Optimized levy flight model for heart disease prediction using CNN framework in big data application
Cardiac disease is one of the most complex diseases globally. It affects the lives of humans critically. It is essential for accurate and timely diagnosis to treat heart failure and prevent the disease. In most aspects, it was not so successful with the traditional method, which uses past medical hi...
Saved in:
| Published in | Expert systems with applications Vol. 223; p. 119859 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.08.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2023.119859 |
Cover
| Abstract | Cardiac disease is one of the most complex diseases globally. It affects the lives of humans critically. It is essential for accurate and timely diagnosis to treat heart failure and prevent the disease. In most aspects, it was not so successful with the traditional method, which uses past medical history. Many existing models had several types of the loss function in traditional CNN can lead to misidentification of the model. To solve this problem, so many scholars have used the swarm intelligence algorithm, but most of these techniques are stuck in the local minima and suffer from premature convergence. In the proposed method, we build up the Levy Flight – Convolutional Neural Network (LV-CNN) depending on the diagnostic system using heart disease image data set for heart disease assessment. Initially, the input Big Data images are resized to reduce the computational complexity of the system. Then, those resized images are subject to the proposed LV-CNN model. Therefore, the LV approach is integrated with the Sunflower Optimization Algorithm (SFO) to reduce loss function occurring in the CNN architecture. Such a combination helps the SFO algorithm avoid trapping in local minima due to the random walk of the levy flight. The proposed algorithm will be simulated using the MATLAB tool and tested experimentally in terms of accuracy is 95.74%, specificity is 0.96%, the error rate is 0.35, and time consumption is 9.71 s. This comparative analysis revealed that the excellence of the proposed model. |
|---|---|
| AbstractList | Cardiac disease is one of the most complex diseases globally. It affects the lives of humans critically. It is essential for accurate and timely diagnosis to treat heart failure and prevent the disease. In most aspects, it was not so successful with the traditional method, which uses past medical history. Many existing models had several types of the loss function in traditional CNN can lead to misidentification of the model. To solve this problem, so many scholars have used the swarm intelligence algorithm, but most of these techniques are stuck in the local minima and suffer from premature convergence. In the proposed method, we build up the Levy Flight – Convolutional Neural Network (LV-CNN) depending on the diagnostic system using heart disease image data set for heart disease assessment. Initially, the input Big Data images are resized to reduce the computational complexity of the system. Then, those resized images are subject to the proposed LV-CNN model. Therefore, the LV approach is integrated with the Sunflower Optimization Algorithm (SFO) to reduce loss function occurring in the CNN architecture. Such a combination helps the SFO algorithm avoid trapping in local minima due to the random walk of the levy flight. The proposed algorithm will be simulated using the MATLAB tool and tested experimentally in terms of accuracy is 95.74%, specificity is 0.96%, the error rate is 0.35, and time consumption is 9.71 s. This comparative analysis revealed that the excellence of the proposed model. |
| ArticleNumber | 119859 |
| Author | Hu, Yu-Chen Kumar Jain, Praphula Jain, Arushi Chandra Sekhara Rao, Annavarapu |
| Author_xml | – sequence: 1 givenname: Arushi orcidid: 0000-0003-0265-7340 surname: Jain fullname: Jain, Arushi email: arushijain1391@gmail.com organization: Department of Computer Science & Engineering Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, India – sequence: 2 givenname: Annavarapu surname: Chandra Sekhara Rao fullname: Chandra Sekhara Rao, Annavarapu organization: Department of Computer Science & Engineering Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, India – sequence: 3 givenname: Praphula surname: Kumar Jain fullname: Kumar Jain, Praphula email: Praphulajn1@gmail.com organization: Department of Computer Science & Engineering Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, India – sequence: 4 givenname: Yu-Chen orcidid: 0000-0002-5055-3645 surname: Hu fullname: Hu, Yu-Chen organization: Department of Computer Science and Information Management, Providence University, Taiwan, ROC |
| BookMark | eNp9kL1OwzAUhS1UJNrCCzD5BVLsOIltiQVV_ElVu8BsOc5165I_2YaqPD0JZWLodJbzXd3zzdCk7VpA6JaSBSW0uNsvIBz0IiUpW1AqRS4v0JQKzpKCSzZBUyJznmSUZ1doFsKeEMoJ4VNUbfroGvcNFa7h64ht7ba7iJuughrbzuMdaB9x5QLoALj3UDkTXdfiz-DaLV6u19h63cCh8x_Ytbh0W1zpqLHu-9oZPXav0aXVdYCbv5yj96fHt-VLsto8vy4fVolhhMREQGZlBiIrckZkVRpmmS4FEaXRkHKSFloMcyxomdvMMmtTo_O8NITTgknL5ig93TW-C8GDVb13jfZHRYkaPam9Gj2p0ZM6eRog8Q8yLv6-Hb129Xn0_oTCMOrLgVfBOGjN4MiDiarq3Dn8B1_uh7w |
| CitedBy_id | crossref_primary_10_1007_s11042_024_19350_1 crossref_primary_10_1007_s41870_024_01970_3 crossref_primary_10_1109_ACCESS_2023_3325681 crossref_primary_10_3389_fpsyt_2024_1418969 crossref_primary_10_3389_fmed_2024_1414637 crossref_primary_10_3233_JIFS_219407 crossref_primary_10_2196_62890 crossref_primary_10_1007_s11042_023_18054_2 crossref_primary_10_3390_biomimetics9070388 crossref_primary_10_1016_j_eswa_2023_122823 crossref_primary_10_1007_s40031_024_01121_z crossref_primary_10_1016_j_eswa_2023_120243 crossref_primary_10_1007_s11042_024_19680_0 crossref_primary_10_1016_j_eswa_2024_124265 crossref_primary_10_1007_s11276_024_03807_0 crossref_primary_10_1016_j_asoc_2024_112493 crossref_primary_10_1016_j_eswa_2025_126817 crossref_primary_10_3233_HIS_240017 crossref_primary_10_1080_10255842_2024_2310075 crossref_primary_10_1016_j_eswa_2023_122915 crossref_primary_10_1038_s41598_025_85561_7 crossref_primary_10_1016_j_apenergy_2023_122015 crossref_primary_10_1016_j_neucom_2024_128630 crossref_primary_10_1016_j_eswa_2023_121621 crossref_primary_10_1016_j_eswa_2023_121442 crossref_primary_10_1007_s10661_024_12796_8 crossref_primary_10_1080_0954898X_2024_2404915 crossref_primary_10_1186_s44147_023_00280_y |
| Cites_doi | 10.1016/j.future.2019.06.004 10.1016/j.jbi.2018.03.002 10.1016/j.eswa.2019.112821 10.1016/j.eswa.2020.113408 10.1007/s10489-019-01461-0 10.1007/s13369-014-1315-0 10.1016/j.tele.2015.08.006 10.4258/hir.2016.22.3.196 10.1142/S0219622017500225 10.1016/j.atherosclerosis.2011.10.009 10.1126/science.aad3517 10.1016/j.cmpb.2019.104992 10.1007/s13369-013-0934-1 10.1007/s10462-020-09861-2 10.1007/s13042-018-00916-z 10.1016/j.jksuci.2011.09.002 10.1016/j.eswa.2020.113361 10.1007/978-981-33-4698-7_9 10.1007/s11042-017-5045-7 10.1007/s00366-018-0620-8 10.1109/iMac4s.2013.6526381 10.1016/j.jbi.2014.12.014 10.21037/atm.2016.06.33 10.1155/2018/3860146 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2023.119859 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2023_119859 S0957417423003603 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c300t-8e4f94e8465309dbc3f3ab808bcae27026a8679fea95f4f3ff2ca55bc071639f3 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Thu Apr 24 23:03:56 EDT 2025 Sat Oct 25 05:12:03 EDT 2025 Fri Feb 23 02:38:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Swarm intelligence algorithm Heart disease prediction Big data Convolution neural networks Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-8e4f94e8465309dbc3f3ab808bcae27026a8679fea95f4f3ff2ca55bc071639f3 |
| ORCID | 0000-0003-0265-7340 0000-0002-5055-3645 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2023_119859 crossref_citationtrail_10_1016_j_eswa_2023_119859 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_119859 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Tay, Poh, Kitney (b0135) 2015; 54 El Bakrawy (b0045) 2017; 11 Chen, Huang, Hong, Cheng, Lin (b0030) 2011 Tamilselvi (b0130) 2021; 12 Lakshmanaprabu, Shankar, Ilayaraja, Nasir, Vijayakumar, Chilamkurti (b0070) 2019; 10 Sanchis-Gomar, Perez-Quilis, Leischik, Lucia (b0105) 2016; 4 Weng, Huang, Han (b0140) 2016; 33 Haq, A. U., Li, J. P., Memon, M. H., Nazir, S., & Sun, R. (2018). A hybrid intelli- gent system framework for the prediction of heart disease using machine learning algorithms. Mobile Information Systems, 2018. Ani, Augustine, Akhil, Deepa (b0010) 2016 Jabbar, M. A., Deekshatulu, B. L., & Chandra, P. (2013). Heart disease prediction using lazy associative classification. In 2013 international mutli-conference on au- tomation, computing, communication, control and compressed sensing (imac4s) (pp. 40–46). Dahiwade, Patle, Meshram (b0035) 2019 Miranda, Irwansyah, Amelga, Maribondang, Salim (b0075) 2016; 22 Qawqzeh, Y. K., Otoom, M. M., Al-Fayez, F., Almarashdeh, I., Alsmadi, M., & Jaradat, G. (2019). A proposed decision tree classifier for atherosclerosis prediction and classification. International Journal of Computer Science and Network Security, 19 (12), 197. Zanoni, Khetarpal, Larach, Hancock-Cerutti, Millar, Cuchel (b0155) 2016; 351 Orphanou, Dagliati, Sacchi, Stassopoulou, Keravnou, Bellazzi (b0080) 2018; 81 Rath, Mishra, Panda (b0095) 2021; 936 Fujita, Cimr (b0050) 2019; 49 Zerdoumi, Sabri, Kamsin, Hashem, Gani, Hakak (b0160) 2018; 77 Yedder, Cardoen, Hamarneh (b0150) 2021; 54 Salman, Zaidan, Zaidan, Naserkalid, Hashim (b0100) 2017; 16 Srinivas, Rao, Govardhan (b0120) 2014; 39 Bahrami, Shirvani (b0020) 2015; 2 Skretteberg, Grundvold, Kjeldsen, Erikssen, Sandvik, Liestøl (b0110) 2012; 220 Zhou, Li, Hou, Zhang, Zhang, Dai (b0165) 2020; 151 Dutta, Batabyal, Basu, Acton (b0040) 2020; 159 Soni, Ansari, Sharma, Soni (b0115) 2011; 3 Anooj (b0015) 2012; 24 Syed, Jabeen, Manimala, Alsaeedi (b0125) 2019; 101 Abdar, Książek, Acharya, Tan, Makarenkov, Pławiak (b0005) 2019; 179 Bashir, Qamar, Khan, Javed (b0025) 2014; 39 Gomes, da Cunha, Ancelotti (b0055) 2019; 35 Yanase, Triantaphyllou (b0145) 2019; 138 10.1016/j.eswa.2023.119859_b0090 Bahrami (10.1016/j.eswa.2023.119859_b0020) 2015; 2 Salman (10.1016/j.eswa.2023.119859_b0100) 2017; 16 Tamilselvi (10.1016/j.eswa.2023.119859_b0130) 2021; 12 Yedder (10.1016/j.eswa.2023.119859_b0150) 2021; 54 Abdar (10.1016/j.eswa.2023.119859_b0005) 2019; 179 Orphanou (10.1016/j.eswa.2023.119859_b0080) 2018; 81 Miranda (10.1016/j.eswa.2023.119859_b0075) 2016; 22 Zanoni (10.1016/j.eswa.2023.119859_b0155) 2016; 351 Tay (10.1016/j.eswa.2023.119859_b0135) 2015; 54 Bashir (10.1016/j.eswa.2023.119859_b0025) 2014; 39 Skretteberg (10.1016/j.eswa.2023.119859_b0110) 2012; 220 Weng (10.1016/j.eswa.2023.119859_b0140) 2016; 33 Syed (10.1016/j.eswa.2023.119859_b0125) 2019; 101 Sanchis-Gomar (10.1016/j.eswa.2023.119859_b0105) 2016; 4 Zhou (10.1016/j.eswa.2023.119859_b0165) 2020; 151 Chen (10.1016/j.eswa.2023.119859_b0030) 2011 Lakshmanaprabu (10.1016/j.eswa.2023.119859_b0070) 2019; 10 Ani (10.1016/j.eswa.2023.119859_b0010) 2016 Fujita (10.1016/j.eswa.2023.119859_b0050) 2019; 49 10.1016/j.eswa.2023.119859_b0065 Srinivas (10.1016/j.eswa.2023.119859_b0120) 2014; 39 10.1016/j.eswa.2023.119859_b0060 Rath (10.1016/j.eswa.2023.119859_b0095) 2021; 936 Yanase (10.1016/j.eswa.2023.119859_b0145) 2019; 138 Gomes (10.1016/j.eswa.2023.119859_b0055) 2019; 35 Dutta (10.1016/j.eswa.2023.119859_b0040) 2020; 159 Soni (10.1016/j.eswa.2023.119859_b0115) 2011; 3 Zerdoumi (10.1016/j.eswa.2023.119859_b0160) 2018; 77 El Bakrawy (10.1016/j.eswa.2023.119859_b0045) 2017; 11 Anooj (10.1016/j.eswa.2023.119859_b0015) 2012; 24 Dahiwade (10.1016/j.eswa.2023.119859_b0035) 2019 |
| References_xml | – volume: 3 start-page: 2385 year: 2011 end-page: 2392 ident: b0115 article-title: Intelligent and effective heart disease prediction system using weighted associative classifiers publication-title: International Journal on Computer Science and Engineering – volume: 35 start-page: 619 year: 2019 end-page: 626 ident: b0055 article-title: A sunflower optimization (sfo) algorithm applied to damage identification on laminated composite plates publication-title: Engineering with Computers – volume: 351 start-page: 1166 year: 2016 end-page: 1171 ident: b0155 article-title: Rare variant in scavenger receptor bi raises hdl cholesterol and increases risk of coronary heart disease publication-title: Science – volume: 54 start-page: 305 year: 2015 end-page: 314 ident: b0135 article-title: A novel neural-inspired learning algorithm with application to clinical risk prediction publication-title: Journal of Biomedical Informatics – reference: Jabbar, M. A., Deekshatulu, B. L., & Chandra, P. (2013). Heart disease prediction using lazy associative classification. In 2013 international mutli-conference on au- tomation, computing, communication, control and compressed sensing (imac4s) (pp. 40–46). – volume: 39 start-page: 2857 year: 2014 end-page: 2868 ident: b0120 article-title: Rough-fuzzy classifier: A system to predict the heart disease by blending two different set theories publication-title: Arabian Journal for Science and Engineering – volume: 22 start-page: 196 year: 2016 end-page: 205 ident: b0075 article-title: Detection of cardiovascular disease risk’s level for adults using naive bayes classifier publication-title: Healthcare Informatics Research – volume: 24 start-page: 27 year: 2012 end-page: 40 ident: b0015 article-title: Clinical decision support system: Risk level prediction of heart dis- ease using weighted fuzzy rules publication-title: Journal of King Saud University-Computer and Information Sciences – volume: 49 start-page: 3383 year: 2019 end-page: 3391 ident: b0050 article-title: Decision support system for arrhythmia prediction using convolutional neural network structure without preprocessing publication-title: Applied Intelligence – volume: 11 start-page: 64 year: 2017 end-page: 70 ident: b0045 article-title: Grey wolf optimization and naive bayes classifier incorporation for heart disease diagnosis publication-title: Australian Journal of Basic and Applied Sciences – volume: 54 start-page: 215 year: 2021 end-page: 251 ident: b0150 article-title: Deep learning for biomedical image reconstruction: A survey publication-title: Artificial intelligence review – start-page: 701 year: 2016 end-page: 710 ident: b0010 article-title: Random forest ensemble classi- fier to predict the coronary heart disease using risk factors publication-title: In Proceedings of the international conference on soft computing systems – start-page: 557 year: 2011 end-page: 560 ident: b0030 article-title: Hdps: Heart disease prediction system publication-title: In 2011 computing in cardiology – start-page: 1211 year: 2019 end-page: 1215 ident: b0035 article-title: Designing disease prediction model using machine learning approach publication-title: In 2019 3rd international conference on computing methodologies and communication (iccmc) – volume: 101 start-page: 136 year: 2019 end-page: 151 ident: b0125 article-title: Smart healthcare framework for ambient assisted living using iomt and big data analytics techniques publication-title: Future Generation Computer Systems – volume: 12 start-page: 1140 year: 2021 end-page: 1147 ident: b0130 article-title: An efficient disease prediction in big data using neuralnet- work based optimization method publication-title: Turkish Journal of Computer and Mathematics Education (TURCOMAT) – volume: 4 year: 2016 ident: b0105 article-title: Epidemiology of coronary heart disease and acute coronary syndrome publication-title: Annals of Translational Medicine – volume: 220 start-page: 250 year: 2012 end-page: 256 ident: b0110 article-title: Hdl-cholesterol and prediction of coronary heart disease: Modified by physical fitness?: A 28-year follow-up of apparently healthy men publication-title: Atherosclerosis – reference: Qawqzeh, Y. K., Otoom, M. M., Al-Fayez, F., Almarashdeh, I., Alsmadi, M., & Jaradat, G. (2019). A proposed decision tree classifier for atherosclerosis prediction and classification. International Journal of Computer Science and Network Security, 19 (12), 197. – volume: 179 year: 2019 ident: b0005 article-title: A new machine learning technique for an accurate diagnosis of coronary artery disease publication-title: Computer Methods and Programs in Biomedicine – volume: 936 start-page: 169 year: 2021 ident: b0095 article-title: Deep learning neural network and cnn- based diagnosis of heart diseases publication-title: Technical Advancements of Machine Learning in Healthcare – volume: 39 start-page: 7771 year: 2014 end-page: 7783 ident: b0025 article-title: Mv5: A clinical decision support framework for heart disease prediction using majority vote based classifier ensemble publication-title: Arabian Journal for Science and Engineering – volume: 33 start-page: 277 year: 2016 end-page: 292 ident: b0140 article-title: Disease prediction with different types of neural network classifiers publication-title: Telematics and Informatics – volume: 159 year: 2020 ident: b0040 article-title: An efficient convolutional neu- ral network for coronary heart disease prediction publication-title: Expert Systems with Applications – volume: 138 year: 2019 ident: b0145 article-title: A systematic survey of computer-aided diagnosis in medicine: Past and present developments publication-title: Expert Systems with Applications – volume: 81 start-page: 74 year: 2018 end-page: 82 ident: b0080 article-title: Incorporating repeating temporal association rules in naïve bayes classifiers for coronary heart disease diagnosis publication-title: Journal of Biomedical Informatics – volume: 16 start-page: 1211 year: 2017 end-page: 1245 ident: b0100 article-title: Novel methodology for triage and prioritizing using “big data” patients with chronic heart dis- eases through telemedicine environmental publication-title: International Journal of Information Technology & Decision Making – volume: 151 year: 2020 ident: b0165 article-title: Modeling methodology for early warning of chronic heart failure based on real medical big data publication-title: Expert Systems with Applications – volume: 10 start-page: 2609 year: 2019 end-page: 2618 ident: b0070 article-title: Random forest for big data classification in the internet of things using optimal features publication-title: International Journal of Machine Learning and Cybernetics – volume: 77 start-page: 10091 year: 2018 end-page: 10121 ident: b0160 article-title: Image pattern recognition in big data: Taxonomy and open challenges: Survey publication-title: Multimedia Tools and Applications – reference: Haq, A. U., Li, J. P., Memon, M. H., Nazir, S., & Sun, R. (2018). A hybrid intelli- gent system framework for the prediction of heart disease using machine learning algorithms. Mobile Information Systems, 2018. – volume: 2 start-page: 164 year: 2015 end-page: 168 ident: b0020 article-title: Prediction and diagnosis of heart disease by data mining techniques publication-title: Journal of Multidisciplinary Engineering Science and Technology – volume: 101 start-page: 136 year: 2019 ident: 10.1016/j.eswa.2023.119859_b0125 article-title: Smart healthcare framework for ambient assisted living using iomt and big data analytics techniques publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.06.004 – volume: 81 start-page: 74 year: 2018 ident: 10.1016/j.eswa.2023.119859_b0080 article-title: Incorporating repeating temporal association rules in naïve bayes classifiers for coronary heart disease diagnosis publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2018.03.002 – volume: 2 start-page: 164 issue: 2 year: 2015 ident: 10.1016/j.eswa.2023.119859_b0020 article-title: Prediction and diagnosis of heart disease by data mining techniques publication-title: Journal of Multidisciplinary Engineering Science and Technology – volume: 138 year: 2019 ident: 10.1016/j.eswa.2023.119859_b0145 article-title: A systematic survey of computer-aided diagnosis in medicine: Past and present developments publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.112821 – start-page: 1211 year: 2019 ident: 10.1016/j.eswa.2023.119859_b0035 article-title: Designing disease prediction model using machine learning approach – volume: 159 year: 2020 ident: 10.1016/j.eswa.2023.119859_b0040 article-title: An efficient convolutional neu- ral network for coronary heart disease prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113408 – volume: 3 start-page: 2385 issue: 6 year: 2011 ident: 10.1016/j.eswa.2023.119859_b0115 article-title: Intelligent and effective heart disease prediction system using weighted associative classifiers publication-title: International Journal on Computer Science and Engineering – volume: 49 start-page: 3383 issue: 9 year: 2019 ident: 10.1016/j.eswa.2023.119859_b0050 article-title: Decision support system for arrhythmia prediction using convolutional neural network structure without preprocessing publication-title: Applied Intelligence doi: 10.1007/s10489-019-01461-0 – volume: 39 start-page: 7771 issue: 11 year: 2014 ident: 10.1016/j.eswa.2023.119859_b0025 article-title: Mv5: A clinical decision support framework for heart disease prediction using majority vote based classifier ensemble publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-014-1315-0 – volume: 33 start-page: 277 issue: 2 year: 2016 ident: 10.1016/j.eswa.2023.119859_b0140 article-title: Disease prediction with different types of neural network classifiers publication-title: Telematics and Informatics doi: 10.1016/j.tele.2015.08.006 – volume: 22 start-page: 196 issue: 3 year: 2016 ident: 10.1016/j.eswa.2023.119859_b0075 article-title: Detection of cardiovascular disease risk’s level for adults using naive bayes classifier publication-title: Healthcare Informatics Research doi: 10.4258/hir.2016.22.3.196 – volume: 16 start-page: 1211 issue: 05 year: 2017 ident: 10.1016/j.eswa.2023.119859_b0100 article-title: Novel methodology for triage and prioritizing using “big data” patients with chronic heart dis- eases through telemedicine environmental publication-title: International Journal of Information Technology & Decision Making doi: 10.1142/S0219622017500225 – start-page: 701 year: 2016 ident: 10.1016/j.eswa.2023.119859_b0010 article-title: Random forest ensemble classi- fier to predict the coronary heart disease using risk factors – volume: 220 start-page: 250 issue: 1 year: 2012 ident: 10.1016/j.eswa.2023.119859_b0110 article-title: Hdl-cholesterol and prediction of coronary heart disease: Modified by physical fitness?: A 28-year follow-up of apparently healthy men publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2011.10.009 – volume: 351 start-page: 1166 issue: 6278 year: 2016 ident: 10.1016/j.eswa.2023.119859_b0155 article-title: Rare variant in scavenger receptor bi raises hdl cholesterol and increases risk of coronary heart disease publication-title: Science doi: 10.1126/science.aad3517 – volume: 179 year: 2019 ident: 10.1016/j.eswa.2023.119859_b0005 article-title: A new machine learning technique for an accurate diagnosis of coronary artery disease publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2019.104992 – volume: 39 start-page: 2857 issue: 4 year: 2014 ident: 10.1016/j.eswa.2023.119859_b0120 article-title: Rough-fuzzy classifier: A system to predict the heart disease by blending two different set theories publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-013-0934-1 – volume: 54 start-page: 215 issue: 1 year: 2021 ident: 10.1016/j.eswa.2023.119859_b0150 article-title: Deep learning for biomedical image reconstruction: A survey publication-title: Artificial intelligence review doi: 10.1007/s10462-020-09861-2 – start-page: 557 year: 2011 ident: 10.1016/j.eswa.2023.119859_b0030 article-title: Hdps: Heart disease prediction system – volume: 11 start-page: 64 issue: 7 year: 2017 ident: 10.1016/j.eswa.2023.119859_b0045 article-title: Grey wolf optimization and naive bayes classifier incorporation for heart disease diagnosis publication-title: Australian Journal of Basic and Applied Sciences – volume: 12 start-page: 1140 issue: 10 year: 2021 ident: 10.1016/j.eswa.2023.119859_b0130 article-title: An efficient disease prediction in big data using neuralnet- work based optimization method publication-title: Turkish Journal of Computer and Mathematics Education (TURCOMAT) – volume: 10 start-page: 2609 issue: 10 year: 2019 ident: 10.1016/j.eswa.2023.119859_b0070 article-title: Random forest for big data classification in the internet of things using optimal features publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-018-00916-z – volume: 24 start-page: 27 issue: 1 year: 2012 ident: 10.1016/j.eswa.2023.119859_b0015 article-title: Clinical decision support system: Risk level prediction of heart dis- ease using weighted fuzzy rules publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2011.09.002 – volume: 151 year: 2020 ident: 10.1016/j.eswa.2023.119859_b0165 article-title: Modeling methodology for early warning of chronic heart failure based on real medical big data publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113361 – volume: 936 start-page: 169 year: 2021 ident: 10.1016/j.eswa.2023.119859_b0095 article-title: Deep learning neural network and cnn- based diagnosis of heart diseases publication-title: Technical Advancements of Machine Learning in Healthcare doi: 10.1007/978-981-33-4698-7_9 – volume: 77 start-page: 10091 issue: 8 year: 2018 ident: 10.1016/j.eswa.2023.119859_b0160 article-title: Image pattern recognition in big data: Taxonomy and open challenges: Survey publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-017-5045-7 – volume: 35 start-page: 619 issue: 2 year: 2019 ident: 10.1016/j.eswa.2023.119859_b0055 article-title: A sunflower optimization (sfo) algorithm applied to damage identification on laminated composite plates publication-title: Engineering with Computers doi: 10.1007/s00366-018-0620-8 – ident: 10.1016/j.eswa.2023.119859_b0065 doi: 10.1109/iMac4s.2013.6526381 – ident: 10.1016/j.eswa.2023.119859_b0090 – volume: 54 start-page: 305 year: 2015 ident: 10.1016/j.eswa.2023.119859_b0135 article-title: A novel neural-inspired learning algorithm with application to clinical risk prediction publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2014.12.014 – volume: 4 issue: 13 year: 2016 ident: 10.1016/j.eswa.2023.119859_b0105 article-title: Epidemiology of coronary heart disease and acute coronary syndrome publication-title: Annals of Translational Medicine doi: 10.21037/atm.2016.06.33 – ident: 10.1016/j.eswa.2023.119859_b0060 doi: 10.1155/2018/3860146 |
| SSID | ssj0017007 |
| Score | 2.5476255 |
| Snippet | Cardiac disease is one of the most complex diseases globally. It affects the lives of humans critically. It is essential for accurate and timely diagnosis to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 119859 |
| SubjectTerms | Big data Convolution neural networks Heart disease prediction Optimization Swarm intelligence algorithm |
| Title | Optimized levy flight model for heart disease prediction using CNN framework in big data application |
| URI | https://dx.doi.org/10.1016/j.eswa.2023.119859 |
| Volume | 223 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZHmYM3ic1jt02OpViqYjxoobeQfZVIjaVGRQ_-dneSTakgPXhM2IFldnfmW-bbbwg5T6mgPdaVDtORdqjSyuGeuayEzNfS00rTklV5F3dHY3ozYZMGGdRvYZBWaWN_FdPLaG3_dKw3O_Ms6zwYcGDSIVYaUVSlVPyktIddDC6_lzQPlJ_rVXp7PQdH24czFcdLvX6g9pAfmMgRhahX-ldyWkk4wx2yZZEi9KvJ7JKGyvfIdt2FAeyh3Cfy3pz65-xLSZip90_QM7xvQ9niBgwkBexZXYCtxMB8gaUZXA5AzvsUBnEMuqZoQZYDz6aAxFFYKW4fkPHw6nEwcmzvBEcYdxROqKiOqApRPs2NJBeBDlIeuiEXqcI3aN0Upfa0SiOmqQ609kXKGBcGchjQooND0sxfcnVEwARA5crQ9YWglIUikgGPlHCF9IRBQ2mLeLXTEmGFxbG_xSypGWRPCTo6QUcnlaNb5GJpM69kNdaOZvVaJL82R2Li_hq743_anZBN_Kp4fqekWSze1JnBHgVvl5urTTb617ej-AerDdrB |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1GeN7Ch0DzsJhlRRVWgDQOt1M1KHLsKKqUqAQQDvx1f4lRFQh1YE1uyzvbdd7rP3xFyEVNBfdZKLaZCZVGppJU4OlkJmKtSR0lFC1ZlP2p1h_RuxEY10q7ewiCt0vj-0qcX3tp8aRprNmdZ1nzU4ECHQ6w0oqgKKn6uUeb6mIFdfS94Hqg_55eCe76Fw83LmZLkJV8_UHzI9bTrCAMULP0rOi1FnM422TRQEa7L1eyQmpzukq2qDQOYW7lH0gd97Z-zL5nCRL5_gppgwg1FjxvQmBSwaXUOphQDsznWZnA_AEnvY2hHEaiKowXZFJJsDMgchaXq9j4Zdm4G7a5lmidYQtsjtwJJVUhlgPppdpgmwlNenAR2kIhY4iO0Voxae0rGIVNUeUq5ImYsERpzaNSivANSn75M5SEB7QGlnQa2KwSlLBBh6iWhFLZIHaHhUNwgTmU0LoyyODa4mPCKQvbE0dAcDc1LQzfI5WLOrNTVWDmaVXvBf50Orh3_inlH_5x3Tta7g36P926j-2OygX9K0t8JqefzN3mqgUienBUH7QfbD9xW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+levy+flight+model+for+heart+disease+prediction+using+CNN+framework+in+big+data+application&rft.jtitle=Expert+systems+with+applications&rft.au=Jain%2C+Arushi&rft.au=Chandra+Sekhara+Rao%2C+Annavarapu&rft.au=Kumar+Jain%2C+Praphula&rft.au=Hu%2C+Yu-Chen&rft.date=2023-08-01&rft.issn=0957-4174&rft.volume=223&rft.spage=119859&rft_id=info:doi/10.1016%2Fj.eswa.2023.119859&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_119859 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |