A transform-based fast fuzzy C-means approach for high brain MRI segmentation accuracy
Segmentation of brain magnetic resonance (MR) images has a significant impact on the computer-aided diagnosis and analysis. However, due to the presence of noise in medical images, many segmentation methods suffer from limited segmentation accuracy. To reduce the effect of noise and achieve high seg...
Saved in:
| Published in | Applied soft computing Vol. 76; pp. 156 - 173 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.03.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 |
| DOI | 10.1016/j.asoc.2018.12.005 |
Cover
| Abstract | Segmentation of brain magnetic resonance (MR) images has a significant impact on the computer-aided diagnosis and analysis. However, due to the presence of noise in medical images, many segmentation methods suffer from limited segmentation accuracy. To reduce the effect of noise and achieve high segmentation accuracy many approaches based on the local and nonlocal information in the spatial domain have been proposed in the past. Recently, the authors have proposed a discrete cosine transform (DCT)-based local and nonlocal fuzzy C-means method (DCT-LNLFCM) which performs much better than the existing methods. However, the method is slow in speed. This paper presents a fast DCT-based nonlocal fuzzy C-means (DCT-NLFCM) segmentation method which is not only very fast than the DCT-LNLFCM, but also provides better segmentation results. The proposed method uses DCT-based MR pre-filtered image to achieve high segmentation accuracy and its histogram enables to achieve very high computation speed. Detailed experiments are conducted to establish the superiority of the proposed method over the state-of-the-art unsupervised methods.
•A fast DCT-based MR image segmentation approach proposed.•The approach provides very high segmentation accuracy.•The algorithm is very fast as compared to the existing DCT-based algorithm.•The DCT-domain pre-filtered image is used to achieve high speed.•The proposed method is robust to noise. |
|---|---|
| AbstractList | Segmentation of brain magnetic resonance (MR) images has a significant impact on the computer-aided diagnosis and analysis. However, due to the presence of noise in medical images, many segmentation methods suffer from limited segmentation accuracy. To reduce the effect of noise and achieve high segmentation accuracy many approaches based on the local and nonlocal information in the spatial domain have been proposed in the past. Recently, the authors have proposed a discrete cosine transform (DCT)-based local and nonlocal fuzzy C-means method (DCT-LNLFCM) which performs much better than the existing methods. However, the method is slow in speed. This paper presents a fast DCT-based nonlocal fuzzy C-means (DCT-NLFCM) segmentation method which is not only very fast than the DCT-LNLFCM, but also provides better segmentation results. The proposed method uses DCT-based MR pre-filtered image to achieve high segmentation accuracy and its histogram enables to achieve very high computation speed. Detailed experiments are conducted to establish the superiority of the proposed method over the state-of-the-art unsupervised methods.
•A fast DCT-based MR image segmentation approach proposed.•The approach provides very high segmentation accuracy.•The algorithm is very fast as compared to the existing DCT-based algorithm.•The DCT-domain pre-filtered image is used to achieve high speed.•The proposed method is robust to noise. |
| Author | Bala, Anu Singh, Chandan |
| Author_xml | – sequence: 1 givenname: Chandan orcidid: 0000-0002-8059-1263 surname: Singh fullname: Singh, Chandan email: chandan.csp@gmail.com – sequence: 2 givenname: Anu surname: Bala fullname: Bala, Anu email: anumangla90@gmail.com |
| BookMark | eNp9kM9qAjEQh0OxULV9gZ7yArudZLNrAr2I9I9gKZS215DNTjSiu5KsBX36RuypB08zMPMN8_tGZNB2LRJyzyBnwKqHdW5iZ3MOTOaM5wDlFRkyOeGZqiQbpL6sZCaUqG7IKMY1JEhxOSTfU9oH00bXhW1Wm4gNdSb21O2PxwOdZVtMQ2p2u9AZu6Jpja78ckXrYHxL3z7mNOJyi21vet-11Fi7D8Yebsm1M5uId391TL6enz5nr9ni_WU-my4yWwD06bkGAMXEgSqtU5UAwdCWkleKAcDEcKlqyxyYUmEtRNPUrCmK2hVYitrZYkzk-a4NXYwBnbb-_EpK5TeagT750Wt98qNPfjTjOvlJKP-H7oLfmnC4DD2eIUyhfjwGHa3H1mLjA9peN52_hP8C6F6BuQ |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2020_106335 crossref_primary_10_1016_j_eswa_2020_113989 crossref_primary_10_1007_s00521_024_10406_9 crossref_primary_10_1016_j_bspc_2021_103077 crossref_primary_10_1007_s00500_023_09379_z crossref_primary_10_1049_iet_ipr_2020_0383 crossref_primary_10_1007_s11042_021_11221_3 crossref_primary_10_1016_j_bspc_2021_102615 crossref_primary_10_1109_ACCESS_2019_2903015 crossref_primary_10_1016_j_asoc_2020_106364 crossref_primary_10_1016_j_asoc_2022_108891 crossref_primary_10_3390_axioms13010035 crossref_primary_10_1007_s10278_023_00899_6 crossref_primary_10_1109_ACCESS_2020_3011224 crossref_primary_10_1142_S0218488519400075 crossref_primary_10_1016_j_asoc_2019_105775 |
| Cites_doi | 10.1016/j.media.2015.06.012 10.1109/CICN.2010.80 10.1016/j.asoc.2015.05.038 10.1118/1.595484 10.1109/42.816072 10.1016/j.patcog.2012.03.009 10.1016/j.patcog.2014.01.017 10.1016/j.mri.2013.07.001 10.1109/TMI.2011.2163944 10.1016/j.neuroimage.2014.12.061 10.1016/j.patcog.2016.06.020 10.1016/0098-3004(84)90020-7 10.1109/42.906424 10.1155/2012/232685 10.1186/s12880-015-0068-x 10.1016/j.mri.2013.05.002 10.1109/TCSVT.2012.2211176 10.1016/j.media.2016.05.004 10.1109/TSMCB.2004.831165 10.1109/IEMBS.2003.1279866 10.1109/TIP.2010.2040763 10.1109/TIP.2014.2329448 10.1088/0031-9155/52/5/009 10.1109/42.996338 10.1007/s11042-016-3399-x 10.1016/j.asoc.2016.02.043 10.1016/j.asoc.2018.03.054 10.1109/83.791966 10.1016/j.eswa.2014.01.003 10.1016/j.cmpb.2011.07.015 10.1016/j.media.2008.02.004 10.1148/rg.262055063 10.1109/TIP.2012.2219547 10.1016/j.compmedimag.2008.08.004 10.1007/s10278-017-9983-4 10.1109/TMI.2007.906087 10.1002/mrm.22147 10.1016/j.media.2011.04.003 10.1016/j.patcog.2006.07.011 10.1016/j.neucom.2012.10.022 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. |
| Copyright_xml | – notice: 2018 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2018.12.005 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 173 |
| ExternalDocumentID | 10_1016_j_asoc_2018_12_005 S1568494618306872 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-96d00e47f095cf964041ec5826910007a289bc1f0a59eb44ddb1d33bf3e54bfc3 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Thu Apr 24 23:08:21 EDT 2025 Wed Oct 01 02:32:13 EDT 2025 Fri Feb 23 02:24:52 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Segmentation accuracy Fuzzy C-means MRI segmentation DCT-filtering Discrete cosine transform |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-96d00e47f095cf964041ec5826910007a289bc1f0a59eb44ddb1d33bf3e54bfc3 |
| ORCID | 0000-0002-8059-1263 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2018_12_005 crossref_primary_10_1016_j_asoc_2018_12_005 elsevier_sciencedirect_doi_10_1016_j_asoc_2018_12_005 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2019 2019-03-00 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Singh, Aggarwal (b31) 2017 Hu, Pu, Wu, Zhang, Zhou (b33) 2012; 2012 Manjon, Coupe, Baudes (b35) 2012; 16 Sijbers, Poot, den Dekker, Pintjens (b38) 2007; 52 Singh, Bala (b19) 2018; 68 Nguyen, Wu (b12) 2013; 23 He, Hussaini, Ma (b21) 2012; 45 Zacharaki, Wang, Chawla (b2) 2009; 62 Bitar, Leung, Perng (b1) 2006; 26 Wang, Kong, Lu, Qi, Zhang (b26) 2008; 32 Rohlfing (b44) 2012; 31 Zhang, Brady, Smith (b11) 2001; 20 Singh, Ranade, Singh (b34) 2017; 131 Nowak (b39) 1999; 8 J. Hu, Y. Pu, Y. Zhang, Y. Liu, J. Zhou, A novel nonlocal means denoising method using the DCT, in: Proceeding of the International Conference on Image Processing, Computer Vision and Pattern Recognition, IPCV’11, Las Vegas, USA, 2011. Bezdek, Ehrlich, Full (b8) 1984; 10 Cai, Chen, Zhang (b16) 2007; 40 Iglesias, Sabuncu (b4) 2015; 24 Ji, Liu, Cao (b22) 2014; 47 Akkus, Galimzianova, Hoogi (b9) 2017; 30 Manjon, Carbonell-Caballero, Cull, Garcia-Marti, Marti-Bonnrati, Robles (b25) 2008; 12 Gordillo, Montseny, Sobrevilla (b10) 2013; 31 Ahmed, Yamany, Mohamed (b13) 2002; 21 V.K. Dehariya, S.K. Shrivastava, R.C. Jain, Clustering of image data set using K-means and fuzzy k-means algorithms, in: Int. Conf. on CICN, 2010, pp. 386–391. Havaei, Davy, Farley (b5) 2017; 35 Chen, Zhang, Zheng (b23) 2016; 60 L. Szilagyi, Z. Benyo, S.M. Szilagyi, H.S. Adam, MR brain image segmentation using an enhanced fuzzy c-means algorithm, in: Proceedings of the 25th International Conference of the IEEE EMBS, 2003, pp. 17–21. Krinidis, Chatzis (b17) 2010; 19 A. Buades, B. Coll, J. Morel, A nonlocal algorithm for image denoising, in: IEEE Computer Society Conference, 2005, pp. 60–65. Gong, Liang, Shi, Ma, Ma (b18) 2013; 22 . Cabezas, Oliver, Lladó, Freixenet, Cuadra (b3) 2011; 104 Chen, Zhang (b14) 2004; 34 Taha, Hanbury (b45) 2015; 15 Bhujle, Chaudhuri (b36) 2013; 31 Zhao, Fan, Liu (b28) 2014; 41 Akar (b41) 2016; 43 Zhang, Li, Deng (b6) 2015; 108 Zhang, Sun, Wang, et. al (b29) 2017; 76 Sutour, Deledalle, Aujol (b30) 2014; 23 Coupé, Yger, Prima (b42) 2008; 27 Adhikari, Sing, Basu (b46) 2015; 34 Zhao (b27) 2013; 106 Edelstein, Bottomley, Pfeifer (b37) 1984; 11 Gonzalez, Woods (b40) 2008 R.k.-S. Kwan, Evans, Pike (b43) 1999; 18 10.1016/j.asoc.2018.12.005_b24 10.1016/j.asoc.2018.12.005_b47 Singh (10.1016/j.asoc.2018.12.005_b19) 2018; 68 10.1016/j.asoc.2018.12.005_b20 Rohlfing (10.1016/j.asoc.2018.12.005_b44) 2012; 31 Coupé (10.1016/j.asoc.2018.12.005_b42) 2008; 27 Manjon (10.1016/j.asoc.2018.12.005_b25) 2008; 12 Akar (10.1016/j.asoc.2018.12.005_b41) 2016; 43 Bitar (10.1016/j.asoc.2018.12.005_b1) 2006; 26 Wang (10.1016/j.asoc.2018.12.005_b26) 2008; 32 Zhang (10.1016/j.asoc.2018.12.005_b11) 2001; 20 Nowak (10.1016/j.asoc.2018.12.005_b39) 1999; 8 Manjon (10.1016/j.asoc.2018.12.005_b35) 2012; 16 Cabezas (10.1016/j.asoc.2018.12.005_b3) 2011; 104 R.k.-S. Kwan (10.1016/j.asoc.2018.12.005_b43) 1999; 18 Nguyen (10.1016/j.asoc.2018.12.005_b12) 2013; 23 He (10.1016/j.asoc.2018.12.005_b21) 2012; 45 Chen (10.1016/j.asoc.2018.12.005_b23) 2016; 60 Hu (10.1016/j.asoc.2018.12.005_b33) 2012; 2012 Bezdek (10.1016/j.asoc.2018.12.005_b8) 1984; 10 Ahmed (10.1016/j.asoc.2018.12.005_b13) 2002; 21 Zhao (10.1016/j.asoc.2018.12.005_b28) 2014; 41 Ji (10.1016/j.asoc.2018.12.005_b22) 2014; 47 10.1016/j.asoc.2018.12.005_b32 Gonzalez (10.1016/j.asoc.2018.12.005_b40) 2008 Zhang (10.1016/j.asoc.2018.12.005_b6) 2015; 108 Zacharaki (10.1016/j.asoc.2018.12.005_b2) 2009; 62 Iglesias (10.1016/j.asoc.2018.12.005_b4) 2015; 24 Edelstein (10.1016/j.asoc.2018.12.005_b37) 1984; 11 Singh (10.1016/j.asoc.2018.12.005_b34) 2017; 131 Chen (10.1016/j.asoc.2018.12.005_b14) 2004; 34 Zhang (10.1016/j.asoc.2018.12.005_b29) 2017; 76 Gordillo (10.1016/j.asoc.2018.12.005_b10) 2013; 31 Adhikari (10.1016/j.asoc.2018.12.005_b46) 2015; 34 Sutour (10.1016/j.asoc.2018.12.005_b30) 2014; 23 Havaei (10.1016/j.asoc.2018.12.005_b5) 2017; 35 10.1016/j.asoc.2018.12.005_b7 Singh (10.1016/j.asoc.2018.12.005_b31) 2017 Akkus (10.1016/j.asoc.2018.12.005_b9) 2017; 30 Gong (10.1016/j.asoc.2018.12.005_b18) 2013; 22 Zhao (10.1016/j.asoc.2018.12.005_b27) 2013; 106 Krinidis (10.1016/j.asoc.2018.12.005_b17) 2010; 19 Sijbers (10.1016/j.asoc.2018.12.005_b38) 2007; 52 Bhujle (10.1016/j.asoc.2018.12.005_b36) 2013; 31 Cai (10.1016/j.asoc.2018.12.005_b16) 2007; 40 10.1016/j.asoc.2018.12.005_b15 Taha (10.1016/j.asoc.2018.12.005_b45) 2015; 15 |
| References_xml | – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: b11 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm publication-title: IEEE Trans. Med. Imaging – volume: 31 start-page: 153 year: 2012 end-page: 163 ident: b44 article-title: Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable publication-title: IEEE Trans. Med. Imaging – volume: 60 start-page: 778 year: 2016 end-page: 792 ident: b23 article-title: An improved anisotropic hierarchical fuzzy c-means method based on multivariate student t-distribution for brain MRI segmentation publication-title: Pattern Recognit. – volume: 8 start-page: 1408 year: 1999 end-page: 1419 ident: b39 article-title: Wavelet-based Rician noise removal for magnetic resonance imaging publication-title: IEEE Trans. Image Process. – volume: 40 start-page: 825 year: 2007 end-page: 838 ident: b16 article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation publication-title: Pattern Recognit. – volume: 12 start-page: 514 year: 2008 end-page: 523 ident: b25 article-title: MRI denoising using non-local means publication-title: Med. Image Anal. – volume: 106 start-page: 115 year: 2013 end-page: 125 ident: b27 article-title: Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation publication-title: Neurocomputing – volume: 19 start-page: 1328 year: 2010 end-page: 1337 ident: b17 article-title: A robust fuzzy local information c-means clustering algorithm publication-title: IEEE Trans. Image Process. – volume: 24 start-page: 205 year: 2015 end-page: 219 ident: b4 article-title: Multi-atlas segmentation of biomedical images: A survey publication-title: Med. Image Anal. – volume: 41 start-page: 4083 year: 2014 end-page: 4093 ident: b28 article-title: Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation publication-title: Expert Syst Appl. – volume: 22 start-page: 573 year: 2013 end-page: 584 ident: b18 article-title: Fuzzy c-means clustering with local information and kernel metric for image segmentation publication-title: IEEE Trans. Image Process. – volume: 2012 start-page: 1 year: 2012 end-page: 14 ident: b33 article-title: Improved DCT-based nonlocal means filter for MR images denoising publication-title: Comput. Math. Methods Med. – volume: 131 start-page: 423 year: 2017 end-page: 437 ident: b34 article-title: Comparative performance analysis of various wavelet and nonlocal means based approaches for image denoising publication-title: Optic – volume: 26 start-page: 513 year: 2006 end-page: 537 ident: b1 article-title: MR pulse sequences: what every radiologist wants to know but is afraid to ask publication-title: Radiographics – volume: 108 start-page: 214 year: 2015 end-page: 224 ident: b6 article-title: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation publication-title: NeuroImage – volume: 31 start-page: 1599 year: 2013 end-page: 1610 ident: b36 article-title: Laplacian based non-local means denoising of MR images with Rician noise publication-title: Magn. Reson. Imaging – volume: 35 start-page: 18 year: 2017 end-page: 31 ident: b5 article-title: Brain tumor segmentation with deep neural networks publication-title: Med. Image Anal. – volume: 30 start-page: 449 year: 2017 end-page: 459 ident: b9 article-title: Deep learning for brain MRI segmentation: state of the art and future directions publication-title: J. Digit. Imaging – volume: 18 start-page: 1085 year: 1999 end-page: 1097 ident: b43 article-title: MRI simulation-based evaluation of image processing and classification methods publication-title: IEEE Trans. Med. Imaging – volume: 32 start-page: 685 year: 2008 end-page: 698 ident: b26 article-title: A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints publication-title: Comput. Med. Imaging Graph. – volume: 43 start-page: 87 year: 2016 end-page: 96 ident: b41 article-title: Determination of optimal parameters for bilateral filter in brain MR image denoising publication-title: Appl. Soft Comput. – volume: 21 start-page: 193 year: 2002 end-page: 199 ident: b13 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging – volume: 47 start-page: 2454 year: 2014 end-page: 2466 ident: b22 article-title: Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation publication-title: Pattern Recognit. – volume: 11 start-page: 180 year: 1984 end-page: 185 ident: b37 article-title: A signal-to-noise calibration procedure for NMR imaging systems publication-title: Med Phys. – reference: L. Szilagyi, Z. Benyo, S.M. Szilagyi, H.S. Adam, MR brain image segmentation using an enhanced fuzzy c-means algorithm, in: Proceedings of the 25th International Conference of the IEEE EMBS, 2003, pp. 17–21. – volume: 104 start-page: e158 year: 2011 end-page: e177 ident: b3 article-title: A review of atlas-based segmentation for magnetic resonance brain images publication-title: Comput. Methods Programs Biomed. – volume: 76 start-page: 7869 year: 2017 end-page: 7895 ident: b29 article-title: Improved fuzzy clustering algorithm with non-local spatial information for image segmentation publication-title: Multimedia Tools Appl. – volume: 15 start-page: 1 year: 2015 end-page: 28 ident: b45 article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool publication-title: BMC Med. Imaging – volume: 31 start-page: 1426 year: 2013 end-page: 1438 ident: b10 article-title: State of the art survey on MRI brain tumor segmentation publication-title: Magn. Reson. Imaging – volume: 68 start-page: 447 year: 2018 end-page: 457 ident: b19 article-title: A DCT-based local and non-local fuzzy C-means algorithm for segmentation of brain magnetic resonance images publication-title: Appl. Soft Comput. – reference: J. Hu, Y. Pu, Y. Zhang, Y. Liu, J. Zhou, A novel nonlocal means denoising method using the DCT, in: Proceeding of the International Conference on Image Processing, Computer Vision and Pattern Recognition, IPCV’11, Las Vegas, USA, 2011. – year: 2008 ident: b40 article-title: Digital Image Processing – reference: V.K. Dehariya, S.K. Shrivastava, R.C. Jain, Clustering of image data set using K-means and fuzzy k-means algorithms, in: Int. Conf. on CICN, 2010, pp. 386–391. – reference: . – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: b8 article-title: FCM: The fuzzy C-means clustering algorithm publication-title: Comput. Geosci. – reference: A. Buades, B. Coll, J. Morel, A nonlocal algorithm for image denoising, in: IEEE Computer Society Conference, 2005, pp. 60–65. – start-page: 1 year: 2017 end-page: 15 ident: b31 article-title: Single-image super-resolution using orthogonal rotation invariant moments publication-title: Comput. Electr. Eng. – volume: 27 start-page: 425 year: 2008 end-page: 441 ident: b42 article-title: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images publication-title: IEEE Trans. Med. Imaging – volume: 34 start-page: 1907 year: 2004 end-page: 1916 ident: b14 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Trans. Syst. Man Cybern. – volume: 52 start-page: 1335 year: 2007 end-page: 1348 ident: b38 article-title: Automatic estimation of the noise variance from the histogram of a magnetic resonance image publication-title: Phys. Med. Biol. – volume: 62 start-page: 1609 year: 2009 end-page: 1618 ident: b2 article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme publication-title: Magn. Reson. Med. – volume: 45 start-page: 3463 year: 2012 end-page: 3471 ident: b21 article-title: A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data publication-title: Pattern Recognit. – volume: 23 start-page: 3506 year: 2014 end-page: 3521 ident: b30 article-title: Adaptive regularization of the NL-means: Application to image and video denoising publication-title: IEEE Trans. Image Process. – volume: 34 start-page: 758 year: 2015 end-page: 769 ident: b46 article-title: Conditional spatial fuzzy c-means clustering algorithm for segmentation of MR images publication-title: Appl. Soft Comput. – volume: 23 start-page: 621 year: 2013 end-page: 635 ident: b12 article-title: Fast and robust spatially constrained Gaussian mixture model for image segmentation publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 16 start-page: 18 year: 2012 end-page: 27 ident: b35 article-title: New methods for MRI denoising based on sparseness and self-similarity publication-title: Med Image Anal. – volume: 24 start-page: 205 year: 2015 ident: 10.1016/j.asoc.2018.12.005_b4 article-title: Multi-atlas segmentation of biomedical images: A survey publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.06.012 – ident: 10.1016/j.asoc.2018.12.005_b7 doi: 10.1109/CICN.2010.80 – volume: 34 start-page: 758 year: 2015 ident: 10.1016/j.asoc.2018.12.005_b46 article-title: Conditional spatial fuzzy c-means clustering algorithm for segmentation of MR images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.05.038 – volume: 11 start-page: 180 year: 1984 ident: 10.1016/j.asoc.2018.12.005_b37 article-title: A signal-to-noise calibration procedure for NMR imaging systems publication-title: Med Phys. doi: 10.1118/1.595484 – volume: 18 start-page: 1085 issue: 11 year: 1999 ident: 10.1016/j.asoc.2018.12.005_b43 article-title: MRI simulation-based evaluation of image processing and classification methods publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.816072 – volume: 45 start-page: 3463 year: 2012 ident: 10.1016/j.asoc.2018.12.005_b21 article-title: A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.03.009 – volume: 47 start-page: 2454 issue: 7 year: 2014 ident: 10.1016/j.asoc.2018.12.005_b22 article-title: Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.01.017 – year: 2008 ident: 10.1016/j.asoc.2018.12.005_b40 – volume: 31 start-page: 1599 year: 2013 ident: 10.1016/j.asoc.2018.12.005_b36 article-title: Laplacian based non-local means denoising of MR images with Rician noise publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2013.07.001 – volume: 31 start-page: 153 issue: 2 year: 2012 ident: 10.1016/j.asoc.2018.12.005_b44 article-title: Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2163944 – volume: 108 start-page: 214 year: 2015 ident: 10.1016/j.asoc.2018.12.005_b6 article-title: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.12.061 – volume: 60 start-page: 778 year: 2016 ident: 10.1016/j.asoc.2018.12.005_b23 article-title: An improved anisotropic hierarchical fuzzy c-means method based on multivariate student t-distribution for brain MRI segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.06.020 – volume: 10 start-page: 191 year: 1984 ident: 10.1016/j.asoc.2018.12.005_b8 article-title: FCM: The fuzzy C-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – ident: 10.1016/j.asoc.2018.12.005_b20 – volume: 20 start-page: 45 year: 2001 ident: 10.1016/j.asoc.2018.12.005_b11 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906424 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.asoc.2018.12.005_b33 article-title: Improved DCT-based nonlocal means filter for MR images denoising publication-title: Comput. Math. Methods Med. doi: 10.1155/2012/232685 – volume: 15 start-page: 1 year: 2015 ident: 10.1016/j.asoc.2018.12.005_b45 article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool publication-title: BMC Med. Imaging doi: 10.1186/s12880-015-0068-x – volume: 31 start-page: 1426 year: 2013 ident: 10.1016/j.asoc.2018.12.005_b10 article-title: State of the art survey on MRI brain tumor segmentation publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2013.05.002 – volume: 23 start-page: 621 year: 2013 ident: 10.1016/j.asoc.2018.12.005_b12 article-title: Fast and robust spatially constrained Gaussian mixture model for image segmentation publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2012.2211176 – volume: 35 start-page: 18 year: 2017 ident: 10.1016/j.asoc.2018.12.005_b5 article-title: Brain tumor segmentation with deep neural networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.05.004 – volume: 34 start-page: 1907 year: 2004 ident: 10.1016/j.asoc.2018.12.005_b14 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMCB.2004.831165 – ident: 10.1016/j.asoc.2018.12.005_b15 doi: 10.1109/IEMBS.2003.1279866 – volume: 19 start-page: 1328 year: 2010 ident: 10.1016/j.asoc.2018.12.005_b17 article-title: A robust fuzzy local information c-means clustering algorithm publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2040763 – volume: 23 start-page: 3506 year: 2014 ident: 10.1016/j.asoc.2018.12.005_b30 article-title: Adaptive regularization of the NL-means: Application to image and video denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2329448 – volume: 52 start-page: 1335 year: 2007 ident: 10.1016/j.asoc.2018.12.005_b38 article-title: Automatic estimation of the noise variance from the histogram of a magnetic resonance image publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/52/5/009 – ident: 10.1016/j.asoc.2018.12.005_b32 – volume: 21 start-page: 193 year: 2002 ident: 10.1016/j.asoc.2018.12.005_b13 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.996338 – volume: 76 start-page: 7869 year: 2017 ident: 10.1016/j.asoc.2018.12.005_b29 article-title: Improved fuzzy clustering algorithm with non-local spatial information for image segmentation publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-016-3399-x – volume: 43 start-page: 87 year: 2016 ident: 10.1016/j.asoc.2018.12.005_b41 article-title: Determination of optimal parameters for bilateral filter in brain MR image denoising publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.02.043 – volume: 68 start-page: 447 year: 2018 ident: 10.1016/j.asoc.2018.12.005_b19 article-title: A DCT-based local and non-local fuzzy C-means algorithm for segmentation of brain magnetic resonance images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.03.054 – volume: 8 start-page: 1408 year: 1999 ident: 10.1016/j.asoc.2018.12.005_b39 article-title: Wavelet-based Rician noise removal for magnetic resonance imaging publication-title: IEEE Trans. Image Process. doi: 10.1109/83.791966 – ident: 10.1016/j.asoc.2018.12.005_b24 – volume: 41 start-page: 4083 year: 2014 ident: 10.1016/j.asoc.2018.12.005_b28 article-title: Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation publication-title: Expert Syst Appl. doi: 10.1016/j.eswa.2014.01.003 – ident: 10.1016/j.asoc.2018.12.005_b47 – volume: 131 start-page: 423 year: 2017 ident: 10.1016/j.asoc.2018.12.005_b34 article-title: Comparative performance analysis of various wavelet and nonlocal means based approaches for image denoising publication-title: Optic – volume: 104 start-page: e158 year: 2011 ident: 10.1016/j.asoc.2018.12.005_b3 article-title: A review of atlas-based segmentation for magnetic resonance brain images publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2011.07.015 – volume: 12 start-page: 514 year: 2008 ident: 10.1016/j.asoc.2018.12.005_b25 article-title: MRI denoising using non-local means publication-title: Med. Image Anal. doi: 10.1016/j.media.2008.02.004 – volume: 26 start-page: 513 year: 2006 ident: 10.1016/j.asoc.2018.12.005_b1 article-title: MR pulse sequences: what every radiologist wants to know but is afraid to ask publication-title: Radiographics doi: 10.1148/rg.262055063 – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2018.12.005_b31 article-title: Single-image super-resolution using orthogonal rotation invariant moments publication-title: Comput. Electr. Eng. – volume: 22 start-page: 573 year: 2013 ident: 10.1016/j.asoc.2018.12.005_b18 article-title: Fuzzy c-means clustering with local information and kernel metric for image segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2219547 – volume: 32 start-page: 685 year: 2008 ident: 10.1016/j.asoc.2018.12.005_b26 article-title: A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2008.08.004 – volume: 30 start-page: 449 year: 2017 ident: 10.1016/j.asoc.2018.12.005_b9 article-title: Deep learning for brain MRI segmentation: state of the art and future directions publication-title: J. Digit. Imaging doi: 10.1007/s10278-017-9983-4 – volume: 27 start-page: 425 issue: 4 year: 2008 ident: 10.1016/j.asoc.2018.12.005_b42 article-title: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.906087 – volume: 62 start-page: 1609 year: 2009 ident: 10.1016/j.asoc.2018.12.005_b2 article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22147 – volume: 16 start-page: 18 year: 2012 ident: 10.1016/j.asoc.2018.12.005_b35 article-title: New methods for MRI denoising based on sparseness and self-similarity publication-title: Med Image Anal. doi: 10.1016/j.media.2011.04.003 – volume: 40 start-page: 825 issue: 3 year: 2007 ident: 10.1016/j.asoc.2018.12.005_b16 article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.07.011 – volume: 106 start-page: 115 year: 2013 ident: 10.1016/j.asoc.2018.12.005_b27 article-title: Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.10.022 |
| SSID | ssj0016928 |
| Score | 2.341082 |
| Snippet | Segmentation of brain magnetic resonance (MR) images has a significant impact on the computer-aided diagnosis and analysis. However, due to the presence of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 156 |
| SubjectTerms | DCT-filtering Discrete cosine transform Fuzzy C-means MRI segmentation Segmentation accuracy |
| Title | A transform-based fast fuzzy C-means approach for high brain MRI segmentation accuracy |
| URI | https://dx.doi.org/10.1016/j.asoc.2018.12.005 |
| Volume | 76 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--xTc5eJO4iZ2mzXFZlPW1yPrAW8lTFHdddruH9eBvN2lTURAPnkrbCZSP6WSSfDMfQofUCpkLMAQgHDMKo4iyjJOUa547ZrzPVATZHu_ew8Vj-jiHOk0tTKBVxthfx_QqWscnrYhma_T83Lr1K48cBHDvlJTnWYjDAFlQMTj--KJ5MC4qfdVgTIJ1LJypOV7SIxDoXXm1JRgk7H6bnL5NOGcraClmirhdf8wqmrPDNbTcqDDg-FOuo4c2Lpvsk4RJyWAnJyV20_f3Ge6QgfUvcdM7HHszHHoUYxXEIfB1_xxP7NMgliANsdR6OpZ6toHuz07vOl0S1RKITigtieCGUguZ80mTdoIDBWZ16pcPIuzhZ9IvrZRmjspUWAVgjGImSZRLbArK6WQTzQ_fhnYLYZlYkMoaS7UDqpjKcglWKJvmUjLGtxFrYCp0bCUeFC1ei4Yz9lIEaIsAbcFOCg_tNjr6GjOqG2n8aZ026Bc_3KHwkf6PcTv_HLeLFv2dqMlle2i-HE_tvs82SnVQudMBWmh3-lc34Xp-2e19ArC21eY |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwELUQFNBwI25c0CGzNrGduEQr0HJtwSU6yydaBAGx2WIp-HbsxFmBhCho4xkpeprM4byZAWAfO6EKQS2iNP5mFFYj7QhHjBteeGKDzdQE2T7v3dHzB_YwBbptL0ykVSbf3_j02lunJ52EZudtMOjchMqjoILyYJSYF3nwwzOUHeWxAjv8nPA8CBf1gtUojaJ46pxpSF4qQBD5XUV9Jxh32P0Wnb5FnNNFMJ9SRXjcvM0SmHLlMlho1zDA9FWugPtjWLXpJ4pRyUKvhhX0o4-PMeyiFxcOYTs8HAYxGIcUQx23Q8Cr6zM4dI8vqQephMqY0bsy41Vwd3py2-2htC4BmQzjCgluMXY09yFrMl5wiilxhoX6QcRL_FyF2kob4rFiwmlKrdXEZpn2mWNUe5OtgenytXTrAKrMUaWdddh4ijXReaGoE9qxQilC-AYgLUzSpFnicaXFs2xJY08yQisjtJIcyQDtBjiY6Lw1kzT-lGYt-vKHPcjg6v_Q2_yn3h6Y7d1eXcrLs_7FFpgLJ6Jhmm2D6ep95HZC6lHp3dq0vgAa3NXm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+transform-based+fast+fuzzy+C-means+approach+for+high+brain+MRI+segmentation+accuracy&rft.jtitle=Applied+soft+computing&rft.au=Singh%2C+Chandan&rft.au=Bala%2C+Anu&rft.date=2019-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=76&rft.spage=156&rft.epage=173&rft_id=info:doi/10.1016%2Fj.asoc.2018.12.005&rft.externalDocID=S1568494618306872 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |