Breaking the limits of acoustic science: A review of acoustic metamaterials

•The unique characteristics of acoustic metamaterials (AMMs), which are not found in natural materials, have been explored.•The fundamental structures, application areas, opportunities, and challenges of AMMs have been examined in detail.•The importance of simulation in designing AMMs has been empha...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. B, Solid-state materials for advanced technology Vol. 305; p. 117384
Main Authors Aydın, Gülcan, San, Sait Eren
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2024
Subjects
Online AccessGet full text
ISSN0921-5107
1873-4944
DOI10.1016/j.mseb.2024.117384

Cover

Abstract •The unique characteristics of acoustic metamaterials (AMMs), which are not found in natural materials, have been explored.•The fundamental structures, application areas, opportunities, and challenges of AMMs have been examined in detail.•The importance of simulation in designing AMMs has been emphasized, and 3D printing has been examined for their fabrication.•It has been suggested that a materials-centered approach holds the potential for revolutionary developments in this field. Acoustic metamaterials (AMMs) are a form of man-made material that can be specifically developed to have a sub-wavelength periodic structure with extraordinary characteristics not found in nature. Recently, the ability to manipulate sound waves and elastic waves, thanks to these properties, has attracted great interest from scientists and engineers and has been the subject of intense research. This review presents general conceptual descriptions of these materials. We have summarized current literature and we investigated basic structures such as Helmholtz resonators, membrane-type structures, locally resonant and space-coiled structures, and application fields of acoustic metamaterials such as sound imaging, sound absorption, acoustical cloaking, noise reduction, and underwater acoustics. As simulation methods are essential for design and performance evaluation of acoustic metamaterials, the studies carried out in the literature were described and 3D printing technologies for the fabrication of these designs were investigated. Finally, we discuss the opportunities and challenges of acoustic metamaterials. While acoustic metamaterials have enormous ability for the field of sound control, AMMs also present challenges such as frequency-dependent operation, optimization requirements, and material costs. This review provides a comprehensive resource to guide researchers and engineers in understanding the importance and future potential of acoustic metamaterials and identifying gaps in the literature.
AbstractList •The unique characteristics of acoustic metamaterials (AMMs), which are not found in natural materials, have been explored.•The fundamental structures, application areas, opportunities, and challenges of AMMs have been examined in detail.•The importance of simulation in designing AMMs has been emphasized, and 3D printing has been examined for their fabrication.•It has been suggested that a materials-centered approach holds the potential for revolutionary developments in this field. Acoustic metamaterials (AMMs) are a form of man-made material that can be specifically developed to have a sub-wavelength periodic structure with extraordinary characteristics not found in nature. Recently, the ability to manipulate sound waves and elastic waves, thanks to these properties, has attracted great interest from scientists and engineers and has been the subject of intense research. This review presents general conceptual descriptions of these materials. We have summarized current literature and we investigated basic structures such as Helmholtz resonators, membrane-type structures, locally resonant and space-coiled structures, and application fields of acoustic metamaterials such as sound imaging, sound absorption, acoustical cloaking, noise reduction, and underwater acoustics. As simulation methods are essential for design and performance evaluation of acoustic metamaterials, the studies carried out in the literature were described and 3D printing technologies for the fabrication of these designs were investigated. Finally, we discuss the opportunities and challenges of acoustic metamaterials. While acoustic metamaterials have enormous ability for the field of sound control, AMMs also present challenges such as frequency-dependent operation, optimization requirements, and material costs. This review provides a comprehensive resource to guide researchers and engineers in understanding the importance and future potential of acoustic metamaterials and identifying gaps in the literature.
ArticleNumber 117384
Author Aydın, Gülcan
San, Sait Eren
Author_xml – sequence: 1
  givenname: Gülcan
  orcidid: 0000-0003-4627-961X
  surname: Aydın
  fullname: Aydın, Gülcan
  email: gulcan.aydin@kocaeli.edu.tr
  organization: Department of Physics, Kocaeli University, 41001, Turkey
– sequence: 2
  givenname: Sait Eren
  surname: San
  fullname: San, Sait Eren
  organization: Department of Physics, Kocaeli University, 41001, Turkey
BookMark eNp9kL1OwzAUhS1UJNrCCzDlBRKuHbtJEEup-BOVWGC2buwbcGkSZBsQb0-idoGh0xmOviOdb8YmXd8RY-ccMg58cbHJ2kB1JkDIjPMiL-URm_KyyFNZSTlhU6gETxWH4oTNQtgAABdCTNnjtSd8d91rEt8o2brWxZD0TYKm_wzRmSQYR52hy2SZePpy9P2nbSlii5G8w204ZcfNEHS2zzl7ub15Xt2n66e7h9VynZocIKYopAWoa2jQ8tLaStQG8xJxOLKQtbFcKYNcNg0oVeaqtFVNVigjC6sQVD5nYrdrfB-Cp0Z_eNei_9Ec9KhDb_SoQ4869E7HAJX_IOMiRtd30aPbHkavdigNpwYFXu-lWOfJRG17dwj_BTLzfhk
CitedBy_id crossref_primary_10_1063_5_0231460
crossref_primary_10_54355_tbus_4_2_2024_0057
crossref_primary_10_1088_1361_6463_adade5
crossref_primary_10_3390_app15020619
crossref_primary_10_1016_j_rcim_2025_102970
crossref_primary_10_1016_j_enganabound_2025_106217
crossref_primary_10_1007_s42417_024_01612_9
crossref_primary_10_1063_5_0241632
crossref_primary_10_1016_j_ijmecsci_2025_110083
crossref_primary_10_1016_j_mseb_2024_117794
crossref_primary_10_3390_cryst14100887
crossref_primary_10_3390_cryst15010012
Cites_doi 10.1016/j.physleta.2017.07.041
10.1016/j.physleta.2009.10.013
10.1103/PhysRevB.76.144302
10.1063/1.5043600
10.1063/1.2903500
10.1063/1.4826257
10.1016/j.scib.2022.09.020
10.1016/j.apacoust.2023.109297
10.1016/j.apacoust.2013.09.015
10.1209/0295-5075/132/38003
10.1038/srep01614
10.1038/s41598-020-70714-7
10.1209/0295-5075/120/54001
10.1103/PhysRevB.99.174109
10.7498/aps.68.20190850
10.1063/1.3583656
10.1007/s00158-020-02819-6
10.1103/PhysRevApplied.2.054007
10.1063/1.3493155
10.1103/PhysRevLett.104.054301
10.1038/nmat3084
10.1121/1.5024361
10.1038/s41598-017-00779-4
10.1016/j.compstruct.2020.112949
10.1016/j.apacoust.2023.109565
10.1038/nature20824
10.1038/nphys3867
10.1103/PhysRevE.74.026604
10.1038/nmat3901
10.1063/1.5029424
10.3390/ma16124298
10.1126/science.1058847
10.1063/1.5085568
10.1038/s42254-019-0030-x
10.1088/0022-3727/44/21/215402
10.1063/1.3507893
10.1063/5.0147941
10.1063/1.4759327
10.1515/nanoph-2019-0483
10.1016/j.jsv.2016.03.025
10.1088/1367-2630/9/3/045
10.1088/0022-3727/49/22/225302
10.1016/j.apacoust.2022.108974
10.1103/PhysRevLett.108.114301
10.1016/j.jsv.2018.02.060
10.1016/j.actamat.2019.04.042
10.1038/nmat4067
10.1016/j.eml.2021.101203
10.1063/1.5026199
10.1088/1367-2630/11/1/013003
10.1088/1367-2630/10/6/063015
10.1016/0022-460X(92)90059-7
10.1103/PhysRevApplied.16.054018
10.1103/PhysRevLett.85.3966
10.1016/j.ijmecsci.2022.107414
10.1063/1.4922669
10.1016/j.taml.2017.06.001
10.1016/j.eml.2019.100623
10.3390/acoustics5030040
10.1016/j.apacoust.2020.107390
10.1103/PhysRevLett.110.175501
10.1016/j.ijmecsci.2022.107872
10.1016/j.apacoust.2019.107022
10.1103/PhysRevB.94.014302
10.1038/ncomms14871
10.1063/1.4979020
10.1016/j.apacoust.2010.09.005
10.1016/j.ymssp.2020.107479
10.1038/s41467-018-07315-6
10.1109/22.798002
10.1016/j.jsv.2022.117514
10.1155/2019/7029143
10.1121/1.4984623
10.1103/PhysRevB.49.2313
10.7498/aps.52.1943
10.1038/s41467-023-36581-2
10.1103/PhysRevLett.101.204301
10.1070/PU1968v010n04ABEH003699
10.1115/1.4034770
10.1063/1.4913999
10.1088/1367-2630/11/12/123010
10.1016/j.apacoust.2021.108585
10.1006/jsvi.1993.1122
10.1063/1.5055288
10.1103/PhysRevE.70.026609
10.1063/1.5041731
10.1121/1.3643818
10.1109/ICSENS.2017.8234381
10.1016/j.ijmecsci.2022.107601
10.1063/1.372308
10.3390/ma16041597
10.1007/s11433-019-1498-2
10.1016/B978-0-08-033933-7.50017-9
10.1038/nmat3994
10.1016/j.eml.2021.101218
10.1103/PhysRevB.51.2780
10.1063/5.0074503
10.1063/1.4882316
10.1126/science.1126493
10.1016/j.ijmecsci.2023.108571
10.1063/1.4968607
10.1016/j.eml.2021.101347
10.1016/j.physb.2023.415150
10.1103/PhysRevLett.71.2022
10.1063/1.4901996
10.1038/nmat1644
10.1016/j.physleta.2014.09.042
10.1103/PhysRevApplied.18.054040
10.1016/j.compstruct.2005.01.026
10.3390/ma16051879
10.1103/PhysRevLett.102.194301
10.4028/p-g9is26
10.1063/1.1772854
10.1063/1.5109084
10.1006/jsvi.1994.1091
10.1126/science.1125907
10.1088/0022-3727/35/2/309
10.3390/ma15186450
10.1098/rspa.2022.0046
10.1103/PhysRevApplied.13.044028
10.1016/j.compstruct.2022.115689
10.1016/j.ijmecsci.2022.107829
10.1126/science.289.5485.1734
10.1088/1361-6463/aaeb68
10.1038/s41598-019-49982-5
10.1016/j.proeng.2017.02.302
10.1126/science.1252876
10.1038/nmat2561
10.1103/PhysRevLett.67.2295
10.1016/j.apacoust.2016.05.005
10.1063/1.3514082
10.1088/0022-3727/46/47/475105
10.1016/j.pmatsci.2017.12.003
10.1016/j.carbon.2015.12.103
10.1063/1.3665213
10.1063/1.4930944
10.1021/acsnano.7b08828
10.1121/10.0018520
10.1103/PhysRevApplied.10.064030
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.mseb.2024.117384
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4944
ExternalDocumentID 10_1016_j_mseb_2024_117384
S0921510724002137
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABXRA
ACDAQ
ACFVG
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-a24d00bb0fad18dd92bca38aa01664bcd155ca14ff0558358d9bed25c47d5a053
IEDL.DBID .~1
ISSN 0921-5107
IngestDate Wed Oct 01 03:25:01 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Tue Jun 18 08:52:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Acoustic wave manipulation
Sound waves
Negative Poisson's ratio
Noise reduction
Acoustic metamaterials
Negative refractive index
Acoustic control technology
Sound absorption
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-a24d00bb0fad18dd92bca38aa01664bcd155ca14ff0558358d9bed25c47d5a053
ORCID 0000-0003-4627-961X
ParticipantIDs crossref_primary_10_1016_j_mseb_2024_117384
crossref_citationtrail_10_1016_j_mseb_2024_117384
elsevier_sciencedirect_doi_10_1016_j_mseb_2024_117384
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Materials science & engineering. B, Solid-state materials for advanced technology
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sigalas, Soukoulis (b0245) 1995; 51
Gao, Xie, Peng, Yan, Liu, Peng, Li, Jiang, Liu (b0640) 2020; 132
Liu, Zhang, Mao, Zhu, Yang, Chan, Sheng (b0095) 2000; 289
Wu, Liu, Liu (b0235) 2001; 35
Kushwaha, Halevi, Martínez, Dobrzynski, Djafari-Rouhani (b0220) 1994; 49
Liu, Peng, Liu, Zou, Cheng (b0330) 2018; 113
Zhu, Fan, Liang, Yang, Yang, Yin, Cheng (b0625) 2016; 6
Shen, Xu, Fang, Jing (b0680) 2014; 4
Jiménez, Romero-García, García-Raffi, Camarena, Staliunas (b0635) 2018; 112
Zhai, Chen, Ding, Zhao (b0295) 2013; 46
Xin, Huang, Li, Yan, Dong, Yan, Sun, Cheng, Zhao (b0520) 2023; 667
Wang, Hui, Ng (b0535) 2014; 78
Tsiokou, Shtrepi, Badino, Astolfi, Karatza (b0735) 2023; 5
Sigalas, Garcia (b0210) 2000; 87
Ning, Yang, Luo, Liu, Zhuang (b0305) 2020; 35
Tao, Ren, Zhao, Sun, Zhang, Jiang, Han, Zhang, Xie (b0840) 2022; 226
Guenneau, Movchan, Pétursson, Anantha Ramakrishna (b0035) 2007; 11
Naify, Chang, McKnight, Nutt (b0375) 2010; 108
Naify, Chang, McKnight, Nutt (b0385) 2011; 110
Mizukami, Kawaguchi, Ogi, Koga (b0730) 2021; 255
Chorin, Marsden (b0760) 2000
Xu, Huang (b0825) 2023; 259
Li, Fok, Yin, Bartal, Zhang (b0655) 2009; 8
Ding, Hao, Zhao (b0130) 2010; 108
Chen, Xiao, Lisevych, Shakouri, Fan (b0630) 2018; 9
Cheng, Yang, Xu, Liu (b0575) 2008; 92
Chen, Xue, Fan, Zhang, Li, Zhang, Ding (b0420) 2016; 6
Jeong, Lee, An, Lim, Jun (b0775) 2020; 9
Li, Chan (b0070) 2019; 71
Sirota, Sabsovich, Lahini, Ilan, Shokef (b0820) 2021; 153
Bi, Jia, Sun, Yang, Zhao, Yang (b0600) 2018; 112
Tournat, Pagneux, Lafarge, Jaouen (b0250) 2004; 70
Kinsler, Frey, Coppens, Sanders (b0010) 2000
Wang, Yi, Zhu (b0310) 2023; 548
Ma, Huang, Liu, Wu (b0805) 2022; 131
R.G. Oldfield, Improved membrane absorbers, 2006 (Master's thesis), Retrieved from
Allam, Elsabbagh, Akl (b0425) 2017; 121
K.-L. Koai, T. Yang, J. Chen, The muffling effect of Helmholtz resonator attachments to a gas flow path, in: International Compressor Engineering Conference, West Lafayette, Indiana, July 23–26, 1996.
.
Sun, Sun, Jia, Bi, Yang (b0590) 2019; 114
Wu, Liao, Savinov, Chung, Chen, Huang, Wu, Chen, Liu, Zheludev, Tsai (b0030) 2018; 12
Leblanc, Lavie (b0725) 2017; 141
Chen, Tang, Wang, Wang, Zhao, Wang (b0275) 2020; 63
Shao, He, Chen, Tan, Chen (b0490) 2020; 157
N.R. Mahesh, N. Prita, Experimental and theoretical investigation of acoustic metamaterial with negative bulk modulus, in: Proceedings of 2011 COMSOL Conference, 2011
Cummer, Christensen (b0085) 2016; 1
M.L. Hawkins, A Generalization of Snell's Law, Naval Postgraduate School (U.S.), Department of Mathematics, Monterey, California, 1990 (Master Science Thesis).
Zhang, He, Wang (b0665) 2018; 52
A. Intissar, On non self adjoint models on the guided acoustic wave of finite length and on of the interaction between a vibrating structure and a fluid, in: Spectral theory of non self-adjoint operators with compact resolvent and applications to Gribov-Intissar, 2020.
Yang, Li, Wen, Lu, Peng, He, Zhang, Wang, Yang (b0335) 2014; 85
Zhou, Wang, Xin (b0510) 2023; 13
Zhang, Qu, Wang (b0810) 2020; 23
Dong, Zhao, Wei, Cheng, Wang, Zhang (b0485) 2019; 172
Liu, Xia, Yu (b0670) 2017; 381
Yang, Wang, Huang (b0080) 2020; 7
Fink (b0530) 2014; 13
Yablonovitch, Gmitter, Leung (b0025) 1991; 67
Zieliński, Opiela, Pawłowski, Dauchez, Boutin, Kennedy, Trimble, Rice, Van Damme, Hannema, Wróbel, Kim, Mosanenzadeh, Fang, Yang, de La Hosseraye, Hornikx, Salze, Galland, Boonen, Groby (b0175) 2020; 36
Lee, Wang, Lim, Xie, Lee (b0790) 2020; 167
Yang, Meng, Fu, Li, Yang, Sheng (b0540) 2015; 107
Zhang, Xia, Fang (b0135) 2011; 106
Peng, Wen, Li, Yang, Bai (b0325) 2013; 103
Qing, Qing (b0690) 2013
Park, Kwak, Song (b0815) 2021; 43
Bi, Jia, Lu, Ji, Yang (b0605) 2017; 7
Naify, Huang, Sneddon, Nutt (b0390) 2011; 72
Lee, Park, Seo, Wang, Kim (b0400) 2009; 373
Sun, Xu, Wang, Gu, Luo, Zhao, Huang (b0455) 2023
Fernandez-Marin, Jimenez, Groby, Sanchez-Dehesa, Romero-Garcia (b0550) 2019; 115
Ma, Seo, Lee (b0450) 2023; 211
Wang, Wen, Han, Zhao (b0205) 2003; 52
Qi, Yang, Bai, Zhao (b0230) 2003
Roca, Hussein (b0675) 2021; 16
Munjal (b0240) 1993; 162
Silverberg, Evans, McLeod, Hayward, Hull, Santangelo, Cohen (b0055) 2014; 345
Zhang, Yin, Fang (b0650) 2009; 102
Liang, Feng, Lok, Liu, Ng, Chan, Wang, Han, Lee, Li (b0660) 2013; 3
Yu, Zhou, Liang, Jiang, Wu (b0065) 2018; 94
Bertoldi, Vitelli, Christensen, Van Hecke (b0050) 2017; 2
Sun, Hou, Qian, Ge, Yuan, Guan, Si, Liu (b0280) 2019; 125
Vdovin, Tomilina, Smelov, Laktionova (b0720) 2017; 176
Liang, Li (b0140) 2012; 108
Yang, Wang, Shen, Zhang, Yin, Wang, Yang, Shen, Peng (b0500) 2022; 15
Lee, Park, Seo, Wang, Kim (b0200) 2010; 104
Pendry (b0020) 2000; 85
Ding, Wang, Qiu, Huang, Zhou, Zhou, Jia, Li (b0185) 2022; 232
Torrent, Sánchez-Dehesa (b0570) 2008; 10
Zigoneanu, Popa, Cummer (b0480) 2014; 13
Tian, Ge, Lu, Chen (b0745) 2019; 68
Wu, Zhai, Zhao, Tian, Li, Wang, Jiang (b0800) 2022; 32
Sheikh, Mechefske, Kone, Laly, Ghinet (b0355) 2023; 153
Chen, Shan (b0045) 2019; 5
Korozlu, Cicek (b0285) 2018; 113
Ding, Zhao (b0320) 2011; 44
He, Ni, Ge, Sun, Chen, Lu, Liu, Chen (b0155) 2016; 12
Xia, Chen, Xie, Qin, Yu (b0345) 2016
Zhou, Assouar, Oudich (b0645) 2014; 116
Peng, Xiao, Wu (b0620) 2014; 378
Long (b0430) 2020; 10
Akl, Baz (b0470) 2012; 112
Jia, Ke, Hao, Ye, Liu, Liu (b0615) 2010; 97
L.D. Landau, E.M. Lifshitz, Fluid Mechanics, second edition, vol. 6, Pergamon, 1987, doi: 10.1016/B978-0-08-033933-7.50017-9.
Popa, Zigoneanu, Cummer (b0475) 2013; 88
Xiang, Wang, Zhu (b0440) 2022; 188
Shelby, Smith, Schultz (b0100) 2001; 292
Page (b0040) 2011; 10
Xue, Zhang (b0610) 2021; 46
Xiao, Ma, Li, Yang, Sheng (b0415) 2015; 106
Gu, Cheng, Wang, Liu (b0150) 2015; 118
Tournat, Profunser, Muramoto, Matsuda, Takezaki, Sueoka, Wright (b0260) 2006; 74
Amin, Siddiqui, Orfali, Farhat, Khelif (b0595) 2018; 10
Li, Liu, Liu, Li, Yang, Tong, Shi, Schmidt, Schröder (b0525) 2023; 205
Overvelde, Weaver, Hoberman, Bertoldi (b0060) 2017; 541
Wu, Liu, Liu (b0225) 2001
Ning, Yan, Chu, Jiang, Liu, Zhuang (b0495) 2021; 44
Man, Liu, Xia, Luo, Xie, Liu (b0165) 2018; 423
Wang, Zhao, Yang, Zhong, Wen (b0435) 2017; 120
Tang, Ren, Meng, Xin, Huang, Chen, Zhang, Lu (b0545) 2017; 7
Levi, Piana, Giorleo (b0695) 2022
Liu, Chan, Wu (b0190) 2023; 16
Román-Manso, Figueiredo, Achiaga, Barea, Pérez-Coll, Morelos-Gómez, Terrones, Osendi, Belmonte, Miranzo (b0700) 2016; 100
Ma, Sheng (b0075) 2016; 343
Shao, Long, Cheng, Liu (b0405) 2019; 9
Cummer, Schurig (b0460) 2007; 9
Naify, Chang, McKnight, Scheulen, Nutt (b0380) 2011; 109
Xie, Popa, Zigoneanu, Cummer (b0445) 2013; 110
Esfahlani, Karkar, Lissek, Mosig (b0585) 2016; 94
Zhai, Chen, Ding, Li, Shen, Luo, Zhao (b0580) 2016; 49
Peng, Bi, Shen, Yang, Yang, Wang (b0505) 2023; 16
Leonhardt (b0110) 2006; 312
Ma, Xiao, Chan (b0170) 2019; 1
Wu, Liu, Jahanshahi, Semperlotti (b0180) 2021; 63
Zhu, Assouar (b0350) 2019; 99
Wen, Zhang, Wang, Wang, He, Chen, Liu, Xie (b0360) 2023; 239
Yang, Sheng (b0785) 2023; 122
Kadic, Bückmann, Schittny, Gumbsch, Wegener (b0770) 2014; 2
Yeh, Chen (b0290) 2006; 73
Gao, Hou, Mu (b0395) 2017; 7
Zhang, Liu (b0105) 2004; 85
Hu, Tang, Banerjee, Das (b0300) 2017; 139
Pendry, Holden, Robbins, Stewart (b0015) 1999; 47
Frommhold, Fuchs, Sheng (b0370) 1994; 170
C. Casarini, B. Tiller, C. Mineo, C.N. MacLeod, J.F.C. Windmill, J.C. Jackson, Enhancing the sound absorption of small-scale 3D printed acoustic metamaterials based on helmholtz resonators, in: IEEE Sensors Conference 2017, 2018.
Nakayama (b0780) 2023
Baz (b0125) 2009; 11
Langfeldt, Riecken, Gleine, von Estorff (b0410) 2016; 373
Kushwaha, Halevi, Dobrzynski, Djafari-Rouhani (b0215) 1993; 71
Kennedy, Flanagan, Dowling, Bennett, Rice, Trimble (b0710) 2019
Zheng, Man, Kong, Lin, Duan, Chen, Yu, Jiang, Xia (b0830) 2022; 67
Ma, Yang, Xiao, Yang, Sheng (b0145) 2014; 13
Veselago (b0005) 1968; 10
Fang, Xi, Xu, Ambati, Srituravanich, Sun, Zhang (b0115) 2006; 5
Neil, Shen, Robert, Drinkwater, Holderied (b0560) 2022; 478
Kim, Park, Park (b0715) 2021; 47
Martin (b0255) 2018; 143
Pendry, Schurig, Smith (b0565) 2006; 312
Sigalas, Ecconomou (b0090) 1992; 158
Yang, Mei, Yang, Chan, Sheng (b0120) 2008; 101
Huang, Sun (b0195) 2009; 11
Elford, Chalmers, Kusmartsev, Swallowe (b0465) 2011; 130
Pavan, Singh (b0555) 2022; 198
Gorshkov, Bereznykov, Boiger, Sareh, Fallah (b0845) 2023; 238
Bi, Yang, Tang, Shen, Zhang, Zhu, Yang, Peng, Yuan (b0515) 2023; 16
Song, Kim, Hur, Kwak, Lee, Kim (b0685) 2016; 6
Xu, Cai, Wu (b0835) 2023; 14
Fokin, Ambati, Sun, Zhang (b0265) 2007; 76
Sun, Fang, Mao, Wang, Li (b0795) 2020; 13
Dubois, Shi, Zhu, Wang, Zhang (b0160) 2017; 8
Cao, Ou, Su, Yin, Dong, Song, Li, Zhang (b0270) 2022; 18
Gu, Tang, Wang, Huang (b0850) 2022; 292
Fokin (10.1016/j.mseb.2024.117384_b0265) 2007; 76
Sheikh (10.1016/j.mseb.2024.117384_b0355) 2023; 153
Zhou (10.1016/j.mseb.2024.117384_b0510) 2023; 13
Cummer (10.1016/j.mseb.2024.117384_b0085) 2016; 1
Tsiokou (10.1016/j.mseb.2024.117384_b0735) 2023; 5
Zhang (10.1016/j.mseb.2024.117384_b0810) 2020; 23
Kennedy (10.1016/j.mseb.2024.117384_b0710) 2019
Hu (10.1016/j.mseb.2024.117384_b0300) 2017; 139
Ma (10.1016/j.mseb.2024.117384_b0170) 2019; 1
Yang (10.1016/j.mseb.2024.117384_b0500) 2022; 15
Román-Manso (10.1016/j.mseb.2024.117384_b0700) 2016; 100
Peng (10.1016/j.mseb.2024.117384_b0505) 2023; 16
Ding (10.1016/j.mseb.2024.117384_b0130) 2010; 108
Zieliński (10.1016/j.mseb.2024.117384_b0175) 2020; 36
Zhang (10.1016/j.mseb.2024.117384_b0650) 2009; 102
Roca (10.1016/j.mseb.2024.117384_b0675) 2021; 16
Elford (10.1016/j.mseb.2024.117384_b0465) 2011; 130
Chen (10.1016/j.mseb.2024.117384_b0275) 2020; 63
10.1016/j.mseb.2024.117384_b0765
Kinsler (10.1016/j.mseb.2024.117384_b0010) 2000
10.1016/j.mseb.2024.117384_b0365
Fink (10.1016/j.mseb.2024.117384_b0530) 2014; 13
Kim (10.1016/j.mseb.2024.117384_b0715) 2021; 47
Naify (10.1016/j.mseb.2024.117384_b0390) 2011; 72
Chen (10.1016/j.mseb.2024.117384_b0045) 2019; 5
Yang (10.1016/j.mseb.2024.117384_b0080) 2020; 7
Ning (10.1016/j.mseb.2024.117384_b0305) 2020; 35
Leonhardt (10.1016/j.mseb.2024.117384_b0110) 2006; 312
Dong (10.1016/j.mseb.2024.117384_b0485) 2019; 172
Li (10.1016/j.mseb.2024.117384_b0525) 2023; 205
Jia (10.1016/j.mseb.2024.117384_b0615) 2010; 97
Bi (10.1016/j.mseb.2024.117384_b0515) 2023; 16
Overvelde (10.1016/j.mseb.2024.117384_b0060) 2017; 541
Peng (10.1016/j.mseb.2024.117384_b0325) 2013; 103
Yeh (10.1016/j.mseb.2024.117384_b0290) 2006; 73
Page (10.1016/j.mseb.2024.117384_b0040) 2011; 10
Gao (10.1016/j.mseb.2024.117384_b0640) 2020; 132
10.1016/j.mseb.2024.117384_b0755
Lee (10.1016/j.mseb.2024.117384_b0400) 2009; 373
10.1016/j.mseb.2024.117384_b0750
Xue (10.1016/j.mseb.2024.117384_b0610) 2021; 46
Liu (10.1016/j.mseb.2024.117384_b0095) 2000; 289
Tournat (10.1016/j.mseb.2024.117384_b0250) 2004; 70
Zhang (10.1016/j.mseb.2024.117384_b0665) 2018; 52
Pendry (10.1016/j.mseb.2024.117384_b0015) 1999; 47
Yang (10.1016/j.mseb.2024.117384_b0540) 2015; 107
Shen (10.1016/j.mseb.2024.117384_b0680) 2014; 4
Li (10.1016/j.mseb.2024.117384_b0655) 2009; 8
Levi (10.1016/j.mseb.2024.117384_b0695) 2022
Wu (10.1016/j.mseb.2024.117384_b0180) 2021; 63
Martin (10.1016/j.mseb.2024.117384_b0255) 2018; 143
Bi (10.1016/j.mseb.2024.117384_b0605) 2017; 7
Zheng (10.1016/j.mseb.2024.117384_b0830) 2022; 67
Gao (10.1016/j.mseb.2024.117384_b0395) 2017; 7
Ding (10.1016/j.mseb.2024.117384_b0320) 2011; 44
Cheng (10.1016/j.mseb.2024.117384_b0575) 2008; 92
Naify (10.1016/j.mseb.2024.117384_b0375) 2010; 108
Xu (10.1016/j.mseb.2024.117384_b0825) 2023; 259
Bi (10.1016/j.mseb.2024.117384_b0600) 2018; 112
Jiménez (10.1016/j.mseb.2024.117384_b0635) 2018; 112
Tao (10.1016/j.mseb.2024.117384_b0840) 2022; 226
Shao (10.1016/j.mseb.2024.117384_b0490) 2020; 157
Liang (10.1016/j.mseb.2024.117384_b0140) 2012; 108
Naify (10.1016/j.mseb.2024.117384_b0380) 2011; 109
Xie (10.1016/j.mseb.2024.117384_b0445) 2013; 110
Zhai (10.1016/j.mseb.2024.117384_b0580) 2016; 49
Kushwaha (10.1016/j.mseb.2024.117384_b0220) 1994; 49
Kushwaha (10.1016/j.mseb.2024.117384_b0215) 1993; 71
10.1016/j.mseb.2024.117384_b0740
Sigalas (10.1016/j.mseb.2024.117384_b0090) 1992; 158
Peng (10.1016/j.mseb.2024.117384_b0620) 2014; 378
Silverberg (10.1016/j.mseb.2024.117384_b0055) 2014; 345
Liu (10.1016/j.mseb.2024.117384_b0670) 2017; 381
Ma (10.1016/j.mseb.2024.117384_b0805) 2022; 131
Allam (10.1016/j.mseb.2024.117384_b0425) 2017; 121
Long (10.1016/j.mseb.2024.117384_b0430) 2020; 10
Tournat (10.1016/j.mseb.2024.117384_b0260) 2006; 74
Yu (10.1016/j.mseb.2024.117384_b0065) 2018; 94
Shelby (10.1016/j.mseb.2024.117384_b0100) 2001; 292
Wang (10.1016/j.mseb.2024.117384_b0535) 2014; 78
Ma (10.1016/j.mseb.2024.117384_b0145) 2014; 13
Sigalas (10.1016/j.mseb.2024.117384_b0210) 2000; 87
Vdovin (10.1016/j.mseb.2024.117384_b0720) 2017; 176
Nakayama (10.1016/j.mseb.2024.117384_b0780) 2023
Munjal (10.1016/j.mseb.2024.117384_b0240) 1993; 162
Ma (10.1016/j.mseb.2024.117384_b0075) 2016; 343
Jeong (10.1016/j.mseb.2024.117384_b0775) 2020; 9
He (10.1016/j.mseb.2024.117384_b0155) 2016; 12
Sirota (10.1016/j.mseb.2024.117384_b0820) 2021; 153
Huang (10.1016/j.mseb.2024.117384_b0195) 2009; 11
Xia (10.1016/j.mseb.2024.117384_b0345) 2016
Zhai (10.1016/j.mseb.2024.117384_b0295) 2013; 46
Lee (10.1016/j.mseb.2024.117384_b0200) 2010; 104
Song (10.1016/j.mseb.2024.117384_b0685) 2016; 6
Sun (10.1016/j.mseb.2024.117384_b0455) 2023
Sun (10.1016/j.mseb.2024.117384_b0590) 2019; 114
Wu (10.1016/j.mseb.2024.117384_b0800) 2022; 32
Tang (10.1016/j.mseb.2024.117384_b0545) 2017; 7
Qi (10.1016/j.mseb.2024.117384_b0230) 2003
Yang (10.1016/j.mseb.2024.117384_b0785) 2023; 122
10.1016/j.mseb.2024.117384_b0340
Neil (10.1016/j.mseb.2024.117384_b0560) 2022; 478
Qing (10.1016/j.mseb.2024.117384_b0690) 2013
Liang (10.1016/j.mseb.2024.117384_b0660) 2013; 3
Veselago (10.1016/j.mseb.2024.117384_b0005) 1968; 10
Esfahlani (10.1016/j.mseb.2024.117384_b0585) 2016; 94
Chorin (10.1016/j.mseb.2024.117384_b0760) 2000
Kadic (10.1016/j.mseb.2024.117384_b0770) 2014; 2
Xiang (10.1016/j.mseb.2024.117384_b0440) 2022; 188
Chen (10.1016/j.mseb.2024.117384_b0420) 2016; 6
Popa (10.1016/j.mseb.2024.117384_b0475) 2013; 88
Pendry (10.1016/j.mseb.2024.117384_b0565) 2006; 312
Baz (10.1016/j.mseb.2024.117384_b0125) 2009; 11
Cao (10.1016/j.mseb.2024.117384_b0270) 2022; 18
Chen (10.1016/j.mseb.2024.117384_b0630) 2018; 9
Lee (10.1016/j.mseb.2024.117384_b0790) 2020; 167
Gu (10.1016/j.mseb.2024.117384_b0150) 2015; 118
Wang (10.1016/j.mseb.2024.117384_b0310) 2023; 548
Wen (10.1016/j.mseb.2024.117384_b0360) 2023; 239
Korozlu (10.1016/j.mseb.2024.117384_b0285) 2018; 113
Gorshkov (10.1016/j.mseb.2024.117384_b0845) 2023; 238
Pendry (10.1016/j.mseb.2024.117384_b0020) 2000; 85
Wu (10.1016/j.mseb.2024.117384_b0235) 2001; 35
Sun (10.1016/j.mseb.2024.117384_b0280) 2019; 125
Wu (10.1016/j.mseb.2024.117384_b0225) 2001
10.1016/j.mseb.2024.117384_b0315
Frommhold (10.1016/j.mseb.2024.117384_b0370) 1994; 170
Zigoneanu (10.1016/j.mseb.2024.117384_b0480) 2014; 13
Li (10.1016/j.mseb.2024.117384_b0070) 2019; 71
Naify (10.1016/j.mseb.2024.117384_b0385) 2011; 110
Yablonovitch (10.1016/j.mseb.2024.117384_b0025) 1991; 67
Guenneau (10.1016/j.mseb.2024.117384_b0035) 2007; 11
Liu (10.1016/j.mseb.2024.117384_b0330) 2018; 113
Tian (10.1016/j.mseb.2024.117384_b0745) 2019; 68
Zhang (10.1016/j.mseb.2024.117384_b0135) 2011; 106
Xiao (10.1016/j.mseb.2024.117384_b0415) 2015; 106
Torrent (10.1016/j.mseb.2024.117384_b0570) 2008; 10
Zhu (10.1016/j.mseb.2024.117384_b0625) 2016; 6
Sigalas (10.1016/j.mseb.2024.117384_b0245) 1995; 51
Cummer (10.1016/j.mseb.2024.117384_b0460) 2007; 9
Xin (10.1016/j.mseb.2024.117384_b0520) 2023; 667
Wang (10.1016/j.mseb.2024.117384_b0205) 2003; 52
Yang (10.1016/j.mseb.2024.117384_b0120) 2008; 101
Man (10.1016/j.mseb.2024.117384_b0165) 2018; 423
Akl (10.1016/j.mseb.2024.117384_b0470) 2012; 112
Zhu (10.1016/j.mseb.2024.117384_b0350) 2019; 99
Xu (10.1016/j.mseb.2024.117384_b0835) 2023; 14
Amin (10.1016/j.mseb.2024.117384_b0595) 2018; 10
Zhou (10.1016/j.mseb.2024.117384_b0645) 2014; 116
Bertoldi (10.1016/j.mseb.2024.117384_b0050) 2017; 2
Ma (10.1016/j.mseb.2024.117384_b0450) 2023; 211
Mizukami (10.1016/j.mseb.2024.117384_b0730) 2021; 255
Zhang (10.1016/j.mseb.2024.117384_b0105) 2004; 85
Sun (10.1016/j.mseb.2024.117384_b0795) 2020; 13
Liu (10.1016/j.mseb.2024.117384_b0190) 2023; 16
Gu (10.1016/j.mseb.2024.117384_b0850) 2022; 292
Ning (10.1016/j.mseb.2024.117384_b0495) 2021; 44
Yang (10.1016/j.mseb.2024.117384_b0335) 2014; 85
10.1016/j.mseb.2024.117384_b0705
Wu (10.1016/j.mseb.2024.117384_b0030) 2018; 12
Wang (10.1016/j.mseb.2024.117384_b0435) 2017; 120
Shao (10.1016/j.mseb.2024.117384_b0405) 2019; 9
Fang (10.1016/j.mseb.2024.117384_b0115) 2006; 5
Dubois (10.1016/j.mseb.2024.117384_b0160) 2017; 8
Park (10.1016/j.mseb.2024.117384_b0815) 2021; 43
Ding (10.1016/j.mseb.2024.117384_b0185) 2022; 232
Langfeldt (10.1016/j.mseb.2024.117384_b0410) 2016; 373
Fernandez-Marin (10.1016/j.mseb.2024.117384_b0550) 2019; 115
Pavan (10.1016/j.mseb.2024.117384_b0555) 2022; 198
Leblanc (10.1016/j.mseb.2024.117384_b0725) 2017; 141
References_xml – volume: 312
  start-page: 1777
  year: 2006
  end-page: 1780
  ident: b0110
  article-title: Optical conformal mapping
  publication-title: Science
– reference: L.D. Landau, E.M. Lifshitz, Fluid Mechanics, second edition, vol. 6, Pergamon, 1987, doi: 10.1016/B978-0-08-033933-7.50017-9.
– volume: 131
  year: 2022
  ident: b0805
  article-title: Acoustic focusing and imaging via phononic crystal and acoustic metamaterials
  publication-title: J. Appl. Phys.
– volume: 94
  start-page: 114
  year: 2018
  end-page: 173
  ident: b0065
  article-title: Mechanical metamaterials associated with stiffness, rigidity, and compressibility: a brief review
  publication-title: Prog. Mater. Sci.
– volume: 87
  start-page: 3120
  year: 2000
  end-page: 3122
  ident: b0210
  article-title: Theoretical study of three-dimensional elastic band gaps with the finite-difference time-domain method
  publication-title: J. Appl. Phys.
– volume: 13
  start-page: 848
  year: 2014
  end-page: 849
  ident: b0530
  article-title: Nearly perfect sound absorbers
  publication-title: Nat. Mater.
– volume: 108
  year: 2010
  ident: b0130
  article-title: Two-dimensional acoustic metamaterial with negative modulus
  publication-title: J. Appl. Phys.
– volume: 35
  start-page: 162
  year: 2001
  ident: b0235
  article-title: Acoustic band gaps in 2d liquid phononic crystals of rectangular structure
  publication-title: J. Phys. D: Appl. Phys.
– volume: 2
  year: 2017
  ident: b0050
  article-title: Flexible mechanical metamaterials
  publication-title: Nat. Rev. Mater.
– volume: 130
  start-page: 2746
  year: 2011
  end-page: 2755
  ident: b0465
  article-title: Matryoshka locally resonant sonic crystal
  publication-title: J. Acoust. Soc. Am.
– volume: 2
  year: 2014
  ident: b0770
  article-title: Pentamode metamaterials with independently tailored bulk modulus and mass density
  publication-title: Phys. Rev. Appl.
– year: 2000
  ident: b0760
  article-title: A Mathematical Introduction to Fluid Mechanics
– volume: 153
  start-page: A164
  year: 2023
  ident: b0355
  article-title: Aerospace grade acoustic metamaterial design, modeling, and experimental validation
  publication-title: J. Acoust. Soc. Am.
– volume: 32
  year: 2022
  ident: b0800
  article-title: Modular design for acoustic metamaterials: low-frequency noise attenuation
  publication-title: Adv. Funct. Mater.
– volume: 71
  start-page: 2022
  year: 1993
  end-page: 2025
  ident: b0215
  article-title: Acoustic band structure of periodic elastic composites
  publication-title: Phys. Rev. Lett.
– volume: 226
  year: 2022
  ident: b0840
  article-title: A novel auxetic acoustic metamaterial plate with tunable bandgap
  publication-title: Int. J. Mech. Sci.
– volume: 1
  year: 2016
  ident: b0085
  article-title: Controlling sound with acoustic metamaterials
  publication-title: Nat. Rev. Mater.
– year: 2023
  ident: b0455
  article-title: Sound absorption of space-coiled metamaterials with soft walls
  publication-title: Int. J. Mech. Sci.
– volume: 6
  year: 2016
  ident: b0685
  article-title: Directional reflective surface formed via gradient-impeding acoustic meta-surfaces
  publication-title: Sci. Rep.
– volume: 255
  year: 2021
  ident: b0730
  article-title: Three-dimensional printing of locally resonant carbon-fiber composite metastructures for attenuation of broadband vibration
  publication-title: Compos. Struct.
– volume: 345
  start-page: 647
  year: 2014
  end-page: 650
  ident: b0055
  article-title: Using origami design principles to fold reprogrammable mechanical metamaterials
  publication-title: Science
– volume: 97
  year: 2010
  ident: b0615
  article-title: Subwavelength imaging by a simple planar acoustic superlens
  publication-title: Appl. Phys. Lett.
– volume: 211
  year: 2023
  ident: b0450
  article-title: Multiband ventilation barriers enabled by space-coiling acoustic metamaterials
  publication-title: Appl. Acoust.
– volume: 47
  start-page: 2075
  year: 1999
  end-page: 2084
  ident: b0015
  article-title: Magnetism from conductors and enhanced non-linear phenomena
  publication-title: IEEE Trans. Microw. Theory Tech.
– volume: 13
  start-page: 352
  year: 2014
  end-page: 355
  ident: b0480
  article-title: Three-dimensional broadband omnidirectional acoustic ground cloak
  publication-title: Nat. Mater.
– volume: 47
  year: 2021
  ident: b0715
  article-title: Development of functionally graded metamaterial using selective polymerization via digital light processing additive manufacturing
  publication-title: Addit. Manuf.
– volume: 51
  start-page: 2780
  year: 1995
  end-page: 2789
  ident: b0245
  article-title: Elastic-wave propagation through disordered and/or absorptive layered systems
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 869
  year: 2023
  ident: b0835
  article-title: Acoustic metamaterials-driven transdermal drug delivery for rapid and on-demand management of acute disease
  publication-title: Nat. Commun.
– reference: K.-L. Koai, T. Yang, J. Chen, The muffling effect of Helmholtz resonator attachments to a gas flow path, in: International Compressor Engineering Conference, West Lafayette, Indiana, July 23–26, 1996.
– volume: 11
  year: 2007
  ident: b0035
  article-title: Acoustic metamaterials for sound focusing and confinement
  publication-title: J. Phys.
– volume: 115
  year: 2019
  ident: b0550
  article-title: Aerogel-based metasurfaces for perfect acoustic energy absorption
  publication-title: Appl. Phys. Lett.
– volume: 106
  year: 2015
  ident: b0415
  article-title: Active control of membrane-type acoustic metamaterial by electric field
  publication-title: Appl. Phys. Lett.
– volume: 78
  start-page: 1
  year: 2014
  end-page: 6
  ident: b0535
  article-title: The acoustic performance of ventilated window with quarter-wave resonators and membrane absorber
  publication-title: Appl. Acoust.
– volume: 122
  year: 2023
  ident: b0785
  article-title: Acoustic metamaterial absorbers: the path to commercialization
  publication-title: Appl. Phys. Lett.
– volume: 172
  start-page: 102
  year: 2019
  end-page: 120
  ident: b0485
  article-title: Systematic design and realization of double-negative acoustic metamaterials by topology optimization
  publication-title: Acta Mater.
– volume: 7
  year: 2017
  ident: b0605
  article-title: Design and demonstration of an underwater acoustic carpet cloak
  publication-title: Sci. Rep.
– volume: 10
  start-page: 565
  year: 2011
  end-page: 566
  ident: b0040
  article-title: Metamaterials: neither solid nor liquid
  publication-title: Nat. Mater.
– volume: 109
  year: 2011
  ident: b0380
  article-title: Membrane-type metamaterials: transmission loss of multi-celled arrays
  publication-title: J. Appl. Phys.
– volume: 35
  year: 2020
  ident: b0305
  article-title: Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation
  publication-title: Extreme Mech. Lett.
– volume: 132
  year: 2020
  ident: b0640
  article-title: Subwavelength acoustic focusing within multi-breadth bands with a window-shape metasurface
  publication-title: EPL
– volume: 378
  year: 2014
  ident: b0620
  article-title: Flat acoustic lens by acoustic grating with curled slits
  publication-title: Phys. Lett. A
– start-page: 29
  year: 2013
  end-page: 31
  ident: b0690
  article-title: 3D printing: a new technology
  publication-title: 3D Printing: A New Technology
– volume: 52
  year: 2018
  ident: b0665
  article-title: Extraordinary sound transmission through geometrical mismatched channels based on near-zero bulk modulus and Fabry-Pérot resonance
  publication-title: J. Phys. D: Appl. Phys.
– volume: 99
  year: 2019
  ident: b0350
  article-title: Multifunctional acoustic metasurface based on an array of Helmholtz resonators
  publication-title: Phys. Rev. B
– volume: 121
  year: 2017
  ident: b0425
  article-title: Experimental demonstration of one-dimensional active platetype acoustic metamaterial with adaptive programmable density
  publication-title: J. Appl. Phys.
– volume: 6
  year: 2016
  ident: b0420
  article-title: A tunable acoustic metamaterial with double-negativity driven by electromagnets
  publication-title: Sci. Rep.
– year: 2000
  ident: b0010
  article-title: Fundamentals of Acoustics
– volume: 10
  year: 2008
  ident: b0570
  article-title: Acoustic cloaking in two dimensions: a feasible approach
  publication-title: New J. Phys.
– volume: 116
  year: 2014
  ident: b0645
  article-title: Subwavelength acoustic focusing by surface-wave-resonance enhanced transmission in doubly negative acoustic metamaterials
  publication-title: J. Appl. Phys.
– volume: 541
  start-page: 347
  year: 2017
  end-page: 352
  ident: b0060
  article-title: Rational design of reconfigurable prismatic architected materials
  publication-title: Nature
– volume: 101
  year: 2008
  ident: b0120
  article-title: Membrane-type acoustic metamaterial with negative dynamic mass
  publication-title: Phys. Rev. Lett.
– volume: 13
  year: 2020
  ident: b0795
  article-title: Broadband acoustic ventilation barriers
  publication-title: Phys. Rev. Appl.
– volume: 548
  year: 2023
  ident: b0310
  article-title: Tunable underwater low-frequency sound absorption via locally resonant piezoelectric metamaterials
  publication-title: J. Sound Vib.
– volume: 46
  year: 2013
  ident: b0295
  article-title: Double-negative acoustic metamaterial based on meta-molecule
  publication-title: J. Phys. D: Appl. Phys.
– volume: 88
  start-page: 1
  year: 2013
  end-page: 8
  ident: b0475
  article-title: Tunable active acoustic metamaterials
  publication-title: Phys. Rev. B - Condensed Matter Mater. Phys.
– volume: 292
  year: 2022
  ident: b0850
  article-title: Laminated plate-type acoustic metamaterials with Willis coupling effects for broadband low-frequency sound insulation
  publication-title: Compos. Struct.
– volume: 110
  year: 2013
  ident: b0445
  article-title: Measurement of a broadband negative index with space coiling acoustic metamaterials
  publication-title: Phys. Rev. Lett.
– volume: 112
  year: 2018
  ident: b0600
  article-title: Experimental demonstration of three-dimensional broadband underwater acoustic carpet cloak
  publication-title: Appl. Phys. Lett.
– volume: 112
  year: 2018
  ident: b0635
  article-title: Sharp acoustic vortex focusing by Fresnel-spiral zone plates
  publication-title: Appl. Phys. Lett.
– volume: 110
  year: 2011
  ident: b0385
  article-title: Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses
  publication-title: J. Appl. Phys.
– volume: 85
  start-page: 341
  year: 2004
  ident: b0105
  article-title: Negative refraction of acoustic waves in two-dimensional phononic crystals
  publication-title: Appl. Phys. Lett.
– volume: 74
  year: 2006
  ident: b0260
  article-title: Microscale multiple scattering of coherent surface acoustic wave packets probed with gigahertz time-reversal acoustics
  publication-title: Phys. Rev. E
– volume: 167
  year: 2020
  ident: b0790
  article-title: Novel plenum window with sonic crystals for indoor noise control
  publication-title: Appl. Acoust.
– volume: 118
  year: 2015
  ident: b0150
  article-title: Controlling sound transmission with density-near-zero acoustic membrane network
  publication-title: J. Appl. Phys.
– volume: 139
  year: 2017
  ident: b0300
  article-title: Metastructure with piezoelectric element for simultaneous vibration suppression and energy harvesting
  publication-title: J. Vib. Acoust.
– reference: A. Intissar, On non self adjoint models on the guided acoustic wave of finite length and on of the interaction between a vibrating structure and a fluid, in: Spectral theory of non self-adjoint operators with compact resolvent and applications to Gribov-Intissar, 2020.
– year: 2023
  ident: b0780
  article-title: Acoustic metamaterials based on polymer sheets: from material design to applications as sound insulators and vibration dampers
  publication-title: Polym. J.
– volume: 44
  year: 2021
  ident: b0495
  article-title: Ultralow-frequency tunable acoustic metamaterials through tuning gauge pressure and gas temperature
  publication-title: Extreme Mech. Lett.
– volume: 94
  year: 2016
  ident: b0585
  article-title: Acoustic carpet cloak based on an ultrathin metasurface
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 252
  year: 2017
  ident: b0395
  article-title: Low-frequency acoustic properties of bilayer membrane acoustic metamaterial with magnetic oscillator
  publication-title: Theor. Appl. Mech. Lett.
– volume: 9
  year: 2007
  ident: b0460
  article-title: One path to acoustic cloaking
  publication-title: New J. Phys.
– volume: 104
  year: 2010
  ident: b0200
  article-title: Composite acoustic medium with simultaneously negative density and modulus
  publication-title: Phys. Rev. Lett.
– volume: 10
  year: 2018
  ident: b0595
  article-title: Resonant beam steering and carpet cloaking using an acoustic transformational metascreen
  publication-title: Phys. Rev. Appl.
– volume: 232
  year: 2022
  ident: b0185
  article-title: Broadband acoustic meta-liner with metal foam approaching causality-governed minimal thickness
  publication-title: Int. J. Mech. Sci.
– volume: 11
  year: 2009
  ident: b0195
  article-title: Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density
  publication-title: New J. Phys.
– volume: 1
  start-page: 281
  year: 2019
  ident: b0170
  article-title: Topological phases in acoustic and mechanical systems
  publication-title: Nat. Rev. Phys.
– volume: 423
  start-page: 322
  year: 2018
  end-page: 339
  ident: b0165
  article-title: Space-coiling fractal metamaterial with multi-bandgaps on subwavelength scale
  publication-title: J. Sound Vib.
– volume: 16
  year: 2023
  ident: b0190
  article-title: Deep-learning-based acoustic metamaterial design for attenuating structure-borne noise in auditory frequency bands
  publication-title: Materials
– volume: 68
  year: 2019
  ident: b0745
  article-title: Research advances in acoustic metamaterials
  publication-title: Acta Phys. Sin.
– volume: 16
  year: 2023
  ident: b0515
  article-title: Effects of aperture shape on absorption property of acoustic metamaterial of parallel-connection Helmholtz resonator
  publication-title: Materials
– volume: 176
  start-page: 595
  year: 2017
  end-page: 599
  ident: b0720
  article-title: Implementation of the additive PolyJet technology to the development and fabricating the samples of the acoustic metamaterials
  publication-title: Proc. Eng.
– volume: 76
  year: 2007
  ident: b0265
  article-title: Method for retrieving effective properties of locally resonant acoustic metamaterials
  publication-title: Phys. Rev. B
– volume: 143
  start-page: 995
  year: 2018
  end-page: 1002
  ident: b0255
  article-title: Multiple scattering and scattering cross sections
  publication-title: J. Acoust. Soc. Am.
– volume: 13
  year: 2023
  ident: b0510
  article-title: Ultrathin acoustic metamaterial as super absorber for broadband low-frequency underwater sound
  publication-title: Sci. Rep.
– start-page: 319
  year: 2001
  end-page: 323
  ident: b0225
  article-title: Band structure of elastic waves in the two-dimensional periodic composites
  publication-title: Acta Acus.
– volume: 108
  year: 2012
  ident: b0140
  article-title: Extreme acoustic metamaterial by coiling up space
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 509
  year: 1968
  end-page: 514
  ident: b0005
  article-title: The electrodynamics of substances with simultaneously negative values of ɛ and μ
  publication-title: Sov. Phys. Usp.
– volume: 12
  start-page: 1920
  year: 2018
  end-page: 1927
  ident: b0030
  article-title: Optical anapole metamaterial
  publication-title: ACS Nano
– volume: 238
  year: 2023
  ident: b0845
  article-title: Acoustic metamaterials with controllable bandgap gates based on magnetorheological elastomers
  publication-title: Int. J. Mech. Sci.
– volume: 16
  year: 2021
  ident: b0675
  article-title: Broadband and intense sound transmission loss by a coupled-resonance acoustic metamaterial
  publication-title: Phys. Rev. Appl.
– volume: 289
  year: 2000
  ident: b0095
  article-title: Locally resonant sonic materials
  publication-title: Science
– volume: 373
  start-page: 4464
  year: 2009
  end-page: 4469
  ident: b0400
  article-title: Acoustic metamaterial with negative density
  publication-title: Phys. Lett. Sect. A: Gen. Atomic Solid State Phys.
– volume: 113
  year: 2018
  ident: b0330
  article-title: Broadband acoustic energy harvesting metasurface with coupled Helmholtz resonators
  publication-title: Appl. Phys. Lett.
– volume: 259
  year: 2023
  ident: b0825
  article-title: Modal sensitivity analysis of acoustic metamaterials for structural damage detection
  publication-title: Int. J. Mech. Sci.
– volume: 11
  year: 2009
  ident: b0125
  article-title: The structure of an active acoustic metamaterial with tunable effective density
  publication-title: New J. Phys.
– volume: 63
  year: 2020
  ident: b0275
  article-title: Multifunction switching by a flat structurally tunable acoustic metasurface for transmitted waves
  publication-title: Sci. China Phys. Mech. Astron.
– volume: 36
  year: 2020
  ident: b0175
  article-title: Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: round robin study
  publication-title: Addit. Manuf.
– volume: 373
  start-page: 1
  year: 2016
  end-page: 18
  ident: b0410
  article-title: A membrane-type acoustic metamaterial with adjustable acoustic properties
  publication-title: J. Sound Vib.
– volume: 23
  year: 2020
  ident: b0810
  article-title: Engineering acoustic metamaterials for sound absorption: from uniform to gradient structures
  publication-title: iScience
– volume: 72
  start-page: 71
  year: 2011
  end-page: 77
  ident: b0390
  article-title: Transmission loss of honeycomb sandwich structures with attached gas layers
  publication-title: Appl. Acoust.
– year: 2019
  ident: b0710
  article-title: The influence of additive manufacturing processes on the performance of a periodic acoustic metamaterial
  publication-title: Int. J. Polym. Sci.
– volume: 114
  year: 2019
  ident: b0590
  article-title: Quasi-isotropic underwater acoustic carpet cloak based on latticed pentamode metafluid
  publication-title: Appl. Phys. Lett.
– year: 2022
  ident: b0695
  article-title: Acoustic performances of polymers hierarchical structure produced with material jetting technology
  publication-title: KEM
– volume: 343
  start-page: 1120
  year: 2016
  end-page: 1126
  ident: b0075
  article-title: Acoustic metamaterials: from local resonances to broad horizons
  publication-title: Science
– volume: 44
  year: 2011
  ident: b0320
  article-title: Multi-band and broadband acoustic metamaterial with resonant structures
  publication-title: J. Phys. D: Appl. Phys.
– volume: 103
  year: 2013
  ident: b0325
  article-title: A wideband acoustic energy harvester using a three degree-of-freedom architecture
  publication-title: Appl. Phys. Lett.
– volume: 85
  year: 2000
  ident: b0020
  article-title: Negative refraction makes a perfect lens
  publication-title: Phys. Rev. Lett.
– volume: 100
  start-page: 318
  year: 2016
  end-page: 328
  ident: b0700
  article-title: Electrically functional 3D-architectured graphene/SiC composites
  publication-title: Carbon
– volume: 43
  year: 2021
  ident: b0815
  article-title: Ultraslow medium with an acoustic membrane-like undamped dynamic vibration absorber for low-frequency isolation
  publication-title: Extreme Mech. Lett.
– volume: 49
  start-page: 2313
  year: 1994
  end-page: 2322
  ident: b0220
  article-title: Theory of acoustic band structure of periodic elastic composites
  publication-title: Phys. Rev. B
– volume: 188
  year: 2022
  ident: b0440
  article-title: Controlling sound transmission by space-coiling fractal acoustic metamaterials with broadband on the subwavelength scale
  publication-title: Appl. Acoust.
– volume: 13
  start-page: 873
  year: 2014
  end-page: 878
  ident: b0145
  article-title: Acoustic metasurface with hybrid resonances
  publication-title: Nat. Mater.
– volume: 12
  start-page: 1124
  year: 2016
  ident: b0155
  article-title: Acoustic topological insulator and robust one-way sound transport
  publication-title: Nat. Phys.
– volume: 85
  year: 2014
  ident: b0335
  article-title: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams
  publication-title: Rev. Sci. Instrum.
– volume: 49
  year: 2016
  ident: b0580
  article-title: Ultrathin skin cloaks with metasurfaces for audible sound
  publication-title: J. Phys. D: Appl. Phys.
– volume: 9
  year: 2018
  ident: b0630
  article-title: Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens
  publication-title: Nat. Commun.
– volume: 3
  year: 2013
  ident: b0660
  article-title: Space-coiling metamaterials with double negativity and conical dispersion
  publication-title: Sci. Rep.
– volume: 71
  year: 2019
  ident: b0070
  article-title: Acoustic metamaterials and phononic crystals: recent advances and future directions
  publication-title: Appl. Mech. Rev.
– volume: 46
  year: 2021
  ident: b0610
  article-title: Self-adaptive acoustic cloak enabled by soft mechanical metamaterials
  publication-title: Extreme Mech. Lett.
– volume: 381
  start-page: 3112
  year: 2017
  end-page: 3118
  ident: b0670
  article-title: The spiral-labyrinthine acoustic metamaterial by coiling up space
  publication-title: Phys. Lett. A
– volume: 292
  start-page: 77
  year: 2001
  end-page: 79
  ident: b0100
  article-title: Experimental verification of a negative index of refraction
  publication-title: Science
– volume: 112
  year: 2012
  ident: b0470
  article-title: Experimental characterization of active acoustic metamaterial cell with controllable dynamic density
  publication-title: J. Appl. Phys.
– start-page: 1
  year: 2016
  end-page: 9
  ident: b0345
  article-title: Temperature-controlled tunable acoustic metamaterial with active band gap and negative bulk modulus
  publication-title: Appl. Acoust.
– volume: 16
  year: 2023
  ident: b0505
  article-title: Study on sound-insulation performance of an acoustic metamaterial of air-permeable multiple-parallel-connection folding chambers by acoustic finite element simulation
  publication-title: Materials
– volume: 141
  start-page: EL538
  year: 2017
  end-page: EL542
  ident: b0725
  article-title: Three-dimensional-printed membrane-type acoustic metamaterial for low-frequency sound attenuation
  publication-title: J. Acoust. Soc. Am.
– reference: M.L. Hawkins, A Generalization of Snell's Law, Naval Postgraduate School (U.S.), Department of Mathematics, Monterey, California, 1990 (Master Science Thesis).
– volume: 125
  year: 2019
  ident: b0280
  article-title: Broadband acoustic converging and asymmetric converging based on thermoacoustic phased arrays
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 1139
  year: 2020
  end-page: 1160
  ident: b0775
  article-title: 3D and 4D printing for optics and metaphotonics
  publication-title: Nanophotonics
– volume: 106
  year: 2011
  ident: b0135
  article-title: Broadband acoustic cloak for ultrasound waves
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 452
  year: 2006
  end-page: 456
  ident: b0115
  article-title: Ultrasonic metamaterials with negative modulus
  publication-title: Nat. Mater.
– volume: 15
  year: 2022
  ident: b0500
  article-title: Optimal design of acoustic metamaterial of multiple parallel hexagonal Helmholtz resonators by combination of finite element simulation and cuckoo search algorithm
  publication-title: Materials
– volume: 63
  start-page: 2399
  year: 2021
  end-page: 2423
  ident: b0180
  article-title: Design of one-dimensional acoustic metamaterials using machine learning and cell concatenation
  publication-title: Struct. Multidiscip. Optim.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 8
  ident: b0405
  article-title: Low-frequency perfect sound absorption achieved by a modulus-near-zero metamaterial
  publication-title: Sci. Rep.
– volume: 67
  start-page: 2295
  year: 1991
  ident: b0025
  article-title: Photonic band structure: the face-centered-cubic case employing nonspherical atoms
  publication-title: Phys. Rev. Lett.
– volume: 157
  year: 2020
  ident: b0490
  article-title: A tunable metamaterial muffler with a membrane structure based on Helmholtz cavities
  publication-title: Appl. Acoust.
– volume: 667
  year: 2023
  ident: b0520
  article-title: Labyrinth acoustic metamaterials with fractal structure based on Hilbert curve
  publication-title: Phys. B Condens. Matter
– volume: 478
  year: 2022
  ident: b0560
  article-title: Moth wings as sound absorber metasurface
  publication-title: Proc. R. Soc. A
– volume: 113
  year: 2018
  ident: b0285
  article-title: Compact acoustic lens composed of annular cavities covered by a membrane
  publication-title: Appl. Phys. Lett.
– volume: 107
  year: 2015
  ident: b0540
  article-title: Subwavelength total acoustic absorption with degenerate resonators
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 653
  year: 2023
  end-page: 675
  ident: b0735
  article-title: Exploratory acoustic investigation of customizable 3D-printed hybrid acoustic materials (HAMs) through interlaboratory impedance tube measurements
  publication-title: Acoustics
– volume: 205
  year: 2023
  ident: b0525
  article-title: Sound insulation performance of double membrane-type acoustic metamaterials combined with a Helmholtz resonator
  publication-title: Appl. Acoust.
– reference: N.R. Mahesh, N. Prita, Experimental and theoretical investigation of acoustic metamaterial with negative bulk modulus, in: Proceedings of 2011 COMSOL Conference, 2011,
– volume: 198
  year: 2022
  ident: b0555
  article-title: Near-perfect sound absorptions in low-frequencies by varying compositions of porous labyrinthine acoustic metamaterial
  publication-title: Appl. Acoust.
– volume: 67
  start-page: 2069
  year: 2022
  end-page: 2075
  ident: b0830
  article-title: Observation of fractal higher-order topological states in acoustic metamaterials
  publication-title: Sci. Bull.
– volume: 7
  year: 2020
  ident: b0080
  article-title: Recent advances in acoustic metamaterials
  publication-title: Adv. Sci.
– volume: 4
  year: 2014
  ident: b0680
  article-title: Anisotropic complementary acoustic metamaterial for canceling out aberrating layers
  publication-title: Phys. Rev. X
– reference: R.G. Oldfield, Improved membrane absorbers, 2006 (Master's thesis), Retrieved from
– volume: 8
  year: 2017
  ident: b0160
  article-title: Observation of acoustic Dirac-like cone and double zero refractive index
  publication-title: Nat. Commun.
– volume: 52
  start-page: 1943
  year: 2003
  end-page: 1947
  ident: b0205
  article-title: Finite difference time domain method for the study of band gap in two-dimensional phononic crystals
  publication-title: Acta Phys. Sin.
– volume: 18
  year: 2022
  ident: b0270
  article-title: Acoustic switch via Kirigami metasurface
  publication-title: Phys. Rev. Appl.
– volume: 120
  year: 2017
  ident: b0435
  article-title: A space-coiled acoustic metamaterial with tunable low-frequency sound absorption
  publication-title: EPL
– volume: 170
  start-page: 621
  year: 1994
  end-page: 636
  ident: b0370
  article-title: Acoustic performance of membrane absorbers
  publication-title: J. Sound Vib.
– volume: 8
  start-page: 931
  year: 2009
  end-page: 934
  ident: b0655
  article-title: Experimental demonstration of an acoustic magnifying hyperlens
  publication-title: Nat. Mater.
– volume: 108
  year: 2010
  ident: b0375
  article-title: Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials
  publication-title: J. Appl. Phys.
– start-page: 154
  year: 2003
  end-page: 157
  ident: b0230
  article-title: A study of the band structure in two-dimensional phononic crystals based on plane-wave algorithm
  publication-title: Acta Phys. Sin.
– volume: 92
  year: 2008
  ident: b0575
  article-title: A multilayer structured acoustic cloak with homogeneous isotropic materials
  publication-title: Appl. Phys. Lett.
– reference: .
– reference: C. Casarini, B. Tiller, C. Mineo, C.N. MacLeod, J.F.C. Windmill, J.C. Jackson, Enhancing the sound absorption of small-scale 3D printed acoustic metamaterials based on helmholtz resonators, in: IEEE Sensors Conference 2017, 2018.
– volume: 102
  year: 2009
  ident: b0650
  article-title: Focusing ultrasound with an acoustic metamaterial network
  publication-title: Phys. Rev. Lett.
– volume: 7
  year: 2017
  ident: b0545
  article-title: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound
  publication-title: Sci. Rep.
– volume: 153
  year: 2021
  ident: b0820
  article-title: Real-time steering of curved sound beams in a feedback-based topological acoustic metamaterial
  publication-title: Mech. Syst. Sig. Process.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0430
  article-title: Subwavelength broadband sound absorber based on a composite metasurface
  publication-title: Sci. Rep.
– volume: 239
  year: 2023
  ident: b0360
  article-title: Origami-based acoustic metamaterial for tunable and broadband sound attenuation
  publication-title: Int. J. Mech. Sci.
– volume: 158
  start-page: 377
  year: 1992
  end-page: 382
  ident: b0090
  article-title: Elastic and acoustic wave band structure
  publication-title: J. Sound Vib.
– volume: 312
  start-page: 1780
  year: 2006
  end-page: 1782
  ident: b0565
  article-title: Controlling electromagnetic fields
  publication-title: Science
– volume: 70
  year: 2004
  ident: b0250
  article-title: Multiple scattering of acoustic waves and porous absorbing media
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
– volume: 73
  start-page: 53
  year: 2006
  ident: b0290
  article-title: Wave propagations of a periodic sandwich beam by FEM and the transfer matrix method
  publication-title: Compos. Struct.
– volume: 6
  year: 2016
  ident: b0625
  article-title: Multi-frequency acoustic metasurface for extraordinary reflection and sound focusing
  publication-title: AIP Adv.
– volume: 162
  start-page: 333
  year: 1993
  end-page: 343
  ident: b0240
  article-title: Response of a multi-layered infinite plate to an oblique plane wave by means of transfer matrices
  publication-title: J. Sound Vib.
– volume: 5
  start-page: 1007
  year: 2019
  end-page: 1017
  ident: b0045
  article-title: Mechanical metamaterials
  publication-title: Engineering
– volume: 381
  start-page: 3112
  issue: 36
  year: 2017
  ident: 10.1016/j.mseb.2024.117384_b0670
  article-title: The spiral-labyrinthine acoustic metamaterial by coiling up space
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2017.07.041
– volume: 373
  start-page: 4464
  issue: 48
  year: 2009
  ident: 10.1016/j.mseb.2024.117384_b0400
  article-title: Acoustic metamaterial with negative density
  publication-title: Phys. Lett. Sect. A: Gen. Atomic Solid State Phys.
  doi: 10.1016/j.physleta.2009.10.013
– volume: 76
  year: 2007
  ident: 10.1016/j.mseb.2024.117384_b0265
  article-title: Method for retrieving effective properties of locally resonant acoustic metamaterials
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.144302
– volume: 113
  issue: 18
  year: 2018
  ident: 10.1016/j.mseb.2024.117384_b0285
  article-title: Compact acoustic lens composed of annular cavities covered by a membrane
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5043600
– volume: 92
  issue: 15
  year: 2008
  ident: 10.1016/j.mseb.2024.117384_b0575
  article-title: A multilayer structured acoustic cloak with homogeneous isotropic materials
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2903500
– volume: 103
  year: 2013
  ident: 10.1016/j.mseb.2024.117384_b0325
  article-title: A wideband acoustic energy harvester using a three degree-of-freedom architecture
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4826257
– volume: 67
  start-page: 2069
  issue: 20
  year: 2022
  ident: 10.1016/j.mseb.2024.117384_b0830
  article-title: Observation of fractal higher-order topological states in acoustic metamaterials
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2022.09.020
– volume: 205
  year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0525
  article-title: Sound insulation performance of double membrane-type acoustic metamaterials combined with a Helmholtz resonator
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2023.109297
– year: 2000
  ident: 10.1016/j.mseb.2024.117384_b0010
– volume: 78
  start-page: 1
  year: 2014
  ident: 10.1016/j.mseb.2024.117384_b0535
  article-title: The acoustic performance of ventilated window with quarter-wave resonators and membrane absorber
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2013.09.015
– year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0455
  article-title: Sound absorption of space-coiled metamaterials with soft walls
  publication-title: Int. J. Mech. Sci.
– volume: 132
  issue: 3
  year: 2020
  ident: 10.1016/j.mseb.2024.117384_b0640
  article-title: Subwavelength acoustic focusing within multi-breadth bands with a window-shape metasurface
  publication-title: EPL
  doi: 10.1209/0295-5075/132/38003
– volume: 3
  year: 2013
  ident: 10.1016/j.mseb.2024.117384_b0660
  article-title: Space-coiling metamaterials with double negativity and conical dispersion
  publication-title: Sci. Rep.
  doi: 10.1038/srep01614
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.mseb.2024.117384_b0430
  article-title: Subwavelength broadband sound absorber based on a composite metasurface
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-70714-7
– volume: 120
  issue: 5
  year: 2017
  ident: 10.1016/j.mseb.2024.117384_b0435
  article-title: A space-coiled acoustic metamaterial with tunable low-frequency sound absorption
  publication-title: EPL
  doi: 10.1209/0295-5075/120/54001
– volume: 99
  year: 2019
  ident: 10.1016/j.mseb.2024.117384_b0350
  article-title: Multifunctional acoustic metasurface based on an array of Helmholtz resonators
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.174109
– volume: 68
  issue: 19
  year: 2019
  ident: 10.1016/j.mseb.2024.117384_b0745
  article-title: Research advances in acoustic metamaterials
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.68.20190850
– volume: 13
  year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0510
  article-title: Ultrathin acoustic metamaterial as super absorber for broadband low-frequency underwater sound
  publication-title: Sci. Rep.
– volume: 109
  issue: 10
  year: 2011
  ident: 10.1016/j.mseb.2024.117384_b0380
  article-title: Membrane-type metamaterials: transmission loss of multi-celled arrays
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3583656
– volume: 63
  start-page: 2399
  issue: 5
  year: 2021
  ident: 10.1016/j.mseb.2024.117384_b0180
  article-title: Design of one-dimensional acoustic metamaterials using machine learning and cell concatenation
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-020-02819-6
– volume: 2
  year: 2014
  ident: 10.1016/j.mseb.2024.117384_b0770
  article-title: Pentamode metamaterials with independently tailored bulk modulus and mass density
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.2.054007
– volume: 108
  year: 2010
  ident: 10.1016/j.mseb.2024.117384_b0130
  article-title: Two-dimensional acoustic metamaterial with negative modulus
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3493155
– volume: 104
  issue: 5
  year: 2010
  ident: 10.1016/j.mseb.2024.117384_b0200
  article-title: Composite acoustic medium with simultaneously negative density and modulus
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.054301
– volume: 10
  start-page: 565
  issue: 8
  year: 2011
  ident: 10.1016/j.mseb.2024.117384_b0040
  article-title: Metamaterials: neither solid nor liquid
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3084
– volume: 143
  start-page: 995
  issue: 2
  year: 2018
  ident: 10.1016/j.mseb.2024.117384_b0255
  article-title: Multiple scattering and scattering cross sections
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5024361
– volume: 7
  year: 2017
  ident: 10.1016/j.mseb.2024.117384_b0605
  article-title: Design and demonstration of an underwater acoustic carpet cloak
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00779-4
– volume: 255
  year: 2021
  ident: 10.1016/j.mseb.2024.117384_b0730
  article-title: Three-dimensional printing of locally resonant carbon-fiber composite metastructures for attenuation of broadband vibration
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.112949
– volume: 211
  year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0450
  article-title: Multiband ventilation barriers enabled by space-coiling acoustic metamaterials
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2023.109565
– volume: 541
  start-page: 347
  issue: 7637
  year: 2017
  ident: 10.1016/j.mseb.2024.117384_b0060
  article-title: Rational design of reconfigurable prismatic architected materials
  publication-title: Nature
  doi: 10.1038/nature20824
– volume: 12
  start-page: 1124
  year: 2016
  ident: 10.1016/j.mseb.2024.117384_b0155
  article-title: Acoustic topological insulator and robust one-way sound transport
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3867
– volume: 74
  year: 2006
  ident: 10.1016/j.mseb.2024.117384_b0260
  article-title: Microscale multiple scattering of coherent surface acoustic wave packets probed with gigahertz time-reversal acoustics
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.026604
– volume: 13
  start-page: 352
  issue: 4
  year: 2014
  ident: 10.1016/j.mseb.2024.117384_b0480
  article-title: Three-dimensional broadband omnidirectional acoustic ground cloak
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3901
– volume: 112
  issue: 20
  year: 2018
  ident: 10.1016/j.mseb.2024.117384_b0635
  article-title: Sharp acoustic vortex focusing by Fresnel-spiral zone plates
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5029424
– volume: 71
  issue: 4
  year: 2019
  ident: 10.1016/j.mseb.2024.117384_b0070
  article-title: Acoustic metamaterials and phononic crystals: recent advances and future directions
  publication-title: Appl. Mech. Rev.
– volume: 36
  year: 2020
  ident: 10.1016/j.mseb.2024.117384_b0175
  article-title: Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: round robin study
  publication-title: Addit. Manuf.
– volume: 16
  issue: 12
  year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0505
  article-title: Study on sound-insulation performance of an acoustic metamaterial of air-permeable multiple-parallel-connection folding chambers by acoustic finite element simulation
  publication-title: Materials
  doi: 10.3390/ma16124298
– volume: 292
  start-page: 77
  year: 2001
  ident: 10.1016/j.mseb.2024.117384_b0100
  article-title: Experimental verification of a negative index of refraction
  publication-title: Science
  doi: 10.1126/science.1058847
– volume: 114
  year: 2019
  ident: 10.1016/j.mseb.2024.117384_b0590
  article-title: Quasi-isotropic underwater acoustic carpet cloak based on latticed pentamode metafluid
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5085568
– volume: 1
  start-page: 281
  year: 2019
  ident: 10.1016/j.mseb.2024.117384_b0170
  article-title: Topological phases in acoustic and mechanical systems
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0030-x
– volume: 7
  year: 2017
  ident: 10.1016/j.mseb.2024.117384_b0545
  article-title: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound
  publication-title: Sci. Rep.
– volume: 44
  year: 2011
  ident: 10.1016/j.mseb.2024.117384_b0320
  article-title: Multi-band and broadband acoustic metamaterial with resonant structures
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/44/21/215402
– volume: 97
  issue: 17
  year: 2010
  ident: 10.1016/j.mseb.2024.117384_b0615
  article-title: Subwavelength imaging by a simple planar acoustic superlens
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3507893
– volume: 122
  issue: 26
  year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0785
  article-title: Acoustic metamaterial absorbers: the path to commercialization
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0147941
– volume: 112
  issue: 8
  year: 2012
  ident: 10.1016/j.mseb.2024.117384_b0470
  article-title: Experimental characterization of active acoustic metamaterial cell with controllable dynamic density
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4759327
– volume: 9
  start-page: 1139
  issue: 5
  year: 2020
  ident: 10.1016/j.mseb.2024.117384_b0775
  article-title: 3D and 4D printing for optics and metaphotonics
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0483
– volume: 373
  start-page: 1
  year: 2016
  ident: 10.1016/j.mseb.2024.117384_b0410
  article-title: A membrane-type acoustic metamaterial with adjustable acoustic properties
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.03.025
– ident: 10.1016/j.mseb.2024.117384_b0740
– volume: 9
  issue: 3
  year: 2007
  ident: 10.1016/j.mseb.2024.117384_b0460
  article-title: One path to acoustic cloaking
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/9/3/045
– volume: 49
  issue: 22
  year: 2016
  ident: 10.1016/j.mseb.2024.117384_b0580
  article-title: Ultrathin skin cloaks with metasurfaces for audible sound
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/49/22/225302
– volume: 198
  year: 2022
  ident: 10.1016/j.mseb.2024.117384_b0555
  article-title: Near-perfect sound absorptions in low-frequencies by varying compositions of porous labyrinthine acoustic metamaterial
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2022.108974
– volume: 2
  issue: 1
  year: 2017
  ident: 10.1016/j.mseb.2024.117384_b0050
  article-title: Flexible mechanical metamaterials
  publication-title: Nat. Rev. Mater.
– volume: 108
  year: 2012
  ident: 10.1016/j.mseb.2024.117384_b0140
  article-title: Extreme acoustic metamaterial by coiling up space
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.114301
– volume: 423
  start-page: 322
  year: 2018
  ident: 10.1016/j.mseb.2024.117384_b0165
  article-title: Space-coiling fractal metamaterial with multi-bandgaps on subwavelength scale
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.02.060
– volume: 172
  start-page: 102
  year: 2019
  ident: 10.1016/j.mseb.2024.117384_b0485
  article-title: Systematic design and realization of double-negative acoustic metamaterials by topology optimization
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.04.042
– volume: 13
  start-page: 848
  year: 2014
  ident: 10.1016/j.mseb.2024.117384_b0530
  article-title: Nearly perfect sound absorbers
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4067
– volume: 43
  year: 2021
  ident: 10.1016/j.mseb.2024.117384_b0815
  article-title: Ultraslow medium with an acoustic membrane-like undamped dynamic vibration absorber for low-frequency isolation
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2021.101203
– volume: 112
  year: 2018
  ident: 10.1016/j.mseb.2024.117384_b0600
  article-title: Experimental demonstration of three-dimensional broadband underwater acoustic carpet cloak
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5026199
– volume: 11
  issue: 1
  year: 2009
  ident: 10.1016/j.mseb.2024.117384_b0195
  article-title: Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/1/013003
– volume: 10
  year: 2008
  ident: 10.1016/j.mseb.2024.117384_b0570
  article-title: Acoustic cloaking in two dimensions: a feasible approach
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/6/063015
– volume: 158
  start-page: 377
  year: 1992
  ident: 10.1016/j.mseb.2024.117384_b0090
  article-title: Elastic and acoustic wave band structure
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(92)90059-7
– volume: 6
  year: 2016
  ident: 10.1016/j.mseb.2024.117384_b0420
  article-title: A tunable acoustic metamaterial with double-negativity driven by electromagnets
  publication-title: Sci. Rep.
– volume: 16
  year: 2021
  ident: 10.1016/j.mseb.2024.117384_b0675
  article-title: Broadband and intense sound transmission loss by a coupled-resonance acoustic metamaterial
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.16.054018
– volume: 85
  year: 2000
  ident: 10.1016/j.mseb.2024.117384_b0020
  article-title: Negative refraction makes a perfect lens
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.3966
– volume: 226
  year: 2022
  ident: 10.1016/j.mseb.2024.117384_b0840
  article-title: A novel auxetic acoustic metamaterial plate with tunable bandgap
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2022.107414
– volume: 118
  issue: 2
  year: 2015
  ident: 10.1016/j.mseb.2024.117384_b0150
  article-title: Controlling sound transmission with density-near-zero acoustic membrane network
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4922669
– volume: 7
  start-page: 252
  year: 2017
  ident: 10.1016/j.mseb.2024.117384_b0395
  article-title: Low-frequency acoustic properties of bilayer membrane acoustic metamaterial with magnetic oscillator
  publication-title: Theor. Appl. Mech. Lett.
  doi: 10.1016/j.taml.2017.06.001
– volume: 35
  year: 2020
  ident: 10.1016/j.mseb.2024.117384_b0305
  article-title: Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2019.100623
– volume: 5
  start-page: 653
  year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0735
  article-title: Exploratory acoustic investigation of customizable 3D-printed hybrid acoustic materials (HAMs) through interlaboratory impedance tube measurements
  publication-title: Acoustics
  doi: 10.3390/acoustics5030040
– volume: 167
  year: 2020
  ident: 10.1016/j.mseb.2024.117384_b0790
  article-title: Novel plenum window with sonic crystals for indoor noise control
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107390
– volume: 110
  issue: 17
  year: 2013
  ident: 10.1016/j.mseb.2024.117384_b0445
  article-title: Measurement of a broadband negative index with space coiling acoustic metamaterials
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.175501
– start-page: 154
  year: 2003
  ident: 10.1016/j.mseb.2024.117384_b0230
  article-title: A study of the band structure in two-dimensional phononic crystals based on plane-wave algorithm
  publication-title: Acta Phys. Sin.
– volume: 239
  year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0360
  article-title: Origami-based acoustic metamaterial for tunable and broadband sound attenuation
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2022.107872
– volume: 157
  year: 2020
  ident: 10.1016/j.mseb.2024.117384_b0490
  article-title: A tunable metamaterial muffler with a membrane structure based on Helmholtz cavities
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2019.107022
– volume: 94
  year: 2016
  ident: 10.1016/j.mseb.2024.117384_b0585
  article-title: Acoustic carpet cloak based on an ultrathin metasurface
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.014302
– volume: 47
  year: 2021
  ident: 10.1016/j.mseb.2024.117384_b0715
  article-title: Development of functionally graded metamaterial using selective polymerization via digital light processing additive manufacturing
  publication-title: Addit. Manuf.
– volume: 8
  year: 2017
  ident: 10.1016/j.mseb.2024.117384_b0160
  article-title: Observation of acoustic Dirac-like cone and double zero refractive index
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14871
– volume: 121
  issue: 12
  year: 2017
  ident: 10.1016/j.mseb.2024.117384_b0425
  article-title: Experimental demonstration of one-dimensional active platetype acoustic metamaterial with adaptive programmable density
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4979020
– volume: 72
  start-page: 71
  issue: 2–3
  year: 2011
  ident: 10.1016/j.mseb.2024.117384_b0390
  article-title: Transmission loss of honeycomb sandwich structures with attached gas layers
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2010.09.005
– volume: 32
  issue: 5
  year: 2022
  ident: 10.1016/j.mseb.2024.117384_b0800
  article-title: Modular design for acoustic metamaterials: low-frequency noise attenuation
  publication-title: Adv. Funct. Mater.
– volume: 153
  year: 2021
  ident: 10.1016/j.mseb.2024.117384_b0820
  article-title: Real-time steering of curved sound beams in a feedback-based topological acoustic metamaterial
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2020.107479
– volume: 9
  year: 2018
  ident: 10.1016/j.mseb.2024.117384_b0630
  article-title: Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07315-6
– volume: 47
  start-page: 2075
  issue: 11
  year: 1999
  ident: 10.1016/j.mseb.2024.117384_b0015
  article-title: Magnetism from conductors and enhanced non-linear phenomena
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/22.798002
– volume: 548
  year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0310
  article-title: Tunable underwater low-frequency sound absorption via locally resonant piezoelectric metamaterials
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2022.117514
– year: 2019
  ident: 10.1016/j.mseb.2024.117384_b0710
  article-title: The influence of additive manufacturing processes on the performance of a periodic acoustic metamaterial
  publication-title: Int. J. Polym. Sci.
  doi: 10.1155/2019/7029143
– volume: 141
  start-page: EL538
  issue: 6
  year: 2017
  ident: 10.1016/j.mseb.2024.117384_b0725
  article-title: Three-dimensional-printed membrane-type acoustic metamaterial for low-frequency sound attenuation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4984623
– volume: 49
  start-page: 2313
  year: 1994
  ident: 10.1016/j.mseb.2024.117384_b0220
  article-title: Theory of acoustic band structure of periodic elastic composites
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.2313
– volume: 23
  year: 2020
  ident: 10.1016/j.mseb.2024.117384_b0810
  article-title: Engineering acoustic metamaterials for sound absorption: from uniform to gradient structures
  publication-title: iScience
– volume: 343
  start-page: 1120
  issue: 6173
  year: 2016
  ident: 10.1016/j.mseb.2024.117384_b0075
  article-title: Acoustic metamaterials: from local resonances to broad horizons
  publication-title: Science
– volume: 52
  start-page: 1943
  year: 2003
  ident: 10.1016/j.mseb.2024.117384_b0205
  article-title: Finite difference time domain method for the study of band gap in two-dimensional phononic crystals
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.52.1943
– volume: 14
  start-page: 869
  year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0835
  article-title: Acoustic metamaterials-driven transdermal drug delivery for rapid and on-demand management of acute disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36581-2
– volume: 101
  year: 2008
  ident: 10.1016/j.mseb.2024.117384_b0120
  article-title: Membrane-type acoustic metamaterial with negative dynamic mass
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.204301
– volume: 10
  start-page: 509
  issue: 4
  year: 1968
  ident: 10.1016/j.mseb.2024.117384_b0005
  article-title: The electrodynamics of substances with simultaneously negative values of ɛ and μ
  publication-title: Sov. Phys. Usp.
  doi: 10.1070/PU1968v010n04ABEH003699
– volume: 139
  issue: 1
  year: 2017
  ident: 10.1016/j.mseb.2024.117384_b0300
  article-title: Metastructure with piezoelectric element for simultaneous vibration suppression and energy harvesting
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4034770
– volume: 106
  issue: 9
  year: 2015
  ident: 10.1016/j.mseb.2024.117384_b0415
  article-title: Active control of membrane-type acoustic metamaterial by electric field
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4913999
– ident: 10.1016/j.mseb.2024.117384_b0765
– volume: 11
  year: 2007
  ident: 10.1016/j.mseb.2024.117384_b0035
  article-title: Acoustic metamaterials for sound focusing and confinement
  publication-title: J. Phys.
– volume: 11
  year: 2009
  ident: 10.1016/j.mseb.2024.117384_b0125
  article-title: The structure of an active acoustic metamaterial with tunable effective density
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/12/123010
– volume: 188
  year: 2022
  ident: 10.1016/j.mseb.2024.117384_b0440
  article-title: Controlling sound transmission by space-coiling fractal acoustic metamaterials with broadband on the subwavelength scale
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108585
– volume: 5
  start-page: 1007
  issue: 5
  year: 2019
  ident: 10.1016/j.mseb.2024.117384_b0045
  article-title: Mechanical metamaterials
  publication-title: Engineering
– volume: 162
  start-page: 333
  year: 1993
  ident: 10.1016/j.mseb.2024.117384_b0240
  article-title: Response of a multi-layered infinite plate to an oblique plane wave by means of transfer matrices
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1993.1122
– volume: 125
  issue: 2
  year: 2019
  ident: 10.1016/j.mseb.2024.117384_b0280
  article-title: Broadband acoustic converging and asymmetric converging based on thermoacoustic phased arrays
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5055288
– volume: 70
  year: 2004
  ident: 10.1016/j.mseb.2024.117384_b0250
  article-title: Multiple scattering of acoustic waves and porous absorbing media
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.70.026609
– volume: 113
  year: 2018
  ident: 10.1016/j.mseb.2024.117384_b0330
  article-title: Broadband acoustic energy harvesting metasurface with coupled Helmholtz resonators
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5041731
– volume: 130
  start-page: 2746
  issue: 5
  year: 2011
  ident: 10.1016/j.mseb.2024.117384_b0465
  article-title: Matryoshka locally resonant sonic crystal
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3643818
– ident: 10.1016/j.mseb.2024.117384_b0705
  doi: 10.1109/ICSENS.2017.8234381
– volume: 232
  year: 2022
  ident: 10.1016/j.mseb.2024.117384_b0185
  article-title: Broadband acoustic meta-liner with metal foam approaching causality-governed minimal thickness
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2022.107601
– ident: 10.1016/j.mseb.2024.117384_b0315
– volume: 87
  start-page: 3120
  year: 2000
  ident: 10.1016/j.mseb.2024.117384_b0210
  article-title: Theoretical study of three-dimensional elastic band gaps with the finite-difference time-domain method
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.372308
– volume: 88
  start-page: 1
  issue: 2
  year: 2013
  ident: 10.1016/j.mseb.2024.117384_b0475
  article-title: Tunable active acoustic metamaterials
  publication-title: Phys. Rev. B - Condensed Matter Mater. Phys.
– volume: 7
  issue: 8
  year: 2020
  ident: 10.1016/j.mseb.2024.117384_b0080
  article-title: Recent advances in acoustic metamaterials
  publication-title: Adv. Sci.
– volume: 16
  issue: 4
  year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0515
  article-title: Effects of aperture shape on absorption property of acoustic metamaterial of parallel-connection Helmholtz resonator
  publication-title: Materials
  doi: 10.3390/ma16041597
– volume: 63
  year: 2020
  ident: 10.1016/j.mseb.2024.117384_b0275
  article-title: Multifunction switching by a flat structurally tunable acoustic metasurface for transmitted waves
  publication-title: Sci. China Phys. Mech. Astron.
  doi: 10.1007/s11433-019-1498-2
– ident: 10.1016/j.mseb.2024.117384_b0755
  doi: 10.1016/B978-0-08-033933-7.50017-9
– volume: 4
  year: 2014
  ident: 10.1016/j.mseb.2024.117384_b0680
  article-title: Anisotropic complementary acoustic metamaterial for canceling out aberrating layers
  publication-title: Phys. Rev. X
– volume: 13
  start-page: 873
  year: 2014
  ident: 10.1016/j.mseb.2024.117384_b0145
  article-title: Acoustic metasurface with hybrid resonances
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3994
– volume: 44
  year: 2021
  ident: 10.1016/j.mseb.2024.117384_b0495
  article-title: Ultralow-frequency tunable acoustic metamaterials through tuning gauge pressure and gas temperature
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2021.101218
– volume: 51
  start-page: 2780
  year: 1995
  ident: 10.1016/j.mseb.2024.117384_b0245
  article-title: Elastic-wave propagation through disordered and/or absorptive layered systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.2780
– volume: 131
  issue: 1
  year: 2022
  ident: 10.1016/j.mseb.2024.117384_b0805
  article-title: Acoustic focusing and imaging via phononic crystal and acoustic metamaterials
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0074503
– volume: 85
  issue: 6
  year: 2014
  ident: 10.1016/j.mseb.2024.117384_b0335
  article-title: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4882316
– year: 2000
  ident: 10.1016/j.mseb.2024.117384_b0760
– volume: 312
  start-page: 1777
  issue: 5781
  year: 2006
  ident: 10.1016/j.mseb.2024.117384_b0110
  article-title: Optical conformal mapping
  publication-title: Science
  doi: 10.1126/science.1126493
– volume: 259
  year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0825
  article-title: Modal sensitivity analysis of acoustic metamaterials for structural damage detection
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2023.108571
– volume: 6
  year: 2016
  ident: 10.1016/j.mseb.2024.117384_b0625
  article-title: Multi-frequency acoustic metasurface for extraordinary reflection and sound focusing
  publication-title: AIP Adv.
  doi: 10.1063/1.4968607
– volume: 46
  year: 2021
  ident: 10.1016/j.mseb.2024.117384_b0610
  article-title: Self-adaptive acoustic cloak enabled by soft mechanical metamaterials
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2021.101347
– volume: 667
  year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0520
  article-title: Labyrinth acoustic metamaterials with fractal structure based on Hilbert curve
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2023.415150
– volume: 106
  year: 2011
  ident: 10.1016/j.mseb.2024.117384_b0135
  article-title: Broadband acoustic cloak for ultrasound waves
  publication-title: Phys. Rev. Lett.
– year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0780
  article-title: Acoustic metamaterials based on polymer sheets: from material design to applications as sound insulators and vibration dampers
  publication-title: Polym. J.
– volume: 71
  start-page: 2022
  year: 1993
  ident: 10.1016/j.mseb.2024.117384_b0215
  article-title: Acoustic band structure of periodic elastic composites
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.2022
– volume: 116
  year: 2014
  ident: 10.1016/j.mseb.2024.117384_b0645
  article-title: Subwavelength acoustic focusing by surface-wave-resonance enhanced transmission in doubly negative acoustic metamaterials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4901996
– volume: 5
  start-page: 452
  year: 2006
  ident: 10.1016/j.mseb.2024.117384_b0115
  article-title: Ultrasonic metamaterials with negative modulus
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1644
– volume: 378
  year: 2014
  ident: 10.1016/j.mseb.2024.117384_b0620
  article-title: Flat acoustic lens by acoustic grating with curled slits
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2014.09.042
– volume: 18
  year: 2022
  ident: 10.1016/j.mseb.2024.117384_b0270
  article-title: Acoustic switch via Kirigami metasurface
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.18.054040
– volume: 73
  start-page: 53
  year: 2006
  ident: 10.1016/j.mseb.2024.117384_b0290
  article-title: Wave propagations of a periodic sandwich beam by FEM and the transfer matrix method
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2005.01.026
– volume: 16
  issue: 5
  year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0190
  article-title: Deep-learning-based acoustic metamaterial design for attenuating structure-borne noise in auditory frequency bands
  publication-title: Materials
  doi: 10.3390/ma16051879
– volume: 102
  year: 2009
  ident: 10.1016/j.mseb.2024.117384_b0650
  article-title: Focusing ultrasound with an acoustic metamaterial network
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.194301
– year: 2022
  ident: 10.1016/j.mseb.2024.117384_b0695
  article-title: Acoustic performances of polymers hierarchical structure produced with material jetting technology
  publication-title: KEM
  doi: 10.4028/p-g9is26
– start-page: 319
  year: 2001
  ident: 10.1016/j.mseb.2024.117384_b0225
  article-title: Band structure of elastic waves in the two-dimensional periodic composites
  publication-title: Acta Acus.
– volume: 85
  start-page: 341
  year: 2004
  ident: 10.1016/j.mseb.2024.117384_b0105
  article-title: Negative refraction of acoustic waves in two-dimensional phononic crystals
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1772854
– volume: 115
  issue: 6
  year: 2019
  ident: 10.1016/j.mseb.2024.117384_b0550
  article-title: Aerogel-based metasurfaces for perfect acoustic energy absorption
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5109084
– volume: 170
  start-page: 621
  issue: 5
  year: 1994
  ident: 10.1016/j.mseb.2024.117384_b0370
  article-title: Acoustic performance of membrane absorbers
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1994.1091
– volume: 312
  start-page: 1780
  issue: 5781
  year: 2006
  ident: 10.1016/j.mseb.2024.117384_b0565
  article-title: Controlling electromagnetic fields
  publication-title: Science
  doi: 10.1126/science.1125907
– volume: 35
  start-page: 162
  year: 2001
  ident: 10.1016/j.mseb.2024.117384_b0235
  article-title: Acoustic band gaps in 2d liquid phononic crystals of rectangular structure
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/35/2/309
– volume: 15
  issue: 18
  year: 2022
  ident: 10.1016/j.mseb.2024.117384_b0500
  article-title: Optimal design of acoustic metamaterial of multiple parallel hexagonal Helmholtz resonators by combination of finite element simulation and cuckoo search algorithm
  publication-title: Materials
  doi: 10.3390/ma15186450
– ident: 10.1016/j.mseb.2024.117384_b0750
– volume: 478
  year: 2022
  ident: 10.1016/j.mseb.2024.117384_b0560
  article-title: Moth wings as sound absorber metasurface
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2022.0046
– volume: 13
  year: 2020
  ident: 10.1016/j.mseb.2024.117384_b0795
  article-title: Broadband acoustic ventilation barriers
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.044028
– volume: 292
  year: 2022
  ident: 10.1016/j.mseb.2024.117384_b0850
  article-title: Laminated plate-type acoustic metamaterials with Willis coupling effects for broadband low-frequency sound insulation
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2022.115689
– volume: 238
  year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0845
  article-title: Acoustic metamaterials with controllable bandgap gates based on magnetorheological elastomers
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2022.107829
– ident: 10.1016/j.mseb.2024.117384_b0340
– start-page: 29
  year: 2013
  ident: 10.1016/j.mseb.2024.117384_b0690
  article-title: 3D printing: a new technology
– volume: 289
  year: 2000
  ident: 10.1016/j.mseb.2024.117384_b0095
  article-title: Locally resonant sonic materials
  publication-title: Science
  doi: 10.1126/science.289.5485.1734
– volume: 52
  issue: 5
  year: 2018
  ident: 10.1016/j.mseb.2024.117384_b0665
  article-title: Extraordinary sound transmission through geometrical mismatched channels based on near-zero bulk modulus and Fabry-Pérot resonance
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aaeb68
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.mseb.2024.117384_b0405
  article-title: Low-frequency perfect sound absorption achieved by a modulus-near-zero metamaterial
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-49982-5
– volume: 176
  start-page: 595
  year: 2017
  ident: 10.1016/j.mseb.2024.117384_b0720
  article-title: Implementation of the additive PolyJet technology to the development and fabricating the samples of the acoustic metamaterials
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2017.02.302
– volume: 345
  start-page: 647
  issue: 6197
  year: 2014
  ident: 10.1016/j.mseb.2024.117384_b0055
  article-title: Using origami design principles to fold reprogrammable mechanical metamaterials
  publication-title: Science
  doi: 10.1126/science.1252876
– volume: 1
  issue: 7
  year: 2016
  ident: 10.1016/j.mseb.2024.117384_b0085
  article-title: Controlling sound with acoustic metamaterials
  publication-title: Nat. Rev. Mater.
– volume: 8
  start-page: 931
  issue: 12
  year: 2009
  ident: 10.1016/j.mseb.2024.117384_b0655
  article-title: Experimental demonstration of an acoustic magnifying hyperlens
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2561
– volume: 67
  start-page: 2295
  year: 1991
  ident: 10.1016/j.mseb.2024.117384_b0025
  article-title: Photonic band structure: the face-centered-cubic case employing nonspherical atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.2295
– start-page: 1
  year: 2016
  ident: 10.1016/j.mseb.2024.117384_b0345
  article-title: Temperature-controlled tunable acoustic metamaterial with active band gap and negative bulk modulus
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2016.05.005
– volume: 108
  issue: 11
  year: 2010
  ident: 10.1016/j.mseb.2024.117384_b0375
  article-title: Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3514082
– volume: 46
  year: 2013
  ident: 10.1016/j.mseb.2024.117384_b0295
  article-title: Double-negative acoustic metamaterial based on meta-molecule
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/46/47/475105
– volume: 94
  start-page: 114
  year: 2018
  ident: 10.1016/j.mseb.2024.117384_b0065
  article-title: Mechanical metamaterials associated with stiffness, rigidity, and compressibility: a brief review
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.12.003
– volume: 100
  start-page: 318
  year: 2016
  ident: 10.1016/j.mseb.2024.117384_b0700
  article-title: Electrically functional 3D-architectured graphene/SiC composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.12.103
– volume: 110
  issue: 12
  year: 2011
  ident: 10.1016/j.mseb.2024.117384_b0385
  article-title: Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3665213
– volume: 107
  year: 2015
  ident: 10.1016/j.mseb.2024.117384_b0540
  article-title: Subwavelength total acoustic absorption with degenerate resonators
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4930944
– volume: 6
  year: 2016
  ident: 10.1016/j.mseb.2024.117384_b0685
  article-title: Directional reflective surface formed via gradient-impeding acoustic meta-surfaces
  publication-title: Sci. Rep.
– volume: 12
  start-page: 1920
  issue: 2
  year: 2018
  ident: 10.1016/j.mseb.2024.117384_b0030
  article-title: Optical anapole metamaterial
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08828
– volume: 153
  start-page: A164
  year: 2023
  ident: 10.1016/j.mseb.2024.117384_b0355
  article-title: Aerospace grade acoustic metamaterial design, modeling, and experimental validation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/10.0018520
– volume: 10
  year: 2018
  ident: 10.1016/j.mseb.2024.117384_b0595
  article-title: Resonant beam steering and carpet cloaking using an acoustic transformational metascreen
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.10.064030
– ident: 10.1016/j.mseb.2024.117384_b0365
SSID ssj0001222
Score 2.5492845
SecondaryResourceType review_article
Snippet •The unique characteristics of acoustic metamaterials (AMMs), which are not found in natural materials, have been explored.•The fundamental structures,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117384
SubjectTerms Acoustic control technology
Acoustic metamaterials
Acoustic wave manipulation
Negative Poisson's ratio
Negative refractive index
Noise reduction
Sound absorption
Sound waves
Title Breaking the limits of acoustic science: A review of acoustic metamaterials
URI https://dx.doi.org/10.1016/j.mseb.2024.117384
Volume 305
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001222
  issn: 0921-5107
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-4944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001222
  issn: 0921-5107
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2025
  customDbUrl:
  eissn: 1873-4944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001222
  issn: 0921-5107
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-4944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001222
  issn: 0921-5107
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYqWGBAnKIclQc2FGondhOzlYqqUNEFKnWLfEUq6iUaVn47z7UDrYQ6MCbxk-LP9nuf7XcgdGOIocqVSVWap7BBISJSpGWitCUKGTMtUuWOBl4Grd6QPY_4qIY6VSyMc6sMut_r9JW2Dm-aAc3mYjxuvhLhzBVJnRdkTBMXUe6yf8Gcvvv6dfOg4SYBGkeudQic8T5e06VVsEeMmbu7TDL2t3FaMzjdQ3QQmCJu-585QjU7O0b7a_kDT1D_ASifO-vGQOPwxMUqLfG8wKDlVkW6cOjRPW5jH6Oy8XVqSwmE1c_BUzTsPr51elGojhDphJAyAiQNIUqRQhqaGSNipWWSSQldazGlDTAFLSkrCsI58KzMCGVNzDVLDZew9s7Qzmw-s-cIx6nVliaOTQnGYU1LqoAZMkOFhu2MqiNawZLrkDrcVbCY5JWP2HvuoMwdlLmHso5uf2QWPnHG1ta8QjvfGP4cNPsWuYt_yl2iPffk_W6v0E758WmvgV2UqrGaPg20237q9wbfRZvNEw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwEB1ROLQ9VF1VuvrQWxVhJzYhvVFUFMpyKUjcIi-JRMWmQv-_Y-IgkKoeeo09Uvw0fn62ZzwAT4YapmyZVKVFiBsUGnmK1o0X1qNM-lxHobJHA_1BPR7x97EYl6BV5MLYsErH_Tmnb9jafak5NGvLyaT2QSO7XNHQRkH6LAgPoMIFcnIZKs1ONx5sCZm5ywTs71kDlzuTh3nNVqnCbaLP7fVl0OC_r087a077FE6cWCTN_H_OoJTOz-F45wnBC-i-ouqzx90ElRyZ2nSlFVlkBIluU6eLuEG9kCbJ01T2WmfpWqJmzd3wEkbtt2Er9lyBBE8HlK49BNNQqhTNpGENYyJfaRk0pMSh1bnSBsWCloxnGRUCpVbDRCo1vtA8NELi9LuC8nwxT6-B-GGqUxZYQRVxgdNaMoXikBsWadzRqCqwApZEu9fDbRGLaVKEiX0mFsrEQpnkUFbheWuzzN_O-LO3KNBO9jwgQXL_w-7mn3aPcBgP-72k1xl0b-HItuRhuHdQXn99p_coNtbqwTnTD1QQz74
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breaking+the+limits+of+acoustic+science%3A+A+review+of+acoustic+metamaterials&rft.jtitle=Materials+science+%26+engineering.+B%2C+Solid-state+materials+for+advanced+technology&rft.au=Ayd%C4%B1n%2C+G%C3%BClcan&rft.au=San%2C+Sait+Eren&rft.date=2024-07-01&rft.pub=Elsevier+B.V&rft.issn=0921-5107&rft.eissn=1873-4944&rft.volume=305&rft_id=info:doi/10.1016%2Fj.mseb.2024.117384&rft.externalDocID=S0921510724002137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5107&client=summon