A transform-based fast fuzzy C-means approach for high brain MRI segmentation accuracy

Segmentation of brain magnetic resonance (MR) images has a significant impact on the computer-aided diagnosis and analysis. However, due to the presence of noise in medical images, many segmentation methods suffer from limited segmentation accuracy. To reduce the effect of noise and achieve high seg...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 76; pp. 156 - 173
Main Authors Singh, Chandan, Bala, Anu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2019
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2018.12.005

Cover

Abstract Segmentation of brain magnetic resonance (MR) images has a significant impact on the computer-aided diagnosis and analysis. However, due to the presence of noise in medical images, many segmentation methods suffer from limited segmentation accuracy. To reduce the effect of noise and achieve high segmentation accuracy many approaches based on the local and nonlocal information in the spatial domain have been proposed in the past. Recently, the authors have proposed a discrete cosine transform (DCT)-based local and nonlocal fuzzy C-means method (DCT-LNLFCM) which performs much better than the existing methods. However, the method is slow in speed. This paper presents a fast DCT-based nonlocal fuzzy C-means (DCT-NLFCM) segmentation method which is not only very fast than the DCT-LNLFCM, but also provides better segmentation results. The proposed method uses DCT-based MR pre-filtered image to achieve high segmentation accuracy and its histogram enables to achieve very high computation speed. Detailed experiments are conducted to establish the superiority of the proposed method over the state-of-the-art unsupervised methods. •A fast DCT-based MR image segmentation approach proposed.•The approach provides very high segmentation accuracy.•The algorithm is very fast as compared to the existing DCT-based algorithm.•The DCT-domain pre-filtered image is used to achieve high speed.•The proposed method is robust to noise.
AbstractList Segmentation of brain magnetic resonance (MR) images has a significant impact on the computer-aided diagnosis and analysis. However, due to the presence of noise in medical images, many segmentation methods suffer from limited segmentation accuracy. To reduce the effect of noise and achieve high segmentation accuracy many approaches based on the local and nonlocal information in the spatial domain have been proposed in the past. Recently, the authors have proposed a discrete cosine transform (DCT)-based local and nonlocal fuzzy C-means method (DCT-LNLFCM) which performs much better than the existing methods. However, the method is slow in speed. This paper presents a fast DCT-based nonlocal fuzzy C-means (DCT-NLFCM) segmentation method which is not only very fast than the DCT-LNLFCM, but also provides better segmentation results. The proposed method uses DCT-based MR pre-filtered image to achieve high segmentation accuracy and its histogram enables to achieve very high computation speed. Detailed experiments are conducted to establish the superiority of the proposed method over the state-of-the-art unsupervised methods. •A fast DCT-based MR image segmentation approach proposed.•The approach provides very high segmentation accuracy.•The algorithm is very fast as compared to the existing DCT-based algorithm.•The DCT-domain pre-filtered image is used to achieve high speed.•The proposed method is robust to noise.
Author Bala, Anu
Singh, Chandan
Author_xml – sequence: 1
  givenname: Chandan
  orcidid: 0000-0002-8059-1263
  surname: Singh
  fullname: Singh, Chandan
  email: chandan.csp@gmail.com
– sequence: 2
  givenname: Anu
  surname: Bala
  fullname: Bala, Anu
  email: anumangla90@gmail.com
BookMark eNp9kM9qAjEQh0OxULV9gZ7yArudZLNrAr2I9I9gKZS215DNTjSiu5KsBX36RuypB08zMPMN8_tGZNB2LRJyzyBnwKqHdW5iZ3MOTOaM5wDlFRkyOeGZqiQbpL6sZCaUqG7IKMY1JEhxOSTfU9oH00bXhW1Wm4gNdSb21O2PxwOdZVtMQ2p2u9AZu6Jpja78ckXrYHxL3z7mNOJyi21vet-11Fi7D8Yebsm1M5uId391TL6enz5nr9ni_WU-my4yWwD06bkGAMXEgSqtU5UAwdCWkleKAcDEcKlqyxyYUmEtRNPUrCmK2hVYitrZYkzk-a4NXYwBnbb-_EpK5TeagT750Wt98qNPfjTjOvlJKP-H7oLfmnC4DD2eIUyhfjwGHa3H1mLjA9peN52_hP8C6F6BuQ
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106335
crossref_primary_10_1016_j_eswa_2020_113989
crossref_primary_10_1007_s00521_024_10406_9
crossref_primary_10_1016_j_bspc_2021_103077
crossref_primary_10_1007_s00500_023_09379_z
crossref_primary_10_1049_iet_ipr_2020_0383
crossref_primary_10_1007_s11042_021_11221_3
crossref_primary_10_1016_j_bspc_2021_102615
crossref_primary_10_1109_ACCESS_2019_2903015
crossref_primary_10_1016_j_asoc_2020_106364
crossref_primary_10_1016_j_asoc_2022_108891
crossref_primary_10_3390_axioms13010035
crossref_primary_10_1007_s10278_023_00899_6
crossref_primary_10_1109_ACCESS_2020_3011224
crossref_primary_10_1142_S0218488519400075
crossref_primary_10_1016_j_asoc_2019_105775
Cites_doi 10.1016/j.media.2015.06.012
10.1109/CICN.2010.80
10.1016/j.asoc.2015.05.038
10.1118/1.595484
10.1109/42.816072
10.1016/j.patcog.2012.03.009
10.1016/j.patcog.2014.01.017
10.1016/j.mri.2013.07.001
10.1109/TMI.2011.2163944
10.1016/j.neuroimage.2014.12.061
10.1016/j.patcog.2016.06.020
10.1016/0098-3004(84)90020-7
10.1109/42.906424
10.1155/2012/232685
10.1186/s12880-015-0068-x
10.1016/j.mri.2013.05.002
10.1109/TCSVT.2012.2211176
10.1016/j.media.2016.05.004
10.1109/TSMCB.2004.831165
10.1109/IEMBS.2003.1279866
10.1109/TIP.2010.2040763
10.1109/TIP.2014.2329448
10.1088/0031-9155/52/5/009
10.1109/42.996338
10.1007/s11042-016-3399-x
10.1016/j.asoc.2016.02.043
10.1016/j.asoc.2018.03.054
10.1109/83.791966
10.1016/j.eswa.2014.01.003
10.1016/j.cmpb.2011.07.015
10.1016/j.media.2008.02.004
10.1148/rg.262055063
10.1109/TIP.2012.2219547
10.1016/j.compmedimag.2008.08.004
10.1007/s10278-017-9983-4
10.1109/TMI.2007.906087
10.1002/mrm.22147
10.1016/j.media.2011.04.003
10.1016/j.patcog.2006.07.011
10.1016/j.neucom.2012.10.022
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2018.12.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 173
ExternalDocumentID 10_1016_j_asoc_2018_12_005
S1568494618306872
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-96d00e47f095cf964041ec5826910007a289bc1f0a59eb44ddb1d33bf3e54bfc3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:08:21 EDT 2025
Wed Oct 01 02:32:13 EDT 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Segmentation accuracy
Fuzzy C-means
MRI segmentation
DCT-filtering
Discrete cosine transform
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-96d00e47f095cf964041ec5826910007a289bc1f0a59eb44ddb1d33bf3e54bfc3
ORCID 0000-0002-8059-1263
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2018_12_005
crossref_primary_10_1016_j_asoc_2018_12_005
elsevier_sciencedirect_doi_10_1016_j_asoc_2018_12_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Singh, Aggarwal (b31) 2017
Hu, Pu, Wu, Zhang, Zhou (b33) 2012; 2012
Manjon, Coupe, Baudes (b35) 2012; 16
Sijbers, Poot, den Dekker, Pintjens (b38) 2007; 52
Singh, Bala (b19) 2018; 68
Nguyen, Wu (b12) 2013; 23
He, Hussaini, Ma (b21) 2012; 45
Zacharaki, Wang, Chawla (b2) 2009; 62
Bitar, Leung, Perng (b1) 2006; 26
Wang, Kong, Lu, Qi, Zhang (b26) 2008; 32
Rohlfing (b44) 2012; 31
Zhang, Brady, Smith (b11) 2001; 20
Singh, Ranade, Singh (b34) 2017; 131
Nowak (b39) 1999; 8
J. Hu, Y. Pu, Y. Zhang, Y. Liu, J. Zhou, A novel nonlocal means denoising method using the DCT, in: Proceeding of the International Conference on Image Processing, Computer Vision and Pattern Recognition, IPCV’11, Las Vegas, USA, 2011.
Bezdek, Ehrlich, Full (b8) 1984; 10
Cai, Chen, Zhang (b16) 2007; 40
Iglesias, Sabuncu (b4) 2015; 24
Ji, Liu, Cao (b22) 2014; 47
Akkus, Galimzianova, Hoogi (b9) 2017; 30
Manjon, Carbonell-Caballero, Cull, Garcia-Marti, Marti-Bonnrati, Robles (b25) 2008; 12
Gordillo, Montseny, Sobrevilla (b10) 2013; 31
Ahmed, Yamany, Mohamed (b13) 2002; 21
V.K. Dehariya, S.K. Shrivastava, R.C. Jain, Clustering of image data set using K-means and fuzzy k-means algorithms, in: Int. Conf. on CICN, 2010, pp. 386–391.
Havaei, Davy, Farley (b5) 2017; 35
Chen, Zhang, Zheng (b23) 2016; 60
L. Szilagyi, Z. Benyo, S.M. Szilagyi, H.S. Adam, MR brain image segmentation using an enhanced fuzzy c-means algorithm, in: Proceedings of the 25th International Conference of the IEEE EMBS, 2003, pp. 17–21.
Krinidis, Chatzis (b17) 2010; 19
A. Buades, B. Coll, J. Morel, A nonlocal algorithm for image denoising, in: IEEE Computer Society Conference, 2005, pp. 60–65.
Gong, Liang, Shi, Ma, Ma (b18) 2013; 22
.
Cabezas, Oliver, Lladó, Freixenet, Cuadra (b3) 2011; 104
Chen, Zhang (b14) 2004; 34
Taha, Hanbury (b45) 2015; 15
Bhujle, Chaudhuri (b36) 2013; 31
Zhao, Fan, Liu (b28) 2014; 41
Akar (b41) 2016; 43
Zhang, Li, Deng (b6) 2015; 108
Zhang, Sun, Wang, et. al (b29) 2017; 76
Sutour, Deledalle, Aujol (b30) 2014; 23
Coupé, Yger, Prima (b42) 2008; 27
Adhikari, Sing, Basu (b46) 2015; 34
Zhao (b27) 2013; 106
Edelstein, Bottomley, Pfeifer (b37) 1984; 11
Gonzalez, Woods (b40) 2008
R.k.-S. Kwan, Evans, Pike (b43) 1999; 18
10.1016/j.asoc.2018.12.005_b24
10.1016/j.asoc.2018.12.005_b47
Singh (10.1016/j.asoc.2018.12.005_b19) 2018; 68
10.1016/j.asoc.2018.12.005_b20
Rohlfing (10.1016/j.asoc.2018.12.005_b44) 2012; 31
Coupé (10.1016/j.asoc.2018.12.005_b42) 2008; 27
Manjon (10.1016/j.asoc.2018.12.005_b25) 2008; 12
Akar (10.1016/j.asoc.2018.12.005_b41) 2016; 43
Bitar (10.1016/j.asoc.2018.12.005_b1) 2006; 26
Wang (10.1016/j.asoc.2018.12.005_b26) 2008; 32
Zhang (10.1016/j.asoc.2018.12.005_b11) 2001; 20
Nowak (10.1016/j.asoc.2018.12.005_b39) 1999; 8
Manjon (10.1016/j.asoc.2018.12.005_b35) 2012; 16
Cabezas (10.1016/j.asoc.2018.12.005_b3) 2011; 104
R.k.-S. Kwan (10.1016/j.asoc.2018.12.005_b43) 1999; 18
Nguyen (10.1016/j.asoc.2018.12.005_b12) 2013; 23
He (10.1016/j.asoc.2018.12.005_b21) 2012; 45
Chen (10.1016/j.asoc.2018.12.005_b23) 2016; 60
Hu (10.1016/j.asoc.2018.12.005_b33) 2012; 2012
Bezdek (10.1016/j.asoc.2018.12.005_b8) 1984; 10
Ahmed (10.1016/j.asoc.2018.12.005_b13) 2002; 21
Zhao (10.1016/j.asoc.2018.12.005_b28) 2014; 41
Ji (10.1016/j.asoc.2018.12.005_b22) 2014; 47
10.1016/j.asoc.2018.12.005_b32
Gonzalez (10.1016/j.asoc.2018.12.005_b40) 2008
Zhang (10.1016/j.asoc.2018.12.005_b6) 2015; 108
Zacharaki (10.1016/j.asoc.2018.12.005_b2) 2009; 62
Iglesias (10.1016/j.asoc.2018.12.005_b4) 2015; 24
Edelstein (10.1016/j.asoc.2018.12.005_b37) 1984; 11
Singh (10.1016/j.asoc.2018.12.005_b34) 2017; 131
Chen (10.1016/j.asoc.2018.12.005_b14) 2004; 34
Zhang (10.1016/j.asoc.2018.12.005_b29) 2017; 76
Gordillo (10.1016/j.asoc.2018.12.005_b10) 2013; 31
Adhikari (10.1016/j.asoc.2018.12.005_b46) 2015; 34
Sutour (10.1016/j.asoc.2018.12.005_b30) 2014; 23
Havaei (10.1016/j.asoc.2018.12.005_b5) 2017; 35
10.1016/j.asoc.2018.12.005_b7
Singh (10.1016/j.asoc.2018.12.005_b31) 2017
Akkus (10.1016/j.asoc.2018.12.005_b9) 2017; 30
Gong (10.1016/j.asoc.2018.12.005_b18) 2013; 22
Zhao (10.1016/j.asoc.2018.12.005_b27) 2013; 106
Krinidis (10.1016/j.asoc.2018.12.005_b17) 2010; 19
Sijbers (10.1016/j.asoc.2018.12.005_b38) 2007; 52
Bhujle (10.1016/j.asoc.2018.12.005_b36) 2013; 31
Cai (10.1016/j.asoc.2018.12.005_b16) 2007; 40
10.1016/j.asoc.2018.12.005_b15
Taha (10.1016/j.asoc.2018.12.005_b45) 2015; 15
References_xml – volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: b11
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
– volume: 31
  start-page: 153
  year: 2012
  end-page: 163
  ident: b44
  article-title: Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable
  publication-title: IEEE Trans. Med. Imaging
– volume: 60
  start-page: 778
  year: 2016
  end-page: 792
  ident: b23
  article-title: An improved anisotropic hierarchical fuzzy c-means method based on multivariate student t-distribution for brain MRI segmentation
  publication-title: Pattern Recognit.
– volume: 8
  start-page: 1408
  year: 1999
  end-page: 1419
  ident: b39
  article-title: Wavelet-based Rician noise removal for magnetic resonance imaging
  publication-title: IEEE Trans. Image Process.
– volume: 40
  start-page: 825
  year: 2007
  end-page: 838
  ident: b16
  article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation
  publication-title: Pattern Recognit.
– volume: 12
  start-page: 514
  year: 2008
  end-page: 523
  ident: b25
  article-title: MRI denoising using non-local means
  publication-title: Med. Image Anal.
– volume: 106
  start-page: 115
  year: 2013
  end-page: 125
  ident: b27
  article-title: Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation
  publication-title: Neurocomputing
– volume: 19
  start-page: 1328
  year: 2010
  end-page: 1337
  ident: b17
  article-title: A robust fuzzy local information c-means clustering algorithm
  publication-title: IEEE Trans. Image Process.
– volume: 24
  start-page: 205
  year: 2015
  end-page: 219
  ident: b4
  article-title: Multi-atlas segmentation of biomedical images: A survey
  publication-title: Med. Image Anal.
– volume: 41
  start-page: 4083
  year: 2014
  end-page: 4093
  ident: b28
  article-title: Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation
  publication-title: Expert Syst Appl.
– volume: 22
  start-page: 573
  year: 2013
  end-page: 584
  ident: b18
  article-title: Fuzzy c-means clustering with local information and kernel metric for image segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 14
  ident: b33
  article-title: Improved DCT-based nonlocal means filter for MR images denoising
  publication-title: Comput. Math. Methods Med.
– volume: 131
  start-page: 423
  year: 2017
  end-page: 437
  ident: b34
  article-title: Comparative performance analysis of various wavelet and nonlocal means based approaches for image denoising
  publication-title: Optic
– volume: 26
  start-page: 513
  year: 2006
  end-page: 537
  ident: b1
  article-title: MR pulse sequences: what every radiologist wants to know but is afraid to ask
  publication-title: Radiographics
– volume: 108
  start-page: 214
  year: 2015
  end-page: 224
  ident: b6
  article-title: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
  publication-title: NeuroImage
– volume: 31
  start-page: 1599
  year: 2013
  end-page: 1610
  ident: b36
  article-title: Laplacian based non-local means denoising of MR images with Rician noise
  publication-title: Magn. Reson. Imaging
– volume: 35
  start-page: 18
  year: 2017
  end-page: 31
  ident: b5
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Med. Image Anal.
– volume: 30
  start-page: 449
  year: 2017
  end-page: 459
  ident: b9
  article-title: Deep learning for brain MRI segmentation: state of the art and future directions
  publication-title: J. Digit. Imaging
– volume: 18
  start-page: 1085
  year: 1999
  end-page: 1097
  ident: b43
  article-title: MRI simulation-based evaluation of image processing and classification methods
  publication-title: IEEE Trans. Med. Imaging
– volume: 32
  start-page: 685
  year: 2008
  end-page: 698
  ident: b26
  article-title: A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints
  publication-title: Comput. Med. Imaging Graph.
– volume: 43
  start-page: 87
  year: 2016
  end-page: 96
  ident: b41
  article-title: Determination of optimal parameters for bilateral filter in brain MR image denoising
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 193
  year: 2002
  end-page: 199
  ident: b13
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 47
  start-page: 2454
  year: 2014
  end-page: 2466
  ident: b22
  article-title: Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation
  publication-title: Pattern Recognit.
– volume: 11
  start-page: 180
  year: 1984
  end-page: 185
  ident: b37
  article-title: A signal-to-noise calibration procedure for NMR imaging systems
  publication-title: Med Phys.
– reference: L. Szilagyi, Z. Benyo, S.M. Szilagyi, H.S. Adam, MR brain image segmentation using an enhanced fuzzy c-means algorithm, in: Proceedings of the 25th International Conference of the IEEE EMBS, 2003, pp. 17–21.
– volume: 104
  start-page: e158
  year: 2011
  end-page: e177
  ident: b3
  article-title: A review of atlas-based segmentation for magnetic resonance brain images
  publication-title: Comput. Methods Programs Biomed.
– volume: 76
  start-page: 7869
  year: 2017
  end-page: 7895
  ident: b29
  article-title: Improved fuzzy clustering algorithm with non-local spatial information for image segmentation
  publication-title: Multimedia Tools Appl.
– volume: 15
  start-page: 1
  year: 2015
  end-page: 28
  ident: b45
  article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med. Imaging
– volume: 31
  start-page: 1426
  year: 2013
  end-page: 1438
  ident: b10
  article-title: State of the art survey on MRI brain tumor segmentation
  publication-title: Magn. Reson. Imaging
– volume: 68
  start-page: 447
  year: 2018
  end-page: 457
  ident: b19
  article-title: A DCT-based local and non-local fuzzy C-means algorithm for segmentation of brain magnetic resonance images
  publication-title: Appl. Soft Comput.
– reference: J. Hu, Y. Pu, Y. Zhang, Y. Liu, J. Zhou, A novel nonlocal means denoising method using the DCT, in: Proceeding of the International Conference on Image Processing, Computer Vision and Pattern Recognition, IPCV’11, Las Vegas, USA, 2011.
– year: 2008
  ident: b40
  article-title: Digital Image Processing
– reference: V.K. Dehariya, S.K. Shrivastava, R.C. Jain, Clustering of image data set using K-means and fuzzy k-means algorithms, in: Int. Conf. on CICN, 2010, pp. 386–391.
– reference: .
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b8
  article-title: FCM: The fuzzy C-means clustering algorithm
  publication-title: Comput. Geosci.
– reference: A. Buades, B. Coll, J. Morel, A nonlocal algorithm for image denoising, in: IEEE Computer Society Conference, 2005, pp. 60–65.
– start-page: 1
  year: 2017
  end-page: 15
  ident: b31
  article-title: Single-image super-resolution using orthogonal rotation invariant moments
  publication-title: Comput. Electr. Eng.
– volume: 27
  start-page: 425
  year: 2008
  end-page: 441
  ident: b42
  article-title: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images
  publication-title: IEEE Trans. Med. Imaging
– volume: 34
  start-page: 1907
  year: 2004
  end-page: 1916
  ident: b14
  article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 52
  start-page: 1335
  year: 2007
  end-page: 1348
  ident: b38
  article-title: Automatic estimation of the noise variance from the histogram of a magnetic resonance image
  publication-title: Phys. Med. Biol.
– volume: 62
  start-page: 1609
  year: 2009
  end-page: 1618
  ident: b2
  article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme
  publication-title: Magn. Reson. Med.
– volume: 45
  start-page: 3463
  year: 2012
  end-page: 3471
  ident: b21
  article-title: A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data
  publication-title: Pattern Recognit.
– volume: 23
  start-page: 3506
  year: 2014
  end-page: 3521
  ident: b30
  article-title: Adaptive regularization of the NL-means: Application to image and video denoising
  publication-title: IEEE Trans. Image Process.
– volume: 34
  start-page: 758
  year: 2015
  end-page: 769
  ident: b46
  article-title: Conditional spatial fuzzy c-means clustering algorithm for segmentation of MR images
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 621
  year: 2013
  end-page: 635
  ident: b12
  article-title: Fast and robust spatially constrained Gaussian mixture model for image segmentation
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 16
  start-page: 18
  year: 2012
  end-page: 27
  ident: b35
  article-title: New methods for MRI denoising based on sparseness and self-similarity
  publication-title: Med Image Anal.
– volume: 24
  start-page: 205
  year: 2015
  ident: 10.1016/j.asoc.2018.12.005_b4
  article-title: Multi-atlas segmentation of biomedical images: A survey
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.06.012
– ident: 10.1016/j.asoc.2018.12.005_b7
  doi: 10.1109/CICN.2010.80
– volume: 34
  start-page: 758
  year: 2015
  ident: 10.1016/j.asoc.2018.12.005_b46
  article-title: Conditional spatial fuzzy c-means clustering algorithm for segmentation of MR images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.05.038
– volume: 11
  start-page: 180
  year: 1984
  ident: 10.1016/j.asoc.2018.12.005_b37
  article-title: A signal-to-noise calibration procedure for NMR imaging systems
  publication-title: Med Phys.
  doi: 10.1118/1.595484
– volume: 18
  start-page: 1085
  issue: 11
  year: 1999
  ident: 10.1016/j.asoc.2018.12.005_b43
  article-title: MRI simulation-based evaluation of image processing and classification methods
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.816072
– volume: 45
  start-page: 3463
  year: 2012
  ident: 10.1016/j.asoc.2018.12.005_b21
  article-title: A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.03.009
– volume: 47
  start-page: 2454
  issue: 7
  year: 2014
  ident: 10.1016/j.asoc.2018.12.005_b22
  article-title: Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.01.017
– year: 2008
  ident: 10.1016/j.asoc.2018.12.005_b40
– volume: 31
  start-page: 1599
  year: 2013
  ident: 10.1016/j.asoc.2018.12.005_b36
  article-title: Laplacian based non-local means denoising of MR images with Rician noise
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2013.07.001
– volume: 31
  start-page: 153
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2018.12.005_b44
  article-title: Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2163944
– volume: 108
  start-page: 214
  year: 2015
  ident: 10.1016/j.asoc.2018.12.005_b6
  article-title: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.061
– volume: 60
  start-page: 778
  year: 2016
  ident: 10.1016/j.asoc.2018.12.005_b23
  article-title: An improved anisotropic hierarchical fuzzy c-means method based on multivariate student t-distribution for brain MRI segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.06.020
– volume: 10
  start-page: 191
  year: 1984
  ident: 10.1016/j.asoc.2018.12.005_b8
  article-title: FCM: The fuzzy C-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– ident: 10.1016/j.asoc.2018.12.005_b20
– volume: 20
  start-page: 45
  year: 2001
  ident: 10.1016/j.asoc.2018.12.005_b11
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906424
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.asoc.2018.12.005_b33
  article-title: Improved DCT-based nonlocal means filter for MR images denoising
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2012/232685
– volume: 15
  start-page: 1
  year: 2015
  ident: 10.1016/j.asoc.2018.12.005_b45
  article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-015-0068-x
– volume: 31
  start-page: 1426
  year: 2013
  ident: 10.1016/j.asoc.2018.12.005_b10
  article-title: State of the art survey on MRI brain tumor segmentation
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2013.05.002
– volume: 23
  start-page: 621
  year: 2013
  ident: 10.1016/j.asoc.2018.12.005_b12
  article-title: Fast and robust spatially constrained Gaussian mixture model for image segmentation
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2012.2211176
– volume: 35
  start-page: 18
  year: 2017
  ident: 10.1016/j.asoc.2018.12.005_b5
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.05.004
– volume: 34
  start-page: 1907
  year: 2004
  ident: 10.1016/j.asoc.2018.12.005_b14
  article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCB.2004.831165
– ident: 10.1016/j.asoc.2018.12.005_b15
  doi: 10.1109/IEMBS.2003.1279866
– volume: 19
  start-page: 1328
  year: 2010
  ident: 10.1016/j.asoc.2018.12.005_b17
  article-title: A robust fuzzy local information c-means clustering algorithm
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2040763
– volume: 23
  start-page: 3506
  year: 2014
  ident: 10.1016/j.asoc.2018.12.005_b30
  article-title: Adaptive regularization of the NL-means: Application to image and video denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2329448
– volume: 52
  start-page: 1335
  year: 2007
  ident: 10.1016/j.asoc.2018.12.005_b38
  article-title: Automatic estimation of the noise variance from the histogram of a magnetic resonance image
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/5/009
– ident: 10.1016/j.asoc.2018.12.005_b32
– volume: 21
  start-page: 193
  year: 2002
  ident: 10.1016/j.asoc.2018.12.005_b13
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.996338
– volume: 76
  start-page: 7869
  year: 2017
  ident: 10.1016/j.asoc.2018.12.005_b29
  article-title: Improved fuzzy clustering algorithm with non-local spatial information for image segmentation
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-016-3399-x
– volume: 43
  start-page: 87
  year: 2016
  ident: 10.1016/j.asoc.2018.12.005_b41
  article-title: Determination of optimal parameters for bilateral filter in brain MR image denoising
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.02.043
– volume: 68
  start-page: 447
  year: 2018
  ident: 10.1016/j.asoc.2018.12.005_b19
  article-title: A DCT-based local and non-local fuzzy C-means algorithm for segmentation of brain magnetic resonance images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.03.054
– volume: 8
  start-page: 1408
  year: 1999
  ident: 10.1016/j.asoc.2018.12.005_b39
  article-title: Wavelet-based Rician noise removal for magnetic resonance imaging
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.791966
– ident: 10.1016/j.asoc.2018.12.005_b24
– volume: 41
  start-page: 4083
  year: 2014
  ident: 10.1016/j.asoc.2018.12.005_b28
  article-title: Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation
  publication-title: Expert Syst Appl.
  doi: 10.1016/j.eswa.2014.01.003
– ident: 10.1016/j.asoc.2018.12.005_b47
– volume: 131
  start-page: 423
  year: 2017
  ident: 10.1016/j.asoc.2018.12.005_b34
  article-title: Comparative performance analysis of various wavelet and nonlocal means based approaches for image denoising
  publication-title: Optic
– volume: 104
  start-page: e158
  year: 2011
  ident: 10.1016/j.asoc.2018.12.005_b3
  article-title: A review of atlas-based segmentation for magnetic resonance brain images
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2011.07.015
– volume: 12
  start-page: 514
  year: 2008
  ident: 10.1016/j.asoc.2018.12.005_b25
  article-title: MRI denoising using non-local means
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2008.02.004
– volume: 26
  start-page: 513
  year: 2006
  ident: 10.1016/j.asoc.2018.12.005_b1
  article-title: MR pulse sequences: what every radiologist wants to know but is afraid to ask
  publication-title: Radiographics
  doi: 10.1148/rg.262055063
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2018.12.005_b31
  article-title: Single-image super-resolution using orthogonal rotation invariant moments
  publication-title: Comput. Electr. Eng.
– volume: 22
  start-page: 573
  year: 2013
  ident: 10.1016/j.asoc.2018.12.005_b18
  article-title: Fuzzy c-means clustering with local information and kernel metric for image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2219547
– volume: 32
  start-page: 685
  year: 2008
  ident: 10.1016/j.asoc.2018.12.005_b26
  article-title: A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2008.08.004
– volume: 30
  start-page: 449
  year: 2017
  ident: 10.1016/j.asoc.2018.12.005_b9
  article-title: Deep learning for brain MRI segmentation: state of the art and future directions
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-017-9983-4
– volume: 27
  start-page: 425
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2018.12.005_b42
  article-title: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.906087
– volume: 62
  start-page: 1609
  year: 2009
  ident: 10.1016/j.asoc.2018.12.005_b2
  article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22147
– volume: 16
  start-page: 18
  year: 2012
  ident: 10.1016/j.asoc.2018.12.005_b35
  article-title: New methods for MRI denoising based on sparseness and self-similarity
  publication-title: Med Image Anal.
  doi: 10.1016/j.media.2011.04.003
– volume: 40
  start-page: 825
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2018.12.005_b16
  article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.07.011
– volume: 106
  start-page: 115
  year: 2013
  ident: 10.1016/j.asoc.2018.12.005_b27
  article-title: Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.10.022
SSID ssj0016928
Score 2.341082
Snippet Segmentation of brain magnetic resonance (MR) images has a significant impact on the computer-aided diagnosis and analysis. However, due to the presence of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 156
SubjectTerms DCT-filtering
Discrete cosine transform
Fuzzy C-means
MRI segmentation
Segmentation accuracy
Title A transform-based fast fuzzy C-means approach for high brain MRI segmentation accuracy
URI https://dx.doi.org/10.1016/j.asoc.2018.12.005
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--xTc5eJO4iZ2mzXFZlPW1yPrAW8lTFHdddruH9eBvN2lTURAPnkrbCZSP6WSSfDMfQofUCpkLMAQgHDMKo4iyjJOUa547ZrzPVATZHu_ew8Vj-jiHOk0tTKBVxthfx_QqWscnrYhma_T83Lr1K48cBHDvlJTnWYjDAFlQMTj--KJ5MC4qfdVgTIJ1LJypOV7SIxDoXXm1JRgk7H6bnL5NOGcraClmirhdf8wqmrPDNbTcqDDg-FOuo4c2Lpvsk4RJyWAnJyV20_f3Ge6QgfUvcdM7HHszHHoUYxXEIfB1_xxP7NMgliANsdR6OpZ6toHuz07vOl0S1RKITigtieCGUguZ80mTdoIDBWZ16pcPIuzhZ9IvrZRmjspUWAVgjGImSZRLbArK6WQTzQ_fhnYLYZlYkMoaS7UDqpjKcglWKJvmUjLGtxFrYCp0bCUeFC1ei4Yz9lIEaIsAbcFOCg_tNjr6GjOqG2n8aZ026Bc_3KHwkf6PcTv_HLeLFv2dqMlle2i-HE_tvs82SnVQudMBWmh3-lc34Xp-2e19ArC21eY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwELUQFNBwI25c0CGzNrGduEQr0HJtwSU6yydaBAGx2WIp-HbsxFmBhCho4xkpeprM4byZAWAfO6EKQS2iNP5mFFYj7QhHjBteeGKDzdQE2T7v3dHzB_YwBbptL0ykVSbf3_j02lunJ52EZudtMOjchMqjoILyYJSYF3nwwzOUHeWxAjv8nPA8CBf1gtUojaJ46pxpSF4qQBD5XUV9Jxh32P0Wnb5FnNNFMJ9SRXjcvM0SmHLlMlho1zDA9FWugPtjWLXpJ4pRyUKvhhX0o4-PMeyiFxcOYTs8HAYxGIcUQx23Q8Cr6zM4dI8vqQephMqY0bsy41Vwd3py2-2htC4BmQzjCgluMXY09yFrMl5wiilxhoX6QcRL_FyF2kob4rFiwmlKrdXEZpn2mWNUe5OtgenytXTrAKrMUaWdddh4ijXReaGoE9qxQilC-AYgLUzSpFnicaXFs2xJY08yQisjtJIcyQDtBjiY6Lw1kzT-lGYt-vKHPcjg6v_Q2_yn3h6Y7d1eXcrLs_7FFpgLJ6Jhmm2D6ep95HZC6lHp3dq0vgAa3NXm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+transform-based+fast+fuzzy+C-means+approach+for+high+brain+MRI+segmentation+accuracy&rft.jtitle=Applied+soft+computing&rft.au=Singh%2C+Chandan&rft.au=Bala%2C+Anu&rft.date=2019-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=76&rft.spage=156&rft.epage=173&rft_id=info:doi/10.1016%2Fj.asoc.2018.12.005&rft.externalDocID=S1568494618306872
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon