can affect performance. To develop an automated system, with high accuracy, overall dataset containing safety and performance measurements data was acquired from periodical safety and performance inspections of 1221 defibrillator. These inspections were carried out in period 2015–2017 in private and public healthcare institutions in Bosnia and Herzegovina by ISO 17,020 accredited laboratory. Out of overall number of samples, 974 of them were used during system development and 247 samples were used for subsequent validation of system performance. During system development, 5 different machine learning algorithms were used, and resulting systems were compared by obtained performance.
The results of this study demonstrate that clinical engineering and health technology management benefit from application of machine learning in terms of cost optimization and medical device management. Automated systems, based on machine learning algorithms, can predict defibrillator performance with high accuracy. Systems based on Random Forest classifier with Genetic Algorithm feature selection yielded highest accuracy among other machine learning systems. Adoption of such systems will help in overcoming challenges of adapting maintenance and medical device supervision mechanism protocols to rapid technological development of these devices. Due to increased complexity of healthcare institution environment and increased technological complexity of medical devices, performing maintenance strategies in traditional manner is causing a lot of difficulties. |
|---|---|
| AbstractList | •Paper structure was adjusted.•Part with explination of different machine learning algorithms was deleted.•Abstract was adjusted.•Overall english literacy check was performed.•Discussion was corrected in a more comprihensive matter.
Poorly regulated and insufficiently supervised medical devices (MDs) carry high risk of performance accuracy and safety deviations effecting the clinical accuracy and efficiency of patient diagnosis and treatments. Even with the increase of technological sophistication of devices, incidents involving defibrillator malfunction are unfortunately not rare.
To address this, we have developed an automated system based on machine learning algorithms that can predict performance of defibrillators and possible performance failures of the device which can affect performance. To develop an automated system, with high accuracy, overall dataset containing safety and performance measurements data was acquired from periodical safety and performance inspections of 1221 defibrillator. These inspections were carried out in period 2015–2017 in private and public healthcare institutions in Bosnia and Herzegovina by ISO 17,020 accredited laboratory. Out of overall number of samples, 974 of them were used during system development and 247 samples were used for subsequent validation of system performance. During system development, 5 different machine learning algorithms were used, and resulting systems were compared by obtained performance.
The results of this study demonstrate that clinical engineering and health technology management benefit from application of machine learning in terms of cost optimization and medical device management. Automated systems, based on machine learning algorithms, can predict defibrillator performance with high accuracy. Systems based on Random Forest classifier with Genetic Algorithm feature selection yielded highest accuracy among other machine learning systems. Adoption of such systems will help in overcoming challenges of adapting maintenance and medical device supervision mechanism protocols to rapid technological development of these devices. Due to increased complexity of healthcare institution environment and increased technological complexity of medical devices, performing maintenance strategies in traditional manner is causing a lot of difficulties. |
| ArticleNumber | 101629 |
| Author | Bandić, Lejla Pecchia, Leandro Hasičić, Mehrija Badnjević, Almir Kovačević, Živorad Gurbeta Pokvić, Lejla Mašetić, Zerina Kevrić, Jasmin |
| Author_xml | – sequence: 1 givenname: Almir surname: Badnjević fullname: Badnjević, Almir email: almir@verlab.ba organization: International Burch University, Sarajevo, Bosnia and Herzegovina – sequence: 2 givenname: Lejla surname: Gurbeta Pokvić fullname: Gurbeta Pokvić, Lejla email: lejla@verlab.ba organization: International Burch University, Sarajevo, Bosnia and Herzegovina – sequence: 3 givenname: Mehrija surname: Hasičić fullname: Hasičić, Mehrija email: mehrija.hasicic@ibu.edu.ba organization: International Burch University, Sarajevo, Bosnia and Herzegovina – sequence: 4 givenname: Lejla surname: Bandić fullname: Bandić, Lejla email: lejla@verlab.ba organization: International Burch University, Sarajevo, Bosnia and Herzegovina – sequence: 5 givenname: Zerina surname: Mašetić fullname: Mašetić, Zerina email: zerina.masetic@ibu.edu.ba organization: International Burch University, Sarajevo, Bosnia and Herzegovina – sequence: 6 givenname: Živorad surname: Kovačević fullname: Kovačević, Živorad email: zivorad.kovacevic@ibu.edu.ba organization: International Burch University, Sarajevo, Bosnia and Herzegovina – sequence: 7 givenname: Jasmin surname: Kevrić fullname: Kevrić, Jasmin email: jasmin.kevric@ibu.edu.ba organization: International Burch University, Sarajevo, Bosnia and Herzegovina – sequence: 8 givenname: Leandro surname: Pecchia fullname: Pecchia, Leandro email: l.pecchia@warwick.ac.uk organization: School of Engineering, University of Warwick, United Kingdom |
| BookMark | eNp9kM1OwzAMgCM0JLbBC3DKC3QkbdqmiAuaxo80xAXOUZo4m6csnZJqEm9Py-DCYSfHjj87-WZkEroAhNxytuCMV3e7RZsOZpEz3vwU8uaCTHktqkxyJid_Z9aIKzJLaceYkDUXU-JXR7QQDGStTmCp8RjQaE8hbDAARAybe_qmzXbIqAcdw1Ch2m-6iP12n6jrIj1EsGh67ALtHLXgsI3ove7HO4hDy14PO67JpdM-wc1vnJPPp9XH8iVbvz-_Lh_XmSkY6zNdQK7rqjZlBVrX1lpRtLwtSu6MBGuqVvCyNNAIJwWDMm-kq6QtG2aKob8u5kSe5prYpRTBKYO9Hp_XR41ecaZGSWqnRmtqtKZO1gY0_4ceIu51_DoPPZwgGD51RIgqGRylWoxgemU7PId_A4Kbi4I |
| CitedBy_id | crossref_primary_10_3233_THC_229013 crossref_primary_10_3233_THC_229014 crossref_primary_10_3233_THC_229011 crossref_primary_10_1016_j_eswa_2021_115728 crossref_primary_10_3233_THC_229012 crossref_primary_10_1007_s12553_022_00648_9 crossref_primary_10_5005_sar_1_1_2_101 crossref_primary_10_1016_j_procir_2022_05_020 crossref_primary_10_1108_TQM_12_2023_0425 crossref_primary_10_1177_09287329241290944 crossref_primary_10_1109_ACCESS_2023_3309671 crossref_primary_10_3389_fpubh_2021_782203 crossref_primary_10_1016_j_bspc_2021_102695 crossref_primary_10_70401_bmeh_2024_135 crossref_primary_10_1080_0951192X_2023_2257661 crossref_primary_10_12968_jpar_2023_15_6_238 crossref_primary_10_1007_s12553_019_00386_5 crossref_primary_10_1007_s12553_023_00727_5 crossref_primary_10_3233_THC_220563 crossref_primary_10_7717_peerj_cs_1279 crossref_primary_10_1177_21582440221132783 crossref_primary_10_3233_THC_220284 crossref_primary_10_3233_THC_229010 crossref_primary_10_1007_s12553_020_00467_w crossref_primary_10_1088_1361_6501_ad1d2c crossref_primary_10_1109_ACCESS_2023_3287490 crossref_primary_10_3233_THC_229006 crossref_primary_10_1155_2023_3136511 crossref_primary_10_3233_THC_229007 crossref_primary_10_3233_THC_229005 crossref_primary_10_3233_THC_229008 crossref_primary_10_3233_THC_229009 crossref_primary_10_1007_s12553_021_00558_2 crossref_primary_10_1016_j_bspc_2021_102681 crossref_primary_10_1177_09287329241292168 crossref_primary_10_12720_jait_14_6_1186_1197 crossref_primary_10_1016_j_applthermaleng_2020_115914 crossref_primary_10_1177_09287329241301665 crossref_primary_10_3233_THC_220254 crossref_primary_10_1136_heartjnl_2021_320532 crossref_primary_10_1016_j_medengphy_2019_08_008 crossref_primary_10_1016_j_ifacol_2022_06_005 crossref_primary_10_1177_09287329241303727 crossref_primary_10_3389_fpubh_2021_753951 |
| Cites_doi | 10.1007/s12553-016-0154-2 10.1016/j.chemolab.2005.09.003 10.3390/en10111905 10.1109/72.991432 10.1371/journal.pmed.1001519 10.1109/LGRS.2014.2337320 10.1177/117693510600200030 10.1016/j.asoc.2014.03.032 10.1016/j.procs.2015.12.117 10.21037/atm.2016.03.37 10.1016/j.procs.2015.03.178 10.1038/nature14539 10.1016/j.neucom.2010.04.003 10.1023/A:1010933404324 10.4103/2348-3334.165741 10.1007/s10916-017-0783-7 10.1016/j.cmpb.2016.03.020 |
| ContentType | Journal Article |
| Copyright | 2019 |
| Copyright_xml | – notice: 2019 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2019.101629 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2019_101629 S1746809419302101 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-a3e2a767c56eaa7ddd43b1b351fc8edc6b4155ce94f840e5298f68d590c3aa773 |
| IEDL.DBID | .~1 |
| ISSN | 1746-8094 |
| IngestDate | Thu Apr 24 23:01:31 EDT 2025 Wed Oct 29 21:26:08 EDT 2025 Fri Feb 23 02:28:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Automated system Machine learning Prediction Inspection Medical device Maintenance Management Evidence-based Performance |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-a3e2a767c56eaa7ddd43b1b351fc8edc6b4155ce94f840e5298f68d590c3aa773 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2019_101629 crossref_primary_10_1016_j_bspc_2019_101629 elsevier_sciencedirect_doi_10_1016_j_bspc_2019_101629 |
| PublicationCentury | 2000 |
| PublicationDate | September 2019 2019-09-00 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Taghipour, Banjevic, Jardine (bib0080) 2019 (bib0155) 2019 (bib0020) 2019 Dimitris, Ioannis, Evangelos (bib0215) 2014 (bib0010) 2019 (bib0030) 2019 Linberg, K. R. (2002). 6442433. US Patent. USPTO. Retrieved from. Le Cun, Bengio, Hinton (bib0105) 2015; 521 Panthong, Srivihok (bib0225) 2015; 72 Osmanovic, Abdel-Ilah, Hodzic, Kevric, Fojnica (bib0290) 2017; 2017 Nichols, Linberg (bib0085) 2002 Gurbeta, Badnjević (bib0145) 2017; 7 Maimon, Rokach (bib0325) 2005 Kramer (bib0110) 2017 Amer, Al-Aubidy (bib0270) 2005 Gurbeta, Dzemic, Bego, Sejdic, Badnjevic (bib0170) 2017; 41 Badnjevic, Gurbeta, Boskovic, Dzemic (bib0165) 2015; 50 Reddi, Hariharan, Mathur (bib0265) 2007 Guidi, Pettenati, Miniati, Iadanza (bib0125) 2013 Vanitha, Arockia, Vanitha, Devaraj, Venkatesulu (bib0310) 2015; 47 Virk, Muhammad, Martinez-Enriquez (bib0260) 2008 Ye (bib0140) 2015 Masetic, Subasi (bib0295) 2016; 130 Gurbeta, Badnjević (bib0075) 2017; 7 Manivannan, Najafi, Rinaldi (bib0135) 2017; 10 Osanaiye, Raymond Choo, Dlodlo (bib0210) 2016 Liao (bib0275) 2004 Kabir, Islam, Murase (bib0220) 2010; 73 Gurbeta, Vukovic, Dzemic, Badnjevic (bib0065) 2018; 3—8 Calix, Sankaran (bib0205) 2013 Eric (bib0100) 2006 Gurbeta, Dzemic, Badnjevic (bib0070) 2018; 3—8 Malhotra (bib0130) 2014; 21 Michalski, Carbonell, Mitchell (bib0320) 2013 (bib0045) 2013 Lin, Lin, Wang (bib0305) 2002; 13 Visalakshi, Radha (bib0200) 2014 Taghipour, Banjevic, Jardine (bib0285) 2019 (bib0330) 2019 Kramer, Tan, Sato, Kesselheim (bib0050) 2013; 10 Novakovic, Strbac, Bulatovic (bib0230) 2011; 21 (bib0005) 2019 Olivera, Rocha, Rotger, Herrera (bib0280) 2011; 332 (bib0035) 2019 (bib0160) 2019 UK government: Vigilance system alerts, Salma (bib0040) 2009 (bib0025) 2019 Cruz, Wishart (bib0120) 2006; 2 (bib0015) 2019 (bib0150) 2019 Badnjević, Cifrek, Magjarević, Džemić (bib0055) 2018 Breiman (bib0300) 2001; 45 Chaudhary, Kaul (bib0255) 2015; 2 Lai, Palaniswami, Begg (bib0240) 2007 Ghamisi, Benediktsson (bib0115) 2015; 12 Gurbeta, Dzemic, Badnjevic (bib0195) 2018; 3—8 Gurbeta, Alic, Dzemic, Badnjevic (bib0185) 2017; vol 65 Zhang (bib0245) 2016; 4 Gurbeta, Alic, Dzemic, Badnjevic (bib0180) 2017; vol 65 Gurbeta, Badnjevic, Dzemic, Jimenez, Jakupovic (bib0175) 2016 Üstün, Melssen, Buydens (bib0315) 2006; 81 Shaikhina, Lowe, Daga, Briggs, Higgins, Khovanova (bib0235) 2017 Gurbeta, Dzemic, Bego, Sejdic, Badnjevic (bib0060) 2017; 41 Das, Dey, Pal, Roy (bib0095) 2015; 115 Üstün, Melssen, Buydens (bib0250) 2006; 81 Gurbeta, Vukovic, Dzemic, Badnjevic (bib0190) 2018; 3—8 (10.1016/j.bspc.2019.101629_bib0045) 2013 Üstün (10.1016/j.bspc.2019.101629_bib0315) 2006; 81 Gurbeta (10.1016/j.bspc.2019.101629_bib0075) 2017; 7 (10.1016/j.bspc.2019.101629_bib0035) 2019 (10.1016/j.bspc.2019.101629_bib0160) 2019 Liao (10.1016/j.bspc.2019.101629_bib0275) 2004 Osmanovic (10.1016/j.bspc.2019.101629_bib0290) 2017; 2017 Maimon (10.1016/j.bspc.2019.101629_bib0325) 2005 (10.1016/j.bspc.2019.101629_bib0150) 2019 (10.1016/j.bspc.2019.101629_bib0015) 2019 (10.1016/j.bspc.2019.101629_bib0005) 2019 (10.1016/j.bspc.2019.101629_bib0025) 2019 Gurbeta (10.1016/j.bspc.2019.101629_bib0065) 2018; 3—8 Gurbeta (10.1016/j.bspc.2019.101629_bib0170) 2017; 41 Breiman (10.1016/j.bspc.2019.101629_bib0300) 2001; 45 Gurbeta (10.1016/j.bspc.2019.101629_bib0145) 2017; 7 Masetic (10.1016/j.bspc.2019.101629_bib0295) 2016; 130 (10.1016/j.bspc.2019.101629_bib0330) 2019 Cruz (10.1016/j.bspc.2019.101629_bib0120) 2006; 2 Calix (10.1016/j.bspc.2019.101629_bib0205) 2013 Osanaiye (10.1016/j.bspc.2019.101629_bib0210) 2016 Michalski (10.1016/j.bspc.2019.101629_bib0320) 2013 Gurbeta (10.1016/j.bspc.2019.101629_bib0190) 2018; 3—8 Badnjevic (10.1016/j.bspc.2019.101629_bib0165) 2015; 50 Gurbeta (10.1016/j.bspc.2019.101629_bib0060) 2017; 41 Gurbeta (10.1016/j.bspc.2019.101629_bib0070) 2018; 3—8 10.1016/j.bspc.2019.101629_bib0090 Eric (10.1016/j.bspc.2019.101629_bib0100) 2006 Chaudhary (10.1016/j.bspc.2019.101629_bib0255) 2015; 2 Lin (10.1016/j.bspc.2019.101629_bib0305) 2002; 13 Zhang (10.1016/j.bspc.2019.101629_bib0245) 2016; 4 Reddi (10.1016/j.bspc.2019.101629_bib0265) 2007 (10.1016/j.bspc.2019.101629_bib0155) 2019 Gurbeta (10.1016/j.bspc.2019.101629_bib0175) 2016 (10.1016/j.bspc.2019.101629_bib0030) 2019 Manivannan (10.1016/j.bspc.2019.101629_bib0135) 2017; 10 (10.1016/j.bspc.2019.101629_bib0010) 2019 Kabir (10.1016/j.bspc.2019.101629_bib0220) 2010; 73 Amer (10.1016/j.bspc.2019.101629_bib0270) 2005 (10.1016/j.bspc.2019.101629_bib0020) 2019 Kramer (10.1016/j.bspc.2019.101629_bib0110) 2017 Olivera (10.1016/j.bspc.2019.101629_bib0280) 2011; 332 Badnjević (10.1016/j.bspc.2019.101629_bib0055) 2018 UK government: Vigilance system alerts (10.1016/j.bspc.2019.101629_bib0040) 2009 Ghamisi (10.1016/j.bspc.2019.101629_bib0115) 2015; 12 Visalakshi (10.1016/j.bspc.2019.101629_bib0200) 2014 Le Cun (10.1016/j.bspc.2019.101629_bib0105) 2015; 521 Gurbeta (10.1016/j.bspc.2019.101629_bib0195) 2018; 3—8 Guidi (10.1016/j.bspc.2019.101629_bib0125) 2013 Taghipour (10.1016/j.bspc.2019.101629_bib0080) 2019 Virk (10.1016/j.bspc.2019.101629_bib0260) 2008 Lai (10.1016/j.bspc.2019.101629_bib0240) 2007 Taghipour (10.1016/j.bspc.2019.101629_bib0285) 2019 Vanitha (10.1016/j.bspc.2019.101629_bib0310) 2015; 47 Dimitris (10.1016/j.bspc.2019.101629_bib0215) 2014 Shaikhina (10.1016/j.bspc.2019.101629_bib0235) 2017 Nichols (10.1016/j.bspc.2019.101629_bib0085) 2002 Malhotra (10.1016/j.bspc.2019.101629_bib0130) 2014; 21 Gurbeta (10.1016/j.bspc.2019.101629_bib0180) 2017; vol 65 Das (10.1016/j.bspc.2019.101629_bib0095) 2015; 115 Novakovic (10.1016/j.bspc.2019.101629_bib0230) 2011; 21 Üstün (10.1016/j.bspc.2019.101629_bib0250) 2006; 81 Gurbeta (10.1016/j.bspc.2019.101629_bib0185) 2017; vol 65 Ye (10.1016/j.bspc.2019.101629_bib0140) 2015 Panthong (10.1016/j.bspc.2019.101629_bib0225) 2015; 72 Kramer (10.1016/j.bspc.2019.101629_bib0050) 2013; 10 |
| References_xml | – year: 2019 ident: bib0025 article-title: International Organization for Standardization – year: 2019 ident: bib0015 article-title: International Organization for Standardization, IEC 60601 – year: 2002 ident: bib0085 article-title: Apparatus and Method to Automatic Remote Software Updates of Medical Device Systems – reference: Linberg, K. R. (2002). 6442433. US Patent. USPTO. Retrieved from. – year: 2014 ident: bib0215 article-title: Feature selection for robust detection of distributed denial-of-service attacks using genetic algorithms publication-title: Hellenic Conference on Artificial Intelligence – volume: 13 start-page: 464 year: 2002 end-page: 471 ident: bib0305 article-title: Fuzzy support vector machines publication-title: IEEE Transactions on Neural Networks / a Publication of the IEEE Neural Networks Council – volume: 2 year: 2006 ident: bib0120 article-title: Applications of machine learning in Cancer prediction and prognosis publication-title: Cancer Inform. – volume: 115 start-page: 31 year: 2015 end-page: 41 ident: bib0095 article-title: Applications of artificial intelligence in machine learning: review and prospect publication-title: Int. J. Comput. Appl. – volume: 2 start-page: 31623 year: 2015 ident: bib0255 article-title: Factors affecting utilization of medical diagnostic equipment: a study at a tertiary healthcare setup of Chandigarh publication-title: CHRISMED J Health Res – volume: 332 start-page: 1 year: 2011 end-page: 10 ident: bib0280 article-title: Acoustic pollution in Hospital environments publication-title: Journal of Physics: Conference Series – year: 2009 ident: bib0040 article-title: Vigilance Reporting for Medical Devices in the EU – volume: 72 start-page: 162 year: 2015 end-page: 169 ident: bib0225 article-title: Wrapper feature subset selection for dimension reduction based on ensemble learning algorithm publication-title: Procedia Comput. Sci. – volume: 3—8 year: 2018 ident: bib0190 article-title: Legal metrology procedures for increasing safety and performance characteristics with cost benefits analysis: case study dialysis machines publication-title: IUPESM – The World Congress on Medical Physics & Biomedical Engineering in Prague – year: 2013 ident: bib0205 article-title: Feature ranking and support vector machines classification analysis of the NSL-KDD intrusion detection Corpus publication-title: TwentySixth International Florida Artificial Intelligence Research Society Conference – year: 2019 ident: bib0330 article-title: Compliance Navigator for Medical Devices – volume: 41 start-page: 133 year: 2017 ident: bib0170 article-title: Testing of anesthesia machines and defibrillators in healthcare institutions publication-title: J. Med. Syst. – year: 2019 ident: bib0035 article-title: EUDAMED: European Database on Medical Devices – year: 2019 ident: bib0010 article-title: Food and Drug Administration (FDA) – volume: 21 start-page: 119 year: 2011 end-page: 135 ident: bib0230 article-title: Toward optimal feature selection using ranking methods and classification algorithms publication-title: Yugoslav Journal of Operations Research. An International Journal Dealing with Theoretical and Computational Aspects of Operations Research, Systems Science, and Management Science – year: 2019 ident: bib0080 article-title: Reliability Analysis of Maintenance Data for Complex Medical Devices – start-page: 1-8 year: 2007 ident: bib0265 article-title: Toward a Fuzzy Logic Control of the Infant Incubator [Ebook] – year: 2017 ident: bib0235 article-title: Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation publication-title: Biomed. Signal Process. Control – volume: 4 year: 2016 ident: bib0245 article-title: Introduction to machine learning: k-nearest neighbors publication-title: Ann. Transl. Med. – year: 2013 ident: bib0045 article-title: European Commission DG Health and Consumers (2013) Guidelines on a Medical Devices Vigilance System – start-page: 154 year: 2008 ident: bib0260 article-title: Fault prediction using artificial neural network and fuzzy logic [ebook] publication-title: Mexico: Mexican International Conference – year: 2019 ident: bib0150 article-title: Fluke Biomedical Impulse 7000DP Defibrillator Analyzer – volume: 50 start-page: 43 year: 2015 end-page: 46 ident: bib0165 article-title: „Measurement in medicine – past, present, future publication-title: Folia Medica Facultatis Medicinae Universitatis Saraeviensis Journal – volume: 2017 start-page: 503 year: 2017 end-page: 510 ident: bib0290 article-title: Ovary Cancer detection using decision tree classifiers based on historical data of ovary Cancer patients publication-title: CMBEBIH – start-page: 3230 year: 2013 end-page: 3233 ident: bib0125 article-title: Random Forest for automatic assessment of heart failure severity in a telemonitoring scenario publication-title: Conference Proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. – year: 2015 ident: bib0140 article-title: Fault Prediction of Electronic Equipment – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0300 article-title: Random forests publication-title: Mach. Learn. – volume: 12 start-page: 309 year: 2015 end-page: 313 ident: bib0115 article-title: Feature selection based on hybridization of genetic algorithm and particle swarm optimization publication-title: Ieee Geosci. Remote. Sens. Lett. – year: 2019 ident: bib0155 article-title: Fluke Biomedical Electrical Safety Analyzer – volume: 73 start-page: 3273 year: 2010 end-page: 3283 ident: bib0220 article-title: A new wrapper feature selection approach using neural network publication-title: Neurocomputing – year: 2014 ident: bib0200 article-title: A literature review of feature selection techniques and applications: review of feature selection in data mining publication-title: In 2014 IEEE International Conference on Computational Intelligence and Computing Research – volume: 7 start-page: 109 year: 2017 end-page: 117 ident: bib0075 article-title: Inspection process of medical devices in healthcare institutions: software solution publication-title: Health Technol. – volume: 130 start-page: 54 year: 2016 end-page: 64 ident: bib0295 article-title: Congestive heart failure detection using random forest classifier publication-title: Comput. Methods Programs Biomed. – volume: 47 start-page: 13 year: 2015 end-page: 21 ident: bib0310 article-title: Gene Expression Data Classification Using Support Vector Machine and Mutual Information-based Gene Selection publication-title: Procedia Comput. Sci. – year: 2016 ident: bib0210 article-title: Analysing feature selection and classification techniques for DDoS detection in Cloud publication-title: Southern Africa Telecommunication Networks and Applications Conference (SATNAC) – volume: 10 year: 2013 ident: bib0050 article-title: Postmarket surveillance of medical devices: a comparison of strategies in the US, EU, Japan, and China publication-title: PLoS Med. – year: 2019 ident: bib0020 article-title: International Electrotechnical Commission, IEC 62353 – year: 2019 ident: bib0005 article-title: European Comission – Medical Device Directives – volume: 7 start-page: 109 year: 2017 end-page: 117 ident: bib0145 article-title: Inspection process of medical devices in healthcare institutions: software solution publication-title: Health Technol. – year: 2016 ident: bib0175 article-title: Testing of therapeutic ultrasound in healthcare institutions in Bosnia and Herzegovina publication-title: 2nd EAI International Conference on Future Access Enablers of Ubiquitous and Intelligent Infrastructures – year: 2005 ident: bib0325 article-title: Data Mining and Knowledge Discovery Handbook – start-page: 93 year: 2004 ident: bib0275 article-title: Expert System Methodologies and Applications—a Decade Review From 1995 to 2004 – year: 2019 ident: bib0160 publication-title: Inspection of Medical Devices. Series in Biomedical Engineering – volume: vol 65 year: 2017 ident: bib0180 article-title: Testing of infusion pumps in healthcare institutions in Bosnia and Herzegovina publication-title: EMBEC & NBC 2017. EMBEC 2017, NBC 2017. IFMBE Proceedings – year: 2013 ident: bib0320 article-title: Machine learning: an artificial intelligence approach publication-title: Springer Science & Business Media – year: 2017 ident: bib0110 article-title: Genetic Algorithm Essentials – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0105 article-title: Deep learning publication-title: Nature – volume: 81 start-page: 29 year: 2006 end-page: 40 ident: bib0250 article-title: Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel publication-title: Chemom. Intell. Lab. Syst. – volume: 41 start-page: 133 year: 2017 ident: bib0060 article-title: Testing of anesthesia machines and defibrillators in healthcare institutions publication-title: J. Med. Syst. – volume: 81 start-page: 29 year: 2006 end-page: 40 ident: bib0315 article-title: Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel publication-title: Chemom. Intell. Lab. Syst. – start-page: 1 year: 2005 ident: bib0270 article-title: Novel Technique To Control The Premature Infant Incubator System Using Ann – year: 2006 ident: bib0100 article-title: Machine Learning, Reasoning, and Intelligence in Daily Life: Directions and Challenges – year: 2007 ident: bib0240 article-title: Computational Intelligence in Biomedical Engineering – volume: 21 start-page: 286 year: 2014 end-page: 297 ident: bib0130 article-title: Comparative analysis of statistical and machine learning methods for predicting faulty modules publication-title: Appl. Soft Comput. – year: 2018 ident: bib0055 article-title: Inspection of medical devices for regulatory purposes publication-title: Biomed. Eng. – volume: 3—8 year: 2018 ident: bib0070 article-title: Establishing traceability chain of infusion and perfusor pumps using legal metrology procedures in Bosnia and Herzegovina publication-title: IUPESM – The World Congress on Medical Physics & Biomedical Engineering in Prague – volume: 3—8 year: 2018 ident: bib0065 article-title: Legal metrology procedures for increasing safety and performance characteristics with cost benefits analysis: case study dialysis machines publication-title: IUPESM – The World Congress on Medical Physics & Biomedical Engineering in Prague – volume: 3—8 year: 2018 ident: bib0195 article-title: Establishing traceability chain of infusion and perfusor pumps using legal metrology procedures in Bosnia and Herzegovina publication-title: IUPESM – The World Congress on Medical Physics & Biomedical Engineering in Prague – volume: 10 start-page: 1905 year: 2017 ident: bib0135 article-title: Machine learning-based short-term prediction of air-conditioning load through smart meter analytics publication-title: Energies – year: 2019 ident: bib0285 article-title: Reliability Analysis of Maintenance Data for Complex Medical Devices – year: 2019 ident: bib0030 article-title: MAUDE - Manufacturer and User Facility Device Experience – volume: vol 65 year: 2017 ident: bib0185 article-title: Testing of dialysis machines in healthcare institutions in Bosnia and Herzegovina publication-title: EMBEC & NBC 2017. EMBEC 2017, NBC 2017. IFMBE Proceedings – volume: 7 start-page: 109 issue: 1 year: 2017 ident: 10.1016/j.bspc.2019.101629_bib0075 article-title: Inspection process of medical devices in healthcare institutions: software solution publication-title: Health Technol. doi: 10.1007/s12553-016-0154-2 – year: 2018 ident: 10.1016/j.bspc.2019.101629_bib0055 article-title: Inspection of medical devices for regulatory purposes publication-title: Biomed. Eng. – volume: 81 start-page: 29 issue: 1 year: 2006 ident: 10.1016/j.bspc.2019.101629_bib0250 article-title: Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2005.09.003 – year: 2019 ident: 10.1016/j.bspc.2019.101629_bib0005 – volume: 10 start-page: 1905 issue: 11 year: 2017 ident: 10.1016/j.bspc.2019.101629_bib0135 article-title: Machine learning-based short-term prediction of air-conditioning load through smart meter analytics publication-title: Energies doi: 10.3390/en10111905 – start-page: 1-8 year: 2007 ident: 10.1016/j.bspc.2019.101629_bib0265 – volume: 13 start-page: 464 issue: 2 year: 2002 ident: 10.1016/j.bspc.2019.101629_bib0305 article-title: Fuzzy support vector machines publication-title: IEEE Transactions on Neural Networks / a Publication of the IEEE Neural Networks Council doi: 10.1109/72.991432 – year: 2019 ident: 10.1016/j.bspc.2019.101629_bib0080 – volume: 10 issue: 9 year: 2013 ident: 10.1016/j.bspc.2019.101629_bib0050 article-title: Postmarket surveillance of medical devices: a comparison of strategies in the US, EU, Japan, and China publication-title: PLoS Med. doi: 10.1371/journal.pmed.1001519 – volume: 81 start-page: 29 issue: 1 year: 2006 ident: 10.1016/j.bspc.2019.101629_bib0315 article-title: Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2005.09.003 – year: 2015 ident: 10.1016/j.bspc.2019.101629_bib0140 – year: 2007 ident: 10.1016/j.bspc.2019.101629_bib0240 – volume: 2017 start-page: 503 year: 2017 ident: 10.1016/j.bspc.2019.101629_bib0290 article-title: Ovary Cancer detection using decision tree classifiers based on historical data of ovary Cancer patients publication-title: CMBEBIH – volume: 21 start-page: 119 issue: 1 year: 2011 ident: 10.1016/j.bspc.2019.101629_bib0230 article-title: Toward optimal feature selection using ranking methods and classification algorithms publication-title: Yugoslav Journal of Operations Research. An International Journal Dealing with Theoretical and Computational Aspects of Operations Research, Systems Science, and Management Science – volume: 12 start-page: 309 issue: 2 year: 2015 ident: 10.1016/j.bspc.2019.101629_bib0115 article-title: Feature selection based on hybridization of genetic algorithm and particle swarm optimization publication-title: Ieee Geosci. Remote. Sens. Lett. doi: 10.1109/LGRS.2014.2337320 – volume: 2 year: 2006 ident: 10.1016/j.bspc.2019.101629_bib0120 article-title: Applications of machine learning in Cancer prediction and prognosis publication-title: Cancer Inform. doi: 10.1177/117693510600200030 – year: 2013 ident: 10.1016/j.bspc.2019.101629_bib0320 article-title: Machine learning: an artificial intelligence approach publication-title: Springer Science & Business Media – volume: 21 start-page: 286 year: 2014 ident: 10.1016/j.bspc.2019.101629_bib0130 article-title: Comparative analysis of statistical and machine learning methods for predicting faulty modules publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.03.032 – volume: 72 start-page: 162 year: 2015 ident: 10.1016/j.bspc.2019.101629_bib0225 article-title: Wrapper feature subset selection for dimension reduction based on ensemble learning algorithm publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.12.117 – volume: 4 issue: 11 year: 2016 ident: 10.1016/j.bspc.2019.101629_bib0245 article-title: Introduction to machine learning: k-nearest neighbors publication-title: Ann. Transl. Med. doi: 10.21037/atm.2016.03.37 – volume: 47 start-page: 13 year: 2015 ident: 10.1016/j.bspc.2019.101629_bib0310 article-title: Gene Expression Data Classification Using Support Vector Machine and Mutual Information-based Gene Selection publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.03.178 – year: 2014 ident: 10.1016/j.bspc.2019.101629_bib0200 article-title: A literature review of feature selection techniques and applications: review of feature selection in data mining publication-title: In 2014 IEEE International Conference on Computational Intelligence and Computing Research – year: 2019 ident: 10.1016/j.bspc.2019.101629_bib0025 – year: 2009 ident: 10.1016/j.bspc.2019.101629_bib0040 – year: 2019 ident: 10.1016/j.bspc.2019.101629_bib0030 – start-page: 93 year: 2004 ident: 10.1016/j.bspc.2019.101629_bib0275 – year: 2017 ident: 10.1016/j.bspc.2019.101629_bib0110 – volume: 3—8 issue: June year: 2018 ident: 10.1016/j.bspc.2019.101629_bib0190 article-title: Legal metrology procedures for increasing safety and performance characteristics with cost benefits analysis: case study dialysis machines publication-title: IUPESM – The World Congress on Medical Physics & Biomedical Engineering in Prague – volume: 50 start-page: 43 issue: 1 year: 2015 ident: 10.1016/j.bspc.2019.101629_bib0165 article-title: „Measurement in medicine – past, present, future publication-title: Folia Medica Facultatis Medicinae Universitatis Saraeviensis Journal – year: 2014 ident: 10.1016/j.bspc.2019.101629_bib0215 article-title: Feature selection for robust detection of distributed denial-of-service attacks using genetic algorithms – start-page: 1 year: 2005 ident: 10.1016/j.bspc.2019.101629_bib0270 – volume: vol 65 year: 2017 ident: 10.1016/j.bspc.2019.101629_bib0180 article-title: Testing of infusion pumps in healthcare institutions in Bosnia and Herzegovina publication-title: EMBEC & NBC 2017. EMBEC 2017, NBC 2017. IFMBE Proceedings – year: 2019 ident: 10.1016/j.bspc.2019.101629_bib0150 – year: 2002 ident: 10.1016/j.bspc.2019.101629_bib0085 – volume: 115 start-page: 31 issue: 9 year: 2015 ident: 10.1016/j.bspc.2019.101629_bib0095 article-title: Applications of artificial intelligence in machine learning: review and prospect publication-title: Int. J. Comput. Appl. – volume: vol 65 year: 2017 ident: 10.1016/j.bspc.2019.101629_bib0185 article-title: Testing of dialysis machines in healthcare institutions in Bosnia and Herzegovina publication-title: EMBEC & NBC 2017. EMBEC 2017, NBC 2017. IFMBE Proceedings – volume: 3—8 issue: June year: 2018 ident: 10.1016/j.bspc.2019.101629_bib0065 article-title: Legal metrology procedures for increasing safety and performance characteristics with cost benefits analysis: case study dialysis machines publication-title: IUPESM – The World Congress on Medical Physics & Biomedical Engineering in Prague – year: 2017 ident: 10.1016/j.bspc.2019.101629_bib0235 article-title: Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation publication-title: Biomed. Signal Process. Control – start-page: 154 year: 2008 ident: 10.1016/j.bspc.2019.101629_bib0260 article-title: Fault prediction using artificial neural network and fuzzy logic [ebook] – volume: 521 start-page: 436 issue: May 7553 year: 2015 ident: 10.1016/j.bspc.2019.101629_bib0105 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 7 start-page: 109 issue: 1 year: 2017 ident: 10.1016/j.bspc.2019.101629_bib0145 article-title: Inspection process of medical devices in healthcare institutions: software solution publication-title: Health Technol. doi: 10.1007/s12553-016-0154-2 – year: 2019 ident: 10.1016/j.bspc.2019.101629_bib0330 – ident: 10.1016/j.bspc.2019.101629_bib0090 – volume: 73 start-page: 3273 issue: 16-18 year: 2010 ident: 10.1016/j.bspc.2019.101629_bib0220 article-title: A new wrapper feature selection approach using neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.04.003 – year: 2019 ident: 10.1016/j.bspc.2019.101629_bib0020 – year: 2016 ident: 10.1016/j.bspc.2019.101629_bib0175 article-title: Testing of therapeutic ultrasound in healthcare institutions in Bosnia and Herzegovina publication-title: 2nd EAI International Conference on Future Access Enablers of Ubiquitous and Intelligent Infrastructures – year: 2016 ident: 10.1016/j.bspc.2019.101629_bib0210 article-title: Analysing feature selection and classification techniques for DDoS detection in Cloud – volume: 332 start-page: 1 year: 2011 ident: 10.1016/j.bspc.2019.101629_bib0280 article-title: Acoustic pollution in Hospital environments publication-title: Journal of Physics: Conference Series – year: 2013 ident: 10.1016/j.bspc.2019.101629_bib0045 – year: 2019 ident: 10.1016/j.bspc.2019.101629_bib0015 – year: 2006 ident: 10.1016/j.bspc.2019.101629_bib0100 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.bspc.2019.101629_bib0300 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2005 ident: 10.1016/j.bspc.2019.101629_bib0325 – volume: 3—8 issue: June year: 2018 ident: 10.1016/j.bspc.2019.101629_bib0070 article-title: Establishing traceability chain of infusion and perfusor pumps using legal metrology procedures in Bosnia and Herzegovina publication-title: IUPESM – The World Congress on Medical Physics & Biomedical Engineering in Prague – volume: 3—8 issue: June year: 2018 ident: 10.1016/j.bspc.2019.101629_bib0195 article-title: Establishing traceability chain of infusion and perfusor pumps using legal metrology procedures in Bosnia and Herzegovina publication-title: IUPESM – The World Congress on Medical Physics & Biomedical Engineering in Prague – start-page: 3230 year: 2013 ident: 10.1016/j.bspc.2019.101629_bib0125 article-title: Random Forest for automatic assessment of heart failure severity in a telemonitoring scenario publication-title: Conference Proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. – year: 2019 ident: 10.1016/j.bspc.2019.101629_bib0010 – volume: 2 start-page: 31623 year: 2015 ident: 10.1016/j.bspc.2019.101629_bib0255 article-title: Factors affecting utilization of medical diagnostic equipment: a study at a tertiary healthcare setup of Chandigarh publication-title: CHRISMED J Health Res doi: 10.4103/2348-3334.165741 – year: 2019 ident: 10.1016/j.bspc.2019.101629_bib0160 – year: 2013 ident: 10.1016/j.bspc.2019.101629_bib0205 article-title: Feature ranking and support vector machines classification analysis of the NSL-KDD intrusion detection Corpus – volume: 41 start-page: 133 year: 2017 ident: 10.1016/j.bspc.2019.101629_bib0060 article-title: Testing of anesthesia machines and defibrillators in healthcare institutions publication-title: J. Med. Syst. doi: 10.1007/s10916-017-0783-7 – volume: 41 start-page: 133 year: 2017 ident: 10.1016/j.bspc.2019.101629_bib0170 article-title: Testing of anesthesia machines and defibrillators in healthcare institutions publication-title: J. Med. Syst. doi: 10.1007/s10916-017-0783-7 – year: 2019 ident: 10.1016/j.bspc.2019.101629_bib0035 – year: 2019 ident: 10.1016/j.bspc.2019.101629_bib0285 – year: 2019 ident: 10.1016/j.bspc.2019.101629_bib0155 – volume: 130 start-page: 54 year: 2016 ident: 10.1016/j.bspc.2019.101629_bib0295 article-title: Congestive heart failure detection using random forest classifier publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.03.020 |
| SSID | ssj0048714 |
| Score | 2.454081 |
| Snippet | •Paper structure was adjusted.•Part with explination of different machine learning algorithms was deleted.•Abstract was adjusted.•Overall english literacy... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101629 |
| SubjectTerms | Automated system Evidence-based Inspection Machine learning Maintenance Management Medical device Prediction |
| Title | Evidence-based clinical engineering: Machine learning algorithms for prediction of defibrillator performance |
| URI | https://dx.doi.org/10.1016/j.bspc.2019.101629 |
| Volume | 54 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4IHvwZlZa2t223giRoAYuSsKt2SdiEBqoV3-7O-0WMDEcPHY7mzQzk5lv0vlmELptx0YpBfO0JU1IaJgmXCSChLYC4lxFpq2BjTwYsv4ofB7TcQ11Ky4MtFW62F_G9CJau5OW02Yrm05brxZLs9hWJxaCQOFSMNjDCLYY3H-v2zwsHi_me4MwAWlHnCl7vMQqgzGGflIcFDDzj-S0lXB6R-jQIUXcKT_mGNX0_AQdbM0PPEWzaicogWSkcEVzxHoj9YAHRb-kxm5BxATz2WSxnObvnytsISvOlvCzBgyEFwYrbYAFYL0jh3cbXsEZGvUe37p94tYnEBl4Xk54oNs8YpGkTHMeWZOEgfBFQH0jY60kEwAmpE5CY6s8TdtJbFisaOLJwMpHwTmqzxdzfYEwo8IPlYVCnLHQk1FiCyEuLNLkNr9RxhvIr_SWSjdbHFZczNKqiewjBV2noOu01HUD3a3vZOVkjZ3StDJH-ss_Uhv6d9y7_Oe9K7QPT2U32TWq58svfWPhRy6ahX810V7n6aU__AF4T9t_ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPKgH4zPicw_eTKWv3bbeDJGgAhch4dbsq4hBaKBe_e3O9IGYGA5ed2eSZnYy833pPAi5ccNEa43ztBWLLD_hxhIykpYPDEgIHSSuwW7kXp93hv7ziI1qpFX1wmBZZRn7i5ieR-vypFlas5lOJs1XwNI8BHYCEASJC1CgLZ-5ATKwu69VnQcA8nzAN0pbKF52zhRFXnKZ4hxDJ8oPcpz5R3ZayzjtfbJXQkX6UHzNAamZ2SHZXRsgeESm1VJQC7ORplWfIzU_Uve0lxdMGlpuiBhTMR3PF5Ps7WNJAbPSdIF_a_CF6Dyh2iTYBgDukeHdT2PBMRm2HwetjlXuT7CUZ9uZJTzjioAHinEjRABv4nvSkR5zEhUarbhENKFM5CdA8wxzozDhoWaRrTyQD7wTUp_NZ-aUUM6k42vAQoJz31ZBBExISICaAhIc46JBnMpusSqHi-OOi2lcVZG9x2jrGG0dF7ZukNuVTlqM1tgozarniH85SAyxf4Pe2T_1rsl2Z9Drxt2n_ss52cGborTsgtSzxae5BCySyavc174Bq_zdFA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence-based+clinical+engineering%3A+Machine+learning+algorithms+for+prediction+of+defibrillator+performance&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Badnjevi%C4%87%2C+Almir&rft.au=Gurbeta+Pokvi%C4%87%2C+Lejla&rft.au=Hasi%C4%8Di%C4%87%2C+Mehrija&rft.au=Bandi%C4%87%2C+Lejla&rft.date=2019-09-01&rft.issn=1746-8094&rft.volume=54&rft.spage=101629&rft_id=info:doi/10.1016%2Fj.bspc.2019.101629&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2019_101629 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |