Multimodal function optimizations with multiple maximums and multiple minimums using an improved PSO algorithm

[Display omitted] •This paper utilizes an improved PSO algorithm to solve the function optimization with multiple maximums and minimums.•The original population needs to be divided into two main groups.•One group is to tackle the maximum optimization and the other focuses on the function minimum opt...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 60; pp. 60 - 72
Main Author Chang, Wei-Der
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2017
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2017.06.039

Cover

Abstract [Display omitted] •This paper utilizes an improved PSO algorithm to solve the function optimization with multiple maximums and minimums.•The original population needs to be divided into two main groups.•One group is to tackle the maximum optimization and the other focuses on the function minimum optimization.•Each main group is further split up into a certain number of subgroups.•Every subgroup can individually search for one function optimum. In this paper, a multimodal function optimization problem consisting of multiple maximums and multiple minimums is solved using an improved particle swarm optimization (PSO) algorithm. In the proposed scheme, the original population needs to be randomly divided into two main groups in the first stage. One group is to tackle the maximum optimization of the multimodal function and the other then focuses on the function minimum optimization. In the second stage, each group is split up into several subgroups in order to seek for function optimums simultaneously. There is no relation among subgroups and each subgroup can individually seek for one of function optimums. To achieve that, it is necessary to enroll the best particle information of each subgroup. It means that the proposed structure contains a number of best particles, not a single global best particle. The third stage is to modify the velocity updating formula of the algorithm where the global best particle is simply replaced by the best particle of each subgroup. Under the proposed scheme, multiple maxima and minima of the multimodal function can probably be solved separately and synchronously. Finally, many different kinds of multimodal function problems are illustrated to certify the applicability of the presented method, including one maximum and one minimum, two maximums and two minimums, multiple maximums and multiple minimums, and a complex engineering optimization problem with inequality conditions.
AbstractList [Display omitted] •This paper utilizes an improved PSO algorithm to solve the function optimization with multiple maximums and minimums.•The original population needs to be divided into two main groups.•One group is to tackle the maximum optimization and the other focuses on the function minimum optimization.•Each main group is further split up into a certain number of subgroups.•Every subgroup can individually search for one function optimum. In this paper, a multimodal function optimization problem consisting of multiple maximums and multiple minimums is solved using an improved particle swarm optimization (PSO) algorithm. In the proposed scheme, the original population needs to be randomly divided into two main groups in the first stage. One group is to tackle the maximum optimization of the multimodal function and the other then focuses on the function minimum optimization. In the second stage, each group is split up into several subgroups in order to seek for function optimums simultaneously. There is no relation among subgroups and each subgroup can individually seek for one of function optimums. To achieve that, it is necessary to enroll the best particle information of each subgroup. It means that the proposed structure contains a number of best particles, not a single global best particle. The third stage is to modify the velocity updating formula of the algorithm where the global best particle is simply replaced by the best particle of each subgroup. Under the proposed scheme, multiple maxima and minima of the multimodal function can probably be solved separately and synchronously. Finally, many different kinds of multimodal function problems are illustrated to certify the applicability of the presented method, including one maximum and one minimum, two maximums and two minimums, multiple maximums and multiple minimums, and a complex engineering optimization problem with inequality conditions.
Author Chang, Wei-Der
Author_xml – sequence: 1
  givenname: Wei-Der
  surname: Chang
  fullname: Chang, Wei-Der
  email: wdchang@stu.edu.tw
  organization: Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan
BookMark eNp9kMtOwzAQRS1UJErhB1j5BxLs2HlYYoMqXlJRkYC15Th2cZXYkZ2Ux9fjUBaIRVczc2fOleaegpl1VgFwgVGKES4ut6kITqYZwmWKihQRdgTmuCqzhBUVnsU-L6qEMlqcgNMQtihCLKvmwD6O7WA614gW6tHKwTgLXR8l8yWmIcB3M7zBbjrrWwU78WG6sQtQ2OaPauxeHYOxm7iDpuu926kGPj2voWg3zkeb7gwca9EGdf5bF-D19uZleZ-s1ncPy-tVIglCQ1JpqRtKc1HUlaalzDFhFGuNRdUwohimjImyqGtECBJNGQshGaW1ZqVAuSYLUO19pXcheKW5NMPPP4MXpuUY8Sk3vuVTbnzKjaOCx9wimv1De2864T8PQ1d7SMWndkZ5HqRRVqrGeCUH3jhzCP8GN8qMcw
CitedBy_id crossref_primary_10_3233_JIFS_200979
crossref_primary_10_3390_computation7030043
crossref_primary_10_1049_iet_map_2018_5914
crossref_primary_10_1016_j_ast_2019_07_007
crossref_primary_10_1016_j_engstruct_2020_111696
crossref_primary_10_1002_suco_202100732
crossref_primary_10_1016_j_tsep_2019_100431
crossref_primary_10_1007_s10489_018_1258_3
crossref_primary_10_1007_s10489_021_03005_x
crossref_primary_10_1016_j_energy_2022_123622
crossref_primary_10_1016_j_dib_2019_104669
crossref_primary_10_1016_j_oceaneng_2024_118787
crossref_primary_10_1615_CritRevBiomedEng_2022044778
crossref_primary_10_1515_math_2018_0132
Cites_doi 10.1109/TLA.2015.7112023
10.1016/j.neucom.2013.03.069
10.1016/j.dsp.2015.08.008
10.1109/LCOMM.2010.04.092066
10.1016/j.cie.2016.05.026
10.1016/j.engappai.2010.01.006
10.1016/j.asoc.2012.05.032
10.1016/j.asoc.2010.06.017
10.1016/j.asoc.2014.12.026
10.1016/j.ejor.2013.12.041
10.1016/j.cor.2015.09.006
10.1016/j.ijepes.2016.03.064
10.1016/j.pnucene.2014.05.014
10.1016/j.amc.2014.02.005
10.1016/j.cnsns.2013.03.011
10.1016/j.ijepes.2015.03.014
10.1016/j.ins.2013.09.015
10.1016/j.jss.2013.11.1113
10.1016/j.asoc.2015.04.002
10.1016/j.isatra.2015.03.003
10.1016/j.neucom.2015.03.104
10.1016/j.jocs.2013.05.005
10.1016/j.ins.2010.11.025
10.1016/j.cnsns.2010.01.009
10.1016/j.asoc.2011.11.032
10.1016/j.ins.2016.01.068
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2017.06.039
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 72
ExternalDocumentID 10_1016_j_asoc_2017_06_039
S1568494617303824
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-8fcfd445a6b8f47c513941ff1a8d93e91499a76bb0330ad703333244bf97a05f3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:11:26 EDT 2025
Wed Oct 01 02:32:09 EDT 2025
Fri Feb 23 02:24:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multimodal function optimization
Multiple maximums and multiple minimums
Particle swarm optimization (PSO)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-8fcfd445a6b8f47c513941ff1a8d93e91499a76bb0330ad703333244bf97a05f3
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2017_06_039
crossref_primary_10_1016_j_asoc_2017_06_039
elsevier_sciencedirect_doi_10_1016_j_asoc_2017_06_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2017
2017-11-00
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Cheng, Gheorghe, Meng (bib0150) 2013; 13
Liang, Leung (bib0025) 2011; 11
Jiang, Wang, Wang (bib0015) 2013; 18
Xu, Wang, Si (bib0005) 2010; 23
Jaberipour, Khorram (bib0145) 2010; 15
Liang, Qu, Mao, Niu, Wang (bib0040) 2014; 137
Zhong, Ai, Zhan (bib0060) 2016; 98
Cui, Li, Lin, Chen, Lu (bib0120) 2016; 67
Vieira, Lisboa (bib0010) 2014; 235
Tuo, Zhang, Yong, Yuan, Liu, Xu, Deng (bib0020) 2015; 46
Thakur (bib0045) 2014; 5
Li, Lin, Kou (bib0050) 2012; 11
Yuan, Dai, Zhao, He (bib0115) 2014; 233
Silva, Guardieiro (bib0135) 2010; 14
Khoshahval, Zolfaghari, Minuchehr, Abbasi (bib0065) 2014; 76
Kerdphol, Qudaih, Mitani (bib0075) 2016; 83
Kennedy, Eberhart (bib0055) 1948; vol. IV
Vitela, Castanos (bib0030) 2012; 218
Juang, Tung, Chiu (bib0035) 2011; 181
Liao, Liu, Zhu, Wang (bib0095) 2014; 90
Silva (bib0130) 2015; 13
Huang, Zheng, Su (bib0125) 2015; 270
Khadanga, Satapathy (bib0080) 2015; 71
Tsai (bib0100) 2014; 258
Melo, Watada (bib0070) 2016; 172
Pan, Das (bib0085) 2016; 62
Xu, Tang, Li, Hua, Cuan (bib0105) 2015; 29
Chang (bib0110) 2015; 33
Wang, Tang (bib0140) 2016; 348
Ye, Yin, Gong, Zhou (bib0090) 2016
Chang (10.1016/j.asoc.2017.06.039_bib0110) 2015; 33
Zhong (10.1016/j.asoc.2017.06.039_bib0060) 2016; 98
Khoshahval (10.1016/j.asoc.2017.06.039_bib0065) 2014; 76
Liang (10.1016/j.asoc.2017.06.039_bib0025) 2011; 11
Li (10.1016/j.asoc.2017.06.039_bib0050) 2012; 11
Kennedy (10.1016/j.asoc.2017.06.039_bib0055) 1948; vol. IV
Silva (10.1016/j.asoc.2017.06.039_bib0130) 2015; 13
Ye (10.1016/j.asoc.2017.06.039_bib0090) 2016
Liao (10.1016/j.asoc.2017.06.039_bib0095) 2014; 90
Thakur (10.1016/j.asoc.2017.06.039_bib0045) 2014; 5
Wang (10.1016/j.asoc.2017.06.039_bib0140) 2016; 348
Jiang (10.1016/j.asoc.2017.06.039_bib0015) 2013; 18
Silva (10.1016/j.asoc.2017.06.039_bib0135) 2010; 14
Vitela (10.1016/j.asoc.2017.06.039_bib0030) 2012; 218
Kerdphol (10.1016/j.asoc.2017.06.039_bib0075) 2016; 83
Xu (10.1016/j.asoc.2017.06.039_bib0105) 2015; 29
Cui (10.1016/j.asoc.2017.06.039_bib0120) 2016; 67
Liang (10.1016/j.asoc.2017.06.039_bib0040) 2014; 137
Melo (10.1016/j.asoc.2017.06.039_bib0070) 2016; 172
Pan (10.1016/j.asoc.2017.06.039_bib0085) 2016; 62
Tsai (10.1016/j.asoc.2017.06.039_bib0100) 2014; 258
Vieira (10.1016/j.asoc.2017.06.039_bib0010) 2014; 235
Juang (10.1016/j.asoc.2017.06.039_bib0035) 2011; 181
Zhang (10.1016/j.asoc.2017.06.039_bib0150) 2013; 13
Yuan (10.1016/j.asoc.2017.06.039_bib0115) 2014; 233
Jaberipour (10.1016/j.asoc.2017.06.039_bib0145) 2010; 15
Khadanga (10.1016/j.asoc.2017.06.039_bib0080) 2015; 71
Huang (10.1016/j.asoc.2017.06.039_bib0125) 2015; 270
Xu (10.1016/j.asoc.2017.06.039_bib0005) 2010; 23
Tuo (10.1016/j.asoc.2017.06.039_bib0020) 2015; 46
References_xml – volume: 181
  start-page: 4539
  year: 2011
  end-page: 4549
  ident: bib0035
  article-title: Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions
  publication-title: Inf. Sci.
– volume: 258
  start-page: 80
  year: 2014
  end-page: 93
  ident: bib0100
  article-title: Integrating the artificial bee colony and bees algorithm to face constrained optimization problems
  publication-title: Inf. Sci.
– volume: 23
  start-page: 495
  year: 2010
  end-page: 504
  ident: bib0005
  article-title: Prediction based immune network for multimodal function optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 67
  start-page: 155
  year: 2016
  end-page: 173
  ident: bib0120
  article-title: Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations
  publication-title: Comput. Oper. Res.
– volume: 90
  start-page: 191
  year: 2014
  end-page: 203
  ident: bib0095
  article-title: Accurate sub-swarms particle swarm optimization algorithm for service composition
  publication-title: J. Syst. Softw.
– volume: 71
  start-page: 262
  year: 2015
  end-page: 273
  ident: bib0080
  article-title: Time delay approach for PSS and SSSC based coordinated controller design using hybrid PSO-GSA algorithm
  publication-title: Electr. Power Energy Syst.
– volume: 46
  start-page: 151
  year: 2015
  end-page: 163
  ident: bib0020
  article-title: A harmony search algorithm for high-dimensional multimodal optimization problems
  publication-title: Digital Signal Process.
– volume: 5
  start-page: 298
  year: 2014
  end-page: 311
  ident: bib0045
  article-title: A new genetic algorithm for global optimization of multimodal continuous functions
  publication-title: J. Comput. Sci.
– volume: 270
  start-page: 681
  year: 2015
  end-page: 687
  ident: bib0125
  article-title: Effect of heterogeneous sub-populations on the evolution of cooperation
  publication-title: Appl. Math. Comput.
– volume: 29
  start-page: 169
  year: 2015
  end-page: 183
  ident: bib0105
  article-title: Dynamic multi-swarm particle swarm optimizer with cooperative learning strategy
  publication-title: Appl. Soft Comput.
– volume: 233
  start-page: 260
  year: 2014
  end-page: 271
  ident: bib0115
  article-title: On a novel multi-swarm fruit fly optimization algorithm and its application
  publication-title: Appl. Math. Comput.
– volume: 172
  start-page: 405
  year: 2016
  end-page: 412
  ident: bib0070
  article-title: Gaussian-PSO with fuzzy reasoning based on structural learning for training a neural network
  publication-title: Neurocomputing
– volume: 14
  start-page: 315
  year: 2010
  end-page: 317
  ident: bib0135
  article-title: An efficient genetic algorithm for anycast routing in delay/disruption tolerant networks
  publication-title: IEEE Commun. Lett.
– volume: 13
  start-page: 1528
  year: 2013
  end-page: 1542
  ident: bib0150
  article-title: A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems
  publication-title: Appl. Soft Comput.
– volume: 137
  start-page: 252
  year: 2014
  end-page: 260
  ident: bib0040
  article-title: Differential evolution based on fitness Euclidean-distance ratio for multimodal optimization
  publication-title: Neurocomputing
– year: 2016
  ident: bib0090
  article-title: Position control of nonlinear hydraulic system using an improved PSO based PID controller
  publication-title: Mech. Syst. Signal Process.
– volume: 18
  start-page: 3134
  year: 2013
  end-page: 3145
  ident: bib0015
  article-title: Particle swarm optimization with age-group topology for multimodal functions and data clustering
  publication-title: Commun. Nonlin. Sci. Numer. Simulat.
– volume: 76
  start-page: 112
  year: 2014
  end-page: 121
  ident: bib0065
  article-title: A new hybrid method for multi-objective fuel management optimization using parallel PSO-SA
  publication-title: Prog. Nucl. Energy
– volume: 83
  start-page: 58
  year: 2016
  end-page: 66
  ident: bib0075
  article-title: Optimum battery energy storage system using PSO considering dynamic demand response for microgrids
  publication-title: Electr. Power Energy Syst.
– volume: 62
  start-page: 19
  year: 2016
  end-page: 29
  ident: bib0085
  article-title: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO
  publication-title: ISA Trans.
– volume: 98
  start-page: 53
  year: 2016
  end-page: 62
  ident: bib0060
  article-title: A PSO algorithm for multi-objective hull assembly line balancing using the stratified optimization strategy
  publication-title: Comput. Ind. Eng.
– volume: 218
  start-page: 8242
  year: 2012
  end-page: 8259
  ident: bib0030
  article-title: A sequential niching memetic algorithm for continuous multimodal function optimization
  publication-title: Appl. Math. Comput.
– volume: vol. IV
  start-page: 1942
  year: 1948
  end-page: 1948
  ident: bib0055
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE International Conference on Neural Networks
– volume: 13
  start-page: 1619
  year: 2015
  end-page: 1624
  ident: bib0130
  article-title: C.J.A. Bastos Filho, PSO. efficient implementation on GPUs using low latency memory
  publication-title: IEEE Lat. Am. Trans.
– volume: 15
  start-page: 3316
  year: 2010
  end-page: 3331
  ident: bib0145
  article-title: Two improved harmony search algorithms for solving engineering optimization problems
  publication-title: Commun. Nonlin. Sci. Numer. Simulat.
– volume: 11
  start-page: 2017
  year: 2011
  end-page: 2034
  ident: bib0025
  article-title: Genetic algorithm with adaptive elitist-population strategies for multimodal function optimization
  publication-title: Appl. Soft Comput.
– volume: 348
  start-page: 124
  year: 2016
  end-page: 141
  ident: bib0140
  article-title: An adaptive multi-population differential evolution algorithm for continuous multi-objective optimization
  publication-title: Inf. Sci.
– volume: 235
  start-page: 38
  year: 2014
  end-page: 46
  ident: bib0010
  article-title: Line search methods with guaranteed asymptotical convergence to an improving local optimum of multimodal functions
  publication-title: Eur. J. Oper. Res.
– volume: 11
  start-page: 975
  year: 2012
  end-page: 987
  ident: bib0050
  article-title: A hybrid niching PSO enhanced with recombination-replacement crowding strategy for multimodal function optimization
  publication-title: Appl. Soft Comput.
– volume: 33
  start-page: 170
  year: 2015
  end-page: 182
  ident: bib0110
  article-title: A modified particle swarm optimization with multiple subpopulations for multimodal function optimization problems
  publication-title: Appl. Soft Comput.
– volume: 13
  start-page: 1619
  year: 2015
  ident: 10.1016/j.asoc.2017.06.039_bib0130
  article-title: C.J.A. Bastos Filho, PSO. efficient implementation on GPUs using low latency memory
  publication-title: IEEE Lat. Am. Trans.
  doi: 10.1109/TLA.2015.7112023
– volume: 137
  start-page: 252
  year: 2014
  ident: 10.1016/j.asoc.2017.06.039_bib0040
  article-title: Differential evolution based on fitness Euclidean-distance ratio for multimodal optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.069
– volume: 46
  start-page: 151
  year: 2015
  ident: 10.1016/j.asoc.2017.06.039_bib0020
  article-title: A harmony search algorithm for high-dimensional multimodal optimization problems
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2015.08.008
– volume: 14
  start-page: 315
  year: 2010
  ident: 10.1016/j.asoc.2017.06.039_bib0135
  article-title: An efficient genetic algorithm for anycast routing in delay/disruption tolerant networks
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2010.04.092066
– volume: 98
  start-page: 53
  year: 2016
  ident: 10.1016/j.asoc.2017.06.039_bib0060
  article-title: A PSO algorithm for multi-objective hull assembly line balancing using the stratified optimization strategy
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.05.026
– volume: 23
  start-page: 495
  year: 2010
  ident: 10.1016/j.asoc.2017.06.039_bib0005
  article-title: Prediction based immune network for multimodal function optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.01.006
– volume: 218
  start-page: 8242
  year: 2012
  ident: 10.1016/j.asoc.2017.06.039_bib0030
  article-title: A sequential niching memetic algorithm for continuous multimodal function optimization
  publication-title: Appl. Math. Comput.
– volume: 13
  start-page: 1528
  year: 2013
  ident: 10.1016/j.asoc.2017.06.039_bib0150
  article-title: A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.05.032
– volume: 11
  start-page: 2017
  year: 2011
  ident: 10.1016/j.asoc.2017.06.039_bib0025
  article-title: Genetic algorithm with adaptive elitist-population strategies for multimodal function optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.06.017
– volume: 29
  start-page: 169
  year: 2015
  ident: 10.1016/j.asoc.2017.06.039_bib0105
  article-title: Dynamic multi-swarm particle swarm optimizer with cooperative learning strategy
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.12.026
– volume: 235
  start-page: 38
  year: 2014
  ident: 10.1016/j.asoc.2017.06.039_bib0010
  article-title: Line search methods with guaranteed asymptotical convergence to an improving local optimum of multimodal functions
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2013.12.041
– volume: 67
  start-page: 155
  year: 2016
  ident: 10.1016/j.asoc.2017.06.039_bib0120
  article-title: Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2015.09.006
– volume: 83
  start-page: 58
  year: 2016
  ident: 10.1016/j.asoc.2017.06.039_bib0075
  article-title: Optimum battery energy storage system using PSO considering dynamic demand response for microgrids
  publication-title: Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2016.03.064
– volume: 76
  start-page: 112
  year: 2014
  ident: 10.1016/j.asoc.2017.06.039_bib0065
  article-title: A new hybrid method for multi-objective fuel management optimization using parallel PSO-SA
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2014.05.014
– volume: 233
  start-page: 260
  year: 2014
  ident: 10.1016/j.asoc.2017.06.039_bib0115
  article-title: On a novel multi-swarm fruit fly optimization algorithm and its application
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.02.005
– volume: 18
  start-page: 3134
  year: 2013
  ident: 10.1016/j.asoc.2017.06.039_bib0015
  article-title: Particle swarm optimization with age-group topology for multimodal functions and data clustering
  publication-title: Commun. Nonlin. Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2013.03.011
– volume: 71
  start-page: 262
  year: 2015
  ident: 10.1016/j.asoc.2017.06.039_bib0080
  article-title: Time delay approach for PSS and SSSC based coordinated controller design using hybrid PSO-GSA algorithm
  publication-title: Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.03.014
– volume: vol. IV
  start-page: 1942
  year: 1948
  ident: 10.1016/j.asoc.2017.06.039_bib0055
  article-title: Particle swarm optimization
– volume: 258
  start-page: 80
  year: 2014
  ident: 10.1016/j.asoc.2017.06.039_bib0100
  article-title: Integrating the artificial bee colony and bees algorithm to face constrained optimization problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.09.015
– volume: 270
  start-page: 681
  year: 2015
  ident: 10.1016/j.asoc.2017.06.039_bib0125
  article-title: Effect of heterogeneous sub-populations on the evolution of cooperation
  publication-title: Appl. Math. Comput.
– volume: 90
  start-page: 191
  year: 2014
  ident: 10.1016/j.asoc.2017.06.039_bib0095
  article-title: Accurate sub-swarms particle swarm optimization algorithm for service composition
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2013.11.1113
– volume: 33
  start-page: 170
  year: 2015
  ident: 10.1016/j.asoc.2017.06.039_bib0110
  article-title: A modified particle swarm optimization with multiple subpopulations for multimodal function optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.04.002
– volume: 62
  start-page: 19
  year: 2016
  ident: 10.1016/j.asoc.2017.06.039_bib0085
  article-title: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2015.03.003
– year: 2016
  ident: 10.1016/j.asoc.2017.06.039_bib0090
  article-title: Position control of nonlinear hydraulic system using an improved PSO based PID controller
  publication-title: Mech. Syst. Signal Process.
– volume: 172
  start-page: 405
  year: 2016
  ident: 10.1016/j.asoc.2017.06.039_bib0070
  article-title: Gaussian-PSO with fuzzy reasoning based on structural learning for training a neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.104
– volume: 5
  start-page: 298
  year: 2014
  ident: 10.1016/j.asoc.2017.06.039_bib0045
  article-title: A new genetic algorithm for global optimization of multimodal continuous functions
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2013.05.005
– volume: 181
  start-page: 4539
  year: 2011
  ident: 10.1016/j.asoc.2017.06.039_bib0035
  article-title: Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.11.025
– volume: 15
  start-page: 3316
  year: 2010
  ident: 10.1016/j.asoc.2017.06.039_bib0145
  article-title: Two improved harmony search algorithms for solving engineering optimization problems
  publication-title: Commun. Nonlin. Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2010.01.009
– volume: 11
  start-page: 975
  year: 2012
  ident: 10.1016/j.asoc.2017.06.039_bib0050
  article-title: A hybrid niching PSO enhanced with recombination-replacement crowding strategy for multimodal function optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.11.032
– volume: 348
  start-page: 124
  year: 2016
  ident: 10.1016/j.asoc.2017.06.039_bib0140
  article-title: An adaptive multi-population differential evolution algorithm for continuous multi-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.01.068
SSID ssj0016928
Score 2.2853036
Snippet [Display omitted] •This paper utilizes an improved PSO algorithm to solve the function optimization with multiple maximums and minimums.•The original...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 60
SubjectTerms Multimodal function optimization
Multiple maximums and multiple minimums
Particle swarm optimization (PSO)
Title Multimodal function optimizations with multiple maximums and multiple minimums using an improved PSO algorithm
URI https://dx.doi.org/10.1016/j.asoc.2017.06.039
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Complete Freedom Collection
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF7EXnrpu_Qpe-itpG7MZrM5ilTsy0qt4C3sJllJMVGsQk_97Z3JQywUD80lZDMbwmQz38zyzQwhNxD5e0ooY7mx41k8VtxSLVdaOmQazJ8WjsFE4Ze-6I3449gd10inyoVBWmVp-wubnlvrcqRZarM5T5LmECIPyX0OEAxmWLawJijnHnYxuPte0zxs4ef9VVHYQukycabgeCnQANK7vLyGJzYM_wucNgCne0D2Sk-RtouXOSS1ODsi-1UXBlr-lMcky3No01kEwohSqGk6A0uQVimWFDdbaUUdpKn6StJV-klVFm2MJlkxikz4CdyjSb7fEEd0MHylajqZLeAx6QkZde_fOz2r7KJghQ5jS0ua0EScu0poabgXuuDzcdsYW8nId2IfQiRfeUJr5jhMRWAB4ADQ18b3FHONc0rq2SyLzwhlkYwB8FkITiCPNPc9pqRQtmZGcKntc2JX6gvCssQ4drqYBhWX7CNAlQeo8gAJdY5_Tm7Xc-ZFgY2t0m71VYJfyyQABNgy7-Kf8y7JLl4VyYdXpL5crOJr8EKWupEvswbZaXfengd4fnjq9X8AYlzfyA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2wo1GnsxB5RRVWgLUhtpW6RncRVUJNUpZWY-O2c86iKhBjI6Jyj6OJ83531nQ-hW8j8PelKbbHI8SwaSWrJFuOWCogC-FOuo02hcH_gdsf0ecImNdSuamGMrLLE_gLTc7QuR5qlN5vzOG4OIfPgVFCgYIBh3qJbaJuylmcysPuvtc7DdkXeYNVYW8a8rJwpRF4SXGD0XV5-iKfpGP4bO20wTucA7ZWhIn4o3uYQ1aL0CO1XbRhw-VceozQvok2yEIwNTRlX4wygIKlqLLHZbcWVdhAn8jNOVskHlmm4MRqnxaiRwk_hHo7zDYcoxG_DVyxn02wBj0lO0LjzOGp3rbKNghU4hCwtrgMdUsqkq7imXsAg6KO21rbkoXAiATmSkJ6rFHEcIkOAALiA9ZUWniRMO6eonmZpdIYwCXkEjE8CiAJpqKjwiOSutBXRLuXKbiC7cp8flGeMm1YXM78Sk737xuW-cblvFHWOaKC79Zx5ccLGn9as-ir-j3XiAwX8Me_8n_Nu0E531O_5vafBywXaNXeKSsRLVF8uVtEVhCRLdZ0vuW-qzt_I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+function+optimizations+with+multiple+maximums+and+multiple+minimums+using+an+improved+PSO+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Chang%2C+Wei-Der&rft.date=2017-11-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=60&rft.spage=60&rft.epage=72&rft_id=info:doi/10.1016%2Fj.asoc.2017.06.039&rft.externalDocID=S1568494617303824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon