Class-aware progressive self-training for learning convolutional networks on graphs

Learning convolutional networks on graphs have been a popular topic for machine learning on graph-structured data and achieved state-of-the-art results on various practical tasks. However, most existing works ignore the impact of per-class distribution, therefore their performance may be limited due...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 238; p. 121805
Main Authors Chen, Ke, Wu, Weining
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2024
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2023.121805

Cover

Abstract Learning convolutional networks on graphs have been a popular topic for machine learning on graph-structured data and achieved state-of-the-art results on various practical tasks. However, most existing works ignore the impact of per-class distribution, therefore their performance may be limited due to the diversity of various categories. In this paper, we propose a novel class-aware progressive self-training (CPS) algorithm for training graph convolutional networks (GCNs). Compared to other self-training algorithms for GCNs’ learning, the proposed CPS algorithm leverages the class distribution to update the original graph structure in each self-training loop, including: (a) find these high-confident unlabeled nodes in the graph for each category to add pseudo labels, in order to enlarge the current set of labeled nodes; (b) delete these noisy edges between different classes for graph sparsification. Then, the optimized graph is used for next self-training loops in hopes of enhancing the classification performance. We evaluate the proposed CPS on several datasets commonly used for GCNs’ learning, and the experimental results show that the proposed CPS algorithm outperforms other baselines.
AbstractList Learning convolutional networks on graphs have been a popular topic for machine learning on graph-structured data and achieved state-of-the-art results on various practical tasks. However, most existing works ignore the impact of per-class distribution, therefore their performance may be limited due to the diversity of various categories. In this paper, we propose a novel class-aware progressive self-training (CPS) algorithm for training graph convolutional networks (GCNs). Compared to other self-training algorithms for GCNs’ learning, the proposed CPS algorithm leverages the class distribution to update the original graph structure in each self-training loop, including: (a) find these high-confident unlabeled nodes in the graph for each category to add pseudo labels, in order to enlarge the current set of labeled nodes; (b) delete these noisy edges between different classes for graph sparsification. Then, the optimized graph is used for next self-training loops in hopes of enhancing the classification performance. We evaluate the proposed CPS on several datasets commonly used for GCNs’ learning, and the experimental results show that the proposed CPS algorithm outperforms other baselines.
ArticleNumber 121805
Author Wu, Weining
Chen, Ke
Author_xml – sequence: 1
  givenname: Ke
  surname: Chen
  fullname: Chen, Ke
  email: krischen1999@hrbeu.edu.cn
– sequence: 2
  givenname: Weining
  orcidid: 0000-0002-3410-4460
  surname: Wu
  fullname: Wu, Weining
  email: wuweining@hrbeu.edu.cn
BookMark eNp9kM1OwzAQBi1UJNrCC3DKCySsnR8nEhdUAUWqxIHerY29KS7BruzQirenoZw49LTaw3zSzIxNnHfE2C2HjAOv7rYZxQNmAkSeccFrKC_YlNcyTyvZ5BM2haaUacFlccVmMW4BuASQU_a26DHGFA8YKNkFvwkUo91TEqnv0iGgddZtks6HpCcMv4_2bu_7r8F6h33iaDj48BET75JNwN17vGaXHfaRbv7unK2fHteLZbp6fX5ZPKxSnQMMaYOibWtoG1Og5AJMI8uq7LCUwhgwVVXXLUIJDVZSdsDRGCyLXJDu2iLHfM7EaVYHH2OgTu2C_cTwrTiosYraqrGKGquoU5UjVP-DtB1wVBld-_Po_Qmlo9PeUlBRW3KajA2kB2W8PYf_AL3Ogcs
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3394712
Cites_doi 10.3115/1220835.1220855
10.1609/aaai.v34i04.5747
10.1609/aaai.v32i1.11604
10.1016/j.patcog.2020.107637
10.24963/ijcai.2019/669
10.1145/3186727
10.1609/aaai.v34i04.6048
10.1016/j.knosys.2017.02.014
10.1145/1390156.1390303
10.1145/3394486.3403296
10.1016/j.neucom.2021.08.092
10.1016/j.ins.2022.07.186
10.1609/aaai.v32i1.11691
10.1145/1150402.1150479
10.3115/981658.981684
10.1145/2623330.2623732
10.1016/j.ipm.2020.102443
10.1145/3219819.3220078
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.121805
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_121805
S0957417423023072
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61976067
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-9a2bb80b9d4a7120d97565fa572dd0d6688ba0509a677f01adda5432ecfb43a3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Sat Oct 25 05:48:00 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Fri Feb 23 02:36:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Graph convolution network (GCN)
Class distribution
Self-training
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-9a2bb80b9d4a7120d97565fa572dd0d6688ba0509a677f01adda5432ecfb43a3
ORCID 0000-0002-3410-4460
ParticipantIDs crossref_primary_10_1016_j_eswa_2023_121805
crossref_citationtrail_10_1016_j_eswa_2023_121805
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121805
PublicationCentury 2000
PublicationDate 2024-03-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. In
Fey, Lenssen (b9) 2019
Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, Lerer (b22) 2017
Wu, Souza, Zhang, Fifty, Yu, Weinberger (b33) 2019
Yang, Cohen, Salakhudinov (b36) 2016
Veličković, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., & Hjelm, R. D. (2019). Deep Graph Infomax. In
Cui, Wang, Li, Welsch (b7) 2022; 611
Zhao, Wang, Li, Jin, Lang (b39) 2021; 464
(pp. 2847–2856).
Zhou, Kantarcioglu, Thuraisingham (b41) 2012
(pp. 3538–3545).
Li, R., Wang, S., Zhu, F., & Huang, J. (2018). Adaptive Graph Convolutional Neural Networks. In
Xu, B., Hu, W., Leskovec, J., & Jegelka, S. (2019). Graph wavelet neural network. In
Rong, Huang, Xu, Huang (b25) 2019
Sen, Getoor (b27) 2006
Bai, Zhang, Torr (b2) 2021; 110
(pp. 631–636).
Defferrard, Bresson, Vandergheynst (b8) 2016
Sun, K., Lin, Z., & Zhu, Z. (2020). Multi-stage self-supervised learning for graph convolutional networks on graphs with few labeled nodes. In
Weston, J., Ratle, F., & Collobert, R. (2008). Deep learning via semi-supervised embedding. In
Leskovec, J., & Faloutsos, C. (2006). Sampling from large graphs. In
Rosenberg, Schneiderman, Hebert (b26) 2005
Franceschi, Niepert, Pontil, He (b10) 2019
.
Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., & Sun, X. (2020). Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In
Ioannidis, Giannakis (b13) 2019
Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus (b29) 2014
(pp. 189–196).
Bianchi, Grattarola, Livi, Alippi (b3) 2022; 44
Atwood, Towsley (b1) 2016
(pp. 3546–3553).
Levatić, Ceci, Kocev, Džeroski (b16) 2017; 123
Li, Q., Han, Z., & Wu, X.-m. (2018). Deeper Insights Into Graph Convolutional Networks for Semi-Supervised Learning. In
(pp. 1168–1175).
Zügner, D., Akbarnejad, A., & Günnemann, S. (2018). Adversarial attacks on neural networks for graph data. In
Zhang, Cui, Wang, Pei, Zhu (b38) 2018
(pp. 152–159).
Zheng, Zong, Cheng, Song, Ni, Yu, Chen, Wang (b40) 2020
Liu, Safavi, Dighe, Koutra (b19) 2018; 51
Wu, Wang, Tyshetskiy, Docherty, Lu, Zhu (b34) 2019
(pp. 3438–3445).
(pp. 912–919).
Kipf, T. N., & Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional Networks. In
McClosky, D., Charniak, E., & Johnson, M. (2006). Effective self-training for parsing. In
Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods. In
Chen, Zhu, Song (b6) 2018
Pedronette, Latecki (b23) 2021; 58
(pp. 701–710).
Zhu, X., Ghahramani, Z., & Lafferty, J. D. (2003). Semi-supervised learning using gaussian fields and harmonic functions. In
Hamilton, Ying, Leskovec (b12) 2017
(pp. 5892–5899).
Niepert, Ahmed, Kutzkov (b21) 2016
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018). Graph attention networks. In
Gasteiger, J., Bojchevski, A., & Günnemann, S. (2019). Predict then Propagate: Graph Neural Networks meet Personalized PageRank. In
Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2014). Spectral networks and deep locally connected networks on graphs. In
Levatić (10.1016/j.eswa.2023.121805_b16) 2017; 123
10.1016/j.eswa.2023.121805_b18
Cui (10.1016/j.eswa.2023.121805_b7) 2022; 611
Szegedy (10.1016/j.eswa.2023.121805_b29) 2014
Bianchi (10.1016/j.eswa.2023.121805_b3) 2022; 44
Niepert (10.1016/j.eswa.2023.121805_b21) 2016
Zhou (10.1016/j.eswa.2023.121805_b41) 2012
Pedronette (10.1016/j.eswa.2023.121805_b23) 2021; 58
Zhao (10.1016/j.eswa.2023.121805_b39) 2021; 464
Atwood (10.1016/j.eswa.2023.121805_b1) 2016
10.1016/j.eswa.2023.121805_b4
10.1016/j.eswa.2023.121805_b5
10.1016/j.eswa.2023.121805_b31
10.1016/j.eswa.2023.121805_b30
10.1016/j.eswa.2023.121805_b11
Sen (10.1016/j.eswa.2023.121805_b27) 2006
10.1016/j.eswa.2023.121805_b32
10.1016/j.eswa.2023.121805_b35
Zhang (10.1016/j.eswa.2023.121805_b38) 2018
Chen (10.1016/j.eswa.2023.121805_b6) 2018
10.1016/j.eswa.2023.121805_b15
10.1016/j.eswa.2023.121805_b37
10.1016/j.eswa.2023.121805_b14
10.1016/j.eswa.2023.121805_b17
Wu (10.1016/j.eswa.2023.121805_b33) 2019
Fey (10.1016/j.eswa.2023.121805_b9) 2019
Zheng (10.1016/j.eswa.2023.121805_b40) 2020
Rosenberg (10.1016/j.eswa.2023.121805_b26) 2005
Yang (10.1016/j.eswa.2023.121805_b36) 2016
Hamilton (10.1016/j.eswa.2023.121805_b12) 2017
Bai (10.1016/j.eswa.2023.121805_b2) 2021; 110
Defferrard (10.1016/j.eswa.2023.121805_b8) 2016
Paszke (10.1016/j.eswa.2023.121805_b22) 2017
Wu (10.1016/j.eswa.2023.121805_b34) 2019
Ioannidis (10.1016/j.eswa.2023.121805_b13) 2019
Liu (10.1016/j.eswa.2023.121805_b19) 2018; 51
10.1016/j.eswa.2023.121805_b20
10.1016/j.eswa.2023.121805_b42
Franceschi (10.1016/j.eswa.2023.121805_b10) 2019
Rong (10.1016/j.eswa.2023.121805_b25) 2019
10.1016/j.eswa.2023.121805_b43
10.1016/j.eswa.2023.121805_b24
10.1016/j.eswa.2023.121805_b28
References_xml – reference: Weston, J., Ratle, F., & Collobert, R. (2008). Deep learning via semi-supervised embedding. In
– reference: Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods. In
– start-page: 942
  year: 2018
  end-page: 950
  ident: b6
  article-title: Stochastic training of graph convolutional networks with variance reduction
  publication-title: International conference on machine learning
– reference: (pp. 3538–3545).
– reference: Xu, B., Hu, W., Leskovec, J., & Jegelka, S. (2019). Graph wavelet neural network. In
– reference: (pp. 631–636).
– volume: 110
  year: 2021
  ident: b2
  article-title: Hypergraph convolution and hypergraph attention
  publication-title: Pattern Recognition
– year: 2019
  ident: b13
  article-title: Edge dithering for robust adaptive graph convolutional networks
– reference: Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018). Graph attention networks. In
– reference: Li, R., Wang, S., Zhu, F., & Huang, J. (2018). Adaptive Graph Convolutional Neural Networks. In
– year: 2014
  ident: b29
  article-title: Intriguing properties of neural networks
– reference: Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2014). Spectral networks and deep locally connected networks on graphs. In
– volume: 123
  start-page: 41
  year: 2017
  end-page: 60
  ident: b16
  article-title: Self-training for multi-target regression with tree ensembles
  publication-title: Knowledge-Based Systems
– reference: (pp. 1168–1175).
– start-page: 4816
  year: 2019
  end-page: 4823
  ident: b34
  article-title: Adversarial examples for graph data: Deep insights into attack and defense
  publication-title: Proceedings of the 28th international joint conference on artificial intelligence
– volume: 58
  year: 2021
  ident: b23
  article-title: Rank-based self-training for graph convolutional networks
  publication-title: Information Processing and Management
– start-page: 1993
  year: 2016
  end-page: 2001
  ident: b1
  article-title: Diffusion-convolutional neural networks
  publication-title: Advances in neural information processing systems, vol. 29
– start-page: 2014
  year: 2016
  end-page: 2023
  ident: b21
  article-title: Learning convolutional neural networks for graphs
  publication-title: International conference on machine learning
– start-page: 1024
  year: 2017
  end-page: 1034
  ident: b12
  article-title: Inductive representation learning on large graphs
  publication-title: Advances in neural information processing systems, vol. 30
– volume: 611
  start-page: 18
  year: 2022
  end-page: 29
  ident: b7
  article-title: Self-training method based on GCN for semi-supervised short text classification
  publication-title: Information Sciences
– reference: Li, Q., Han, Z., & Wu, X.-m. (2018). Deeper Insights Into Graph Convolutional Networks for Semi-Supervised Learning. In
– start-page: 795
  year: 2012
  end-page: 803
  ident: b41
  article-title: Self-training with selection-by-rejection
  publication-title: 2012 IEEE 12th international conference on data mining
– reference: Zhu, X., Ghahramani, Z., & Lafferty, J. D. (2003). Semi-supervised learning using gaussian fields and harmonic functions. In
– volume: 464
  start-page: 394
  year: 2021
  end-page: 407
  ident: b39
  article-title: Entropy-aware self-training for graph convolutional networks
  publication-title: Neurocomputing
– reference: (pp. 912–919).
– reference: McClosky, D., Charniak, E., & Johnson, M. (2006). Effective self-training for parsing. In
– reference: (pp. 5892–5899).
– reference: (pp. 3546–3553).
– reference: Sun, K., Lin, Z., & Zhu, Z. (2020). Multi-stage self-supervised learning for graph convolutional networks on graphs with few labeled nodes. In
– reference: (pp. 189–196).
– reference: (pp. 3438–3445).
– start-page: 29
  year: 2005
  end-page: 36
  ident: b26
  article-title: Semi-supervised self-training of object detection models
  publication-title: Applications of computer vision and the IEEE workshop on motion and video computing, IEEE workshop on, Vol. 1
– year: 2017
  ident: b22
  article-title: Automatic differentiation in pytorch
– reference: Leskovec, J., & Faloutsos, C. (2006). Sampling from large graphs. In
– reference: (pp. 152–159).
– start-page: 11458
  year: 2020
  end-page: 11468
  ident: b40
  article-title: Robust graph representation learning via neural sparsification
  publication-title: International conference on machine learning
– start-page: 3844
  year: 2016
  end-page: 3852
  ident: b8
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Advances in neural information processing systems
– year: 2019
  ident: b25
  article-title: Dropedge: Towards deep graph convolutional networks on node classification
– reference: (pp. 701–710).
– volume: 51
  start-page: 1
  year: 2018
  end-page: 34
  ident: b19
  article-title: Graph summarization methods and applications: A survey
  publication-title: ACM Computing Surveys (CSUR)
– reference: Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. In
– start-page: 40
  year: 2016
  end-page: 48
  ident: b36
  article-title: Revisiting semi-supervised learning with graph embeddings
  publication-title: International conference on machine learning
– reference: (pp. 2847–2856).
– reference: Gasteiger, J., Bojchevski, A., & Günnemann, S. (2019). Predict then Propagate: Graph Neural Networks meet Personalized PageRank. In
– volume: 44
  start-page: 3496
  year: 2022
  end-page: 3507
  ident: b3
  article-title: Graph neural networks with convolutional ARMA filters
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: .
– start-page: 1972
  year: 2019
  end-page: 1982
  ident: b10
  article-title: Learning discrete structures for graph neural networks
  publication-title: International conference on machine learning
– reference: Zügner, D., Akbarnejad, A., & Günnemann, S. (2018). Adversarial attacks on neural networks for graph data. In
– reference: Veličković, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., & Hjelm, R. D. (2019). Deep Graph Infomax. In
– reference: Kipf, T. N., & Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional Networks. In
– start-page: 6861
  year: 2019
  end-page: 6871
  ident: b33
  article-title: Simplifying graph convolutional networks
  publication-title: International conference on machine learning
– year: 2019
  ident: b9
  article-title: Fast graph representation learning with PyTorch geometric
– start-page: 777
  year: 2006
  end-page: 784
  ident: b27
  article-title: Link-based classification
  publication-title: Proceedings of the 23rd international conference on machine learning
– start-page: 423
  year: 2018
  end-page: 432
  ident: b38
  article-title: GaAN: Gated attention networks for learning on large and spatiotemporal graphs
  publication-title: Proceedings of the 34th conference on uncertainty in artificial intelligence
– reference: Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., & Sun, X. (2020). Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In
– start-page: 11458
  year: 2020
  ident: 10.1016/j.eswa.2023.121805_b40
  article-title: Robust graph representation learning via neural sparsification
– ident: 10.1016/j.eswa.2023.121805_b30
– year: 2019
  ident: 10.1016/j.eswa.2023.121805_b13
– ident: 10.1016/j.eswa.2023.121805_b20
  doi: 10.3115/1220835.1220855
– ident: 10.1016/j.eswa.2023.121805_b5
  doi: 10.1609/aaai.v34i04.5747
– ident: 10.1016/j.eswa.2023.121805_b17
  doi: 10.1609/aaai.v32i1.11604
– volume: 110
  issn: 0031-3203
  year: 2021
  ident: 10.1016/j.eswa.2023.121805_b2
  article-title: Hypergraph convolution and hypergraph attention
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107637
– start-page: 4816
  year: 2019
  ident: 10.1016/j.eswa.2023.121805_b34
  article-title: Adversarial examples for graph data: Deep insights into attack and defense
  doi: 10.24963/ijcai.2019/669
– volume: 51
  start-page: 1
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2023.121805_b19
  article-title: Graph summarization methods and applications: A survey
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3186727
– ident: 10.1016/j.eswa.2023.121805_b28
  doi: 10.1609/aaai.v34i04.6048
– year: 2019
  ident: 10.1016/j.eswa.2023.121805_b9
– volume: 123
  start-page: 41
  year: 2017
  ident: 10.1016/j.eswa.2023.121805_b16
  article-title: Self-training for multi-target regression with tree ensembles
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.02.014
– start-page: 2014
  year: 2016
  ident: 10.1016/j.eswa.2023.121805_b21
  article-title: Learning convolutional neural networks for graphs
– ident: 10.1016/j.eswa.2023.121805_b32
  doi: 10.1145/1390156.1390303
– ident: 10.1016/j.eswa.2023.121805_b11
  doi: 10.1145/3394486.3403296
– volume: 464
  start-page: 394
  year: 2021
  ident: 10.1016/j.eswa.2023.121805_b39
  article-title: Entropy-aware self-training for graph convolutional networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.08.092
– ident: 10.1016/j.eswa.2023.121805_b42
– start-page: 1993
  year: 2016
  ident: 10.1016/j.eswa.2023.121805_b1
  article-title: Diffusion-convolutional neural networks
– start-page: 777
  year: 2006
  ident: 10.1016/j.eswa.2023.121805_b27
  article-title: Link-based classification
– year: 2014
  ident: 10.1016/j.eswa.2023.121805_b29
– start-page: 29
  year: 2005
  ident: 10.1016/j.eswa.2023.121805_b26
  article-title: Semi-supervised self-training of object detection models
– year: 2017
  ident: 10.1016/j.eswa.2023.121805_b22
– start-page: 1024
  year: 2017
  ident: 10.1016/j.eswa.2023.121805_b12
  article-title: Inductive representation learning on large graphs
– ident: 10.1016/j.eswa.2023.121805_b4
– volume: 611
  start-page: 18
  year: 2022
  ident: 10.1016/j.eswa.2023.121805_b7
  article-title: Self-training method based on GCN for semi-supervised short text classification
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.07.186
– volume: 44
  start-page: 3496
  issue: 07
  year: 2022
  ident: 10.1016/j.eswa.2023.121805_b3
  article-title: Graph neural networks with convolutional ARMA filters
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 3844
  year: 2016
  ident: 10.1016/j.eswa.2023.121805_b8
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– ident: 10.1016/j.eswa.2023.121805_b18
  doi: 10.1609/aaai.v32i1.11691
– ident: 10.1016/j.eswa.2023.121805_b15
  doi: 10.1145/1150402.1150479
– start-page: 40
  year: 2016
  ident: 10.1016/j.eswa.2023.121805_b36
  article-title: Revisiting semi-supervised learning with graph embeddings
– ident: 10.1016/j.eswa.2023.121805_b37
  doi: 10.3115/981658.981684
– start-page: 942
  year: 2018
  ident: 10.1016/j.eswa.2023.121805_b6
  article-title: Stochastic training of graph convolutional networks with variance reduction
– ident: 10.1016/j.eswa.2023.121805_b24
  doi: 10.1145/2623330.2623732
– start-page: 423
  year: 2018
  ident: 10.1016/j.eswa.2023.121805_b38
  article-title: GaAN: Gated attention networks for learning on large and spatiotemporal graphs
– start-page: 795
  year: 2012
  ident: 10.1016/j.eswa.2023.121805_b41
  article-title: Self-training with selection-by-rejection
– volume: 58
  year: 2021
  ident: 10.1016/j.eswa.2023.121805_b23
  article-title: Rank-based self-training for graph convolutional networks
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2020.102443
– ident: 10.1016/j.eswa.2023.121805_b35
– ident: 10.1016/j.eswa.2023.121805_b14
– year: 2019
  ident: 10.1016/j.eswa.2023.121805_b25
– ident: 10.1016/j.eswa.2023.121805_b31
– start-page: 1972
  year: 2019
  ident: 10.1016/j.eswa.2023.121805_b10
  article-title: Learning discrete structures for graph neural networks
– start-page: 6861
  year: 2019
  ident: 10.1016/j.eswa.2023.121805_b33
  article-title: Simplifying graph convolutional networks
– ident: 10.1016/j.eswa.2023.121805_b43
  doi: 10.1145/3219819.3220078
SSID ssj0017007
Score 2.4478264
Snippet Learning convolutional networks on graphs have been a popular topic for machine learning on graph-structured data and achieved state-of-the-art results on...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121805
SubjectTerms Class distribution
Graph convolution network (GCN)
Self-training
Title Class-aware progressive self-training for learning convolutional networks on graphs
URI https://dx.doi.org/10.1016/j.eswa.2023.121805
Volume 238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W_w5cvAmdUmTNs1xDMdU2GUTditJk8pkdGOd7ubfbl6bDgXZwVtb8mj7eH352n75PoTuSJxkPJIMPi_JgCvqthxqCCJpaGIJk1xXbItRPHzlz9No2kL9Zi0M0Cp97697etWt_ZGuz2Z3OZt1xw4cuOkQ_jQCjhbQhzkX4GLw8LWleYD8nKj19kQAo_3CmZrjZcsNaA-FDEQWErCw-2ty-jHhDI7QgUeKuFdfzDFq2eIEHTYuDNg_lKdoXPlaBmqjVhZXdCtgtn5aXNp5HjQWENiBU-wtIt4wcM19zblTFDUVvMSLAlcC1uUZmgweJ_1h4K0SgowRsg6kCrVOiJaGK0FDYqRwSC1XkQiNISaOk0QrkHpRsRA5oa6rqYiz0Ga55kyxc9QuFoW9QFhIQC1UMW0y7uCiNnlMjKKxezFSDi1cItqkKM28jDjcyjxt-GLvKaQ1hbSmdVov0f02ZlmLaOwcHTWZT3-VQuq6_I64q3_GXaN9t8eBWEajG9Rerz7srUMaa92pSqmD9npPL8PRN76Z0dc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqMsDCN6J8emBDoXbixPGIKqoCpUuL1C2yYwcVVWnVFLrx2_ElTgUS6sAWJT4lOV3unp3ndwjdkChOWSgCWF4SHpPUHlnU4IVC09iQQDBVsi0GUe-VPY3DcQN16r0wQKt0ub_K6WW2dmfazpvt-WTSHlpwYMsh_GkEHM1tHt5ioc9hBnb3teZ5gP4crwT3uAfD3c6ZiuRlihWID_kBqCzE0MPur-r0o-J099Gug4r4vnqaA9Qw-SHaq9swYPdVHqFh2djSkyu5MLjkWwG19dPgwkwzr-4BgS06xa5HxBsGsrkLOnuLvOKCF3iW41LBujhGo-7DqNPzXK8ELw0IWXpC-krFRAnNJKc-0YJbqJbJkPtaEx1FcawkaL3IiPOMUJvWZMgC36SZYoEMTlAzn-XmFGEuALZQGSidMosXlc4ioiWN7MxIWrjQQrR2UZI6HXF4lWlSE8beE3BrAm5NKre20O3aZl6paGwcHdaeT37FQmLT_Aa7s3_aXaPt3uiln_QfB8_naMdeYcAyo-EFai4XH-bSwo6luirD6hvFJ9Ns
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Class-aware+progressive+self-training+for+learning+convolutional+networks+on+graphs&rft.jtitle=Expert+systems+with+applications&rft.au=Chen%2C+Ke&rft.au=Wu%2C+Weining&rft.date=2024-03-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=238&rft_id=info:doi/10.1016%2Fj.eswa.2023.121805&rft.externalDocID=S0957417423023072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon