Multimodal function optimizations with multiple maximums and multiple minimums using an improved PSO algorithm
[Display omitted] •This paper utilizes an improved PSO algorithm to solve the function optimization with multiple maximums and minimums.•The original population needs to be divided into two main groups.•One group is to tackle the maximum optimization and the other focuses on the function minimum opt...
Saved in:
| Published in | Applied soft computing Vol. 60; pp. 60 - 72 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.11.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 |
| DOI | 10.1016/j.asoc.2017.06.039 |
Cover
| Abstract | [Display omitted]
•This paper utilizes an improved PSO algorithm to solve the function optimization with multiple maximums and minimums.•The original population needs to be divided into two main groups.•One group is to tackle the maximum optimization and the other focuses on the function minimum optimization.•Each main group is further split up into a certain number of subgroups.•Every subgroup can individually search for one function optimum.
In this paper, a multimodal function optimization problem consisting of multiple maximums and multiple minimums is solved using an improved particle swarm optimization (PSO) algorithm. In the proposed scheme, the original population needs to be randomly divided into two main groups in the first stage. One group is to tackle the maximum optimization of the multimodal function and the other then focuses on the function minimum optimization. In the second stage, each group is split up into several subgroups in order to seek for function optimums simultaneously. There is no relation among subgroups and each subgroup can individually seek for one of function optimums. To achieve that, it is necessary to enroll the best particle information of each subgroup. It means that the proposed structure contains a number of best particles, not a single global best particle. The third stage is to modify the velocity updating formula of the algorithm where the global best particle is simply replaced by the best particle of each subgroup. Under the proposed scheme, multiple maxima and minima of the multimodal function can probably be solved separately and synchronously. Finally, many different kinds of multimodal function problems are illustrated to certify the applicability of the presented method, including one maximum and one minimum, two maximums and two minimums, multiple maximums and multiple minimums, and a complex engineering optimization problem with inequality conditions. |
|---|---|
| AbstractList | [Display omitted]
•This paper utilizes an improved PSO algorithm to solve the function optimization with multiple maximums and minimums.•The original population needs to be divided into two main groups.•One group is to tackle the maximum optimization and the other focuses on the function minimum optimization.•Each main group is further split up into a certain number of subgroups.•Every subgroup can individually search for one function optimum.
In this paper, a multimodal function optimization problem consisting of multiple maximums and multiple minimums is solved using an improved particle swarm optimization (PSO) algorithm. In the proposed scheme, the original population needs to be randomly divided into two main groups in the first stage. One group is to tackle the maximum optimization of the multimodal function and the other then focuses on the function minimum optimization. In the second stage, each group is split up into several subgroups in order to seek for function optimums simultaneously. There is no relation among subgroups and each subgroup can individually seek for one of function optimums. To achieve that, it is necessary to enroll the best particle information of each subgroup. It means that the proposed structure contains a number of best particles, not a single global best particle. The third stage is to modify the velocity updating formula of the algorithm where the global best particle is simply replaced by the best particle of each subgroup. Under the proposed scheme, multiple maxima and minima of the multimodal function can probably be solved separately and synchronously. Finally, many different kinds of multimodal function problems are illustrated to certify the applicability of the presented method, including one maximum and one minimum, two maximums and two minimums, multiple maximums and multiple minimums, and a complex engineering optimization problem with inequality conditions. |
| Author | Chang, Wei-Der |
| Author_xml | – sequence: 1 givenname: Wei-Der surname: Chang fullname: Chang, Wei-Der email: wdchang@stu.edu.tw organization: Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan |
| BookMark | eNp9kMtOwzAQRS1UJErhB1j5BxLs2HlYYoMqXlJRkYC15Th2cZXYkZ2Ux9fjUBaIRVczc2fOleaegpl1VgFwgVGKES4ut6kITqYZwmWKihQRdgTmuCqzhBUVnsU-L6qEMlqcgNMQtihCLKvmwD6O7WA614gW6tHKwTgLXR8l8yWmIcB3M7zBbjrrWwU78WG6sQtQ2OaPauxeHYOxm7iDpuu926kGPj2voWg3zkeb7gwca9EGdf5bF-D19uZleZ-s1ncPy-tVIglCQ1JpqRtKc1HUlaalzDFhFGuNRdUwohimjImyqGtECBJNGQshGaW1ZqVAuSYLUO19pXcheKW5NMPPP4MXpuUY8Sk3vuVTbnzKjaOCx9wimv1De2864T8PQ1d7SMWndkZ5HqRRVqrGeCUH3jhzCP8GN8qMcw |
| CitedBy_id | crossref_primary_10_3233_JIFS_200979 crossref_primary_10_3390_computation7030043 crossref_primary_10_1049_iet_map_2018_5914 crossref_primary_10_1016_j_ast_2019_07_007 crossref_primary_10_1016_j_engstruct_2020_111696 crossref_primary_10_1002_suco_202100732 crossref_primary_10_1016_j_tsep_2019_100431 crossref_primary_10_1007_s10489_018_1258_3 crossref_primary_10_1007_s10489_021_03005_x crossref_primary_10_1016_j_energy_2022_123622 crossref_primary_10_1016_j_dib_2019_104669 crossref_primary_10_1016_j_oceaneng_2024_118787 crossref_primary_10_1615_CritRevBiomedEng_2022044778 crossref_primary_10_1515_math_2018_0132 |
| Cites_doi | 10.1109/TLA.2015.7112023 10.1016/j.neucom.2013.03.069 10.1016/j.dsp.2015.08.008 10.1109/LCOMM.2010.04.092066 10.1016/j.cie.2016.05.026 10.1016/j.engappai.2010.01.006 10.1016/j.asoc.2012.05.032 10.1016/j.asoc.2010.06.017 10.1016/j.asoc.2014.12.026 10.1016/j.ejor.2013.12.041 10.1016/j.cor.2015.09.006 10.1016/j.ijepes.2016.03.064 10.1016/j.pnucene.2014.05.014 10.1016/j.amc.2014.02.005 10.1016/j.cnsns.2013.03.011 10.1016/j.ijepes.2015.03.014 10.1016/j.ins.2013.09.015 10.1016/j.jss.2013.11.1113 10.1016/j.asoc.2015.04.002 10.1016/j.isatra.2015.03.003 10.1016/j.neucom.2015.03.104 10.1016/j.jocs.2013.05.005 10.1016/j.ins.2010.11.025 10.1016/j.cnsns.2010.01.009 10.1016/j.asoc.2011.11.032 10.1016/j.ins.2016.01.068 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2017.06.039 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 72 |
| ExternalDocumentID | 10_1016_j_asoc_2017_06_039 S1568494617303824 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-8fcfd445a6b8f47c513941ff1a8d93e91499a76bb0330ad703333244bf97a05f3 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Thu Apr 24 23:11:26 EDT 2025 Wed Oct 01 02:32:09 EDT 2025 Fri Feb 23 02:24:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multimodal function optimization Multiple maximums and multiple minimums Particle swarm optimization (PSO) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-8fcfd445a6b8f47c513941ff1a8d93e91499a76bb0330ad703333244bf97a05f3 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2017_06_039 crossref_primary_10_1016_j_asoc_2017_06_039 elsevier_sciencedirect_doi_10_1016_j_asoc_2017_06_039 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2017 2017-11-00 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Cheng, Gheorghe, Meng (bib0150) 2013; 13 Liang, Leung (bib0025) 2011; 11 Jiang, Wang, Wang (bib0015) 2013; 18 Xu, Wang, Si (bib0005) 2010; 23 Jaberipour, Khorram (bib0145) 2010; 15 Liang, Qu, Mao, Niu, Wang (bib0040) 2014; 137 Zhong, Ai, Zhan (bib0060) 2016; 98 Cui, Li, Lin, Chen, Lu (bib0120) 2016; 67 Vieira, Lisboa (bib0010) 2014; 235 Tuo, Zhang, Yong, Yuan, Liu, Xu, Deng (bib0020) 2015; 46 Thakur (bib0045) 2014; 5 Li, Lin, Kou (bib0050) 2012; 11 Yuan, Dai, Zhao, He (bib0115) 2014; 233 Silva, Guardieiro (bib0135) 2010; 14 Khoshahval, Zolfaghari, Minuchehr, Abbasi (bib0065) 2014; 76 Kerdphol, Qudaih, Mitani (bib0075) 2016; 83 Kennedy, Eberhart (bib0055) 1948; vol. IV Vitela, Castanos (bib0030) 2012; 218 Juang, Tung, Chiu (bib0035) 2011; 181 Liao, Liu, Zhu, Wang (bib0095) 2014; 90 Silva (bib0130) 2015; 13 Huang, Zheng, Su (bib0125) 2015; 270 Khadanga, Satapathy (bib0080) 2015; 71 Tsai (bib0100) 2014; 258 Melo, Watada (bib0070) 2016; 172 Pan, Das (bib0085) 2016; 62 Xu, Tang, Li, Hua, Cuan (bib0105) 2015; 29 Chang (bib0110) 2015; 33 Wang, Tang (bib0140) 2016; 348 Ye, Yin, Gong, Zhou (bib0090) 2016 Chang (10.1016/j.asoc.2017.06.039_bib0110) 2015; 33 Zhong (10.1016/j.asoc.2017.06.039_bib0060) 2016; 98 Khoshahval (10.1016/j.asoc.2017.06.039_bib0065) 2014; 76 Liang (10.1016/j.asoc.2017.06.039_bib0025) 2011; 11 Li (10.1016/j.asoc.2017.06.039_bib0050) 2012; 11 Kennedy (10.1016/j.asoc.2017.06.039_bib0055) 1948; vol. IV Silva (10.1016/j.asoc.2017.06.039_bib0130) 2015; 13 Ye (10.1016/j.asoc.2017.06.039_bib0090) 2016 Liao (10.1016/j.asoc.2017.06.039_bib0095) 2014; 90 Thakur (10.1016/j.asoc.2017.06.039_bib0045) 2014; 5 Wang (10.1016/j.asoc.2017.06.039_bib0140) 2016; 348 Jiang (10.1016/j.asoc.2017.06.039_bib0015) 2013; 18 Silva (10.1016/j.asoc.2017.06.039_bib0135) 2010; 14 Vitela (10.1016/j.asoc.2017.06.039_bib0030) 2012; 218 Kerdphol (10.1016/j.asoc.2017.06.039_bib0075) 2016; 83 Xu (10.1016/j.asoc.2017.06.039_bib0105) 2015; 29 Cui (10.1016/j.asoc.2017.06.039_bib0120) 2016; 67 Liang (10.1016/j.asoc.2017.06.039_bib0040) 2014; 137 Melo (10.1016/j.asoc.2017.06.039_bib0070) 2016; 172 Pan (10.1016/j.asoc.2017.06.039_bib0085) 2016; 62 Tsai (10.1016/j.asoc.2017.06.039_bib0100) 2014; 258 Vieira (10.1016/j.asoc.2017.06.039_bib0010) 2014; 235 Juang (10.1016/j.asoc.2017.06.039_bib0035) 2011; 181 Zhang (10.1016/j.asoc.2017.06.039_bib0150) 2013; 13 Yuan (10.1016/j.asoc.2017.06.039_bib0115) 2014; 233 Jaberipour (10.1016/j.asoc.2017.06.039_bib0145) 2010; 15 Khadanga (10.1016/j.asoc.2017.06.039_bib0080) 2015; 71 Huang (10.1016/j.asoc.2017.06.039_bib0125) 2015; 270 Xu (10.1016/j.asoc.2017.06.039_bib0005) 2010; 23 Tuo (10.1016/j.asoc.2017.06.039_bib0020) 2015; 46 |
| References_xml | – volume: 181 start-page: 4539 year: 2011 end-page: 4549 ident: bib0035 article-title: Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions publication-title: Inf. Sci. – volume: 258 start-page: 80 year: 2014 end-page: 93 ident: bib0100 article-title: Integrating the artificial bee colony and bees algorithm to face constrained optimization problems publication-title: Inf. Sci. – volume: 23 start-page: 495 year: 2010 end-page: 504 ident: bib0005 article-title: Prediction based immune network for multimodal function optimization publication-title: Eng. Appl. Artif. Intell. – volume: 67 start-page: 155 year: 2016 end-page: 173 ident: bib0120 article-title: Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations publication-title: Comput. Oper. Res. – volume: 90 start-page: 191 year: 2014 end-page: 203 ident: bib0095 article-title: Accurate sub-swarms particle swarm optimization algorithm for service composition publication-title: J. Syst. Softw. – volume: 71 start-page: 262 year: 2015 end-page: 273 ident: bib0080 article-title: Time delay approach for PSS and SSSC based coordinated controller design using hybrid PSO-GSA algorithm publication-title: Electr. Power Energy Syst. – volume: 46 start-page: 151 year: 2015 end-page: 163 ident: bib0020 article-title: A harmony search algorithm for high-dimensional multimodal optimization problems publication-title: Digital Signal Process. – volume: 5 start-page: 298 year: 2014 end-page: 311 ident: bib0045 article-title: A new genetic algorithm for global optimization of multimodal continuous functions publication-title: J. Comput. Sci. – volume: 270 start-page: 681 year: 2015 end-page: 687 ident: bib0125 article-title: Effect of heterogeneous sub-populations on the evolution of cooperation publication-title: Appl. Math. Comput. – volume: 29 start-page: 169 year: 2015 end-page: 183 ident: bib0105 article-title: Dynamic multi-swarm particle swarm optimizer with cooperative learning strategy publication-title: Appl. Soft Comput. – volume: 233 start-page: 260 year: 2014 end-page: 271 ident: bib0115 article-title: On a novel multi-swarm fruit fly optimization algorithm and its application publication-title: Appl. Math. Comput. – volume: 172 start-page: 405 year: 2016 end-page: 412 ident: bib0070 article-title: Gaussian-PSO with fuzzy reasoning based on structural learning for training a neural network publication-title: Neurocomputing – volume: 14 start-page: 315 year: 2010 end-page: 317 ident: bib0135 article-title: An efficient genetic algorithm for anycast routing in delay/disruption tolerant networks publication-title: IEEE Commun. Lett. – volume: 13 start-page: 1528 year: 2013 end-page: 1542 ident: bib0150 article-title: A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems publication-title: Appl. Soft Comput. – volume: 137 start-page: 252 year: 2014 end-page: 260 ident: bib0040 article-title: Differential evolution based on fitness Euclidean-distance ratio for multimodal optimization publication-title: Neurocomputing – year: 2016 ident: bib0090 article-title: Position control of nonlinear hydraulic system using an improved PSO based PID controller publication-title: Mech. Syst. Signal Process. – volume: 18 start-page: 3134 year: 2013 end-page: 3145 ident: bib0015 article-title: Particle swarm optimization with age-group topology for multimodal functions and data clustering publication-title: Commun. Nonlin. Sci. Numer. Simulat. – volume: 76 start-page: 112 year: 2014 end-page: 121 ident: bib0065 article-title: A new hybrid method for multi-objective fuel management optimization using parallel PSO-SA publication-title: Prog. Nucl. Energy – volume: 83 start-page: 58 year: 2016 end-page: 66 ident: bib0075 article-title: Optimum battery energy storage system using PSO considering dynamic demand response for microgrids publication-title: Electr. Power Energy Syst. – volume: 62 start-page: 19 year: 2016 end-page: 29 ident: bib0085 article-title: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO publication-title: ISA Trans. – volume: 98 start-page: 53 year: 2016 end-page: 62 ident: bib0060 article-title: A PSO algorithm for multi-objective hull assembly line balancing using the stratified optimization strategy publication-title: Comput. Ind. Eng. – volume: 218 start-page: 8242 year: 2012 end-page: 8259 ident: bib0030 article-title: A sequential niching memetic algorithm for continuous multimodal function optimization publication-title: Appl. Math. Comput. – volume: vol. IV start-page: 1942 year: 1948 end-page: 1948 ident: bib0055 article-title: Particle swarm optimization publication-title: Proceedings of the IEEE International Conference on Neural Networks – volume: 13 start-page: 1619 year: 2015 end-page: 1624 ident: bib0130 article-title: C.J.A. Bastos Filho, PSO. efficient implementation on GPUs using low latency memory publication-title: IEEE Lat. Am. Trans. – volume: 15 start-page: 3316 year: 2010 end-page: 3331 ident: bib0145 article-title: Two improved harmony search algorithms for solving engineering optimization problems publication-title: Commun. Nonlin. Sci. Numer. Simulat. – volume: 11 start-page: 2017 year: 2011 end-page: 2034 ident: bib0025 article-title: Genetic algorithm with adaptive elitist-population strategies for multimodal function optimization publication-title: Appl. Soft Comput. – volume: 348 start-page: 124 year: 2016 end-page: 141 ident: bib0140 article-title: An adaptive multi-population differential evolution algorithm for continuous multi-objective optimization publication-title: Inf. Sci. – volume: 235 start-page: 38 year: 2014 end-page: 46 ident: bib0010 article-title: Line search methods with guaranteed asymptotical convergence to an improving local optimum of multimodal functions publication-title: Eur. J. Oper. Res. – volume: 11 start-page: 975 year: 2012 end-page: 987 ident: bib0050 article-title: A hybrid niching PSO enhanced with recombination-replacement crowding strategy for multimodal function optimization publication-title: Appl. Soft Comput. – volume: 33 start-page: 170 year: 2015 end-page: 182 ident: bib0110 article-title: A modified particle swarm optimization with multiple subpopulations for multimodal function optimization problems publication-title: Appl. Soft Comput. – volume: 13 start-page: 1619 year: 2015 ident: 10.1016/j.asoc.2017.06.039_bib0130 article-title: C.J.A. Bastos Filho, PSO. efficient implementation on GPUs using low latency memory publication-title: IEEE Lat. Am. Trans. doi: 10.1109/TLA.2015.7112023 – volume: 137 start-page: 252 year: 2014 ident: 10.1016/j.asoc.2017.06.039_bib0040 article-title: Differential evolution based on fitness Euclidean-distance ratio for multimodal optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.069 – volume: 46 start-page: 151 year: 2015 ident: 10.1016/j.asoc.2017.06.039_bib0020 article-title: A harmony search algorithm for high-dimensional multimodal optimization problems publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2015.08.008 – volume: 14 start-page: 315 year: 2010 ident: 10.1016/j.asoc.2017.06.039_bib0135 article-title: An efficient genetic algorithm for anycast routing in delay/disruption tolerant networks publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2010.04.092066 – volume: 98 start-page: 53 year: 2016 ident: 10.1016/j.asoc.2017.06.039_bib0060 article-title: A PSO algorithm for multi-objective hull assembly line balancing using the stratified optimization strategy publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.05.026 – volume: 23 start-page: 495 year: 2010 ident: 10.1016/j.asoc.2017.06.039_bib0005 article-title: Prediction based immune network for multimodal function optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2010.01.006 – volume: 218 start-page: 8242 year: 2012 ident: 10.1016/j.asoc.2017.06.039_bib0030 article-title: A sequential niching memetic algorithm for continuous multimodal function optimization publication-title: Appl. Math. Comput. – volume: 13 start-page: 1528 year: 2013 ident: 10.1016/j.asoc.2017.06.039_bib0150 article-title: A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.05.032 – volume: 11 start-page: 2017 year: 2011 ident: 10.1016/j.asoc.2017.06.039_bib0025 article-title: Genetic algorithm with adaptive elitist-population strategies for multimodal function optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.06.017 – volume: 29 start-page: 169 year: 2015 ident: 10.1016/j.asoc.2017.06.039_bib0105 article-title: Dynamic multi-swarm particle swarm optimizer with cooperative learning strategy publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.12.026 – volume: 235 start-page: 38 year: 2014 ident: 10.1016/j.asoc.2017.06.039_bib0010 article-title: Line search methods with guaranteed asymptotical convergence to an improving local optimum of multimodal functions publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2013.12.041 – volume: 67 start-page: 155 year: 2016 ident: 10.1016/j.asoc.2017.06.039_bib0120 article-title: Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2015.09.006 – volume: 83 start-page: 58 year: 2016 ident: 10.1016/j.asoc.2017.06.039_bib0075 article-title: Optimum battery energy storage system using PSO considering dynamic demand response for microgrids publication-title: Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2016.03.064 – volume: 76 start-page: 112 year: 2014 ident: 10.1016/j.asoc.2017.06.039_bib0065 article-title: A new hybrid method for multi-objective fuel management optimization using parallel PSO-SA publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2014.05.014 – volume: 233 start-page: 260 year: 2014 ident: 10.1016/j.asoc.2017.06.039_bib0115 article-title: On a novel multi-swarm fruit fly optimization algorithm and its application publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2014.02.005 – volume: 18 start-page: 3134 year: 2013 ident: 10.1016/j.asoc.2017.06.039_bib0015 article-title: Particle swarm optimization with age-group topology for multimodal functions and data clustering publication-title: Commun. Nonlin. Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2013.03.011 – volume: 71 start-page: 262 year: 2015 ident: 10.1016/j.asoc.2017.06.039_bib0080 article-title: Time delay approach for PSS and SSSC based coordinated controller design using hybrid PSO-GSA algorithm publication-title: Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.03.014 – volume: vol. IV start-page: 1942 year: 1948 ident: 10.1016/j.asoc.2017.06.039_bib0055 article-title: Particle swarm optimization – volume: 258 start-page: 80 year: 2014 ident: 10.1016/j.asoc.2017.06.039_bib0100 article-title: Integrating the artificial bee colony and bees algorithm to face constrained optimization problems publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.09.015 – volume: 270 start-page: 681 year: 2015 ident: 10.1016/j.asoc.2017.06.039_bib0125 article-title: Effect of heterogeneous sub-populations on the evolution of cooperation publication-title: Appl. Math. Comput. – volume: 90 start-page: 191 year: 2014 ident: 10.1016/j.asoc.2017.06.039_bib0095 article-title: Accurate sub-swarms particle swarm optimization algorithm for service composition publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2013.11.1113 – volume: 33 start-page: 170 year: 2015 ident: 10.1016/j.asoc.2017.06.039_bib0110 article-title: A modified particle swarm optimization with multiple subpopulations for multimodal function optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.04.002 – volume: 62 start-page: 19 year: 2016 ident: 10.1016/j.asoc.2017.06.039_bib0085 article-title: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO publication-title: ISA Trans. doi: 10.1016/j.isatra.2015.03.003 – year: 2016 ident: 10.1016/j.asoc.2017.06.039_bib0090 article-title: Position control of nonlinear hydraulic system using an improved PSO based PID controller publication-title: Mech. Syst. Signal Process. – volume: 172 start-page: 405 year: 2016 ident: 10.1016/j.asoc.2017.06.039_bib0070 article-title: Gaussian-PSO with fuzzy reasoning based on structural learning for training a neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.03.104 – volume: 5 start-page: 298 year: 2014 ident: 10.1016/j.asoc.2017.06.039_bib0045 article-title: A new genetic algorithm for global optimization of multimodal continuous functions publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2013.05.005 – volume: 181 start-page: 4539 year: 2011 ident: 10.1016/j.asoc.2017.06.039_bib0035 article-title: Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.11.025 – volume: 15 start-page: 3316 year: 2010 ident: 10.1016/j.asoc.2017.06.039_bib0145 article-title: Two improved harmony search algorithms for solving engineering optimization problems publication-title: Commun. Nonlin. Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2010.01.009 – volume: 11 start-page: 975 year: 2012 ident: 10.1016/j.asoc.2017.06.039_bib0050 article-title: A hybrid niching PSO enhanced with recombination-replacement crowding strategy for multimodal function optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.11.032 – volume: 348 start-page: 124 year: 2016 ident: 10.1016/j.asoc.2017.06.039_bib0140 article-title: An adaptive multi-population differential evolution algorithm for continuous multi-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.01.068 |
| SSID | ssj0016928 |
| Score | 2.2853036 |
| Snippet | [Display omitted]
•This paper utilizes an improved PSO algorithm to solve the function optimization with multiple maximums and minimums.•The original... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 60 |
| SubjectTerms | Multimodal function optimization Multiple maximums and multiple minimums Particle swarm optimization (PSO) |
| Title | Multimodal function optimizations with multiple maximums and multiple minimums using an improved PSO algorithm |
| URI | https://dx.doi.org/10.1016/j.asoc.2017.06.039 |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Complete Freedom Collection customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF7EXnrpu_Qpe-itpG7MZrM5ilTsy0qt4C3sJllJMVGsQk_97Z3JQywUD80lZDMbwmQz38zyzQwhNxD5e0ooY7mx41k8VtxSLVdaOmQazJ8WjsFE4Ze-6I3449gd10inyoVBWmVp-wubnlvrcqRZarM5T5LmECIPyX0OEAxmWLawJijnHnYxuPte0zxs4ef9VVHYQukycabgeCnQANK7vLyGJzYM_wucNgCne0D2Sk-RtouXOSS1ODsi-1UXBlr-lMcky3No01kEwohSqGk6A0uQVimWFDdbaUUdpKn6StJV-klVFm2MJlkxikz4CdyjSb7fEEd0MHylajqZLeAx6QkZde_fOz2r7KJghQ5jS0ua0EScu0poabgXuuDzcdsYW8nId2IfQiRfeUJr5jhMRWAB4ADQ18b3FHONc0rq2SyLzwhlkYwB8FkITiCPNPc9pqRQtmZGcKntc2JX6gvCssQ4drqYBhWX7CNAlQeo8gAJdY5_Tm7Xc-ZFgY2t0m71VYJfyyQABNgy7-Kf8y7JLl4VyYdXpL5crOJr8EKWupEvswbZaXfengd4fnjq9X8AYlzfyA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2wo1GnsxB5RRVWgLUhtpW6RncRVUJNUpZWY-O2c86iKhBjI6Jyj6OJ83531nQ-hW8j8PelKbbHI8SwaSWrJFuOWCogC-FOuo02hcH_gdsf0ecImNdSuamGMrLLE_gLTc7QuR5qlN5vzOG4OIfPgVFCgYIBh3qJbaJuylmcysPuvtc7DdkXeYNVYW8a8rJwpRF4SXGD0XV5-iKfpGP4bO20wTucA7ZWhIn4o3uYQ1aL0CO1XbRhw-VceozQvok2yEIwNTRlX4wygIKlqLLHZbcWVdhAn8jNOVskHlmm4MRqnxaiRwk_hHo7zDYcoxG_DVyxn02wBj0lO0LjzOGp3rbKNghU4hCwtrgMdUsqkq7imXsAg6KO21rbkoXAiATmSkJ6rFHEcIkOAALiA9ZUWniRMO6eonmZpdIYwCXkEjE8CiAJpqKjwiOSutBXRLuXKbiC7cp8flGeMm1YXM78Sk737xuW-cblvFHWOaKC79Zx5ccLGn9as-ir-j3XiAwX8Me_8n_Nu0E531O_5vafBywXaNXeKSsRLVF8uVtEVhCRLdZ0vuW-qzt_I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+function+optimizations+with+multiple+maximums+and+multiple+minimums+using+an+improved+PSO+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Chang%2C+Wei-Der&rft.date=2017-11-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=60&rft.spage=60&rft.epage=72&rft_id=info:doi/10.1016%2Fj.asoc.2017.06.039&rft.externalDocID=S1568494617303824 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |