A novel single-arm-worn 24 h heart disease monitor empowered by machine intelligence
A novel single-arm-worn ECG-based heart disease monitor is proposed in this paper. It is of a potential to provide continuous monitoring of different ECG metrics, and in this study, we focus on the duration of the QRS complex which is the central of an ECG heartbeat. Firstly, to avoid the low wearab...
Saved in:
| Published in | Biomedical signal processing and control Vol. 42; pp. 129 - 133 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.04.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1746-8094 1746-8108 |
| DOI | 10.1016/j.bspc.2018.01.021 |
Cover
| Abstract | A novel single-arm-worn ECG-based heart disease monitor is proposed in this paper. It is of a potential to provide continuous monitoring of different ECG metrics, and in this study, we focus on the duration of the QRS complex which is the central of an ECG heartbeat. Firstly, to avoid the low wearability induced by traditional chest-ECG or two-wrist ECG, we apply a highly wearable non-standard single-arm-ECG configuration. Afterwards, to estimate the QRS duration from noisy and weak non-standard single-arm-ECG, we propose a new three-stage machine learning framework. It firstly identifies heartbeat locations (R peaks) by a support vector machine classifier, then uses a dynamic time warping approach to locate QRS patterns that are similar to a template learned by a K-medoids clustering method, and finally learns to use the arm-ECG-based QRS duration estimates to predict a standard chest-ECG-based QRS duration trend. Experimental results demonstrate the effectiveness of this novel system, based on data collected from five subjects using our customized hardware prototype and the non-standard signal-arm-ECG configuration. To the best of our knowledge, this is the first study on the a single-arm-worn ECG-based daily heart disease monitor, using advanced signal sensing and machine learning techniques. |
|---|---|
| AbstractList | A novel single-arm-worn ECG-based heart disease monitor is proposed in this paper. It is of a potential to provide continuous monitoring of different ECG metrics, and in this study, we focus on the duration of the QRS complex which is the central of an ECG heartbeat. Firstly, to avoid the low wearability induced by traditional chest-ECG or two-wrist ECG, we apply a highly wearable non-standard single-arm-ECG configuration. Afterwards, to estimate the QRS duration from noisy and weak non-standard single-arm-ECG, we propose a new three-stage machine learning framework. It firstly identifies heartbeat locations (R peaks) by a support vector machine classifier, then uses a dynamic time warping approach to locate QRS patterns that are similar to a template learned by a K-medoids clustering method, and finally learns to use the arm-ECG-based QRS duration estimates to predict a standard chest-ECG-based QRS duration trend. Experimental results demonstrate the effectiveness of this novel system, based on data collected from five subjects using our customized hardware prototype and the non-standard signal-arm-ECG configuration. To the best of our knowledge, this is the first study on the a single-arm-worn ECG-based daily heart disease monitor, using advanced signal sensing and machine learning techniques. |
| Author | Zeng, Xuan Zhou, Dian Zhang, Qingxue |
| Author_xml | – sequence: 1 givenname: Qingxue surname: Zhang fullname: Zhang, Qingxue email: qingxue.zhg@gmail.com organization: University of Texas at Dallas (UTD), Richardson, USA – sequence: 2 givenname: Dian surname: Zhou fullname: Zhou, Dian organization: University of Texas at Dallas (UTD), Richardson, USA – sequence: 3 givenname: Xuan surname: Zeng fullname: Zeng, Xuan organization: Fudan University (FU), Shanghai, China |
| BookMark | eNp9kEtqwzAURUVJoUnaDXSkDdiVZPkHnYTQHwQ6aTsV-jwnCrYUJJOQWXfUPXUltUk76SCj-7hwHtwzQxPnHSB0S0lKCS3utqmKO50yQquU0JQweoGmtORFUlFSTf5uUvMrNItxSwivSsqn6GOBnd9Di6N16xYSGbrk4IPDjH9_fm3wBmTosbERZATceWd7HzB0O3-AAAarI-6k3lgH2Loe2tauwWm4RpeNbCPc_OYcvT8-vC2fk9Xr08tysUp0Rkif1E1Z5FJljEhpKqlobnjGNKMVVUNV58AaVTNlspw3RrKCl7nMC8JyxSGjZTZH1emvDj7GAI3Qtpe99a4P0raCEjH6EVsx-hGjH0GoGPwMKPuH7oLtZDieh-5PEAyj9haCiNqOg40NoHthvD2H_wBTLIKz |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2019_01_020 crossref_primary_10_1016_j_future_2019_11_001 crossref_primary_10_3390_s24041088 crossref_primary_10_1016_j_bspc_2019_02_015 |
| Cites_doi | 10.1088/0967-3334/37/11/1945 10.1109/TSMCC.2009.2032660 10.1186/s12938-017-0317-z 10.1016/j.hrthm.2011.06.011 10.1109/MCOM.2012.6122530 10.1093/eurheartj/ehi140 10.1109/PERCOMW.2015.7134074 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2018.01.021 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| EndPage | 133 |
| ExternalDocumentID | 10_1016_j_bspc_2018_01_021 S1746809418300284 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-9f765ab320aad8ab15d432c2181b0aa95e2fb92bd354fda26475a56025b4e3173 |
| IEDL.DBID | .~1 |
| ISSN | 1746-8094 |
| IngestDate | Wed Oct 01 02:17:43 EDT 2025 Thu Apr 24 23:10:09 EDT 2025 Fri Feb 23 02:28:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ECG Smart health Wearable computer Pattern recognition Artificial intelligence Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-9f765ab320aad8ab15d432c2181b0aa95e2fb92bd354fda26475a56025b4e3173 |
| PageCount | 5 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2018_01_021 crossref_primary_10_1016_j_bspc_2018_01_021 elsevier_sciencedirect_doi_10_1016_j_bspc_2018_01_021 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2018 2018-04-00 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: April 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | WHO (bib0005) 2014 Zhang (bib0035) 2017; vol. 16 Van Huysduynen (bib0015) 2005; vol. 26 Seber (bib0050) 2012; vol. 936 Teodorescu (bib0010) 2011; 8 Pantelopoulos (bib0030) 2010; 40 Zhang (bib0040) 2016; 37 Birjandtalab (bib0020) 2015 Nemati (bib0025) 2012; vol. 50 Zhang (bib0045) 2016; vol. 99 Zhang (10.1016/j.bspc.2018.01.021_bib0040) 2016; 37 Birjandtalab (10.1016/j.bspc.2018.01.021_bib0020) 2015 Seber (10.1016/j.bspc.2018.01.021_bib0050) 2012; vol. 936 Pantelopoulos (10.1016/j.bspc.2018.01.021_bib0030) 2010; 40 Teodorescu (10.1016/j.bspc.2018.01.021_bib0010) 2011; 8 Van Huysduynen (10.1016/j.bspc.2018.01.021_bib0015) 2005; vol. 26 Nemati (10.1016/j.bspc.2018.01.021_bib0025) 2012; vol. 50 Zhang (10.1016/j.bspc.2018.01.021_bib0045) 2016; vol. 99 WHO (10.1016/j.bspc.2018.01.021_bib0005) 2014 Zhang (10.1016/j.bspc.2018.01.021_bib0035) 2017; vol. 16 |
| References_xml | – volume: vol. 26 start-page: 928 year: 2005 end-page: 932 ident: bib0015 article-title: Reduction of QRS duration after pulmonary valve replacement in adult Fallot patients is related to reduction of right ventricular volume publication-title: Eur. Heart J. – start-page: 415 year: 2015 end-page: 420 ident: bib0020 article-title: A case study on minimum energy operation for dynamic time warping signal processing in wearable computers publication-title: Pervasive Computing and Communication Workshops (PerCom Workshops) 2015 IEEE International Conference On, 2015 – volume: 37 start-page: p. 1945 year: 2016 ident: bib0040 article-title: A novel machine learning-enabled framework for instantaneous heart rate monitoring from motion-artifact-corrupted electrocardiogram signals publication-title: Physiol/ Meas. – volume: 8 start-page: 1562 year: 2011 end-page: 1567 ident: bib0010 article-title: Prolonged QRS duration on the resting ECG is associated with sudden death risk in coronary disease, independent of prolonged ventricular repolarization publication-title: Heart Rhythm – volume: vol. 16 start-page: p. 23 year: 2017 ident: bib0035 article-title: Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals publication-title: Biomed. Eng. Online – volume: vol. 936 year: 2012 ident: bib0050 publication-title: Linear Regression Analysis – volume: vol. 99 year: 2016 ident: bib0045 article-title: A novel framework for motion-tolerant instantaneous heart rate estimation by phase-domain multi-view dynamic time warping publication-title: IEEE Trans. Biomed. Eng. – volume: vol. 50 year: 2012 ident: bib0025 article-title: A wireless wearable ECG sensor for long-term applications publication-title: IEEE Commun. Mag. – year: 2014 ident: bib0005 article-title: The 10 Leading Causes of Death in the World – volume: 40 start-page: 1 year: 2010 end-page: 12 ident: bib0030 article-title: A survey on wearable sensor-based systems for health monitoring and prognosis publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) – volume: 37 start-page: p. 1945 year: 2016 ident: 10.1016/j.bspc.2018.01.021_bib0040 article-title: A novel machine learning-enabled framework for instantaneous heart rate monitoring from motion-artifact-corrupted electrocardiogram signals publication-title: Physiol/ Meas. doi: 10.1088/0967-3334/37/11/1945 – volume: vol. 936 year: 2012 ident: 10.1016/j.bspc.2018.01.021_bib0050 – volume: 40 start-page: 1 year: 2010 ident: 10.1016/j.bspc.2018.01.021_bib0030 article-title: A survey on wearable sensor-based systems for health monitoring and prognosis publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) doi: 10.1109/TSMCC.2009.2032660 – volume: vol. 16 start-page: p. 23 year: 2017 ident: 10.1016/j.bspc.2018.01.021_bib0035 article-title: Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals publication-title: Biomed. Eng. Online doi: 10.1186/s12938-017-0317-z – volume: vol. 99 year: 2016 ident: 10.1016/j.bspc.2018.01.021_bib0045 article-title: A novel framework for motion-tolerant instantaneous heart rate estimation by phase-domain multi-view dynamic time warping publication-title: IEEE Trans. Biomed. Eng. – volume: 8 start-page: 1562 year: 2011 ident: 10.1016/j.bspc.2018.01.021_bib0010 article-title: Prolonged QRS duration on the resting ECG is associated with sudden death risk in coronary disease, independent of prolonged ventricular repolarization publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2011.06.011 – volume: vol. 50 year: 2012 ident: 10.1016/j.bspc.2018.01.021_bib0025 article-title: A wireless wearable ECG sensor for long-term applications publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2012.6122530 – year: 2014 ident: 10.1016/j.bspc.2018.01.021_bib0005 – volume: vol. 26 start-page: 928 year: 2005 ident: 10.1016/j.bspc.2018.01.021_bib0015 article-title: Reduction of QRS duration after pulmonary valve replacement in adult Fallot patients is related to reduction of right ventricular volume publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehi140 – start-page: 415 year: 2015 ident: 10.1016/j.bspc.2018.01.021_bib0020 article-title: A case study on minimum energy operation for dynamic time warping signal processing in wearable computers publication-title: Pervasive Computing and Communication Workshops (PerCom Workshops) 2015 IEEE International Conference On, 2015 doi: 10.1109/PERCOMW.2015.7134074 |
| SSID | ssj0048714 |
| Score | 2.1572993 |
| Snippet | A novel single-arm-worn ECG-based heart disease monitor is proposed in this paper. It is of a potential to provide continuous monitoring of different ECG... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 129 |
| SubjectTerms | Artificial intelligence ECG Machine learning Pattern recognition Smart health Wearable computer |
| Title | A novel single-arm-worn 24 h heart disease monitor empowered by machine intelligence |
| URI | https://dx.doi.org/10.1016/j.bspc.2018.01.021 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Journals customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k7XdZDfZHEuxVMVetNJb2M1usNKmJUaLF_Ef-Z_8Je7kUSpIDx6zzEAyzM58Q2a-QehcxIIaIyLCqBGEucbGwcB4RHmB8R3tegGDeee7gdcfspsRH9VQt5qFgbbKMvYXMT2P1uVJq7Rmaz4et-4tlvaErU6sU0LlAJygjPmwxeDyY9nmYfF4zu8NwgSky8GZosdLvcyBxpCKgrqT_p2cVhJObwdtl0gRd4qX2UU1k-yhrRX-wH302MHJ7M1MMBT8E0NkOiWLWZpgh31_fj1h2Fad4fIfDJ7m1zfFQEa1gBWdWL3jad5MafB4hZrzAA17Vw_dPikXJZDIfnpGgtj3uFSu05ZSC6ko18x1Isjeyh4F3DixChylXc5iLS0G8rm0UMfhihkLINxDVE9miTlCWPEAxrCo0L5gwEUmNTdc-5FnkZR2TAPRykJhVLKIwzKLSVi1iz2HYNUQrBq2aWit2kAXS515waGxVppXhg9_eUJog_waveN_6p2gTXgqunFOUT1LX82ZBRqZauae1EQbnevb_uAHcy3Scw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsJAEN4gHtSD8Tfi7x68mRW63W23R0IkqMBFMNw23e4SMVBIRYkX4xv5Tj6JO20hmBgOXrczSTuZnfkmnfkGoUvRF44xIiLMMYIw19g4GBiPKC8wPtWuFzCYd261vUaX3fV4r4Bq81kYaKvMY38W09NonZ-Uc2uWJ4NB-cFiaU_Y6sQ6JVQObA2tM059qMCuPxZ9HhaQpwTfIE1APJ-cyZq81MsEeAwdkXF3On9np6WMU99B2zlUxNXsbXZRwcR7aGuJQHAfPVZxPH4zQwwV_9CQMBmR2TiJMWXfn19PGNZVT3H-EwaP0vubYGCjmsGOTqze8SjtpjR4sMTNeYC69ZtOrUHyTQkkst8-JUHf93ioXFoJQy1C5XDNXBpB-lb2KOCG9lVAlXY56-vQgiCfhxbrUK6YsQjCPUTFeBybI4QVD2AOyxHaFwzIyELNDdd-5FkopakpIWduIRnlNOKwzWIo5_1izxKsKsGqsuJIa9USulroTDISjZXSfG54-csVpI3yK_SO_6l3gTYanVZTNm_b9ydoE55krTmnqDhNXs2ZRR1TdZ561Q99QdQI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+single-arm-worn+24%E2%80%AFh+heart+disease+monitor+empowered+by+machine+intelligence&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhang%2C+Qingxue&rft.au=Zhou%2C+Dian&rft.au=Zeng%2C+Xuan&rft.date=2018-04-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=42&rft.spage=129&rft.epage=133&rft_id=info:doi/10.1016%2Fj.bspc.2018.01.021&rft.externalDocID=S1746809418300284 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |