Breaking the limits of acoustic science: A review of acoustic metamaterials
•The unique characteristics of acoustic metamaterials (AMMs), which are not found in natural materials, have been explored.•The fundamental structures, application areas, opportunities, and challenges of AMMs have been examined in detail.•The importance of simulation in designing AMMs has been empha...
Saved in:
Published in | Materials science & engineering. B, Solid-state materials for advanced technology Vol. 305; p. 117384 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0921-5107 1873-4944 |
DOI | 10.1016/j.mseb.2024.117384 |
Cover
Abstract | •The unique characteristics of acoustic metamaterials (AMMs), which are not found in natural materials, have been explored.•The fundamental structures, application areas, opportunities, and challenges of AMMs have been examined in detail.•The importance of simulation in designing AMMs has been emphasized, and 3D printing has been examined for their fabrication.•It has been suggested that a materials-centered approach holds the potential for revolutionary developments in this field.
Acoustic metamaterials (AMMs) are a form of man-made material that can be specifically developed to have a sub-wavelength periodic structure with extraordinary characteristics not found in nature. Recently, the ability to manipulate sound waves and elastic waves, thanks to these properties, has attracted great interest from scientists and engineers and has been the subject of intense research. This review presents general conceptual descriptions of these materials. We have summarized current literature and we investigated basic structures such as Helmholtz resonators, membrane-type structures, locally resonant and space-coiled structures, and application fields of acoustic metamaterials such as sound imaging, sound absorption, acoustical cloaking, noise reduction, and underwater acoustics. As simulation methods are essential for design and performance evaluation of acoustic metamaterials, the studies carried out in the literature were described and 3D printing technologies for the fabrication of these designs were investigated. Finally, we discuss the opportunities and challenges of acoustic metamaterials. While acoustic metamaterials have enormous ability for the field of sound control, AMMs also present challenges such as frequency-dependent operation, optimization requirements, and material costs. This review provides a comprehensive resource to guide researchers and engineers in understanding the importance and future potential of acoustic metamaterials and identifying gaps in the literature. |
---|---|
AbstractList | •The unique characteristics of acoustic metamaterials (AMMs), which are not found in natural materials, have been explored.•The fundamental structures, application areas, opportunities, and challenges of AMMs have been examined in detail.•The importance of simulation in designing AMMs has been emphasized, and 3D printing has been examined for their fabrication.•It has been suggested that a materials-centered approach holds the potential for revolutionary developments in this field.
Acoustic metamaterials (AMMs) are a form of man-made material that can be specifically developed to have a sub-wavelength periodic structure with extraordinary characteristics not found in nature. Recently, the ability to manipulate sound waves and elastic waves, thanks to these properties, has attracted great interest from scientists and engineers and has been the subject of intense research. This review presents general conceptual descriptions of these materials. We have summarized current literature and we investigated basic structures such as Helmholtz resonators, membrane-type structures, locally resonant and space-coiled structures, and application fields of acoustic metamaterials such as sound imaging, sound absorption, acoustical cloaking, noise reduction, and underwater acoustics. As simulation methods are essential for design and performance evaluation of acoustic metamaterials, the studies carried out in the literature were described and 3D printing technologies for the fabrication of these designs were investigated. Finally, we discuss the opportunities and challenges of acoustic metamaterials. While acoustic metamaterials have enormous ability for the field of sound control, AMMs also present challenges such as frequency-dependent operation, optimization requirements, and material costs. This review provides a comprehensive resource to guide researchers and engineers in understanding the importance and future potential of acoustic metamaterials and identifying gaps in the literature. |
ArticleNumber | 117384 |
Author | Aydın, Gülcan San, Sait Eren |
Author_xml | – sequence: 1 givenname: Gülcan orcidid: 0000-0003-4627-961X surname: Aydın fullname: Aydın, Gülcan email: gulcan.aydin@kocaeli.edu.tr organization: Department of Physics, Kocaeli University, 41001, Turkey – sequence: 2 givenname: Sait Eren surname: San fullname: San, Sait Eren organization: Department of Physics, Kocaeli University, 41001, Turkey |
BookMark | eNp9kL1OwzAUhS1UJNrCCzDlBRKuHbtJEEup-BOVWGC2buwbcGkSZBsQb0-idoGh0xmOviOdb8YmXd8RY-ccMg58cbHJ2kB1JkDIjPMiL-URm_KyyFNZSTlhU6gETxWH4oTNQtgAABdCTNnjtSd8d91rEt8o2brWxZD0TYKm_wzRmSQYR52hy2SZePpy9P2nbSlii5G8w204ZcfNEHS2zzl7ub15Xt2n66e7h9VynZocIKYopAWoa2jQ8tLaStQG8xJxOLKQtbFcKYNcNg0oVeaqtFVNVigjC6sQVD5nYrdrfB-Cp0Z_eNei_9Ec9KhDb_SoQ4869E7HAJX_IOMiRtd30aPbHkavdigNpwYFXu-lWOfJRG17dwj_BTLzfhk |
CitedBy_id | crossref_primary_10_1063_5_0231460 crossref_primary_10_54355_tbus_4_2_2024_0057 crossref_primary_10_1088_1361_6463_adade5 crossref_primary_10_3390_app15020619 crossref_primary_10_1016_j_rcim_2025_102970 crossref_primary_10_1016_j_enganabound_2025_106217 crossref_primary_10_1007_s42417_024_01612_9 crossref_primary_10_1063_5_0241632 crossref_primary_10_1016_j_ijmecsci_2025_110083 crossref_primary_10_1016_j_mseb_2024_117794 crossref_primary_10_3390_cryst14100887 crossref_primary_10_3390_cryst15010012 |
Cites_doi | 10.1016/j.physleta.2017.07.041 10.1016/j.physleta.2009.10.013 10.1103/PhysRevB.76.144302 10.1063/1.5043600 10.1063/1.2903500 10.1063/1.4826257 10.1016/j.scib.2022.09.020 10.1016/j.apacoust.2023.109297 10.1016/j.apacoust.2013.09.015 10.1209/0295-5075/132/38003 10.1038/srep01614 10.1038/s41598-020-70714-7 10.1209/0295-5075/120/54001 10.1103/PhysRevB.99.174109 10.7498/aps.68.20190850 10.1063/1.3583656 10.1007/s00158-020-02819-6 10.1103/PhysRevApplied.2.054007 10.1063/1.3493155 10.1103/PhysRevLett.104.054301 10.1038/nmat3084 10.1121/1.5024361 10.1038/s41598-017-00779-4 10.1016/j.compstruct.2020.112949 10.1016/j.apacoust.2023.109565 10.1038/nature20824 10.1038/nphys3867 10.1103/PhysRevE.74.026604 10.1038/nmat3901 10.1063/1.5029424 10.3390/ma16124298 10.1126/science.1058847 10.1063/1.5085568 10.1038/s42254-019-0030-x 10.1088/0022-3727/44/21/215402 10.1063/1.3507893 10.1063/5.0147941 10.1063/1.4759327 10.1515/nanoph-2019-0483 10.1016/j.jsv.2016.03.025 10.1088/1367-2630/9/3/045 10.1088/0022-3727/49/22/225302 10.1016/j.apacoust.2022.108974 10.1103/PhysRevLett.108.114301 10.1016/j.jsv.2018.02.060 10.1016/j.actamat.2019.04.042 10.1038/nmat4067 10.1016/j.eml.2021.101203 10.1063/1.5026199 10.1088/1367-2630/11/1/013003 10.1088/1367-2630/10/6/063015 10.1016/0022-460X(92)90059-7 10.1103/PhysRevApplied.16.054018 10.1103/PhysRevLett.85.3966 10.1016/j.ijmecsci.2022.107414 10.1063/1.4922669 10.1016/j.taml.2017.06.001 10.1016/j.eml.2019.100623 10.3390/acoustics5030040 10.1016/j.apacoust.2020.107390 10.1103/PhysRevLett.110.175501 10.1016/j.ijmecsci.2022.107872 10.1016/j.apacoust.2019.107022 10.1103/PhysRevB.94.014302 10.1038/ncomms14871 10.1063/1.4979020 10.1016/j.apacoust.2010.09.005 10.1016/j.ymssp.2020.107479 10.1038/s41467-018-07315-6 10.1109/22.798002 10.1016/j.jsv.2022.117514 10.1155/2019/7029143 10.1121/1.4984623 10.1103/PhysRevB.49.2313 10.7498/aps.52.1943 10.1038/s41467-023-36581-2 10.1103/PhysRevLett.101.204301 10.1070/PU1968v010n04ABEH003699 10.1115/1.4034770 10.1063/1.4913999 10.1088/1367-2630/11/12/123010 10.1016/j.apacoust.2021.108585 10.1006/jsvi.1993.1122 10.1063/1.5055288 10.1103/PhysRevE.70.026609 10.1063/1.5041731 10.1121/1.3643818 10.1109/ICSENS.2017.8234381 10.1016/j.ijmecsci.2022.107601 10.1063/1.372308 10.3390/ma16041597 10.1007/s11433-019-1498-2 10.1016/B978-0-08-033933-7.50017-9 10.1038/nmat3994 10.1016/j.eml.2021.101218 10.1103/PhysRevB.51.2780 10.1063/5.0074503 10.1063/1.4882316 10.1126/science.1126493 10.1016/j.ijmecsci.2023.108571 10.1063/1.4968607 10.1016/j.eml.2021.101347 10.1016/j.physb.2023.415150 10.1103/PhysRevLett.71.2022 10.1063/1.4901996 10.1038/nmat1644 10.1016/j.physleta.2014.09.042 10.1103/PhysRevApplied.18.054040 10.1016/j.compstruct.2005.01.026 10.3390/ma16051879 10.1103/PhysRevLett.102.194301 10.4028/p-g9is26 10.1063/1.1772854 10.1063/1.5109084 10.1006/jsvi.1994.1091 10.1126/science.1125907 10.1088/0022-3727/35/2/309 10.3390/ma15186450 10.1098/rspa.2022.0046 10.1103/PhysRevApplied.13.044028 10.1016/j.compstruct.2022.115689 10.1016/j.ijmecsci.2022.107829 10.1126/science.289.5485.1734 10.1088/1361-6463/aaeb68 10.1038/s41598-019-49982-5 10.1016/j.proeng.2017.02.302 10.1126/science.1252876 10.1038/nmat2561 10.1103/PhysRevLett.67.2295 10.1016/j.apacoust.2016.05.005 10.1063/1.3514082 10.1088/0022-3727/46/47/475105 10.1016/j.pmatsci.2017.12.003 10.1016/j.carbon.2015.12.103 10.1063/1.3665213 10.1063/1.4930944 10.1021/acsnano.7b08828 10.1121/10.0018520 10.1103/PhysRevApplied.10.064030 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mseb.2024.117384 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4944 |
ExternalDocumentID | 10_1016_j_mseb_2024_117384 S0921510724002137 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABXDB ABXRA ACDAQ ACFVG ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SSM SSQ SSZ T5K WUQ ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS EFLBG ~HD |
ID | FETCH-LOGICAL-c300t-a24d00bb0fad18dd92bca38aa01664bcd155ca14ff0558358d9bed25c47d5a053 |
IEDL.DBID | .~1 |
ISSN | 0921-5107 |
IngestDate | Wed Oct 01 03:25:01 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Tue Jun 18 08:52:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Acoustic wave manipulation Sound waves Negative Poisson's ratio Noise reduction Acoustic metamaterials Negative refractive index Acoustic control technology Sound absorption |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-a24d00bb0fad18dd92bca38aa01664bcd155ca14ff0558358d9bed25c47d5a053 |
ORCID | 0000-0003-4627-961X |
ParticipantIDs | crossref_primary_10_1016_j_mseb_2024_117384 crossref_citationtrail_10_1016_j_mseb_2024_117384 elsevier_sciencedirect_doi_10_1016_j_mseb_2024_117384 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationTitle | Materials science & engineering. B, Solid-state materials for advanced technology |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sigalas, Soukoulis (b0245) 1995; 51 Gao, Xie, Peng, Yan, Liu, Peng, Li, Jiang, Liu (b0640) 2020; 132 Liu, Zhang, Mao, Zhu, Yang, Chan, Sheng (b0095) 2000; 289 Wu, Liu, Liu (b0235) 2001; 35 Kushwaha, Halevi, Martínez, Dobrzynski, Djafari-Rouhani (b0220) 1994; 49 Liu, Peng, Liu, Zou, Cheng (b0330) 2018; 113 Zhu, Fan, Liang, Yang, Yang, Yin, Cheng (b0625) 2016; 6 Shen, Xu, Fang, Jing (b0680) 2014; 4 Jiménez, Romero-García, García-Raffi, Camarena, Staliunas (b0635) 2018; 112 Zhai, Chen, Ding, Zhao (b0295) 2013; 46 Xin, Huang, Li, Yan, Dong, Yan, Sun, Cheng, Zhao (b0520) 2023; 667 Wang, Hui, Ng (b0535) 2014; 78 Tsiokou, Shtrepi, Badino, Astolfi, Karatza (b0735) 2023; 5 Sigalas, Garcia (b0210) 2000; 87 Ning, Yang, Luo, Liu, Zhuang (b0305) 2020; 35 Tao, Ren, Zhao, Sun, Zhang, Jiang, Han, Zhang, Xie (b0840) 2022; 226 Guenneau, Movchan, Pétursson, Anantha Ramakrishna (b0035) 2007; 11 Naify, Chang, McKnight, Nutt (b0375) 2010; 108 Naify, Chang, McKnight, Nutt (b0385) 2011; 110 Mizukami, Kawaguchi, Ogi, Koga (b0730) 2021; 255 Chorin, Marsden (b0760) 2000 Xu, Huang (b0825) 2023; 259 Li, Fok, Yin, Bartal, Zhang (b0655) 2009; 8 Ding, Hao, Zhao (b0130) 2010; 108 Chen, Xiao, Lisevych, Shakouri, Fan (b0630) 2018; 9 Cheng, Yang, Xu, Liu (b0575) 2008; 92 Chen, Xue, Fan, Zhang, Li, Zhang, Ding (b0420) 2016; 6 Jeong, Lee, An, Lim, Jun (b0775) 2020; 9 Li, Chan (b0070) 2019; 71 Sirota, Sabsovich, Lahini, Ilan, Shokef (b0820) 2021; 153 Bi, Jia, Sun, Yang, Zhao, Yang (b0600) 2018; 112 Tournat, Pagneux, Lafarge, Jaouen (b0250) 2004; 70 Kinsler, Frey, Coppens, Sanders (b0010) 2000 Wang, Yi, Zhu (b0310) 2023; 548 Ma, Huang, Liu, Wu (b0805) 2022; 131 R.G. Oldfield, Improved membrane absorbers, 2006 (Master's thesis), Retrieved from Allam, Elsabbagh, Akl (b0425) 2017; 121 K.-L. Koai, T. Yang, J. Chen, The muffling effect of Helmholtz resonator attachments to a gas flow path, in: International Compressor Engineering Conference, West Lafayette, Indiana, July 23–26, 1996. . Sun, Sun, Jia, Bi, Yang (b0590) 2019; 114 Wu, Liao, Savinov, Chung, Chen, Huang, Wu, Chen, Liu, Zheludev, Tsai (b0030) 2018; 12 Leblanc, Lavie (b0725) 2017; 141 Chen, Tang, Wang, Wang, Zhao, Wang (b0275) 2020; 63 Shao, He, Chen, Tan, Chen (b0490) 2020; 157 N.R. Mahesh, N. Prita, Experimental and theoretical investigation of acoustic metamaterial with negative bulk modulus, in: Proceedings of 2011 COMSOL Conference, 2011 Cummer, Christensen (b0085) 2016; 1 M.L. Hawkins, A Generalization of Snell's Law, Naval Postgraduate School (U.S.), Department of Mathematics, Monterey, California, 1990 (Master Science Thesis). Zhang, He, Wang (b0665) 2018; 52 A. Intissar, On non self adjoint models on the guided acoustic wave of finite length and on of the interaction between a vibrating structure and a fluid, in: Spectral theory of non self-adjoint operators with compact resolvent and applications to Gribov-Intissar, 2020. Yang, Li, Wen, Lu, Peng, He, Zhang, Wang, Yang (b0335) 2014; 85 Zhou, Wang, Xin (b0510) 2023; 13 Zhang, Qu, Wang (b0810) 2020; 23 Dong, Zhao, Wei, Cheng, Wang, Zhang (b0485) 2019; 172 Liu, Xia, Yu (b0670) 2017; 381 Yang, Wang, Huang (b0080) 2020; 7 Fink (b0530) 2014; 13 Yablonovitch, Gmitter, Leung (b0025) 1991; 67 Zieliński, Opiela, Pawłowski, Dauchez, Boutin, Kennedy, Trimble, Rice, Van Damme, Hannema, Wróbel, Kim, Mosanenzadeh, Fang, Yang, de La Hosseraye, Hornikx, Salze, Galland, Boonen, Groby (b0175) 2020; 36 Lee, Wang, Lim, Xie, Lee (b0790) 2020; 167 Yang, Meng, Fu, Li, Yang, Sheng (b0540) 2015; 107 Zhang, Xia, Fang (b0135) 2011; 106 Peng, Wen, Li, Yang, Bai (b0325) 2013; 103 Qing, Qing (b0690) 2013 Park, Kwak, Song (b0815) 2021; 43 Bi, Jia, Lu, Ji, Yang (b0605) 2017; 7 Naify, Huang, Sneddon, Nutt (b0390) 2011; 72 Lee, Park, Seo, Wang, Kim (b0400) 2009; 373 Sun, Xu, Wang, Gu, Luo, Zhao, Huang (b0455) 2023 Fernandez-Marin, Jimenez, Groby, Sanchez-Dehesa, Romero-Garcia (b0550) 2019; 115 Ma, Seo, Lee (b0450) 2023; 211 Wang, Wen, Han, Zhao (b0205) 2003; 52 Qi, Yang, Bai, Zhao (b0230) 2003 Roca, Hussein (b0675) 2021; 16 Munjal (b0240) 1993; 162 Silverberg, Evans, McLeod, Hayward, Hull, Santangelo, Cohen (b0055) 2014; 345 Zhang, Yin, Fang (b0650) 2009; 102 Liang, Feng, Lok, Liu, Ng, Chan, Wang, Han, Lee, Li (b0660) 2013; 3 Yu, Zhou, Liang, Jiang, Wu (b0065) 2018; 94 Bertoldi, Vitelli, Christensen, Van Hecke (b0050) 2017; 2 Sun, Hou, Qian, Ge, Yuan, Guan, Si, Liu (b0280) 2019; 125 Vdovin, Tomilina, Smelov, Laktionova (b0720) 2017; 176 Liang, Li (b0140) 2012; 108 Yang, Wang, Shen, Zhang, Yin, Wang, Yang, Shen, Peng (b0500) 2022; 15 Lee, Park, Seo, Wang, Kim (b0200) 2010; 104 Pendry (b0020) 2000; 85 Ding, Wang, Qiu, Huang, Zhou, Zhou, Jia, Li (b0185) 2022; 232 Torrent, Sánchez-Dehesa (b0570) 2008; 10 Zigoneanu, Popa, Cummer (b0480) 2014; 13 Tian, Ge, Lu, Chen (b0745) 2019; 68 Wu, Zhai, Zhao, Tian, Li, Wang, Jiang (b0800) 2022; 32 Sheikh, Mechefske, Kone, Laly, Ghinet (b0355) 2023; 153 Chen, Shan (b0045) 2019; 5 Korozlu, Cicek (b0285) 2018; 113 Ding, Zhao (b0320) 2011; 44 He, Ni, Ge, Sun, Chen, Lu, Liu, Chen (b0155) 2016; 12 Xia, Chen, Xie, Qin, Yu (b0345) 2016 Zhou, Assouar, Oudich (b0645) 2014; 116 Peng, Xiao, Wu (b0620) 2014; 378 Long (b0430) 2020; 10 Akl, Baz (b0470) 2012; 112 Jia, Ke, Hao, Ye, Liu, Liu (b0615) 2010; 97 L.D. Landau, E.M. Lifshitz, Fluid Mechanics, second edition, vol. 6, Pergamon, 1987, doi: 10.1016/B978-0-08-033933-7.50017-9. Popa, Zigoneanu, Cummer (b0475) 2013; 88 Xiang, Wang, Zhu (b0440) 2022; 188 Shelby, Smith, Schultz (b0100) 2001; 292 Page (b0040) 2011; 10 Xue, Zhang (b0610) 2021; 46 Xiao, Ma, Li, Yang, Sheng (b0415) 2015; 106 Gu, Cheng, Wang, Liu (b0150) 2015; 118 Tournat, Profunser, Muramoto, Matsuda, Takezaki, Sueoka, Wright (b0260) 2006; 74 Amin, Siddiqui, Orfali, Farhat, Khelif (b0595) 2018; 10 Li, Liu, Liu, Li, Yang, Tong, Shi, Schmidt, Schröder (b0525) 2023; 205 Overvelde, Weaver, Hoberman, Bertoldi (b0060) 2017; 541 Wu, Liu, Liu (b0225) 2001 Ning, Yan, Chu, Jiang, Liu, Zhuang (b0495) 2021; 44 Man, Liu, Xia, Luo, Xie, Liu (b0165) 2018; 423 Wang, Zhao, Yang, Zhong, Wen (b0435) 2017; 120 Tang, Ren, Meng, Xin, Huang, Chen, Zhang, Lu (b0545) 2017; 7 Levi, Piana, Giorleo (b0695) 2022 Liu, Chan, Wu (b0190) 2023; 16 Román-Manso, Figueiredo, Achiaga, Barea, Pérez-Coll, Morelos-Gómez, Terrones, Osendi, Belmonte, Miranzo (b0700) 2016; 100 Ma, Sheng (b0075) 2016; 343 Shao, Long, Cheng, Liu (b0405) 2019; 9 Cummer, Schurig (b0460) 2007; 9 Naify, Chang, McKnight, Scheulen, Nutt (b0380) 2011; 109 Xie, Popa, Zigoneanu, Cummer (b0445) 2013; 110 Esfahlani, Karkar, Lissek, Mosig (b0585) 2016; 94 Zhai, Chen, Ding, Li, Shen, Luo, Zhao (b0580) 2016; 49 Peng, Bi, Shen, Yang, Yang, Wang (b0505) 2023; 16 Leonhardt (b0110) 2006; 312 Ma, Xiao, Chan (b0170) 2019; 1 Wu, Liu, Jahanshahi, Semperlotti (b0180) 2021; 63 Zhu, Assouar (b0350) 2019; 99 Wen, Zhang, Wang, Wang, He, Chen, Liu, Xie (b0360) 2023; 239 Yang, Sheng (b0785) 2023; 122 Kadic, Bückmann, Schittny, Gumbsch, Wegener (b0770) 2014; 2 Yeh, Chen (b0290) 2006; 73 Gao, Hou, Mu (b0395) 2017; 7 Zhang, Liu (b0105) 2004; 85 Hu, Tang, Banerjee, Das (b0300) 2017; 139 Pendry, Holden, Robbins, Stewart (b0015) 1999; 47 Frommhold, Fuchs, Sheng (b0370) 1994; 170 C. Casarini, B. Tiller, C. Mineo, C.N. MacLeod, J.F.C. Windmill, J.C. Jackson, Enhancing the sound absorption of small-scale 3D printed acoustic metamaterials based on helmholtz resonators, in: IEEE Sensors Conference 2017, 2018. Nakayama (b0780) 2023 Baz (b0125) 2009; 11 Langfeldt, Riecken, Gleine, von Estorff (b0410) 2016; 373 Kushwaha, Halevi, Dobrzynski, Djafari-Rouhani (b0215) 1993; 71 Kennedy, Flanagan, Dowling, Bennett, Rice, Trimble (b0710) 2019 Zheng, Man, Kong, Lin, Duan, Chen, Yu, Jiang, Xia (b0830) 2022; 67 Ma, Yang, Xiao, Yang, Sheng (b0145) 2014; 13 Veselago (b0005) 1968; 10 Fang, Xi, Xu, Ambati, Srituravanich, Sun, Zhang (b0115) 2006; 5 Neil, Shen, Robert, Drinkwater, Holderied (b0560) 2022; 478 Kim, Park, Park (b0715) 2021; 47 Martin (b0255) 2018; 143 Pendry, Schurig, Smith (b0565) 2006; 312 Sigalas, Ecconomou (b0090) 1992; 158 Yang, Mei, Yang, Chan, Sheng (b0120) 2008; 101 Huang, Sun (b0195) 2009; 11 Elford, Chalmers, Kusmartsev, Swallowe (b0465) 2011; 130 Pavan, Singh (b0555) 2022; 198 Gorshkov, Bereznykov, Boiger, Sareh, Fallah (b0845) 2023; 238 Bi, Yang, Tang, Shen, Zhang, Zhu, Yang, Peng, Yuan (b0515) 2023; 16 Song, Kim, Hur, Kwak, Lee, Kim (b0685) 2016; 6 Xu, Cai, Wu (b0835) 2023; 14 Fokin, Ambati, Sun, Zhang (b0265) 2007; 76 Sun, Fang, Mao, Wang, Li (b0795) 2020; 13 Dubois, Shi, Zhu, Wang, Zhang (b0160) 2017; 8 Cao, Ou, Su, Yin, Dong, Song, Li, Zhang (b0270) 2022; 18 Gu, Tang, Wang, Huang (b0850) 2022; 292 Fokin (10.1016/j.mseb.2024.117384_b0265) 2007; 76 Sheikh (10.1016/j.mseb.2024.117384_b0355) 2023; 153 Zhou (10.1016/j.mseb.2024.117384_b0510) 2023; 13 Cummer (10.1016/j.mseb.2024.117384_b0085) 2016; 1 Tsiokou (10.1016/j.mseb.2024.117384_b0735) 2023; 5 Zhang (10.1016/j.mseb.2024.117384_b0810) 2020; 23 Kennedy (10.1016/j.mseb.2024.117384_b0710) 2019 Hu (10.1016/j.mseb.2024.117384_b0300) 2017; 139 Ma (10.1016/j.mseb.2024.117384_b0170) 2019; 1 Yang (10.1016/j.mseb.2024.117384_b0500) 2022; 15 Román-Manso (10.1016/j.mseb.2024.117384_b0700) 2016; 100 Peng (10.1016/j.mseb.2024.117384_b0505) 2023; 16 Ding (10.1016/j.mseb.2024.117384_b0130) 2010; 108 Zieliński (10.1016/j.mseb.2024.117384_b0175) 2020; 36 Zhang (10.1016/j.mseb.2024.117384_b0650) 2009; 102 Roca (10.1016/j.mseb.2024.117384_b0675) 2021; 16 Elford (10.1016/j.mseb.2024.117384_b0465) 2011; 130 Chen (10.1016/j.mseb.2024.117384_b0275) 2020; 63 10.1016/j.mseb.2024.117384_b0765 Kinsler (10.1016/j.mseb.2024.117384_b0010) 2000 10.1016/j.mseb.2024.117384_b0365 Fink (10.1016/j.mseb.2024.117384_b0530) 2014; 13 Kim (10.1016/j.mseb.2024.117384_b0715) 2021; 47 Naify (10.1016/j.mseb.2024.117384_b0390) 2011; 72 Chen (10.1016/j.mseb.2024.117384_b0045) 2019; 5 Yang (10.1016/j.mseb.2024.117384_b0080) 2020; 7 Ning (10.1016/j.mseb.2024.117384_b0305) 2020; 35 Leonhardt (10.1016/j.mseb.2024.117384_b0110) 2006; 312 Dong (10.1016/j.mseb.2024.117384_b0485) 2019; 172 Li (10.1016/j.mseb.2024.117384_b0525) 2023; 205 Jia (10.1016/j.mseb.2024.117384_b0615) 2010; 97 Bi (10.1016/j.mseb.2024.117384_b0515) 2023; 16 Overvelde (10.1016/j.mseb.2024.117384_b0060) 2017; 541 Peng (10.1016/j.mseb.2024.117384_b0325) 2013; 103 Yeh (10.1016/j.mseb.2024.117384_b0290) 2006; 73 Page (10.1016/j.mseb.2024.117384_b0040) 2011; 10 Gao (10.1016/j.mseb.2024.117384_b0640) 2020; 132 10.1016/j.mseb.2024.117384_b0755 Lee (10.1016/j.mseb.2024.117384_b0400) 2009; 373 10.1016/j.mseb.2024.117384_b0750 Xue (10.1016/j.mseb.2024.117384_b0610) 2021; 46 Liu (10.1016/j.mseb.2024.117384_b0095) 2000; 289 Tournat (10.1016/j.mseb.2024.117384_b0250) 2004; 70 Zhang (10.1016/j.mseb.2024.117384_b0665) 2018; 52 Pendry (10.1016/j.mseb.2024.117384_b0015) 1999; 47 Yang (10.1016/j.mseb.2024.117384_b0540) 2015; 107 Shen (10.1016/j.mseb.2024.117384_b0680) 2014; 4 Li (10.1016/j.mseb.2024.117384_b0655) 2009; 8 Levi (10.1016/j.mseb.2024.117384_b0695) 2022 Wu (10.1016/j.mseb.2024.117384_b0180) 2021; 63 Martin (10.1016/j.mseb.2024.117384_b0255) 2018; 143 Bi (10.1016/j.mseb.2024.117384_b0605) 2017; 7 Zheng (10.1016/j.mseb.2024.117384_b0830) 2022; 67 Gao (10.1016/j.mseb.2024.117384_b0395) 2017; 7 Ding (10.1016/j.mseb.2024.117384_b0320) 2011; 44 Cheng (10.1016/j.mseb.2024.117384_b0575) 2008; 92 Naify (10.1016/j.mseb.2024.117384_b0375) 2010; 108 Xu (10.1016/j.mseb.2024.117384_b0825) 2023; 259 Bi (10.1016/j.mseb.2024.117384_b0600) 2018; 112 Jiménez (10.1016/j.mseb.2024.117384_b0635) 2018; 112 Tao (10.1016/j.mseb.2024.117384_b0840) 2022; 226 Shao (10.1016/j.mseb.2024.117384_b0490) 2020; 157 Liang (10.1016/j.mseb.2024.117384_b0140) 2012; 108 Naify (10.1016/j.mseb.2024.117384_b0380) 2011; 109 Xie (10.1016/j.mseb.2024.117384_b0445) 2013; 110 Zhai (10.1016/j.mseb.2024.117384_b0580) 2016; 49 Kushwaha (10.1016/j.mseb.2024.117384_b0220) 1994; 49 Kushwaha (10.1016/j.mseb.2024.117384_b0215) 1993; 71 10.1016/j.mseb.2024.117384_b0740 Sigalas (10.1016/j.mseb.2024.117384_b0090) 1992; 158 Peng (10.1016/j.mseb.2024.117384_b0620) 2014; 378 Silverberg (10.1016/j.mseb.2024.117384_b0055) 2014; 345 Liu (10.1016/j.mseb.2024.117384_b0670) 2017; 381 Ma (10.1016/j.mseb.2024.117384_b0805) 2022; 131 Allam (10.1016/j.mseb.2024.117384_b0425) 2017; 121 Long (10.1016/j.mseb.2024.117384_b0430) 2020; 10 Tournat (10.1016/j.mseb.2024.117384_b0260) 2006; 74 Yu (10.1016/j.mseb.2024.117384_b0065) 2018; 94 Shelby (10.1016/j.mseb.2024.117384_b0100) 2001; 292 Wang (10.1016/j.mseb.2024.117384_b0535) 2014; 78 Ma (10.1016/j.mseb.2024.117384_b0145) 2014; 13 Sigalas (10.1016/j.mseb.2024.117384_b0210) 2000; 87 Vdovin (10.1016/j.mseb.2024.117384_b0720) 2017; 176 Nakayama (10.1016/j.mseb.2024.117384_b0780) 2023 Munjal (10.1016/j.mseb.2024.117384_b0240) 1993; 162 Ma (10.1016/j.mseb.2024.117384_b0075) 2016; 343 Jeong (10.1016/j.mseb.2024.117384_b0775) 2020; 9 He (10.1016/j.mseb.2024.117384_b0155) 2016; 12 Sirota (10.1016/j.mseb.2024.117384_b0820) 2021; 153 Huang (10.1016/j.mseb.2024.117384_b0195) 2009; 11 Xia (10.1016/j.mseb.2024.117384_b0345) 2016 Zhai (10.1016/j.mseb.2024.117384_b0295) 2013; 46 Lee (10.1016/j.mseb.2024.117384_b0200) 2010; 104 Song (10.1016/j.mseb.2024.117384_b0685) 2016; 6 Sun (10.1016/j.mseb.2024.117384_b0455) 2023 Sun (10.1016/j.mseb.2024.117384_b0590) 2019; 114 Wu (10.1016/j.mseb.2024.117384_b0800) 2022; 32 Tang (10.1016/j.mseb.2024.117384_b0545) 2017; 7 Qi (10.1016/j.mseb.2024.117384_b0230) 2003 Yang (10.1016/j.mseb.2024.117384_b0785) 2023; 122 10.1016/j.mseb.2024.117384_b0340 Neil (10.1016/j.mseb.2024.117384_b0560) 2022; 478 Qing (10.1016/j.mseb.2024.117384_b0690) 2013 Liang (10.1016/j.mseb.2024.117384_b0660) 2013; 3 Veselago (10.1016/j.mseb.2024.117384_b0005) 1968; 10 Esfahlani (10.1016/j.mseb.2024.117384_b0585) 2016; 94 Chorin (10.1016/j.mseb.2024.117384_b0760) 2000 Kadic (10.1016/j.mseb.2024.117384_b0770) 2014; 2 Xiang (10.1016/j.mseb.2024.117384_b0440) 2022; 188 Chen (10.1016/j.mseb.2024.117384_b0420) 2016; 6 Popa (10.1016/j.mseb.2024.117384_b0475) 2013; 88 Pendry (10.1016/j.mseb.2024.117384_b0565) 2006; 312 Baz (10.1016/j.mseb.2024.117384_b0125) 2009; 11 Cao (10.1016/j.mseb.2024.117384_b0270) 2022; 18 Chen (10.1016/j.mseb.2024.117384_b0630) 2018; 9 Lee (10.1016/j.mseb.2024.117384_b0790) 2020; 167 Gu (10.1016/j.mseb.2024.117384_b0150) 2015; 118 Wang (10.1016/j.mseb.2024.117384_b0310) 2023; 548 Wen (10.1016/j.mseb.2024.117384_b0360) 2023; 239 Korozlu (10.1016/j.mseb.2024.117384_b0285) 2018; 113 Gorshkov (10.1016/j.mseb.2024.117384_b0845) 2023; 238 Pendry (10.1016/j.mseb.2024.117384_b0020) 2000; 85 Wu (10.1016/j.mseb.2024.117384_b0235) 2001; 35 Sun (10.1016/j.mseb.2024.117384_b0280) 2019; 125 Wu (10.1016/j.mseb.2024.117384_b0225) 2001 10.1016/j.mseb.2024.117384_b0315 Frommhold (10.1016/j.mseb.2024.117384_b0370) 1994; 170 Zigoneanu (10.1016/j.mseb.2024.117384_b0480) 2014; 13 Li (10.1016/j.mseb.2024.117384_b0070) 2019; 71 Naify (10.1016/j.mseb.2024.117384_b0385) 2011; 110 Yablonovitch (10.1016/j.mseb.2024.117384_b0025) 1991; 67 Guenneau (10.1016/j.mseb.2024.117384_b0035) 2007; 11 Liu (10.1016/j.mseb.2024.117384_b0330) 2018; 113 Tian (10.1016/j.mseb.2024.117384_b0745) 2019; 68 Zhang (10.1016/j.mseb.2024.117384_b0135) 2011; 106 Xiao (10.1016/j.mseb.2024.117384_b0415) 2015; 106 Torrent (10.1016/j.mseb.2024.117384_b0570) 2008; 10 Zhu (10.1016/j.mseb.2024.117384_b0625) 2016; 6 Sigalas (10.1016/j.mseb.2024.117384_b0245) 1995; 51 Cummer (10.1016/j.mseb.2024.117384_b0460) 2007; 9 Xin (10.1016/j.mseb.2024.117384_b0520) 2023; 667 Wang (10.1016/j.mseb.2024.117384_b0205) 2003; 52 Yang (10.1016/j.mseb.2024.117384_b0120) 2008; 101 Man (10.1016/j.mseb.2024.117384_b0165) 2018; 423 Akl (10.1016/j.mseb.2024.117384_b0470) 2012; 112 Zhu (10.1016/j.mseb.2024.117384_b0350) 2019; 99 Xu (10.1016/j.mseb.2024.117384_b0835) 2023; 14 Amin (10.1016/j.mseb.2024.117384_b0595) 2018; 10 Zhou (10.1016/j.mseb.2024.117384_b0645) 2014; 116 Bertoldi (10.1016/j.mseb.2024.117384_b0050) 2017; 2 Ma (10.1016/j.mseb.2024.117384_b0450) 2023; 211 Mizukami (10.1016/j.mseb.2024.117384_b0730) 2021; 255 Zhang (10.1016/j.mseb.2024.117384_b0105) 2004; 85 Sun (10.1016/j.mseb.2024.117384_b0795) 2020; 13 Liu (10.1016/j.mseb.2024.117384_b0190) 2023; 16 Gu (10.1016/j.mseb.2024.117384_b0850) 2022; 292 Ning (10.1016/j.mseb.2024.117384_b0495) 2021; 44 Yang (10.1016/j.mseb.2024.117384_b0335) 2014; 85 10.1016/j.mseb.2024.117384_b0705 Wu (10.1016/j.mseb.2024.117384_b0030) 2018; 12 Wang (10.1016/j.mseb.2024.117384_b0435) 2017; 120 Shao (10.1016/j.mseb.2024.117384_b0405) 2019; 9 Fang (10.1016/j.mseb.2024.117384_b0115) 2006; 5 Dubois (10.1016/j.mseb.2024.117384_b0160) 2017; 8 Park (10.1016/j.mseb.2024.117384_b0815) 2021; 43 Ding (10.1016/j.mseb.2024.117384_b0185) 2022; 232 Langfeldt (10.1016/j.mseb.2024.117384_b0410) 2016; 373 Fernandez-Marin (10.1016/j.mseb.2024.117384_b0550) 2019; 115 Pavan (10.1016/j.mseb.2024.117384_b0555) 2022; 198 Leblanc (10.1016/j.mseb.2024.117384_b0725) 2017; 141 |
References_xml | – volume: 312 start-page: 1777 year: 2006 end-page: 1780 ident: b0110 article-title: Optical conformal mapping publication-title: Science – reference: L.D. Landau, E.M. Lifshitz, Fluid Mechanics, second edition, vol. 6, Pergamon, 1987, doi: 10.1016/B978-0-08-033933-7.50017-9. – volume: 131 year: 2022 ident: b0805 article-title: Acoustic focusing and imaging via phononic crystal and acoustic metamaterials publication-title: J. Appl. Phys. – volume: 94 start-page: 114 year: 2018 end-page: 173 ident: b0065 article-title: Mechanical metamaterials associated with stiffness, rigidity, and compressibility: a brief review publication-title: Prog. Mater. Sci. – volume: 87 start-page: 3120 year: 2000 end-page: 3122 ident: b0210 article-title: Theoretical study of three-dimensional elastic band gaps with the finite-difference time-domain method publication-title: J. Appl. Phys. – volume: 13 start-page: 848 year: 2014 end-page: 849 ident: b0530 article-title: Nearly perfect sound absorbers publication-title: Nat. Mater. – volume: 108 year: 2010 ident: b0130 article-title: Two-dimensional acoustic metamaterial with negative modulus publication-title: J. Appl. Phys. – volume: 35 start-page: 162 year: 2001 ident: b0235 article-title: Acoustic band gaps in 2d liquid phononic crystals of rectangular structure publication-title: J. Phys. D: Appl. Phys. – volume: 2 year: 2017 ident: b0050 article-title: Flexible mechanical metamaterials publication-title: Nat. Rev. Mater. – volume: 130 start-page: 2746 year: 2011 end-page: 2755 ident: b0465 article-title: Matryoshka locally resonant sonic crystal publication-title: J. Acoust. Soc. Am. – volume: 2 year: 2014 ident: b0770 article-title: Pentamode metamaterials with independently tailored bulk modulus and mass density publication-title: Phys. Rev. Appl. – year: 2000 ident: b0760 article-title: A Mathematical Introduction to Fluid Mechanics – volume: 153 start-page: A164 year: 2023 ident: b0355 article-title: Aerospace grade acoustic metamaterial design, modeling, and experimental validation publication-title: J. Acoust. Soc. Am. – volume: 32 year: 2022 ident: b0800 article-title: Modular design for acoustic metamaterials: low-frequency noise attenuation publication-title: Adv. Funct. Mater. – volume: 71 start-page: 2022 year: 1993 end-page: 2025 ident: b0215 article-title: Acoustic band structure of periodic elastic composites publication-title: Phys. Rev. Lett. – volume: 226 year: 2022 ident: b0840 article-title: A novel auxetic acoustic metamaterial plate with tunable bandgap publication-title: Int. J. Mech. Sci. – volume: 1 year: 2016 ident: b0085 article-title: Controlling sound with acoustic metamaterials publication-title: Nat. Rev. Mater. – year: 2023 ident: b0455 article-title: Sound absorption of space-coiled metamaterials with soft walls publication-title: Int. J. Mech. Sci. – volume: 6 year: 2016 ident: b0685 article-title: Directional reflective surface formed via gradient-impeding acoustic meta-surfaces publication-title: Sci. Rep. – volume: 255 year: 2021 ident: b0730 article-title: Three-dimensional printing of locally resonant carbon-fiber composite metastructures for attenuation of broadband vibration publication-title: Compos. Struct. – volume: 345 start-page: 647 year: 2014 end-page: 650 ident: b0055 article-title: Using origami design principles to fold reprogrammable mechanical metamaterials publication-title: Science – volume: 97 year: 2010 ident: b0615 article-title: Subwavelength imaging by a simple planar acoustic superlens publication-title: Appl. Phys. Lett. – volume: 211 year: 2023 ident: b0450 article-title: Multiband ventilation barriers enabled by space-coiling acoustic metamaterials publication-title: Appl. Acoust. – volume: 47 start-page: 2075 year: 1999 end-page: 2084 ident: b0015 article-title: Magnetism from conductors and enhanced non-linear phenomena publication-title: IEEE Trans. Microw. Theory Tech. – volume: 13 start-page: 352 year: 2014 end-page: 355 ident: b0480 article-title: Three-dimensional broadband omnidirectional acoustic ground cloak publication-title: Nat. Mater. – volume: 47 year: 2021 ident: b0715 article-title: Development of functionally graded metamaterial using selective polymerization via digital light processing additive manufacturing publication-title: Addit. Manuf. – volume: 51 start-page: 2780 year: 1995 end-page: 2789 ident: b0245 article-title: Elastic-wave propagation through disordered and/or absorptive layered systems publication-title: Phys. Rev. B – volume: 14 start-page: 869 year: 2023 ident: b0835 article-title: Acoustic metamaterials-driven transdermal drug delivery for rapid and on-demand management of acute disease publication-title: Nat. Commun. – reference: K.-L. Koai, T. Yang, J. Chen, The muffling effect of Helmholtz resonator attachments to a gas flow path, in: International Compressor Engineering Conference, West Lafayette, Indiana, July 23–26, 1996. – volume: 11 year: 2007 ident: b0035 article-title: Acoustic metamaterials for sound focusing and confinement publication-title: J. Phys. – volume: 115 year: 2019 ident: b0550 article-title: Aerogel-based metasurfaces for perfect acoustic energy absorption publication-title: Appl. Phys. Lett. – volume: 106 year: 2015 ident: b0415 article-title: Active control of membrane-type acoustic metamaterial by electric field publication-title: Appl. Phys. Lett. – volume: 78 start-page: 1 year: 2014 end-page: 6 ident: b0535 article-title: The acoustic performance of ventilated window with quarter-wave resonators and membrane absorber publication-title: Appl. Acoust. – volume: 122 year: 2023 ident: b0785 article-title: Acoustic metamaterial absorbers: the path to commercialization publication-title: Appl. Phys. Lett. – volume: 172 start-page: 102 year: 2019 end-page: 120 ident: b0485 article-title: Systematic design and realization of double-negative acoustic metamaterials by topology optimization publication-title: Acta Mater. – volume: 7 year: 2017 ident: b0605 article-title: Design and demonstration of an underwater acoustic carpet cloak publication-title: Sci. Rep. – volume: 10 start-page: 565 year: 2011 end-page: 566 ident: b0040 article-title: Metamaterials: neither solid nor liquid publication-title: Nat. Mater. – volume: 109 year: 2011 ident: b0380 article-title: Membrane-type metamaterials: transmission loss of multi-celled arrays publication-title: J. Appl. Phys. – volume: 35 year: 2020 ident: b0305 article-title: Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation publication-title: Extreme Mech. Lett. – volume: 132 year: 2020 ident: b0640 article-title: Subwavelength acoustic focusing within multi-breadth bands with a window-shape metasurface publication-title: EPL – volume: 378 year: 2014 ident: b0620 article-title: Flat acoustic lens by acoustic grating with curled slits publication-title: Phys. Lett. A – start-page: 29 year: 2013 end-page: 31 ident: b0690 article-title: 3D printing: a new technology publication-title: 3D Printing: A New Technology – volume: 52 year: 2018 ident: b0665 article-title: Extraordinary sound transmission through geometrical mismatched channels based on near-zero bulk modulus and Fabry-Pérot resonance publication-title: J. Phys. D: Appl. Phys. – volume: 99 year: 2019 ident: b0350 article-title: Multifunctional acoustic metasurface based on an array of Helmholtz resonators publication-title: Phys. Rev. B – volume: 121 year: 2017 ident: b0425 article-title: Experimental demonstration of one-dimensional active platetype acoustic metamaterial with adaptive programmable density publication-title: J. Appl. Phys. – volume: 6 year: 2016 ident: b0420 article-title: A tunable acoustic metamaterial with double-negativity driven by electromagnets publication-title: Sci. Rep. – year: 2000 ident: b0010 article-title: Fundamentals of Acoustics – volume: 10 year: 2008 ident: b0570 article-title: Acoustic cloaking in two dimensions: a feasible approach publication-title: New J. Phys. – volume: 116 year: 2014 ident: b0645 article-title: Subwavelength acoustic focusing by surface-wave-resonance enhanced transmission in doubly negative acoustic metamaterials publication-title: J. Appl. Phys. – volume: 541 start-page: 347 year: 2017 end-page: 352 ident: b0060 article-title: Rational design of reconfigurable prismatic architected materials publication-title: Nature – volume: 101 year: 2008 ident: b0120 article-title: Membrane-type acoustic metamaterial with negative dynamic mass publication-title: Phys. Rev. Lett. – volume: 13 year: 2020 ident: b0795 article-title: Broadband acoustic ventilation barriers publication-title: Phys. Rev. Appl. – volume: 548 year: 2023 ident: b0310 article-title: Tunable underwater low-frequency sound absorption via locally resonant piezoelectric metamaterials publication-title: J. Sound Vib. – volume: 46 year: 2013 ident: b0295 article-title: Double-negative acoustic metamaterial based on meta-molecule publication-title: J. Phys. D: Appl. Phys. – volume: 88 start-page: 1 year: 2013 end-page: 8 ident: b0475 article-title: Tunable active acoustic metamaterials publication-title: Phys. Rev. B - Condensed Matter Mater. Phys. – volume: 292 year: 2022 ident: b0850 article-title: Laminated plate-type acoustic metamaterials with Willis coupling effects for broadband low-frequency sound insulation publication-title: Compos. Struct. – volume: 110 year: 2013 ident: b0445 article-title: Measurement of a broadband negative index with space coiling acoustic metamaterials publication-title: Phys. Rev. Lett. – volume: 112 year: 2018 ident: b0600 article-title: Experimental demonstration of three-dimensional broadband underwater acoustic carpet cloak publication-title: Appl. Phys. Lett. – volume: 112 year: 2018 ident: b0635 article-title: Sharp acoustic vortex focusing by Fresnel-spiral zone plates publication-title: Appl. Phys. Lett. – volume: 110 year: 2011 ident: b0385 article-title: Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses publication-title: J. Appl. Phys. – volume: 85 start-page: 341 year: 2004 ident: b0105 article-title: Negative refraction of acoustic waves in two-dimensional phononic crystals publication-title: Appl. Phys. Lett. – volume: 74 year: 2006 ident: b0260 article-title: Microscale multiple scattering of coherent surface acoustic wave packets probed with gigahertz time-reversal acoustics publication-title: Phys. Rev. E – volume: 167 year: 2020 ident: b0790 article-title: Novel plenum window with sonic crystals for indoor noise control publication-title: Appl. Acoust. – volume: 118 year: 2015 ident: b0150 article-title: Controlling sound transmission with density-near-zero acoustic membrane network publication-title: J. Appl. Phys. – volume: 139 year: 2017 ident: b0300 article-title: Metastructure with piezoelectric element for simultaneous vibration suppression and energy harvesting publication-title: J. Vib. Acoust. – reference: A. Intissar, On non self adjoint models on the guided acoustic wave of finite length and on of the interaction between a vibrating structure and a fluid, in: Spectral theory of non self-adjoint operators with compact resolvent and applications to Gribov-Intissar, 2020. – year: 2023 ident: b0780 article-title: Acoustic metamaterials based on polymer sheets: from material design to applications as sound insulators and vibration dampers publication-title: Polym. J. – volume: 44 year: 2021 ident: b0495 article-title: Ultralow-frequency tunable acoustic metamaterials through tuning gauge pressure and gas temperature publication-title: Extreme Mech. Lett. – volume: 94 year: 2016 ident: b0585 article-title: Acoustic carpet cloak based on an ultrathin metasurface publication-title: Phys. Rev. B – volume: 7 start-page: 252 year: 2017 ident: b0395 article-title: Low-frequency acoustic properties of bilayer membrane acoustic metamaterial with magnetic oscillator publication-title: Theor. Appl. Mech. Lett. – volume: 9 year: 2007 ident: b0460 article-title: One path to acoustic cloaking publication-title: New J. Phys. – volume: 104 year: 2010 ident: b0200 article-title: Composite acoustic medium with simultaneously negative density and modulus publication-title: Phys. Rev. Lett. – volume: 10 year: 2018 ident: b0595 article-title: Resonant beam steering and carpet cloaking using an acoustic transformational metascreen publication-title: Phys. Rev. Appl. – volume: 232 year: 2022 ident: b0185 article-title: Broadband acoustic meta-liner with metal foam approaching causality-governed minimal thickness publication-title: Int. J. Mech. Sci. – volume: 11 year: 2009 ident: b0195 article-title: Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density publication-title: New J. Phys. – volume: 1 start-page: 281 year: 2019 ident: b0170 article-title: Topological phases in acoustic and mechanical systems publication-title: Nat. Rev. Phys. – volume: 423 start-page: 322 year: 2018 end-page: 339 ident: b0165 article-title: Space-coiling fractal metamaterial with multi-bandgaps on subwavelength scale publication-title: J. Sound Vib. – volume: 16 year: 2023 ident: b0190 article-title: Deep-learning-based acoustic metamaterial design for attenuating structure-borne noise in auditory frequency bands publication-title: Materials – volume: 68 year: 2019 ident: b0745 article-title: Research advances in acoustic metamaterials publication-title: Acta Phys. Sin. – volume: 16 year: 2023 ident: b0515 article-title: Effects of aperture shape on absorption property of acoustic metamaterial of parallel-connection Helmholtz resonator publication-title: Materials – volume: 176 start-page: 595 year: 2017 end-page: 599 ident: b0720 article-title: Implementation of the additive PolyJet technology to the development and fabricating the samples of the acoustic metamaterials publication-title: Proc. Eng. – volume: 76 year: 2007 ident: b0265 article-title: Method for retrieving effective properties of locally resonant acoustic metamaterials publication-title: Phys. Rev. B – volume: 143 start-page: 995 year: 2018 end-page: 1002 ident: b0255 article-title: Multiple scattering and scattering cross sections publication-title: J. Acoust. Soc. Am. – volume: 13 year: 2023 ident: b0510 article-title: Ultrathin acoustic metamaterial as super absorber for broadband low-frequency underwater sound publication-title: Sci. Rep. – start-page: 319 year: 2001 end-page: 323 ident: b0225 article-title: Band structure of elastic waves in the two-dimensional periodic composites publication-title: Acta Acus. – volume: 108 year: 2012 ident: b0140 article-title: Extreme acoustic metamaterial by coiling up space publication-title: Phys. Rev. Lett. – volume: 10 start-page: 509 year: 1968 end-page: 514 ident: b0005 article-title: The electrodynamics of substances with simultaneously negative values of ɛ and μ publication-title: Sov. Phys. Usp. – volume: 12 start-page: 1920 year: 2018 end-page: 1927 ident: b0030 article-title: Optical anapole metamaterial publication-title: ACS Nano – volume: 238 year: 2023 ident: b0845 article-title: Acoustic metamaterials with controllable bandgap gates based on magnetorheological elastomers publication-title: Int. J. Mech. Sci. – volume: 16 year: 2021 ident: b0675 article-title: Broadband and intense sound transmission loss by a coupled-resonance acoustic metamaterial publication-title: Phys. Rev. Appl. – volume: 289 year: 2000 ident: b0095 article-title: Locally resonant sonic materials publication-title: Science – volume: 373 start-page: 4464 year: 2009 end-page: 4469 ident: b0400 article-title: Acoustic metamaterial with negative density publication-title: Phys. Lett. Sect. A: Gen. Atomic Solid State Phys. – volume: 113 year: 2018 ident: b0330 article-title: Broadband acoustic energy harvesting metasurface with coupled Helmholtz resonators publication-title: Appl. Phys. Lett. – volume: 259 year: 2023 ident: b0825 article-title: Modal sensitivity analysis of acoustic metamaterials for structural damage detection publication-title: Int. J. Mech. Sci. – volume: 11 year: 2009 ident: b0125 article-title: The structure of an active acoustic metamaterial with tunable effective density publication-title: New J. Phys. – volume: 63 year: 2020 ident: b0275 article-title: Multifunction switching by a flat structurally tunable acoustic metasurface for transmitted waves publication-title: Sci. China Phys. Mech. Astron. – volume: 36 year: 2020 ident: b0175 article-title: Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: round robin study publication-title: Addit. Manuf. – volume: 373 start-page: 1 year: 2016 end-page: 18 ident: b0410 article-title: A membrane-type acoustic metamaterial with adjustable acoustic properties publication-title: J. Sound Vib. – volume: 23 year: 2020 ident: b0810 article-title: Engineering acoustic metamaterials for sound absorption: from uniform to gradient structures publication-title: iScience – volume: 72 start-page: 71 year: 2011 end-page: 77 ident: b0390 article-title: Transmission loss of honeycomb sandwich structures with attached gas layers publication-title: Appl. Acoust. – year: 2019 ident: b0710 article-title: The influence of additive manufacturing processes on the performance of a periodic acoustic metamaterial publication-title: Int. J. Polym. Sci. – volume: 114 year: 2019 ident: b0590 article-title: Quasi-isotropic underwater acoustic carpet cloak based on latticed pentamode metafluid publication-title: Appl. Phys. Lett. – year: 2022 ident: b0695 article-title: Acoustic performances of polymers hierarchical structure produced with material jetting technology publication-title: KEM – volume: 343 start-page: 1120 year: 2016 end-page: 1126 ident: b0075 article-title: Acoustic metamaterials: from local resonances to broad horizons publication-title: Science – volume: 44 year: 2011 ident: b0320 article-title: Multi-band and broadband acoustic metamaterial with resonant structures publication-title: J. Phys. D: Appl. Phys. – volume: 103 year: 2013 ident: b0325 article-title: A wideband acoustic energy harvester using a three degree-of-freedom architecture publication-title: Appl. Phys. Lett. – volume: 85 year: 2000 ident: b0020 article-title: Negative refraction makes a perfect lens publication-title: Phys. Rev. Lett. – volume: 100 start-page: 318 year: 2016 end-page: 328 ident: b0700 article-title: Electrically functional 3D-architectured graphene/SiC composites publication-title: Carbon – volume: 43 year: 2021 ident: b0815 article-title: Ultraslow medium with an acoustic membrane-like undamped dynamic vibration absorber for low-frequency isolation publication-title: Extreme Mech. Lett. – volume: 49 start-page: 2313 year: 1994 end-page: 2322 ident: b0220 article-title: Theory of acoustic band structure of periodic elastic composites publication-title: Phys. Rev. B – volume: 188 year: 2022 ident: b0440 article-title: Controlling sound transmission by space-coiling fractal acoustic metamaterials with broadband on the subwavelength scale publication-title: Appl. Acoust. – volume: 13 start-page: 873 year: 2014 end-page: 878 ident: b0145 article-title: Acoustic metasurface with hybrid resonances publication-title: Nat. Mater. – volume: 12 start-page: 1124 year: 2016 ident: b0155 article-title: Acoustic topological insulator and robust one-way sound transport publication-title: Nat. Phys. – volume: 85 year: 2014 ident: b0335 article-title: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams publication-title: Rev. Sci. Instrum. – volume: 49 year: 2016 ident: b0580 article-title: Ultrathin skin cloaks with metasurfaces for audible sound publication-title: J. Phys. D: Appl. Phys. – volume: 9 year: 2018 ident: b0630 article-title: Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens publication-title: Nat. Commun. – volume: 3 year: 2013 ident: b0660 article-title: Space-coiling metamaterials with double negativity and conical dispersion publication-title: Sci. Rep. – volume: 71 year: 2019 ident: b0070 article-title: Acoustic metamaterials and phononic crystals: recent advances and future directions publication-title: Appl. Mech. Rev. – volume: 46 year: 2021 ident: b0610 article-title: Self-adaptive acoustic cloak enabled by soft mechanical metamaterials publication-title: Extreme Mech. Lett. – volume: 381 start-page: 3112 year: 2017 end-page: 3118 ident: b0670 article-title: The spiral-labyrinthine acoustic metamaterial by coiling up space publication-title: Phys. Lett. A – volume: 292 start-page: 77 year: 2001 end-page: 79 ident: b0100 article-title: Experimental verification of a negative index of refraction publication-title: Science – volume: 112 year: 2012 ident: b0470 article-title: Experimental characterization of active acoustic metamaterial cell with controllable dynamic density publication-title: J. Appl. Phys. – start-page: 1 year: 2016 end-page: 9 ident: b0345 article-title: Temperature-controlled tunable acoustic metamaterial with active band gap and negative bulk modulus publication-title: Appl. Acoust. – volume: 16 year: 2023 ident: b0505 article-title: Study on sound-insulation performance of an acoustic metamaterial of air-permeable multiple-parallel-connection folding chambers by acoustic finite element simulation publication-title: Materials – volume: 141 start-page: EL538 year: 2017 end-page: EL542 ident: b0725 article-title: Three-dimensional-printed membrane-type acoustic metamaterial for low-frequency sound attenuation publication-title: J. Acoust. Soc. Am. – reference: M.L. Hawkins, A Generalization of Snell's Law, Naval Postgraduate School (U.S.), Department of Mathematics, Monterey, California, 1990 (Master Science Thesis). – volume: 125 year: 2019 ident: b0280 article-title: Broadband acoustic converging and asymmetric converging based on thermoacoustic phased arrays publication-title: J. Appl. Phys. – volume: 9 start-page: 1139 year: 2020 end-page: 1160 ident: b0775 article-title: 3D and 4D printing for optics and metaphotonics publication-title: Nanophotonics – volume: 106 year: 2011 ident: b0135 article-title: Broadband acoustic cloak for ultrasound waves publication-title: Phys. Rev. Lett. – volume: 5 start-page: 452 year: 2006 end-page: 456 ident: b0115 article-title: Ultrasonic metamaterials with negative modulus publication-title: Nat. Mater. – volume: 15 year: 2022 ident: b0500 article-title: Optimal design of acoustic metamaterial of multiple parallel hexagonal Helmholtz resonators by combination of finite element simulation and cuckoo search algorithm publication-title: Materials – volume: 63 start-page: 2399 year: 2021 end-page: 2423 ident: b0180 article-title: Design of one-dimensional acoustic metamaterials using machine learning and cell concatenation publication-title: Struct. Multidiscip. Optim. – volume: 9 start-page: 1 year: 2019 end-page: 8 ident: b0405 article-title: Low-frequency perfect sound absorption achieved by a modulus-near-zero metamaterial publication-title: Sci. Rep. – volume: 67 start-page: 2295 year: 1991 ident: b0025 article-title: Photonic band structure: the face-centered-cubic case employing nonspherical atoms publication-title: Phys. Rev. Lett. – volume: 157 year: 2020 ident: b0490 article-title: A tunable metamaterial muffler with a membrane structure based on Helmholtz cavities publication-title: Appl. Acoust. – volume: 667 year: 2023 ident: b0520 article-title: Labyrinth acoustic metamaterials with fractal structure based on Hilbert curve publication-title: Phys. B Condens. Matter – volume: 478 year: 2022 ident: b0560 article-title: Moth wings as sound absorber metasurface publication-title: Proc. R. Soc. A – volume: 113 year: 2018 ident: b0285 article-title: Compact acoustic lens composed of annular cavities covered by a membrane publication-title: Appl. Phys. Lett. – volume: 107 year: 2015 ident: b0540 article-title: Subwavelength total acoustic absorption with degenerate resonators publication-title: Appl. Phys. Lett. – volume: 5 start-page: 653 year: 2023 end-page: 675 ident: b0735 article-title: Exploratory acoustic investigation of customizable 3D-printed hybrid acoustic materials (HAMs) through interlaboratory impedance tube measurements publication-title: Acoustics – volume: 205 year: 2023 ident: b0525 article-title: Sound insulation performance of double membrane-type acoustic metamaterials combined with a Helmholtz resonator publication-title: Appl. Acoust. – reference: N.R. Mahesh, N. Prita, Experimental and theoretical investigation of acoustic metamaterial with negative bulk modulus, in: Proceedings of 2011 COMSOL Conference, 2011, – volume: 198 year: 2022 ident: b0555 article-title: Near-perfect sound absorptions in low-frequencies by varying compositions of porous labyrinthine acoustic metamaterial publication-title: Appl. Acoust. – volume: 67 start-page: 2069 year: 2022 end-page: 2075 ident: b0830 article-title: Observation of fractal higher-order topological states in acoustic metamaterials publication-title: Sci. Bull. – volume: 7 year: 2020 ident: b0080 article-title: Recent advances in acoustic metamaterials publication-title: Adv. Sci. – volume: 4 year: 2014 ident: b0680 article-title: Anisotropic complementary acoustic metamaterial for canceling out aberrating layers publication-title: Phys. Rev. X – reference: R.G. Oldfield, Improved membrane absorbers, 2006 (Master's thesis), Retrieved from – volume: 8 year: 2017 ident: b0160 article-title: Observation of acoustic Dirac-like cone and double zero refractive index publication-title: Nat. Commun. – volume: 52 start-page: 1943 year: 2003 end-page: 1947 ident: b0205 article-title: Finite difference time domain method for the study of band gap in two-dimensional phononic crystals publication-title: Acta Phys. Sin. – volume: 18 year: 2022 ident: b0270 article-title: Acoustic switch via Kirigami metasurface publication-title: Phys. Rev. Appl. – volume: 120 year: 2017 ident: b0435 article-title: A space-coiled acoustic metamaterial with tunable low-frequency sound absorption publication-title: EPL – volume: 170 start-page: 621 year: 1994 end-page: 636 ident: b0370 article-title: Acoustic performance of membrane absorbers publication-title: J. Sound Vib. – volume: 8 start-page: 931 year: 2009 end-page: 934 ident: b0655 article-title: Experimental demonstration of an acoustic magnifying hyperlens publication-title: Nat. Mater. – volume: 108 year: 2010 ident: b0375 article-title: Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials publication-title: J. Appl. Phys. – start-page: 154 year: 2003 end-page: 157 ident: b0230 article-title: A study of the band structure in two-dimensional phononic crystals based on plane-wave algorithm publication-title: Acta Phys. Sin. – volume: 92 year: 2008 ident: b0575 article-title: A multilayer structured acoustic cloak with homogeneous isotropic materials publication-title: Appl. Phys. Lett. – reference: . – reference: C. Casarini, B. Tiller, C. Mineo, C.N. MacLeod, J.F.C. Windmill, J.C. Jackson, Enhancing the sound absorption of small-scale 3D printed acoustic metamaterials based on helmholtz resonators, in: IEEE Sensors Conference 2017, 2018. – volume: 102 year: 2009 ident: b0650 article-title: Focusing ultrasound with an acoustic metamaterial network publication-title: Phys. Rev. Lett. – volume: 7 year: 2017 ident: b0545 article-title: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound publication-title: Sci. Rep. – volume: 153 year: 2021 ident: b0820 article-title: Real-time steering of curved sound beams in a feedback-based topological acoustic metamaterial publication-title: Mech. Syst. Sig. Process. – volume: 10 start-page: 1 year: 2020 end-page: 10 ident: b0430 article-title: Subwavelength broadband sound absorber based on a composite metasurface publication-title: Sci. Rep. – volume: 239 year: 2023 ident: b0360 article-title: Origami-based acoustic metamaterial for tunable and broadband sound attenuation publication-title: Int. J. Mech. Sci. – volume: 158 start-page: 377 year: 1992 end-page: 382 ident: b0090 article-title: Elastic and acoustic wave band structure publication-title: J. Sound Vib. – volume: 312 start-page: 1780 year: 2006 end-page: 1782 ident: b0565 article-title: Controlling electromagnetic fields publication-title: Science – volume: 70 year: 2004 ident: b0250 article-title: Multiple scattering of acoustic waves and porous absorbing media publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. – volume: 73 start-page: 53 year: 2006 ident: b0290 article-title: Wave propagations of a periodic sandwich beam by FEM and the transfer matrix method publication-title: Compos. Struct. – volume: 6 year: 2016 ident: b0625 article-title: Multi-frequency acoustic metasurface for extraordinary reflection and sound focusing publication-title: AIP Adv. – volume: 162 start-page: 333 year: 1993 end-page: 343 ident: b0240 article-title: Response of a multi-layered infinite plate to an oblique plane wave by means of transfer matrices publication-title: J. Sound Vib. – volume: 5 start-page: 1007 year: 2019 end-page: 1017 ident: b0045 article-title: Mechanical metamaterials publication-title: Engineering – volume: 381 start-page: 3112 issue: 36 year: 2017 ident: 10.1016/j.mseb.2024.117384_b0670 article-title: The spiral-labyrinthine acoustic metamaterial by coiling up space publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2017.07.041 – volume: 373 start-page: 4464 issue: 48 year: 2009 ident: 10.1016/j.mseb.2024.117384_b0400 article-title: Acoustic metamaterial with negative density publication-title: Phys. Lett. Sect. A: Gen. Atomic Solid State Phys. doi: 10.1016/j.physleta.2009.10.013 – volume: 76 year: 2007 ident: 10.1016/j.mseb.2024.117384_b0265 article-title: Method for retrieving effective properties of locally resonant acoustic metamaterials publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.144302 – volume: 113 issue: 18 year: 2018 ident: 10.1016/j.mseb.2024.117384_b0285 article-title: Compact acoustic lens composed of annular cavities covered by a membrane publication-title: Appl. Phys. Lett. doi: 10.1063/1.5043600 – volume: 92 issue: 15 year: 2008 ident: 10.1016/j.mseb.2024.117384_b0575 article-title: A multilayer structured acoustic cloak with homogeneous isotropic materials publication-title: Appl. Phys. Lett. doi: 10.1063/1.2903500 – volume: 103 year: 2013 ident: 10.1016/j.mseb.2024.117384_b0325 article-title: A wideband acoustic energy harvester using a three degree-of-freedom architecture publication-title: Appl. Phys. Lett. doi: 10.1063/1.4826257 – volume: 67 start-page: 2069 issue: 20 year: 2022 ident: 10.1016/j.mseb.2024.117384_b0830 article-title: Observation of fractal higher-order topological states in acoustic metamaterials publication-title: Sci. Bull. doi: 10.1016/j.scib.2022.09.020 – volume: 205 year: 2023 ident: 10.1016/j.mseb.2024.117384_b0525 article-title: Sound insulation performance of double membrane-type acoustic metamaterials combined with a Helmholtz resonator publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2023.109297 – year: 2000 ident: 10.1016/j.mseb.2024.117384_b0010 – volume: 78 start-page: 1 year: 2014 ident: 10.1016/j.mseb.2024.117384_b0535 article-title: The acoustic performance of ventilated window with quarter-wave resonators and membrane absorber publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2013.09.015 – year: 2023 ident: 10.1016/j.mseb.2024.117384_b0455 article-title: Sound absorption of space-coiled metamaterials with soft walls publication-title: Int. J. Mech. Sci. – volume: 132 issue: 3 year: 2020 ident: 10.1016/j.mseb.2024.117384_b0640 article-title: Subwavelength acoustic focusing within multi-breadth bands with a window-shape metasurface publication-title: EPL doi: 10.1209/0295-5075/132/38003 – volume: 3 year: 2013 ident: 10.1016/j.mseb.2024.117384_b0660 article-title: Space-coiling metamaterials with double negativity and conical dispersion publication-title: Sci. Rep. doi: 10.1038/srep01614 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.mseb.2024.117384_b0430 article-title: Subwavelength broadband sound absorber based on a composite metasurface publication-title: Sci. Rep. doi: 10.1038/s41598-020-70714-7 – volume: 120 issue: 5 year: 2017 ident: 10.1016/j.mseb.2024.117384_b0435 article-title: A space-coiled acoustic metamaterial with tunable low-frequency sound absorption publication-title: EPL doi: 10.1209/0295-5075/120/54001 – volume: 99 year: 2019 ident: 10.1016/j.mseb.2024.117384_b0350 article-title: Multifunctional acoustic metasurface based on an array of Helmholtz resonators publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.174109 – volume: 68 issue: 19 year: 2019 ident: 10.1016/j.mseb.2024.117384_b0745 article-title: Research advances in acoustic metamaterials publication-title: Acta Phys. Sin. doi: 10.7498/aps.68.20190850 – volume: 13 year: 2023 ident: 10.1016/j.mseb.2024.117384_b0510 article-title: Ultrathin acoustic metamaterial as super absorber for broadband low-frequency underwater sound publication-title: Sci. Rep. – volume: 109 issue: 10 year: 2011 ident: 10.1016/j.mseb.2024.117384_b0380 article-title: Membrane-type metamaterials: transmission loss of multi-celled arrays publication-title: J. Appl. Phys. doi: 10.1063/1.3583656 – volume: 63 start-page: 2399 issue: 5 year: 2021 ident: 10.1016/j.mseb.2024.117384_b0180 article-title: Design of one-dimensional acoustic metamaterials using machine learning and cell concatenation publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-020-02819-6 – volume: 2 year: 2014 ident: 10.1016/j.mseb.2024.117384_b0770 article-title: Pentamode metamaterials with independently tailored bulk modulus and mass density publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.2.054007 – volume: 108 year: 2010 ident: 10.1016/j.mseb.2024.117384_b0130 article-title: Two-dimensional acoustic metamaterial with negative modulus publication-title: J. Appl. Phys. doi: 10.1063/1.3493155 – volume: 104 issue: 5 year: 2010 ident: 10.1016/j.mseb.2024.117384_b0200 article-title: Composite acoustic medium with simultaneously negative density and modulus publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.054301 – volume: 10 start-page: 565 issue: 8 year: 2011 ident: 10.1016/j.mseb.2024.117384_b0040 article-title: Metamaterials: neither solid nor liquid publication-title: Nat. Mater. doi: 10.1038/nmat3084 – volume: 143 start-page: 995 issue: 2 year: 2018 ident: 10.1016/j.mseb.2024.117384_b0255 article-title: Multiple scattering and scattering cross sections publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5024361 – volume: 7 year: 2017 ident: 10.1016/j.mseb.2024.117384_b0605 article-title: Design and demonstration of an underwater acoustic carpet cloak publication-title: Sci. Rep. doi: 10.1038/s41598-017-00779-4 – volume: 255 year: 2021 ident: 10.1016/j.mseb.2024.117384_b0730 article-title: Three-dimensional printing of locally resonant carbon-fiber composite metastructures for attenuation of broadband vibration publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.112949 – volume: 211 year: 2023 ident: 10.1016/j.mseb.2024.117384_b0450 article-title: Multiband ventilation barriers enabled by space-coiling acoustic metamaterials publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2023.109565 – volume: 541 start-page: 347 issue: 7637 year: 2017 ident: 10.1016/j.mseb.2024.117384_b0060 article-title: Rational design of reconfigurable prismatic architected materials publication-title: Nature doi: 10.1038/nature20824 – volume: 12 start-page: 1124 year: 2016 ident: 10.1016/j.mseb.2024.117384_b0155 article-title: Acoustic topological insulator and robust one-way sound transport publication-title: Nat. Phys. doi: 10.1038/nphys3867 – volume: 74 year: 2006 ident: 10.1016/j.mseb.2024.117384_b0260 article-title: Microscale multiple scattering of coherent surface acoustic wave packets probed with gigahertz time-reversal acoustics publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.026604 – volume: 13 start-page: 352 issue: 4 year: 2014 ident: 10.1016/j.mseb.2024.117384_b0480 article-title: Three-dimensional broadband omnidirectional acoustic ground cloak publication-title: Nat. Mater. doi: 10.1038/nmat3901 – volume: 112 issue: 20 year: 2018 ident: 10.1016/j.mseb.2024.117384_b0635 article-title: Sharp acoustic vortex focusing by Fresnel-spiral zone plates publication-title: Appl. Phys. Lett. doi: 10.1063/1.5029424 – volume: 71 issue: 4 year: 2019 ident: 10.1016/j.mseb.2024.117384_b0070 article-title: Acoustic metamaterials and phononic crystals: recent advances and future directions publication-title: Appl. Mech. Rev. – volume: 36 year: 2020 ident: 10.1016/j.mseb.2024.117384_b0175 article-title: Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: round robin study publication-title: Addit. Manuf. – volume: 16 issue: 12 year: 2023 ident: 10.1016/j.mseb.2024.117384_b0505 article-title: Study on sound-insulation performance of an acoustic metamaterial of air-permeable multiple-parallel-connection folding chambers by acoustic finite element simulation publication-title: Materials doi: 10.3390/ma16124298 – volume: 292 start-page: 77 year: 2001 ident: 10.1016/j.mseb.2024.117384_b0100 article-title: Experimental verification of a negative index of refraction publication-title: Science doi: 10.1126/science.1058847 – volume: 114 year: 2019 ident: 10.1016/j.mseb.2024.117384_b0590 article-title: Quasi-isotropic underwater acoustic carpet cloak based on latticed pentamode metafluid publication-title: Appl. Phys. Lett. doi: 10.1063/1.5085568 – volume: 1 start-page: 281 year: 2019 ident: 10.1016/j.mseb.2024.117384_b0170 article-title: Topological phases in acoustic and mechanical systems publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0030-x – volume: 7 year: 2017 ident: 10.1016/j.mseb.2024.117384_b0545 article-title: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound publication-title: Sci. Rep. – volume: 44 year: 2011 ident: 10.1016/j.mseb.2024.117384_b0320 article-title: Multi-band and broadband acoustic metamaterial with resonant structures publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/44/21/215402 – volume: 97 issue: 17 year: 2010 ident: 10.1016/j.mseb.2024.117384_b0615 article-title: Subwavelength imaging by a simple planar acoustic superlens publication-title: Appl. Phys. Lett. doi: 10.1063/1.3507893 – volume: 122 issue: 26 year: 2023 ident: 10.1016/j.mseb.2024.117384_b0785 article-title: Acoustic metamaterial absorbers: the path to commercialization publication-title: Appl. Phys. Lett. doi: 10.1063/5.0147941 – volume: 112 issue: 8 year: 2012 ident: 10.1016/j.mseb.2024.117384_b0470 article-title: Experimental characterization of active acoustic metamaterial cell with controllable dynamic density publication-title: J. Appl. Phys. doi: 10.1063/1.4759327 – volume: 9 start-page: 1139 issue: 5 year: 2020 ident: 10.1016/j.mseb.2024.117384_b0775 article-title: 3D and 4D printing for optics and metaphotonics publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0483 – volume: 373 start-page: 1 year: 2016 ident: 10.1016/j.mseb.2024.117384_b0410 article-title: A membrane-type acoustic metamaterial with adjustable acoustic properties publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.03.025 – ident: 10.1016/j.mseb.2024.117384_b0740 – volume: 9 issue: 3 year: 2007 ident: 10.1016/j.mseb.2024.117384_b0460 article-title: One path to acoustic cloaking publication-title: New J. Phys. doi: 10.1088/1367-2630/9/3/045 – volume: 49 issue: 22 year: 2016 ident: 10.1016/j.mseb.2024.117384_b0580 article-title: Ultrathin skin cloaks with metasurfaces for audible sound publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/49/22/225302 – volume: 198 year: 2022 ident: 10.1016/j.mseb.2024.117384_b0555 article-title: Near-perfect sound absorptions in low-frequencies by varying compositions of porous labyrinthine acoustic metamaterial publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2022.108974 – volume: 2 issue: 1 year: 2017 ident: 10.1016/j.mseb.2024.117384_b0050 article-title: Flexible mechanical metamaterials publication-title: Nat. Rev. Mater. – volume: 108 year: 2012 ident: 10.1016/j.mseb.2024.117384_b0140 article-title: Extreme acoustic metamaterial by coiling up space publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.114301 – volume: 423 start-page: 322 year: 2018 ident: 10.1016/j.mseb.2024.117384_b0165 article-title: Space-coiling fractal metamaterial with multi-bandgaps on subwavelength scale publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2018.02.060 – volume: 172 start-page: 102 year: 2019 ident: 10.1016/j.mseb.2024.117384_b0485 article-title: Systematic design and realization of double-negative acoustic metamaterials by topology optimization publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.04.042 – volume: 13 start-page: 848 year: 2014 ident: 10.1016/j.mseb.2024.117384_b0530 article-title: Nearly perfect sound absorbers publication-title: Nat. Mater. doi: 10.1038/nmat4067 – volume: 43 year: 2021 ident: 10.1016/j.mseb.2024.117384_b0815 article-title: Ultraslow medium with an acoustic membrane-like undamped dynamic vibration absorber for low-frequency isolation publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2021.101203 – volume: 112 year: 2018 ident: 10.1016/j.mseb.2024.117384_b0600 article-title: Experimental demonstration of three-dimensional broadband underwater acoustic carpet cloak publication-title: Appl. Phys. Lett. doi: 10.1063/1.5026199 – volume: 11 issue: 1 year: 2009 ident: 10.1016/j.mseb.2024.117384_b0195 article-title: Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density publication-title: New J. Phys. doi: 10.1088/1367-2630/11/1/013003 – volume: 10 year: 2008 ident: 10.1016/j.mseb.2024.117384_b0570 article-title: Acoustic cloaking in two dimensions: a feasible approach publication-title: New J. Phys. doi: 10.1088/1367-2630/10/6/063015 – volume: 158 start-page: 377 year: 1992 ident: 10.1016/j.mseb.2024.117384_b0090 article-title: Elastic and acoustic wave band structure publication-title: J. Sound Vib. doi: 10.1016/0022-460X(92)90059-7 – volume: 6 year: 2016 ident: 10.1016/j.mseb.2024.117384_b0420 article-title: A tunable acoustic metamaterial with double-negativity driven by electromagnets publication-title: Sci. Rep. – volume: 16 year: 2021 ident: 10.1016/j.mseb.2024.117384_b0675 article-title: Broadband and intense sound transmission loss by a coupled-resonance acoustic metamaterial publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.16.054018 – volume: 85 year: 2000 ident: 10.1016/j.mseb.2024.117384_b0020 article-title: Negative refraction makes a perfect lens publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.3966 – volume: 226 year: 2022 ident: 10.1016/j.mseb.2024.117384_b0840 article-title: A novel auxetic acoustic metamaterial plate with tunable bandgap publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.107414 – volume: 118 issue: 2 year: 2015 ident: 10.1016/j.mseb.2024.117384_b0150 article-title: Controlling sound transmission with density-near-zero acoustic membrane network publication-title: J. Appl. Phys. doi: 10.1063/1.4922669 – volume: 7 start-page: 252 year: 2017 ident: 10.1016/j.mseb.2024.117384_b0395 article-title: Low-frequency acoustic properties of bilayer membrane acoustic metamaterial with magnetic oscillator publication-title: Theor. Appl. Mech. Lett. doi: 10.1016/j.taml.2017.06.001 – volume: 35 year: 2020 ident: 10.1016/j.mseb.2024.117384_b0305 article-title: Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2019.100623 – volume: 5 start-page: 653 year: 2023 ident: 10.1016/j.mseb.2024.117384_b0735 article-title: Exploratory acoustic investigation of customizable 3D-printed hybrid acoustic materials (HAMs) through interlaboratory impedance tube measurements publication-title: Acoustics doi: 10.3390/acoustics5030040 – volume: 167 year: 2020 ident: 10.1016/j.mseb.2024.117384_b0790 article-title: Novel plenum window with sonic crystals for indoor noise control publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107390 – volume: 110 issue: 17 year: 2013 ident: 10.1016/j.mseb.2024.117384_b0445 article-title: Measurement of a broadband negative index with space coiling acoustic metamaterials publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.175501 – start-page: 154 year: 2003 ident: 10.1016/j.mseb.2024.117384_b0230 article-title: A study of the band structure in two-dimensional phononic crystals based on plane-wave algorithm publication-title: Acta Phys. Sin. – volume: 239 year: 2023 ident: 10.1016/j.mseb.2024.117384_b0360 article-title: Origami-based acoustic metamaterial for tunable and broadband sound attenuation publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.107872 – volume: 157 year: 2020 ident: 10.1016/j.mseb.2024.117384_b0490 article-title: A tunable metamaterial muffler with a membrane structure based on Helmholtz cavities publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2019.107022 – volume: 94 year: 2016 ident: 10.1016/j.mseb.2024.117384_b0585 article-title: Acoustic carpet cloak based on an ultrathin metasurface publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.014302 – volume: 47 year: 2021 ident: 10.1016/j.mseb.2024.117384_b0715 article-title: Development of functionally graded metamaterial using selective polymerization via digital light processing additive manufacturing publication-title: Addit. Manuf. – volume: 8 year: 2017 ident: 10.1016/j.mseb.2024.117384_b0160 article-title: Observation of acoustic Dirac-like cone and double zero refractive index publication-title: Nat. Commun. doi: 10.1038/ncomms14871 – volume: 121 issue: 12 year: 2017 ident: 10.1016/j.mseb.2024.117384_b0425 article-title: Experimental demonstration of one-dimensional active platetype acoustic metamaterial with adaptive programmable density publication-title: J. Appl. Phys. doi: 10.1063/1.4979020 – volume: 72 start-page: 71 issue: 2–3 year: 2011 ident: 10.1016/j.mseb.2024.117384_b0390 article-title: Transmission loss of honeycomb sandwich structures with attached gas layers publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2010.09.005 – volume: 32 issue: 5 year: 2022 ident: 10.1016/j.mseb.2024.117384_b0800 article-title: Modular design for acoustic metamaterials: low-frequency noise attenuation publication-title: Adv. Funct. Mater. – volume: 153 year: 2021 ident: 10.1016/j.mseb.2024.117384_b0820 article-title: Real-time steering of curved sound beams in a feedback-based topological acoustic metamaterial publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2020.107479 – volume: 9 year: 2018 ident: 10.1016/j.mseb.2024.117384_b0630 article-title: Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens publication-title: Nat. Commun. doi: 10.1038/s41467-018-07315-6 – volume: 47 start-page: 2075 issue: 11 year: 1999 ident: 10.1016/j.mseb.2024.117384_b0015 article-title: Magnetism from conductors and enhanced non-linear phenomena publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/22.798002 – volume: 548 year: 2023 ident: 10.1016/j.mseb.2024.117384_b0310 article-title: Tunable underwater low-frequency sound absorption via locally resonant piezoelectric metamaterials publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2022.117514 – year: 2019 ident: 10.1016/j.mseb.2024.117384_b0710 article-title: The influence of additive manufacturing processes on the performance of a periodic acoustic metamaterial publication-title: Int. J. Polym. Sci. doi: 10.1155/2019/7029143 – volume: 141 start-page: EL538 issue: 6 year: 2017 ident: 10.1016/j.mseb.2024.117384_b0725 article-title: Three-dimensional-printed membrane-type acoustic metamaterial for low-frequency sound attenuation publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4984623 – volume: 49 start-page: 2313 year: 1994 ident: 10.1016/j.mseb.2024.117384_b0220 article-title: Theory of acoustic band structure of periodic elastic composites publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.2313 – volume: 23 year: 2020 ident: 10.1016/j.mseb.2024.117384_b0810 article-title: Engineering acoustic metamaterials for sound absorption: from uniform to gradient structures publication-title: iScience – volume: 343 start-page: 1120 issue: 6173 year: 2016 ident: 10.1016/j.mseb.2024.117384_b0075 article-title: Acoustic metamaterials: from local resonances to broad horizons publication-title: Science – volume: 52 start-page: 1943 year: 2003 ident: 10.1016/j.mseb.2024.117384_b0205 article-title: Finite difference time domain method for the study of band gap in two-dimensional phononic crystals publication-title: Acta Phys. Sin. doi: 10.7498/aps.52.1943 – volume: 14 start-page: 869 year: 2023 ident: 10.1016/j.mseb.2024.117384_b0835 article-title: Acoustic metamaterials-driven transdermal drug delivery for rapid and on-demand management of acute disease publication-title: Nat. Commun. doi: 10.1038/s41467-023-36581-2 – volume: 101 year: 2008 ident: 10.1016/j.mseb.2024.117384_b0120 article-title: Membrane-type acoustic metamaterial with negative dynamic mass publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.204301 – volume: 10 start-page: 509 issue: 4 year: 1968 ident: 10.1016/j.mseb.2024.117384_b0005 article-title: The electrodynamics of substances with simultaneously negative values of ɛ and μ publication-title: Sov. Phys. Usp. doi: 10.1070/PU1968v010n04ABEH003699 – volume: 139 issue: 1 year: 2017 ident: 10.1016/j.mseb.2024.117384_b0300 article-title: Metastructure with piezoelectric element for simultaneous vibration suppression and energy harvesting publication-title: J. Vib. Acoust. doi: 10.1115/1.4034770 – volume: 106 issue: 9 year: 2015 ident: 10.1016/j.mseb.2024.117384_b0415 article-title: Active control of membrane-type acoustic metamaterial by electric field publication-title: Appl. Phys. Lett. doi: 10.1063/1.4913999 – ident: 10.1016/j.mseb.2024.117384_b0765 – volume: 11 year: 2007 ident: 10.1016/j.mseb.2024.117384_b0035 article-title: Acoustic metamaterials for sound focusing and confinement publication-title: J. Phys. – volume: 11 year: 2009 ident: 10.1016/j.mseb.2024.117384_b0125 article-title: The structure of an active acoustic metamaterial with tunable effective density publication-title: New J. Phys. doi: 10.1088/1367-2630/11/12/123010 – volume: 188 year: 2022 ident: 10.1016/j.mseb.2024.117384_b0440 article-title: Controlling sound transmission by space-coiling fractal acoustic metamaterials with broadband on the subwavelength scale publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108585 – volume: 5 start-page: 1007 issue: 5 year: 2019 ident: 10.1016/j.mseb.2024.117384_b0045 article-title: Mechanical metamaterials publication-title: Engineering – volume: 162 start-page: 333 year: 1993 ident: 10.1016/j.mseb.2024.117384_b0240 article-title: Response of a multi-layered infinite plate to an oblique plane wave by means of transfer matrices publication-title: J. Sound Vib. doi: 10.1006/jsvi.1993.1122 – volume: 125 issue: 2 year: 2019 ident: 10.1016/j.mseb.2024.117384_b0280 article-title: Broadband acoustic converging and asymmetric converging based on thermoacoustic phased arrays publication-title: J. Appl. Phys. doi: 10.1063/1.5055288 – volume: 70 year: 2004 ident: 10.1016/j.mseb.2024.117384_b0250 article-title: Multiple scattering of acoustic waves and porous absorbing media publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.70.026609 – volume: 113 year: 2018 ident: 10.1016/j.mseb.2024.117384_b0330 article-title: Broadband acoustic energy harvesting metasurface with coupled Helmholtz resonators publication-title: Appl. Phys. Lett. doi: 10.1063/1.5041731 – volume: 130 start-page: 2746 issue: 5 year: 2011 ident: 10.1016/j.mseb.2024.117384_b0465 article-title: Matryoshka locally resonant sonic crystal publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3643818 – ident: 10.1016/j.mseb.2024.117384_b0705 doi: 10.1109/ICSENS.2017.8234381 – volume: 232 year: 2022 ident: 10.1016/j.mseb.2024.117384_b0185 article-title: Broadband acoustic meta-liner with metal foam approaching causality-governed minimal thickness publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.107601 – ident: 10.1016/j.mseb.2024.117384_b0315 – volume: 87 start-page: 3120 year: 2000 ident: 10.1016/j.mseb.2024.117384_b0210 article-title: Theoretical study of three-dimensional elastic band gaps with the finite-difference time-domain method publication-title: J. Appl. Phys. doi: 10.1063/1.372308 – volume: 88 start-page: 1 issue: 2 year: 2013 ident: 10.1016/j.mseb.2024.117384_b0475 article-title: Tunable active acoustic metamaterials publication-title: Phys. Rev. B - Condensed Matter Mater. Phys. – volume: 7 issue: 8 year: 2020 ident: 10.1016/j.mseb.2024.117384_b0080 article-title: Recent advances in acoustic metamaterials publication-title: Adv. Sci. – volume: 16 issue: 4 year: 2023 ident: 10.1016/j.mseb.2024.117384_b0515 article-title: Effects of aperture shape on absorption property of acoustic metamaterial of parallel-connection Helmholtz resonator publication-title: Materials doi: 10.3390/ma16041597 – volume: 63 year: 2020 ident: 10.1016/j.mseb.2024.117384_b0275 article-title: Multifunction switching by a flat structurally tunable acoustic metasurface for transmitted waves publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-019-1498-2 – ident: 10.1016/j.mseb.2024.117384_b0755 doi: 10.1016/B978-0-08-033933-7.50017-9 – volume: 4 year: 2014 ident: 10.1016/j.mseb.2024.117384_b0680 article-title: Anisotropic complementary acoustic metamaterial for canceling out aberrating layers publication-title: Phys. Rev. X – volume: 13 start-page: 873 year: 2014 ident: 10.1016/j.mseb.2024.117384_b0145 article-title: Acoustic metasurface with hybrid resonances publication-title: Nat. Mater. doi: 10.1038/nmat3994 – volume: 44 year: 2021 ident: 10.1016/j.mseb.2024.117384_b0495 article-title: Ultralow-frequency tunable acoustic metamaterials through tuning gauge pressure and gas temperature publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2021.101218 – volume: 51 start-page: 2780 year: 1995 ident: 10.1016/j.mseb.2024.117384_b0245 article-title: Elastic-wave propagation through disordered and/or absorptive layered systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.2780 – volume: 131 issue: 1 year: 2022 ident: 10.1016/j.mseb.2024.117384_b0805 article-title: Acoustic focusing and imaging via phononic crystal and acoustic metamaterials publication-title: J. Appl. Phys. doi: 10.1063/5.0074503 – volume: 85 issue: 6 year: 2014 ident: 10.1016/j.mseb.2024.117384_b0335 article-title: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4882316 – year: 2000 ident: 10.1016/j.mseb.2024.117384_b0760 – volume: 312 start-page: 1777 issue: 5781 year: 2006 ident: 10.1016/j.mseb.2024.117384_b0110 article-title: Optical conformal mapping publication-title: Science doi: 10.1126/science.1126493 – volume: 259 year: 2023 ident: 10.1016/j.mseb.2024.117384_b0825 article-title: Modal sensitivity analysis of acoustic metamaterials for structural damage detection publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2023.108571 – volume: 6 year: 2016 ident: 10.1016/j.mseb.2024.117384_b0625 article-title: Multi-frequency acoustic metasurface for extraordinary reflection and sound focusing publication-title: AIP Adv. doi: 10.1063/1.4968607 – volume: 46 year: 2021 ident: 10.1016/j.mseb.2024.117384_b0610 article-title: Self-adaptive acoustic cloak enabled by soft mechanical metamaterials publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2021.101347 – volume: 667 year: 2023 ident: 10.1016/j.mseb.2024.117384_b0520 article-title: Labyrinth acoustic metamaterials with fractal structure based on Hilbert curve publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2023.415150 – volume: 106 year: 2011 ident: 10.1016/j.mseb.2024.117384_b0135 article-title: Broadband acoustic cloak for ultrasound waves publication-title: Phys. Rev. Lett. – year: 2023 ident: 10.1016/j.mseb.2024.117384_b0780 article-title: Acoustic metamaterials based on polymer sheets: from material design to applications as sound insulators and vibration dampers publication-title: Polym. J. – volume: 71 start-page: 2022 year: 1993 ident: 10.1016/j.mseb.2024.117384_b0215 article-title: Acoustic band structure of periodic elastic composites publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.2022 – volume: 116 year: 2014 ident: 10.1016/j.mseb.2024.117384_b0645 article-title: Subwavelength acoustic focusing by surface-wave-resonance enhanced transmission in doubly negative acoustic metamaterials publication-title: J. Appl. Phys. doi: 10.1063/1.4901996 – volume: 5 start-page: 452 year: 2006 ident: 10.1016/j.mseb.2024.117384_b0115 article-title: Ultrasonic metamaterials with negative modulus publication-title: Nat. Mater. doi: 10.1038/nmat1644 – volume: 378 year: 2014 ident: 10.1016/j.mseb.2024.117384_b0620 article-title: Flat acoustic lens by acoustic grating with curled slits publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2014.09.042 – volume: 18 year: 2022 ident: 10.1016/j.mseb.2024.117384_b0270 article-title: Acoustic switch via Kirigami metasurface publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.18.054040 – volume: 73 start-page: 53 year: 2006 ident: 10.1016/j.mseb.2024.117384_b0290 article-title: Wave propagations of a periodic sandwich beam by FEM and the transfer matrix method publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2005.01.026 – volume: 16 issue: 5 year: 2023 ident: 10.1016/j.mseb.2024.117384_b0190 article-title: Deep-learning-based acoustic metamaterial design for attenuating structure-borne noise in auditory frequency bands publication-title: Materials doi: 10.3390/ma16051879 – volume: 102 year: 2009 ident: 10.1016/j.mseb.2024.117384_b0650 article-title: Focusing ultrasound with an acoustic metamaterial network publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.194301 – year: 2022 ident: 10.1016/j.mseb.2024.117384_b0695 article-title: Acoustic performances of polymers hierarchical structure produced with material jetting technology publication-title: KEM doi: 10.4028/p-g9is26 – start-page: 319 year: 2001 ident: 10.1016/j.mseb.2024.117384_b0225 article-title: Band structure of elastic waves in the two-dimensional periodic composites publication-title: Acta Acus. – volume: 85 start-page: 341 year: 2004 ident: 10.1016/j.mseb.2024.117384_b0105 article-title: Negative refraction of acoustic waves in two-dimensional phononic crystals publication-title: Appl. Phys. Lett. doi: 10.1063/1.1772854 – volume: 115 issue: 6 year: 2019 ident: 10.1016/j.mseb.2024.117384_b0550 article-title: Aerogel-based metasurfaces for perfect acoustic energy absorption publication-title: Appl. Phys. Lett. doi: 10.1063/1.5109084 – volume: 170 start-page: 621 issue: 5 year: 1994 ident: 10.1016/j.mseb.2024.117384_b0370 article-title: Acoustic performance of membrane absorbers publication-title: J. Sound Vib. doi: 10.1006/jsvi.1994.1091 – volume: 312 start-page: 1780 issue: 5781 year: 2006 ident: 10.1016/j.mseb.2024.117384_b0565 article-title: Controlling electromagnetic fields publication-title: Science doi: 10.1126/science.1125907 – volume: 35 start-page: 162 year: 2001 ident: 10.1016/j.mseb.2024.117384_b0235 article-title: Acoustic band gaps in 2d liquid phononic crystals of rectangular structure publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/35/2/309 – volume: 15 issue: 18 year: 2022 ident: 10.1016/j.mseb.2024.117384_b0500 article-title: Optimal design of acoustic metamaterial of multiple parallel hexagonal Helmholtz resonators by combination of finite element simulation and cuckoo search algorithm publication-title: Materials doi: 10.3390/ma15186450 – ident: 10.1016/j.mseb.2024.117384_b0750 – volume: 478 year: 2022 ident: 10.1016/j.mseb.2024.117384_b0560 article-title: Moth wings as sound absorber metasurface publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2022.0046 – volume: 13 year: 2020 ident: 10.1016/j.mseb.2024.117384_b0795 article-title: Broadband acoustic ventilation barriers publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.044028 – volume: 292 year: 2022 ident: 10.1016/j.mseb.2024.117384_b0850 article-title: Laminated plate-type acoustic metamaterials with Willis coupling effects for broadband low-frequency sound insulation publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2022.115689 – volume: 238 year: 2023 ident: 10.1016/j.mseb.2024.117384_b0845 article-title: Acoustic metamaterials with controllable bandgap gates based on magnetorheological elastomers publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.107829 – ident: 10.1016/j.mseb.2024.117384_b0340 – start-page: 29 year: 2013 ident: 10.1016/j.mseb.2024.117384_b0690 article-title: 3D printing: a new technology – volume: 289 year: 2000 ident: 10.1016/j.mseb.2024.117384_b0095 article-title: Locally resonant sonic materials publication-title: Science doi: 10.1126/science.289.5485.1734 – volume: 52 issue: 5 year: 2018 ident: 10.1016/j.mseb.2024.117384_b0665 article-title: Extraordinary sound transmission through geometrical mismatched channels based on near-zero bulk modulus and Fabry-Pérot resonance publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aaeb68 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.mseb.2024.117384_b0405 article-title: Low-frequency perfect sound absorption achieved by a modulus-near-zero metamaterial publication-title: Sci. Rep. doi: 10.1038/s41598-019-49982-5 – volume: 176 start-page: 595 year: 2017 ident: 10.1016/j.mseb.2024.117384_b0720 article-title: Implementation of the additive PolyJet technology to the development and fabricating the samples of the acoustic metamaterials publication-title: Proc. Eng. doi: 10.1016/j.proeng.2017.02.302 – volume: 345 start-page: 647 issue: 6197 year: 2014 ident: 10.1016/j.mseb.2024.117384_b0055 article-title: Using origami design principles to fold reprogrammable mechanical metamaterials publication-title: Science doi: 10.1126/science.1252876 – volume: 1 issue: 7 year: 2016 ident: 10.1016/j.mseb.2024.117384_b0085 article-title: Controlling sound with acoustic metamaterials publication-title: Nat. Rev. Mater. – volume: 8 start-page: 931 issue: 12 year: 2009 ident: 10.1016/j.mseb.2024.117384_b0655 article-title: Experimental demonstration of an acoustic magnifying hyperlens publication-title: Nat. Mater. doi: 10.1038/nmat2561 – volume: 67 start-page: 2295 year: 1991 ident: 10.1016/j.mseb.2024.117384_b0025 article-title: Photonic band structure: the face-centered-cubic case employing nonspherical atoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.2295 – start-page: 1 year: 2016 ident: 10.1016/j.mseb.2024.117384_b0345 article-title: Temperature-controlled tunable acoustic metamaterial with active band gap and negative bulk modulus publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2016.05.005 – volume: 108 issue: 11 year: 2010 ident: 10.1016/j.mseb.2024.117384_b0375 article-title: Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials publication-title: J. Appl. Phys. doi: 10.1063/1.3514082 – volume: 46 year: 2013 ident: 10.1016/j.mseb.2024.117384_b0295 article-title: Double-negative acoustic metamaterial based on meta-molecule publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/46/47/475105 – volume: 94 start-page: 114 year: 2018 ident: 10.1016/j.mseb.2024.117384_b0065 article-title: Mechanical metamaterials associated with stiffness, rigidity, and compressibility: a brief review publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2017.12.003 – volume: 100 start-page: 318 year: 2016 ident: 10.1016/j.mseb.2024.117384_b0700 article-title: Electrically functional 3D-architectured graphene/SiC composites publication-title: Carbon doi: 10.1016/j.carbon.2015.12.103 – volume: 110 issue: 12 year: 2011 ident: 10.1016/j.mseb.2024.117384_b0385 article-title: Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses publication-title: J. Appl. Phys. doi: 10.1063/1.3665213 – volume: 107 year: 2015 ident: 10.1016/j.mseb.2024.117384_b0540 article-title: Subwavelength total acoustic absorption with degenerate resonators publication-title: Appl. Phys. Lett. doi: 10.1063/1.4930944 – volume: 6 year: 2016 ident: 10.1016/j.mseb.2024.117384_b0685 article-title: Directional reflective surface formed via gradient-impeding acoustic meta-surfaces publication-title: Sci. Rep. – volume: 12 start-page: 1920 issue: 2 year: 2018 ident: 10.1016/j.mseb.2024.117384_b0030 article-title: Optical anapole metamaterial publication-title: ACS Nano doi: 10.1021/acsnano.7b08828 – volume: 153 start-page: A164 year: 2023 ident: 10.1016/j.mseb.2024.117384_b0355 article-title: Aerospace grade acoustic metamaterial design, modeling, and experimental validation publication-title: J. Acoust. Soc. Am. doi: 10.1121/10.0018520 – volume: 10 year: 2018 ident: 10.1016/j.mseb.2024.117384_b0595 article-title: Resonant beam steering and carpet cloaking using an acoustic transformational metascreen publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.10.064030 – ident: 10.1016/j.mseb.2024.117384_b0365 |
SSID | ssj0001222 |
Score | 2.5492845 |
SecondaryResourceType | review_article |
Snippet | •The unique characteristics of acoustic metamaterials (AMMs), which are not found in natural materials, have been explored.•The fundamental structures,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117384 |
SubjectTerms | Acoustic control technology Acoustic metamaterials Acoustic wave manipulation Negative Poisson's ratio Negative refractive index Noise reduction Sound absorption Sound waves |
Title | Breaking the limits of acoustic science: A review of acoustic metamaterials |
URI | https://dx.doi.org/10.1016/j.mseb.2024.117384 |
Volume | 305 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001222 issn: 0921-5107 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-4944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001222 issn: 0921-5107 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2025 customDbUrl: eissn: 1873-4944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001222 issn: 0921-5107 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-4944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001222 issn: 0921-5107 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYqWGBAnKIclQc2FGondhOzlYqqUNEFKnWLfEUq6iUaVn47z7UDrYQ6MCbxk-LP9nuf7XcgdGOIocqVSVWap7BBISJSpGWitCUKGTMtUuWOBl4Grd6QPY_4qIY6VSyMc6sMut_r9JW2Dm-aAc3mYjxuvhLhzBVJnRdkTBMXUe6yf8Gcvvv6dfOg4SYBGkeudQic8T5e06VVsEeMmbu7TDL2t3FaMzjdQ3QQmCJu-585QjU7O0b7a_kDT1D_ASifO-vGQOPwxMUqLfG8wKDlVkW6cOjRPW5jH6Oy8XVqSwmE1c_BUzTsPr51elGojhDphJAyAiQNIUqRQhqaGSNipWWSSQldazGlDTAFLSkrCsI58KzMCGVNzDVLDZew9s7Qzmw-s-cIx6nVliaOTQnGYU1LqoAZMkOFhu2MqiNawZLrkDrcVbCY5JWP2HvuoMwdlLmHso5uf2QWPnHG1ta8QjvfGP4cNPsWuYt_yl2iPffk_W6v0E758WmvgV2UqrGaPg20237q9wbfRZvNEw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwEB1ROLQ9VF1VuvrQWxVhJzYhvVFUFMpyKUjcIi-JRMWmQv-_Y-IgkKoeeo09Uvw0fn62ZzwAT4YapmyZVKVFiBsUGnmK1o0X1qNM-lxHobJHA_1BPR7x97EYl6BV5MLYsErH_Tmnb9jafak5NGvLyaT2QSO7XNHQRkH6LAgPoMIFcnIZKs1ONx5sCZm5ywTs71kDlzuTh3nNVqnCbaLP7fVl0OC_r087a077FE6cWCTN_H_OoJTOz-F45wnBC-i-ouqzx90ElRyZ2nSlFVlkBIluU6eLuEG9kCbJ01T2WmfpWqJmzd3wEkbtt2Er9lyBBE8HlK49BNNQqhTNpGENYyJfaRk0pMSh1bnSBsWCloxnGRUCpVbDRCo1vtA8NELi9LuC8nwxT6-B-GGqUxZYQRVxgdNaMoXikBsWadzRqCqwApZEu9fDbRGLaVKEiX0mFsrEQpnkUFbheWuzzN_O-LO3KNBO9jwgQXL_w-7mn3aPcBgP-72k1xl0b-HItuRhuHdQXn99p_coNtbqwTnTD1QQz74 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breaking+the+limits+of+acoustic+science%3A+A+review+of+acoustic+metamaterials&rft.jtitle=Materials+science+%26+engineering.+B%2C+Solid-state+materials+for+advanced+technology&rft.au=Ayd%C4%B1n%2C+G%C3%BClcan&rft.au=San%2C+Sait+Eren&rft.date=2024-07-01&rft.pub=Elsevier+B.V&rft.issn=0921-5107&rft.eissn=1873-4944&rft.volume=305&rft_id=info:doi/10.1016%2Fj.mseb.2024.117384&rft.externalDocID=S0921510724002137 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5107&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5107&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5107&client=summon |