Surface EMG feature disentanglement for robust pattern recognition
Extracting robust features from surface electromyogram (sEMG) for accurate pattern recognition is a central research topic in biomechanics and human-machine interaction. Although related topics have been extensively investigated, the robustness of the recognition models over the inter-subject and in...
        Saved in:
      
    
          | Published in | Expert systems with applications Vol. 237; p. 121224 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.03.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0957-4174 1873-6793  | 
| DOI | 10.1016/j.eswa.2023.121224 | 
Cover
| Abstract | Extracting robust features from surface electromyogram (sEMG) for accurate pattern recognition is a central research topic in biomechanics and human-machine interaction. Although related topics have been extensively investigated, the robustness of the recognition models over the inter-subject and inter-session signal variabilities remains challenging. From the perspective of feature projection, here we have proposed and validated the concept of sEMG feature disentanglement. We used an autoencoder-like architecture with specialized loss functions to explicitly decompose the sEMG features into the pattern-specific and subject-specific components. The former can be applied to robust sEMG pattern recognition, while the latter can be used as task-independent biometric identifiers. The proposed method was evaluated on data from twenty subjects with training and testing data acquired 3-25 days apart. The hand gesture recognition performance under the rigorous cross-subject and cross-day validation protocols demonstrates the proposed concept, showing a significant performance improvement over the state-of-the-art methods. Overall, this work provides a new insight into developing robust sEMG-based pattern recognition models. Moreover, it also indicates several exciting research directions in sEMG analysis, like task-independent sEMG biometric, sEMG privacy-preserving, and sEMG style-transfer.
•Electromyography feature was disentangled into pattern and subject-specific component.•Disentangled features improve accuracy in pattern recognition tasks.•The proposed approach can help advance the field of Electromyography analysis. | 
    
|---|---|
| AbstractList | Extracting robust features from surface electromyogram (sEMG) for accurate pattern recognition is a central research topic in biomechanics and human-machine interaction. Although related topics have been extensively investigated, the robustness of the recognition models over the inter-subject and inter-session signal variabilities remains challenging. From the perspective of feature projection, here we have proposed and validated the concept of sEMG feature disentanglement. We used an autoencoder-like architecture with specialized loss functions to explicitly decompose the sEMG features into the pattern-specific and subject-specific components. The former can be applied to robust sEMG pattern recognition, while the latter can be used as task-independent biometric identifiers. The proposed method was evaluated on data from twenty subjects with training and testing data acquired 3-25 days apart. The hand gesture recognition performance under the rigorous cross-subject and cross-day validation protocols demonstrates the proposed concept, showing a significant performance improvement over the state-of-the-art methods. Overall, this work provides a new insight into developing robust sEMG-based pattern recognition models. Moreover, it also indicates several exciting research directions in sEMG analysis, like task-independent sEMG biometric, sEMG privacy-preserving, and sEMG style-transfer.
•Electromyography feature was disentangled into pattern and subject-specific component.•Disentangled features improve accuracy in pattern recognition tasks.•The proposed approach can help advance the field of Electromyography analysis. | 
    
| ArticleNumber | 121224 | 
    
| Author | Fan, Jiahao Jiang, Xinyu Dai, Chenyun Jia, Fumin Liu, Xiangyu Meng, Long  | 
    
| Author_xml | – sequence: 1 givenname: Jiahao orcidid: 0000-0003-0514-1323 surname: Fan fullname: Fan, Jiahao email: fanjh18@fudan.edu.cn organization: Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai 200433, China – sequence: 2 givenname: Xinyu orcidid: 0000-0002-8518-1415 surname: Jiang fullname: Jiang, Xinyu email: xinyu.jiang@ed.ac.uk organization: School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, UK – sequence: 3 givenname: Xiangyu surname: Liu fullname: Liu, Xiangyu email: liuxiangyu@usst.edu.cn organization: Communication and Art Design, University of shanghai for science and technology, 516 Juntong Road, Shanghai, 200093, China – sequence: 4 givenname: Long orcidid: 0000-0001-8140-088X surname: Meng fullname: Meng, Long email: lmeng18@fudan.edu.cn organization: Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai 200433, China – sequence: 5 givenname: Fumin surname: Jia fullname: Jia, Fumin email: jfmin@fudan.edu.cn organization: Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China – sequence: 6 givenname: Chenyun orcidid: 0000-0002-3056-4339 surname: Dai fullname: Dai, Chenyun email: chenyundai@fudan.edu.cn organization: Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai 200433, China  | 
    
| BookMark | eNp9kLFOwzAURS1UJNrCDzDlBxKencROJBaoSkEqYgBmy7GfK1etU9kuiL8nUZkYOt27nKd3z4xMfO-RkFsKBQXK77YFxm9VMGBlQRllrLogU9qIMueiLSdkCm0t8oqK6orMYtwCUAEgpuTx_Ris0pgtX1eZRZWOATPjIvqk_GaH-6Fktg9Z6LtjTNlBpYTBZwF1v_Euud5fk0urdhFv_nJOPp-WH4vnfP22elk8rHNdAqS8FcIAY8wYbnmpbV23remMaRrDNFWVqTqLtGsqrjnY0rS04aDrDjgir8GUc9Kc7urQxxjQSu2SGj9IQbmdpCBHF3IrRxdydCFPLgaU_UMPwe1V-DkP3Z8gHEZ9OQwyaodeo3HD-iRN787hv90xezc | 
    
| CitedBy_id | crossref_primary_10_1109_JBHI_2024_3510525 crossref_primary_10_1109_JSEN_2024_3485244 crossref_primary_10_3390_bioengineering11040358 crossref_primary_10_1016_j_compbiomed_2024_108384 crossref_primary_10_1016_j_bspc_2024_107438 crossref_primary_10_1038_s41597_025_04763_w crossref_primary_10_1186_s12984_024_01526_3 crossref_primary_10_1109_LRA_2025_3546095 crossref_primary_10_1007_s44258_024_00043_1 crossref_primary_10_1016_j_compbiomed_2023_107604 crossref_primary_10_3390_bioengineering11080811 crossref_primary_10_1016_j_eswa_2024_126311 crossref_primary_10_1109_TIM_2025_3540139  | 
    
| Cites_doi | 10.1109/TNSRE.2017.2687520 10.1109/JBHI.2019.2926307 10.1038/srep36571 10.1109/TNNLS.2020.3009448 10.1016/j.bspc.2007.07.009 10.3390/s17030458 10.1016/j.patrec.2017.12.005 10.1109/JIOT.2021.3074952 10.3390/s20092467 10.1109/TBME.2013.2250502 10.1186/1743-0003-6-41 10.1016/0377-0427(87)90125-7 10.1109/TNSRE.2014.2304470 10.1109/TNSRE.2021.3082551 10.3389/fnins.2017.00379 10.1109/JBHI.2020.3009383 10.1109/TNSRE.2021.3086401 10.1109/TNSRE.2015.2454503 10.1016/j.compbiomed.2013.01.020 10.1016/j.eswa.2013.02.023 10.1109/JSEN.2021.3079428 10.1016/j.eswa.2012.01.102 10.1109/TNSRE.2019.2896269 10.1109/TBME.2003.813539 10.1109/TVCG.2019.2921336 10.1109/JBHI.2021.3115784 10.1109/JBHI.2018.2864335 10.1123/jab.13.2.135  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2023 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.eswa.2023.121224 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1873-6793 | 
    
| ExternalDocumentID | 10_1016_j_eswa_2023_121224 S0957417423017268  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD  | 
    
| ID | FETCH-LOGICAL-c300t-977d0222dd6f63cf5599dbdd88d2c1a4d4bfe1b846c60f3d91860c5b06ee650d3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0957-4174 | 
    
| IngestDate | Thu Apr 24 23:00:27 EDT 2025 Sat Oct 25 05:51:24 EDT 2025 Fri Feb 23 02:35:23 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Surface electromyogram Feature decomposition Transfer learning Hand gesture recognition Neural interface  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c300t-977d0222dd6f63cf5599dbdd88d2c1a4d4bfe1b846c60f3d91860c5b06ee650d3 | 
    
| ORCID | 0000-0002-3056-4339 0000-0001-8140-088X 0000-0002-8518-1415 0000-0003-0514-1323  | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2023_121224 crossref_primary_10_1016_j_eswa_2023_121224 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121224  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-03-01 2024-03-00  | 
    
| PublicationDateYYYYMMDD | 2024-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Expert systems with applications | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Asghari Oskoei, Hu (b3) 2007; 2 Gu, Guo, Deligianni, Lo, Yang (b15) 2020; 32 Subasi (b32) 2013; 43 Naik, Selvan, Nguyen (b27) 2016; 24 Jaramillo-Yánez, Benalcázar, Mena-Maldonado (b16) 2020; 20 Khushaba (b22) 2014; 22 Pradhan, He, Jiang (b30) 2021; 21 Lv, Sheng, Zhu (b25) 2018 Zhang, Zhao, Han, Zhao (b38) 2014 Aberman, Wu, Lischinski, Chen, Cohen-Or (b1) 2019 Du, Jin, Wei, Hu, Geng (b10) 2017; 17 Matsubara, Morimoto (b26) 2013; 60 Phinyomark, Quaine, Charbonnier, Serviere, Tarpin-Bernard, Laurillau (b29) 2013; 40 Côté-Allard, Fall, Drouin, Campeau-Lecours, Gosselin, Glette, Laviolette, Gosselin (b7) 2019; 27 Bao, Zaidi, Xie, Yang, Zhang (b4) 2021; 29 Jiang, Liu, Fan, Ye, Dai, Clancy, Farina, Chen (b18) 2021; 8 Wei, Wong, Du, Hu, Kankanhalli, Geng (b35) 2019; 119 Waris, Niazi, Jamil, Englehart, Jensen, Kamavuako (b34) 2019; 23 Fan, Jiang, Liu, Zhao, Ye, Dai, Akay, Chen (b13) 2022; 26 Rousseeuw (b31) 1987; 20 Zhai, Jelfs, Chan, Tin (b37) 2017; 11 Englehart, Hudgins (b12) 2003; 50 Jiang, Liu, Fan, Ye, Dai, Clancy, Akay, Chen (b17) 2021; 29 Geng, Du, Jin, Wei, Hu, Li (b14) 2016; 6 Xia, Duch, Sun, Xu, Fang, Luo, Zhang, Sang, Xu, Wang, Wu (b36) 2022 Castellini, Fiorilla, Sandini (b5) 2009; 6 Chen, Li, Hu, Zhang, Chen (b6) 2020; 25 Du, Jin, Wei, Hu, Geng (b11) 2017; 17 Jiang, Liu, Fan, Ye, Dai, Clancy, Farina, Chen (b19) 2022 Jing, Yang, Feng, Ye, Yu, Song (b20) 2020; 26 Dai, Hu (b8) 2020; 24 De Luca (b9) 1997; 13 Tsinganos, Cornelis, Cornelis, Jansen, Skodras (b33) 2019 Ketykó, Kovács, Varga (b21) 2019 Asghari Oskoei, Hu (b2) 2007; 2 Khushaba, Al-Timemy, Al-Ani, Al-Jumaily (b23) 2017; 25 Phinyomark, Phukpattaranont, Limsakul (b28) 2012; 39 Kingma, Ba (b24) 2014 Geng (10.1016/j.eswa.2023.121224_b14) 2016; 6 Wei (10.1016/j.eswa.2023.121224_b35) 2019; 119 Asghari Oskoei (10.1016/j.eswa.2023.121224_b3) 2007; 2 Jiang (10.1016/j.eswa.2023.121224_b17) 2021; 29 Khushaba (10.1016/j.eswa.2023.121224_b23) 2017; 25 Ketykó (10.1016/j.eswa.2023.121224_b21) 2019 Du (10.1016/j.eswa.2023.121224_b11) 2017; 17 Phinyomark (10.1016/j.eswa.2023.121224_b28) 2012; 39 Matsubara (10.1016/j.eswa.2023.121224_b26) 2013; 60 Phinyomark (10.1016/j.eswa.2023.121224_b29) 2013; 40 Asghari Oskoei (10.1016/j.eswa.2023.121224_b2) 2007; 2 Englehart (10.1016/j.eswa.2023.121224_b12) 2003; 50 Xia (10.1016/j.eswa.2023.121224_b36) 2022 Aberman (10.1016/j.eswa.2023.121224_b1) 2019 Khushaba (10.1016/j.eswa.2023.121224_b22) 2014; 22 De Luca (10.1016/j.eswa.2023.121224_b9) 1997; 13 Fan (10.1016/j.eswa.2023.121224_b13) 2022; 26 Naik (10.1016/j.eswa.2023.121224_b27) 2016; 24 Tsinganos (10.1016/j.eswa.2023.121224_b33) 2019 Zhang (10.1016/j.eswa.2023.121224_b38) 2014 Jiang (10.1016/j.eswa.2023.121224_b19) 2022 Chen (10.1016/j.eswa.2023.121224_b6) 2020; 25 Kingma (10.1016/j.eswa.2023.121224_b24) 2014 Castellini (10.1016/j.eswa.2023.121224_b5) 2009; 6 Dai (10.1016/j.eswa.2023.121224_b8) 2020; 24 Jiang (10.1016/j.eswa.2023.121224_b18) 2021; 8 Bao (10.1016/j.eswa.2023.121224_b4) 2021; 29 Gu (10.1016/j.eswa.2023.121224_b15) 2020; 32 Jaramillo-Yánez (10.1016/j.eswa.2023.121224_b16) 2020; 20 Subasi (10.1016/j.eswa.2023.121224_b32) 2013; 43 Waris (10.1016/j.eswa.2023.121224_b34) 2019; 23 Lv (10.1016/j.eswa.2023.121224_b25) 2018 Du (10.1016/j.eswa.2023.121224_b10) 2017; 17 Côté-Allard (10.1016/j.eswa.2023.121224_b7) 2019; 27 Jing (10.1016/j.eswa.2023.121224_b20) 2020; 26 Pradhan (10.1016/j.eswa.2023.121224_b30) 2021; 21 Rousseeuw (10.1016/j.eswa.2023.121224_b31) 1987; 20 Zhai (10.1016/j.eswa.2023.121224_b37) 2017; 11  | 
    
| References_xml | – volume: 6 start-page: 1 year: 2016 end-page: 8 ident: b14 article-title: Gesture recognition by instantaneous surface EMG images publication-title: Scientific Reports – volume: 60 start-page: 2205 year: 2013 end-page: 2213 ident: b26 article-title: Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface publication-title: IEEE Transactions on Biomedical Engineering – year: 2019 ident: b1 article-title: Learning character-agnostic motion for motion retargeting in 2d – year: 2014 ident: b24 article-title: Adam: A method for stochastic optimization – start-page: 1169 year: 2019 end-page: 1173 ident: b33 article-title: Improved gesture recognition based on sEMG signals and TCN publication-title: ICASSP 2019 - 2019 IEEE international conference on acoustics, speech and signal processing (ICASSP) – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: b31 article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis publication-title: Journal of Computational and Applied Mathematics – start-page: 4850 year: 2014 end-page: 4855 ident: b38 article-title: A comparative study on PCA and LDA based EMG pattern recognition for anthropomorphic robotic hand publication-title: 2014 IEEE international conference on robotics and automation (ICRA) – start-page: 1 year: 2022 end-page: 11 ident: b19 article-title: Optimization of HD-sEMG-based cross-day hand gesture classification by optimal feature extraction and data augmentation publication-title: IEEE Transactions on Human-Machine Systems – volume: 26 start-page: 3365 year: 2020 end-page: 3385 ident: b20 article-title: Neural style transfer: A review publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 17 start-page: 458 year: 2017 ident: b11 article-title: Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation publication-title: Sensors – volume: 2 start-page: 275 year: 2007 end-page: 294 ident: b3 article-title: Myoelectric control systems—A survey publication-title: Biomedical Signal Processing and Control – volume: 119 start-page: 131 year: 2019 end-page: 138 ident: b35 article-title: A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle-computer interface publication-title: Pattern Recognition Letters – volume: 22 start-page: 745 year: 2014 end-page: 755 ident: b22 article-title: Correlation analysis of electromyogram signals for multiuser myoelectric interfaces publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – start-page: 1 year: 2022 end-page: 13 ident: b36 article-title: Privacy-preserving brain-computer interfaces: A systematic review publication-title: IEEE Transactions on Computational Social Systems – volume: 25 start-page: 1292 year: 2020 end-page: 1304 ident: b6 article-title: Hand gesture recognition based on surface electromyography using convolutional neural network with transfer learning method publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 26 start-page: 1782 year: 2022 end-page: 1793 ident: b13 article-title: Cancelable HD-SEMG biometric identification via deep feature learning publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 23 start-page: 1526 year: 2019 end-page: 1534 ident: b34 article-title: Multiday evaluation of techniques for EMG-based classification of hand motions publication-title: IEEE Journal of Biomedical and Health Informatics – start-page: 5652 year: 2018 end-page: 5655 ident: b25 article-title: Improving myoelectric pattern recognition robustness to electrode shift by autoencoder publication-title: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC) – volume: 29 start-page: 1068 year: 2021 end-page: 1078 ident: b4 article-title: Inter-subject domain adaptation for CNN-based wrist kinematics estimation using sEMG publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 25 start-page: 1821 year: 2017 end-page: 1831 ident: b23 article-title: A framework of temporal-spatial descriptors-based feature extraction for improved myoelectric pattern recognition publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 11 start-page: 379 year: 2017 ident: b37 article-title: Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network publication-title: Frontiers in Neuroscience – volume: 13 start-page: 135 year: 1997 end-page: 163 ident: b9 article-title: The use of surface electromyography in biomechanics publication-title: Journal of applied biomechanics – volume: 20 year: 2020 ident: b16 article-title: Real-time hand gesture recognition using surface electromyography and machine learning: A systematic literature review publication-title: Sensors – volume: 43 start-page: 576 year: 2013 end-page: 586 ident: b32 article-title: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders publication-title: Computers in Biology and Medicine – volume: 8 start-page: 16535 year: 2021 end-page: 16547 ident: b18 article-title: Enhancing IoT security via cancelable HD-sEMG-based biometric authentication password, encoded by gesture publication-title: IEEE Internet of Things Journal – volume: 39 start-page: 7420 year: 2012 end-page: 7431 ident: b28 article-title: Feature reduction and selection for EMG signal classification publication-title: Expert Systems with Applications – volume: 27 start-page: 760 year: 2019 end-page: 771 ident: b7 article-title: Deep learning for electromyographic hand gesture signal classification using transfer learning publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 17 year: 2017 ident: b10 article-title: Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation publication-title: Sensors – volume: 40 start-page: 4832 year: 2013 end-page: 4840 ident: b29 article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness publication-title: Expert Systems with Applications – volume: 24 start-page: 760 year: 2020 end-page: 767 ident: b8 article-title: Finger joint angle estimation based on motoneuron discharge activities publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 24 start-page: 734 year: 2016 end-page: 743 ident: b27 article-title: Single-channel EMG classification with ensemble-empirical-mode-decomposition-based ICA for diagnosing neuromuscular disorders publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 6 start-page: 41 year: 2009 ident: b5 article-title: Multi-subject/daily-life activity EMG-based control of mechanical hands publication-title: Journal of NeuroEngineering and Rehabilitation – volume: 2 start-page: 275 year: 2007 end-page: 294 ident: b2 article-title: Myoelectric control systems—A survey publication-title: Biomedical Signal Processing and Control – volume: 32 start-page: 546 year: 2020 end-page: 560 ident: b15 article-title: Cross-subject and cross-modal transfer for generalized abnormal gait pattern recognition publication-title: IEEE Transactions on Neural Networks and Learning Systems – start-page: 1 year: 2019 end-page: 7 ident: b21 article-title: Domain adaptation for sEMG-based gesture recognition with recurrent neural networks publication-title: 2019 international joint conference on neural networks (IJCNN) – volume: 21 start-page: 21718 year: 2021 end-page: 21729 ident: b30 article-title: Performance optimization of surface electromyography based biometric sensing system for both verification and identification publication-title: IEEE Sensors Journal – volume: 29 start-page: 1035 year: 2021 end-page: 1046 ident: b17 article-title: Open access dataset, toolbox and benchmark processing results of high-density surface electromyogram recordings publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 50 start-page: 848 year: 2003 end-page: 854 ident: b12 article-title: A robust, real-time control scheme for multifunction myoelectric control publication-title: IEEE Transactions on Biomedical Engineering – volume: 25 start-page: 1821 issue: 10 year: 2017 ident: 10.1016/j.eswa.2023.121224_b23 article-title: A framework of temporal-spatial descriptors-based feature extraction for improved myoelectric pattern recognition publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2017.2687520 – volume: 24 start-page: 760 issue: 3 year: 2020 ident: 10.1016/j.eswa.2023.121224_b8 article-title: Finger joint angle estimation based on motoneuron discharge activities publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2019.2926307 – year: 2014 ident: 10.1016/j.eswa.2023.121224_b24 – volume: 6 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.eswa.2023.121224_b14 article-title: Gesture recognition by instantaneous surface EMG images publication-title: Scientific Reports doi: 10.1038/srep36571 – volume: 32 start-page: 546 issue: 2 year: 2020 ident: 10.1016/j.eswa.2023.121224_b15 article-title: Cross-subject and cross-modal transfer for generalized abnormal gait pattern recognition publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.3009448 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2023.121224_b36 article-title: Privacy-preserving brain-computer interfaces: A systematic review publication-title: IEEE Transactions on Computational Social Systems – volume: 2 start-page: 275 issue: 4 year: 2007 ident: 10.1016/j.eswa.2023.121224_b2 article-title: Myoelectric control systems—A survey publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2007.07.009 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2023.121224_b19 article-title: Optimization of HD-sEMG-based cross-day hand gesture classification by optimal feature extraction and data augmentation publication-title: IEEE Transactions on Human-Machine Systems – volume: 17 start-page: 458 issue: 3 year: 2017 ident: 10.1016/j.eswa.2023.121224_b11 article-title: Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation publication-title: Sensors doi: 10.3390/s17030458 – volume: 119 start-page: 131 year: 2019 ident: 10.1016/j.eswa.2023.121224_b35 article-title: A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle-computer interface publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2017.12.005 – start-page: 4850 year: 2014 ident: 10.1016/j.eswa.2023.121224_b38 article-title: A comparative study on PCA and LDA based EMG pattern recognition for anthropomorphic robotic hand – volume: 8 start-page: 16535 issue: 22 year: 2021 ident: 10.1016/j.eswa.2023.121224_b18 article-title: Enhancing IoT security via cancelable HD-sEMG-based biometric authentication password, encoded by gesture publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2021.3074952 – volume: 20 issue: 9 year: 2020 ident: 10.1016/j.eswa.2023.121224_b16 article-title: Real-time hand gesture recognition using surface electromyography and machine learning: A systematic literature review publication-title: Sensors doi: 10.3390/s20092467 – volume: 60 start-page: 2205 issue: 8 year: 2013 ident: 10.1016/j.eswa.2023.121224_b26 article-title: Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2013.2250502 – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2023.121224_b21 article-title: Domain adaptation for sEMG-based gesture recognition with recurrent neural networks – start-page: 1169 year: 2019 ident: 10.1016/j.eswa.2023.121224_b33 article-title: Improved gesture recognition based on sEMG signals and TCN – volume: 2 start-page: 275 issue: 4 year: 2007 ident: 10.1016/j.eswa.2023.121224_b3 article-title: Myoelectric control systems—A survey publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2007.07.009 – volume: 6 start-page: 41 issue: 1 year: 2009 ident: 10.1016/j.eswa.2023.121224_b5 article-title: Multi-subject/daily-life activity EMG-based control of mechanical hands publication-title: Journal of NeuroEngineering and Rehabilitation doi: 10.1186/1743-0003-6-41 – volume: 20 start-page: 53 year: 1987 ident: 10.1016/j.eswa.2023.121224_b31 article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/0377-0427(87)90125-7 – volume: 22 start-page: 745 issue: 4 year: 2014 ident: 10.1016/j.eswa.2023.121224_b22 article-title: Correlation analysis of electromyogram signals for multiuser myoelectric interfaces publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2014.2304470 – volume: 29 start-page: 1035 year: 2021 ident: 10.1016/j.eswa.2023.121224_b17 article-title: Open access dataset, toolbox and benchmark processing results of high-density surface electromyogram recordings publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2021.3082551 – start-page: 5652 year: 2018 ident: 10.1016/j.eswa.2023.121224_b25 article-title: Improving myoelectric pattern recognition robustness to electrode shift by autoencoder – volume: 11 start-page: 379 year: 2017 ident: 10.1016/j.eswa.2023.121224_b37 article-title: Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2017.00379 – year: 2019 ident: 10.1016/j.eswa.2023.121224_b1 – volume: 25 start-page: 1292 issue: 4 year: 2020 ident: 10.1016/j.eswa.2023.121224_b6 article-title: Hand gesture recognition based on surface electromyography using convolutional neural network with transfer learning method publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2020.3009383 – volume: 29 start-page: 1068 year: 2021 ident: 10.1016/j.eswa.2023.121224_b4 article-title: Inter-subject domain adaptation for CNN-based wrist kinematics estimation using sEMG publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2021.3086401 – volume: 24 start-page: 734 issue: 7 year: 2016 ident: 10.1016/j.eswa.2023.121224_b27 article-title: Single-channel EMG classification with ensemble-empirical-mode-decomposition-based ICA for diagnosing neuromuscular disorders publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2015.2454503 – volume: 43 start-page: 576 issue: 5 year: 2013 ident: 10.1016/j.eswa.2023.121224_b32 article-title: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2013.01.020 – volume: 40 start-page: 4832 issue: 12 year: 2013 ident: 10.1016/j.eswa.2023.121224_b29 article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.02.023 – volume: 17 issue: 3 year: 2017 ident: 10.1016/j.eswa.2023.121224_b10 article-title: Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation publication-title: Sensors doi: 10.3390/s17030458 – volume: 21 start-page: 21718 issue: 19 year: 2021 ident: 10.1016/j.eswa.2023.121224_b30 article-title: Performance optimization of surface electromyography based biometric sensing system for both verification and identification publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2021.3079428 – volume: 39 start-page: 7420 issue: 8 year: 2012 ident: 10.1016/j.eswa.2023.121224_b28 article-title: Feature reduction and selection for EMG signal classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.01.102 – volume: 27 start-page: 760 issue: 4 year: 2019 ident: 10.1016/j.eswa.2023.121224_b7 article-title: Deep learning for electromyographic hand gesture signal classification using transfer learning publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2019.2896269 – volume: 50 start-page: 848 issue: 7 year: 2003 ident: 10.1016/j.eswa.2023.121224_b12 article-title: A robust, real-time control scheme for multifunction myoelectric control publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2003.813539 – volume: 26 start-page: 3365 issue: 11 year: 2020 ident: 10.1016/j.eswa.2023.121224_b20 article-title: Neural style transfer: A review publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2019.2921336 – volume: 26 start-page: 1782 issue: 4 year: 2022 ident: 10.1016/j.eswa.2023.121224_b13 article-title: Cancelable HD-SEMG biometric identification via deep feature learning publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2021.3115784 – volume: 23 start-page: 1526 issue: 4 year: 2019 ident: 10.1016/j.eswa.2023.121224_b34 article-title: Multiday evaluation of techniques for EMG-based classification of hand motions publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2018.2864335 – volume: 13 start-page: 135 issue: 2 year: 1997 ident: 10.1016/j.eswa.2023.121224_b9 article-title: The use of surface electromyography in biomechanics publication-title: Journal of applied biomechanics doi: 10.1123/jab.13.2.135  | 
    
| SSID | ssj0017007 | 
    
| Score | 2.541637 | 
    
| Snippet | Extracting robust features from surface electromyogram (sEMG) for accurate pattern recognition is a central research topic in biomechanics and human-machine... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 121224 | 
    
| SubjectTerms | Feature decomposition Hand gesture recognition Neural interface Surface electromyogram Transfer learning  | 
    
| Title | Surface EMG feature disentanglement for robust pattern recognition | 
    
| URI | https://dx.doi.org/10.1016/j.eswa.2023.121224 | 
    
| Volume | 237 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IXrz424g_SA_ezGTdSjuOSEDUwAVJuC1bX2cwZhAY8ebfbt_aEU0MB49b-pbla_f6df36PUJulQyUUpn0JEDg8QS0yYPAPGkGs47QnkTjr4HRWAyn_HnWntVIrzoLg7JKl_ttTi-ztbvTcmi2lvN5a2LIgZkOcacR1zECD_xyLrGKwf3XVuaB9nPS-u1JD1u7gzNW46XXn-g9FIRoshAE_O_J6ceEMzgiB44p0q59mWNS0_kJOayqMFD3UZ6Sh8lmlSVK0_7okWa6NOqkuO-SG973ZtXh1FBTulqkm3VBl6WjZk630qFFfkamg_5rb-i5ygieCn2_8AxpA1ypAYhMhCpD2zBIAaIIAsUSDjzNNEsNt1DCz0LosEj4qp36QmtDySA8J_V8kesLQhET1om4Fgy4SiDVvkzMQ8xSsMMlsAZhFSSxcrbhWL3iI670Ye8xwhgjjLGFsUHutjFLa5qxs3W7Qjr-1fWxyeo74i7_GXdF9s0Vt0Kya1IvVht9Y5hFkTbLodMke92nl-H4Gw6szMg | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD3rxtxF_9uDNTNattOOoBEQFLkDCbdn6OoMxg8CIN_92-7aOaGI4eN36luVr9_q99etXQm6V9JRSiXQkgOfwCLTJg8AcaQazDtCeROOvgf5AdMf8ZdKYVEir3AuDskqb-4ucnmdre6Vu0azPp9P60JADMx3iSiPWMSLYItu84UmswO6_1joP9J-TheGedLC53TlTiLz08hPNhzwfXRY8j_89O_2YcToHZM9SRfpQvM0hqej0iOyXxzBQ-1Uek8fhapFEStN2_4kmOnfqpLjwkhri91bIw6nhpnQxi1fLjM5zS82UrrVDs_SEjDvtUavr2KMRHOW7buYY1gZYqgGIRPgqQd8wiAGCADzFIg48TjSLDblQwk18aLJAuKoRu0Jrw8nAPyXVdJbqM0IRE9YMuBYMuIog1q6MzENMLdjkEliNsBKSUFnfcDy-4iMsBWLvIcIYIoxhAWON3K1j5oVrxsbWjRLp8Fffhyatb4g7_2fcDdnpjvq9sPc8eL0gu-YOL1Rll6SaLVb6ytCMLL7Oh9E3_yPOXQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+EMG+feature+disentanglement+for+robust+pattern+recognition&rft.jtitle=Expert+systems+with+applications&rft.au=Fan%2C+Jiahao&rft.au=Jiang%2C+Xinyu&rft.au=Liu%2C+Xiangyu&rft.au=Meng%2C+Long&rft.date=2024-03-01&rft.issn=0957-4174&rft.volume=237&rft.spage=121224&rft_id=info:doi/10.1016%2Fj.eswa.2023.121224&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_121224 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |