A novel single-arm-worn 24 h heart disease monitor empowered by machine intelligence

A novel single-arm-worn ECG-based heart disease monitor is proposed in this paper. It is of a potential to provide continuous monitoring of different ECG metrics, and in this study, we focus on the duration of the QRS complex which is the central of an ECG heartbeat. Firstly, to avoid the low wearab...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 42; pp. 129 - 133
Main Authors Zhang, Qingxue, Zhou, Dian, Zeng, Xuan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2018
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2018.01.021

Cover

Abstract A novel single-arm-worn ECG-based heart disease monitor is proposed in this paper. It is of a potential to provide continuous monitoring of different ECG metrics, and in this study, we focus on the duration of the QRS complex which is the central of an ECG heartbeat. Firstly, to avoid the low wearability induced by traditional chest-ECG or two-wrist ECG, we apply a highly wearable non-standard single-arm-ECG configuration. Afterwards, to estimate the QRS duration from noisy and weak non-standard single-arm-ECG, we propose a new three-stage machine learning framework. It firstly identifies heartbeat locations (R peaks) by a support vector machine classifier, then uses a dynamic time warping approach to locate QRS patterns that are similar to a template learned by a K-medoids clustering method, and finally learns to use the arm-ECG-based QRS duration estimates to predict a standard chest-ECG-based QRS duration trend. Experimental results demonstrate the effectiveness of this novel system, based on data collected from five subjects using our customized hardware prototype and the non-standard signal-arm-ECG configuration. To the best of our knowledge, this is the first study on the a single-arm-worn ECG-based daily heart disease monitor, using advanced signal sensing and machine learning techniques.
AbstractList A novel single-arm-worn ECG-based heart disease monitor is proposed in this paper. It is of a potential to provide continuous monitoring of different ECG metrics, and in this study, we focus on the duration of the QRS complex which is the central of an ECG heartbeat. Firstly, to avoid the low wearability induced by traditional chest-ECG or two-wrist ECG, we apply a highly wearable non-standard single-arm-ECG configuration. Afterwards, to estimate the QRS duration from noisy and weak non-standard single-arm-ECG, we propose a new three-stage machine learning framework. It firstly identifies heartbeat locations (R peaks) by a support vector machine classifier, then uses a dynamic time warping approach to locate QRS patterns that are similar to a template learned by a K-medoids clustering method, and finally learns to use the arm-ECG-based QRS duration estimates to predict a standard chest-ECG-based QRS duration trend. Experimental results demonstrate the effectiveness of this novel system, based on data collected from five subjects using our customized hardware prototype and the non-standard signal-arm-ECG configuration. To the best of our knowledge, this is the first study on the a single-arm-worn ECG-based daily heart disease monitor, using advanced signal sensing and machine learning techniques.
Author Zeng, Xuan
Zhou, Dian
Zhang, Qingxue
Author_xml – sequence: 1
  givenname: Qingxue
  surname: Zhang
  fullname: Zhang, Qingxue
  email: qingxue.zhg@gmail.com
  organization: University of Texas at Dallas (UTD), Richardson, USA
– sequence: 2
  givenname: Dian
  surname: Zhou
  fullname: Zhou, Dian
  organization: University of Texas at Dallas (UTD), Richardson, USA
– sequence: 3
  givenname: Xuan
  surname: Zeng
  fullname: Zeng, Xuan
  organization: Fudan University (FU), Shanghai, China
BookMark eNp9kEtqwzAURUVJoUnaDXSkDdiVZPkHnYTQHwQ6aTsV-jwnCrYUJJOQWXfUPXUltUk76SCj-7hwHtwzQxPnHSB0S0lKCS3utqmKO50yQquU0JQweoGmtORFUlFSTf5uUvMrNItxSwivSsqn6GOBnd9Di6N16xYSGbrk4IPDjH9_fm3wBmTosbERZATceWd7HzB0O3-AAAarI-6k3lgH2Loe2tauwWm4RpeNbCPc_OYcvT8-vC2fk9Xr08tysUp0Rkif1E1Z5FJljEhpKqlobnjGNKMVVUNV58AaVTNlspw3RrKCl7nMC8JyxSGjZTZH1emvDj7GAI3Qtpe99a4P0raCEjH6EVsx-hGjH0GoGPwMKPuH7oLtZDieh-5PEAyj9haCiNqOg40NoHthvD2H_wBTLIKz
CitedBy_id crossref_primary_10_1016_j_bspc_2019_01_020
crossref_primary_10_1016_j_future_2019_11_001
crossref_primary_10_3390_s24041088
crossref_primary_10_1016_j_bspc_2019_02_015
Cites_doi 10.1088/0967-3334/37/11/1945
10.1109/TSMCC.2009.2032660
10.1186/s12938-017-0317-z
10.1016/j.hrthm.2011.06.011
10.1109/MCOM.2012.6122530
10.1093/eurheartj/ehi140
10.1109/PERCOMW.2015.7134074
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2018.01.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
EndPage 133
ExternalDocumentID 10_1016_j_bspc_2018_01_021
S1746809418300284
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-9f765ab320aad8ab15d432c2181b0aa95e2fb92bd354fda26475a56025b4e3173
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Wed Oct 01 02:17:43 EDT 2025
Thu Apr 24 23:10:09 EDT 2025
Fri Feb 23 02:28:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ECG
Smart health
Wearable computer
Pattern recognition
Artificial intelligence
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-9f765ab320aad8ab15d432c2181b0aa95e2fb92bd354fda26475a56025b4e3173
PageCount 5
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2018_01_021
crossref_primary_10_1016_j_bspc_2018_01_021
elsevier_sciencedirect_doi_10_1016_j_bspc_2018_01_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationTitle Biomedical signal processing and control
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References WHO (bib0005) 2014
Zhang (bib0035) 2017; vol. 16
Van Huysduynen (bib0015) 2005; vol. 26
Seber (bib0050) 2012; vol. 936
Teodorescu (bib0010) 2011; 8
Pantelopoulos (bib0030) 2010; 40
Zhang (bib0040) 2016; 37
Birjandtalab (bib0020) 2015
Nemati (bib0025) 2012; vol. 50
Zhang (bib0045) 2016; vol. 99
Zhang (10.1016/j.bspc.2018.01.021_bib0040) 2016; 37
Birjandtalab (10.1016/j.bspc.2018.01.021_bib0020) 2015
Seber (10.1016/j.bspc.2018.01.021_bib0050) 2012; vol. 936
Pantelopoulos (10.1016/j.bspc.2018.01.021_bib0030) 2010; 40
Teodorescu (10.1016/j.bspc.2018.01.021_bib0010) 2011; 8
Van Huysduynen (10.1016/j.bspc.2018.01.021_bib0015) 2005; vol. 26
Nemati (10.1016/j.bspc.2018.01.021_bib0025) 2012; vol. 50
Zhang (10.1016/j.bspc.2018.01.021_bib0045) 2016; vol. 99
WHO (10.1016/j.bspc.2018.01.021_bib0005) 2014
Zhang (10.1016/j.bspc.2018.01.021_bib0035) 2017; vol. 16
References_xml – volume: vol. 26
  start-page: 928
  year: 2005
  end-page: 932
  ident: bib0015
  article-title: Reduction of QRS duration after pulmonary valve replacement in adult Fallot patients is related to reduction of right ventricular volume
  publication-title: Eur. Heart J.
– start-page: 415
  year: 2015
  end-page: 420
  ident: bib0020
  article-title: A case study on minimum energy operation for dynamic time warping signal processing in wearable computers
  publication-title: Pervasive Computing and Communication Workshops (PerCom Workshops) 2015 IEEE International Conference On, 2015
– volume: 37
  start-page: p. 1945
  year: 2016
  ident: bib0040
  article-title: A novel machine learning-enabled framework for instantaneous heart rate monitoring from motion-artifact-corrupted electrocardiogram signals
  publication-title: Physiol/ Meas.
– volume: 8
  start-page: 1562
  year: 2011
  end-page: 1567
  ident: bib0010
  article-title: Prolonged QRS duration on the resting ECG is associated with sudden death risk in coronary disease, independent of prolonged ventricular repolarization
  publication-title: Heart Rhythm
– volume: vol. 16
  start-page: p. 23
  year: 2017
  ident: bib0035
  article-title: Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals
  publication-title: Biomed. Eng. Online
– volume: vol. 936
  year: 2012
  ident: bib0050
  publication-title: Linear Regression Analysis
– volume: vol. 99
  year: 2016
  ident: bib0045
  article-title: A novel framework for motion-tolerant instantaneous heart rate estimation by phase-domain multi-view dynamic time warping
  publication-title: IEEE Trans. Biomed. Eng.
– volume: vol. 50
  year: 2012
  ident: bib0025
  article-title: A wireless wearable ECG sensor for long-term applications
  publication-title: IEEE Commun. Mag.
– year: 2014
  ident: bib0005
  article-title: The 10 Leading Causes of Death in the World
– volume: 40
  start-page: 1
  year: 2010
  end-page: 12
  ident: bib0030
  article-title: A survey on wearable sensor-based systems for health monitoring and prognosis
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
– volume: 37
  start-page: p. 1945
  year: 2016
  ident: 10.1016/j.bspc.2018.01.021_bib0040
  article-title: A novel machine learning-enabled framework for instantaneous heart rate monitoring from motion-artifact-corrupted electrocardiogram signals
  publication-title: Physiol/ Meas.
  doi: 10.1088/0967-3334/37/11/1945
– volume: vol. 936
  year: 2012
  ident: 10.1016/j.bspc.2018.01.021_bib0050
– volume: 40
  start-page: 1
  year: 2010
  ident: 10.1016/j.bspc.2018.01.021_bib0030
  article-title: A survey on wearable sensor-based systems for health monitoring and prognosis
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
  doi: 10.1109/TSMCC.2009.2032660
– volume: vol. 16
  start-page: p. 23
  year: 2017
  ident: 10.1016/j.bspc.2018.01.021_bib0035
  article-title: Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-017-0317-z
– volume: vol. 99
  year: 2016
  ident: 10.1016/j.bspc.2018.01.021_bib0045
  article-title: A novel framework for motion-tolerant instantaneous heart rate estimation by phase-domain multi-view dynamic time warping
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 1562
  year: 2011
  ident: 10.1016/j.bspc.2018.01.021_bib0010
  article-title: Prolonged QRS duration on the resting ECG is associated with sudden death risk in coronary disease, independent of prolonged ventricular repolarization
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2011.06.011
– volume: vol. 50
  year: 2012
  ident: 10.1016/j.bspc.2018.01.021_bib0025
  article-title: A wireless wearable ECG sensor for long-term applications
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2012.6122530
– year: 2014
  ident: 10.1016/j.bspc.2018.01.021_bib0005
– volume: vol. 26
  start-page: 928
  year: 2005
  ident: 10.1016/j.bspc.2018.01.021_bib0015
  article-title: Reduction of QRS duration after pulmonary valve replacement in adult Fallot patients is related to reduction of right ventricular volume
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehi140
– start-page: 415
  year: 2015
  ident: 10.1016/j.bspc.2018.01.021_bib0020
  article-title: A case study on minimum energy operation for dynamic time warping signal processing in wearable computers
  publication-title: Pervasive Computing and Communication Workshops (PerCom Workshops) 2015 IEEE International Conference On, 2015
  doi: 10.1109/PERCOMW.2015.7134074
SSID ssj0048714
Score 2.1572993
Snippet A novel single-arm-worn ECG-based heart disease monitor is proposed in this paper. It is of a potential to provide continuous monitoring of different ECG...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 129
SubjectTerms Artificial intelligence
ECG
Machine learning
Pattern recognition
Smart health
Wearable computer
Title A novel single-arm-worn 24 h heart disease monitor empowered by machine intelligence
URI https://dx.doi.org/10.1016/j.bspc.2018.01.021
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Journals
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k7XdZDfZHEuxVMVetNJb2M1usNKmJUaLF_Ef-Z_8Je7kUSpIDx6zzEAyzM58Q2a-QehcxIIaIyLCqBGEucbGwcB4RHmB8R3tegGDeee7gdcfspsRH9VQt5qFgbbKMvYXMT2P1uVJq7Rmaz4et-4tlvaErU6sU0LlAJygjPmwxeDyY9nmYfF4zu8NwgSky8GZosdLvcyBxpCKgrqT_p2cVhJObwdtl0gRd4qX2UU1k-yhrRX-wH302MHJ7M1MMBT8E0NkOiWLWZpgh31_fj1h2Fad4fIfDJ7m1zfFQEa1gBWdWL3jad5MafB4hZrzAA17Vw_dPikXJZDIfnpGgtj3uFSu05ZSC6ko18x1Isjeyh4F3DixChylXc5iLS0G8rm0UMfhihkLINxDVE9miTlCWPEAxrCo0L5gwEUmNTdc-5FnkZR2TAPRykJhVLKIwzKLSVi1iz2HYNUQrBq2aWit2kAXS515waGxVppXhg9_eUJog_waveN_6p2gTXgqunFOUT1LX82ZBRqZauae1EQbnevb_uAHcy3Scw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsJAEN4gHtSD8Tfi7x68mRW63W23R0IkqMBFMNw23e4SMVBIRYkX4xv5Tj6JO20hmBgOXrczSTuZnfkmnfkGoUvRF44xIiLMMYIw19g4GBiPKC8wPtWuFzCYd261vUaX3fV4r4Bq81kYaKvMY38W09NonZ-Uc2uWJ4NB-cFiaU_Y6sQ6JVQObA2tM059qMCuPxZ9HhaQpwTfIE1APJ-cyZq81MsEeAwdkXF3On9np6WMU99B2zlUxNXsbXZRwcR7aGuJQHAfPVZxPH4zQwwV_9CQMBmR2TiJMWXfn19PGNZVT3H-EwaP0vubYGCjmsGOTqze8SjtpjR4sMTNeYC69ZtOrUHyTQkkst8-JUHf93ioXFoJQy1C5XDNXBpB-lb2KOCG9lVAlXY56-vQgiCfhxbrUK6YsQjCPUTFeBybI4QVD2AOyxHaFwzIyELNDdd-5FkopakpIWduIRnlNOKwzWIo5_1izxKsKsGqsuJIa9USulroTDISjZXSfG54-csVpI3yK_SO_6l3gTYanVZTNm_b9ydoE55krTmnqDhNXs2ZRR1TdZ561Q99QdQI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+single-arm-worn+24%E2%80%AFh+heart+disease+monitor+empowered+by+machine+intelligence&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhang%2C+Qingxue&rft.au=Zhou%2C+Dian&rft.au=Zeng%2C+Xuan&rft.date=2018-04-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=42&rft.spage=129&rft.epage=133&rft_id=info:doi/10.1016%2Fj.bspc.2018.01.021&rft.externalDocID=S1746809418300284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon