Optimized levy flight model for heart disease prediction using CNN framework in big data application

Cardiac disease is one of the most complex diseases globally. It affects the lives of humans critically. It is essential for accurate and timely diagnosis to treat heart failure and prevent the disease. In most aspects, it was not so successful with the traditional method, which uses past medical hi...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 223; p. 119859
Main Authors Jain, Arushi, Chandra Sekhara Rao, Annavarapu, Kumar Jain, Praphula, Hu, Yu-Chen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2023.119859

Cover

Abstract Cardiac disease is one of the most complex diseases globally. It affects the lives of humans critically. It is essential for accurate and timely diagnosis to treat heart failure and prevent the disease. In most aspects, it was not so successful with the traditional method, which uses past medical history. Many existing models had several types of the loss function in traditional CNN can lead to misidentification of the model. To solve this problem, so many scholars have used the swarm intelligence algorithm, but most of these techniques are stuck in the local minima and suffer from premature convergence. In the proposed method, we build up the Levy Flight – Convolutional Neural Network (LV-CNN) depending on the diagnostic system using heart disease image data set for heart disease assessment. Initially, the input Big Data images are resized to reduce the computational complexity of the system. Then, those resized images are subject to the proposed LV-CNN model. Therefore, the LV approach is integrated with the Sunflower Optimization Algorithm (SFO) to reduce loss function occurring in the CNN architecture. Such a combination helps the SFO algorithm avoid trapping in local minima due to the random walk of the levy flight. The proposed algorithm will be simulated using the MATLAB tool and tested experimentally in terms of accuracy is 95.74%, specificity is 0.96%, the error rate is 0.35, and time consumption is 9.71 s. This comparative analysis revealed that the excellence of the proposed model.
AbstractList Cardiac disease is one of the most complex diseases globally. It affects the lives of humans critically. It is essential for accurate and timely diagnosis to treat heart failure and prevent the disease. In most aspects, it was not so successful with the traditional method, which uses past medical history. Many existing models had several types of the loss function in traditional CNN can lead to misidentification of the model. To solve this problem, so many scholars have used the swarm intelligence algorithm, but most of these techniques are stuck in the local minima and suffer from premature convergence. In the proposed method, we build up the Levy Flight – Convolutional Neural Network (LV-CNN) depending on the diagnostic system using heart disease image data set for heart disease assessment. Initially, the input Big Data images are resized to reduce the computational complexity of the system. Then, those resized images are subject to the proposed LV-CNN model. Therefore, the LV approach is integrated with the Sunflower Optimization Algorithm (SFO) to reduce loss function occurring in the CNN architecture. Such a combination helps the SFO algorithm avoid trapping in local minima due to the random walk of the levy flight. The proposed algorithm will be simulated using the MATLAB tool and tested experimentally in terms of accuracy is 95.74%, specificity is 0.96%, the error rate is 0.35, and time consumption is 9.71 s. This comparative analysis revealed that the excellence of the proposed model.
ArticleNumber 119859
Author Hu, Yu-Chen
Kumar Jain, Praphula
Jain, Arushi
Chandra Sekhara Rao, Annavarapu
Author_xml – sequence: 1
  givenname: Arushi
  orcidid: 0000-0003-0265-7340
  surname: Jain
  fullname: Jain, Arushi
  email: arushijain1391@gmail.com
  organization: Department of Computer Science & Engineering Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, India
– sequence: 2
  givenname: Annavarapu
  surname: Chandra Sekhara Rao
  fullname: Chandra Sekhara Rao, Annavarapu
  organization: Department of Computer Science & Engineering Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, India
– sequence: 3
  givenname: Praphula
  surname: Kumar Jain
  fullname: Kumar Jain, Praphula
  email: Praphulajn1@gmail.com
  organization: Department of Computer Science & Engineering Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, India
– sequence: 4
  givenname: Yu-Chen
  orcidid: 0000-0002-5055-3645
  surname: Hu
  fullname: Hu, Yu-Chen
  organization: Department of Computer Science and Information Management, Providence University, Taiwan, ROC
BookMark eNp9kL1OwzAUhS1UJNrCCzD5BVLsOIltiQVV_ElVu8BsOc5165I_2YaqPD0JZWLodJbzXd3zzdCk7VpA6JaSBSW0uNsvIBz0IiUpW1AqRS4v0JQKzpKCSzZBUyJznmSUZ1doFsKeEMoJ4VNUbfroGvcNFa7h64ht7ba7iJuughrbzuMdaB9x5QLoALj3UDkTXdfiz-DaLV6u19h63cCh8x_Ytbh0W1zpqLHu-9oZPXav0aXVdYCbv5yj96fHt-VLsto8vy4fVolhhMREQGZlBiIrckZkVRpmmS4FEaXRkHKSFloMcyxomdvMMmtTo_O8NITTgknL5ig93TW-C8GDVb13jfZHRYkaPam9Gj2p0ZM6eRog8Q8yLv6-Hb129Xn0_oTCMOrLgVfBOGjN4MiDiarq3Dn8B1_uh7w
CitedBy_id crossref_primary_10_1007_s11042_024_19350_1
crossref_primary_10_1007_s41870_024_01970_3
crossref_primary_10_1109_ACCESS_2023_3325681
crossref_primary_10_3389_fpsyt_2024_1418969
crossref_primary_10_3389_fmed_2024_1414637
crossref_primary_10_3233_JIFS_219407
crossref_primary_10_2196_62890
crossref_primary_10_1007_s11042_023_18054_2
crossref_primary_10_3390_biomimetics9070388
crossref_primary_10_1016_j_eswa_2023_122823
crossref_primary_10_1007_s40031_024_01121_z
crossref_primary_10_1016_j_eswa_2023_120243
crossref_primary_10_1007_s11042_024_19680_0
crossref_primary_10_1016_j_eswa_2024_124265
crossref_primary_10_1007_s11276_024_03807_0
crossref_primary_10_1016_j_asoc_2024_112493
crossref_primary_10_1016_j_eswa_2025_126817
crossref_primary_10_3233_HIS_240017
crossref_primary_10_1080_10255842_2024_2310075
crossref_primary_10_1016_j_eswa_2023_122915
crossref_primary_10_1038_s41598_025_85561_7
crossref_primary_10_1016_j_apenergy_2023_122015
crossref_primary_10_1016_j_neucom_2024_128630
crossref_primary_10_1016_j_eswa_2023_121621
crossref_primary_10_1016_j_eswa_2023_121442
crossref_primary_10_1007_s10661_024_12796_8
crossref_primary_10_1080_0954898X_2024_2404915
crossref_primary_10_1186_s44147_023_00280_y
Cites_doi 10.1016/j.future.2019.06.004
10.1016/j.jbi.2018.03.002
10.1016/j.eswa.2019.112821
10.1016/j.eswa.2020.113408
10.1007/s10489-019-01461-0
10.1007/s13369-014-1315-0
10.1016/j.tele.2015.08.006
10.4258/hir.2016.22.3.196
10.1142/S0219622017500225
10.1016/j.atherosclerosis.2011.10.009
10.1126/science.aad3517
10.1016/j.cmpb.2019.104992
10.1007/s13369-013-0934-1
10.1007/s10462-020-09861-2
10.1007/s13042-018-00916-z
10.1016/j.jksuci.2011.09.002
10.1016/j.eswa.2020.113361
10.1007/978-981-33-4698-7_9
10.1007/s11042-017-5045-7
10.1007/s00366-018-0620-8
10.1109/iMac4s.2013.6526381
10.1016/j.jbi.2014.12.014
10.21037/atm.2016.06.33
10.1155/2018/3860146
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.119859
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_119859
S0957417423003603
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-8e4f94e8465309dbc3f3ab808bcae27026a8679fea95f4f3ff2ca55bc071639f3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Apr 24 23:03:56 EDT 2025
Sat Oct 25 05:12:03 EDT 2025
Fri Feb 23 02:38:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Swarm intelligence algorithm
Heart disease prediction
Big data
Convolution neural networks
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-8e4f94e8465309dbc3f3ab808bcae27026a8679fea95f4f3ff2ca55bc071639f3
ORCID 0000-0003-0265-7340
0000-0002-5055-3645
ParticipantIDs crossref_primary_10_1016_j_eswa_2023_119859
crossref_citationtrail_10_1016_j_eswa_2023_119859
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_119859
PublicationCentury 2000
PublicationDate 2023-08-01
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tay, Poh, Kitney (b0135) 2015; 54
El Bakrawy (b0045) 2017; 11
Chen, Huang, Hong, Cheng, Lin (b0030) 2011
Tamilselvi (b0130) 2021; 12
Lakshmanaprabu, Shankar, Ilayaraja, Nasir, Vijayakumar, Chilamkurti (b0070) 2019; 10
Sanchis-Gomar, Perez-Quilis, Leischik, Lucia (b0105) 2016; 4
Weng, Huang, Han (b0140) 2016; 33
Haq, A. U., Li, J. P., Memon, M. H., Nazir, S., & Sun, R. (2018). A hybrid intelli- gent system framework for the prediction of heart disease using machine learning algorithms. Mobile Information Systems, 2018.
Ani, Augustine, Akhil, Deepa (b0010) 2016
Jabbar, M. A., Deekshatulu, B. L., & Chandra, P. (2013). Heart disease prediction using lazy associative classification. In 2013 international mutli-conference on au- tomation, computing, communication, control and compressed sensing (imac4s) (pp. 40–46).
Dahiwade, Patle, Meshram (b0035) 2019
Miranda, Irwansyah, Amelga, Maribondang, Salim (b0075) 2016; 22
Qawqzeh, Y. K., Otoom, M. M., Al-Fayez, F., Almarashdeh, I., Alsmadi, M., & Jaradat, G. (2019). A proposed decision tree classifier for atherosclerosis prediction and classification. International Journal of Computer Science and Network Security, 19 (12), 197.
Zanoni, Khetarpal, Larach, Hancock-Cerutti, Millar, Cuchel (b0155) 2016; 351
Orphanou, Dagliati, Sacchi, Stassopoulou, Keravnou, Bellazzi (b0080) 2018; 81
Rath, Mishra, Panda (b0095) 2021; 936
Fujita, Cimr (b0050) 2019; 49
Zerdoumi, Sabri, Kamsin, Hashem, Gani, Hakak (b0160) 2018; 77
Yedder, Cardoen, Hamarneh (b0150) 2021; 54
Salman, Zaidan, Zaidan, Naserkalid, Hashim (b0100) 2017; 16
Srinivas, Rao, Govardhan (b0120) 2014; 39
Bahrami, Shirvani (b0020) 2015; 2
Skretteberg, Grundvold, Kjeldsen, Erikssen, Sandvik, Liestøl (b0110) 2012; 220
Zhou, Li, Hou, Zhang, Zhang, Dai (b0165) 2020; 151
Dutta, Batabyal, Basu, Acton (b0040) 2020; 159
Soni, Ansari, Sharma, Soni (b0115) 2011; 3
Anooj (b0015) 2012; 24
Syed, Jabeen, Manimala, Alsaeedi (b0125) 2019; 101
Abdar, Książek, Acharya, Tan, Makarenkov, Pławiak (b0005) 2019; 179
Bashir, Qamar, Khan, Javed (b0025) 2014; 39
Gomes, da Cunha, Ancelotti (b0055) 2019; 35
Yanase, Triantaphyllou (b0145) 2019; 138
10.1016/j.eswa.2023.119859_b0090
Bahrami (10.1016/j.eswa.2023.119859_b0020) 2015; 2
Salman (10.1016/j.eswa.2023.119859_b0100) 2017; 16
Tamilselvi (10.1016/j.eswa.2023.119859_b0130) 2021; 12
Yedder (10.1016/j.eswa.2023.119859_b0150) 2021; 54
Abdar (10.1016/j.eswa.2023.119859_b0005) 2019; 179
Orphanou (10.1016/j.eswa.2023.119859_b0080) 2018; 81
Miranda (10.1016/j.eswa.2023.119859_b0075) 2016; 22
Zanoni (10.1016/j.eswa.2023.119859_b0155) 2016; 351
Tay (10.1016/j.eswa.2023.119859_b0135) 2015; 54
Bashir (10.1016/j.eswa.2023.119859_b0025) 2014; 39
Skretteberg (10.1016/j.eswa.2023.119859_b0110) 2012; 220
Weng (10.1016/j.eswa.2023.119859_b0140) 2016; 33
Syed (10.1016/j.eswa.2023.119859_b0125) 2019; 101
Sanchis-Gomar (10.1016/j.eswa.2023.119859_b0105) 2016; 4
Zhou (10.1016/j.eswa.2023.119859_b0165) 2020; 151
Chen (10.1016/j.eswa.2023.119859_b0030) 2011
Lakshmanaprabu (10.1016/j.eswa.2023.119859_b0070) 2019; 10
Ani (10.1016/j.eswa.2023.119859_b0010) 2016
Fujita (10.1016/j.eswa.2023.119859_b0050) 2019; 49
10.1016/j.eswa.2023.119859_b0065
Srinivas (10.1016/j.eswa.2023.119859_b0120) 2014; 39
10.1016/j.eswa.2023.119859_b0060
Rath (10.1016/j.eswa.2023.119859_b0095) 2021; 936
Yanase (10.1016/j.eswa.2023.119859_b0145) 2019; 138
Gomes (10.1016/j.eswa.2023.119859_b0055) 2019; 35
Dutta (10.1016/j.eswa.2023.119859_b0040) 2020; 159
Soni (10.1016/j.eswa.2023.119859_b0115) 2011; 3
Zerdoumi (10.1016/j.eswa.2023.119859_b0160) 2018; 77
El Bakrawy (10.1016/j.eswa.2023.119859_b0045) 2017; 11
Anooj (10.1016/j.eswa.2023.119859_b0015) 2012; 24
Dahiwade (10.1016/j.eswa.2023.119859_b0035) 2019
References_xml – volume: 3
  start-page: 2385
  year: 2011
  end-page: 2392
  ident: b0115
  article-title: Intelligent and effective heart disease prediction system using weighted associative classifiers
  publication-title: International Journal on Computer Science and Engineering
– volume: 35
  start-page: 619
  year: 2019
  end-page: 626
  ident: b0055
  article-title: A sunflower optimization (sfo) algorithm applied to damage identification on laminated composite plates
  publication-title: Engineering with Computers
– volume: 351
  start-page: 1166
  year: 2016
  end-page: 1171
  ident: b0155
  article-title: Rare variant in scavenger receptor bi raises hdl cholesterol and increases risk of coronary heart disease
  publication-title: Science
– volume: 54
  start-page: 305
  year: 2015
  end-page: 314
  ident: b0135
  article-title: A novel neural-inspired learning algorithm with application to clinical risk prediction
  publication-title: Journal of Biomedical Informatics
– reference: Jabbar, M. A., Deekshatulu, B. L., & Chandra, P. (2013). Heart disease prediction using lazy associative classification. In 2013 international mutli-conference on au- tomation, computing, communication, control and compressed sensing (imac4s) (pp. 40–46).
– volume: 39
  start-page: 2857
  year: 2014
  end-page: 2868
  ident: b0120
  article-title: Rough-fuzzy classifier: A system to predict the heart disease by blending two different set theories
  publication-title: Arabian Journal for Science and Engineering
– volume: 22
  start-page: 196
  year: 2016
  end-page: 205
  ident: b0075
  article-title: Detection of cardiovascular disease risk’s level for adults using naive bayes classifier
  publication-title: Healthcare Informatics Research
– volume: 24
  start-page: 27
  year: 2012
  end-page: 40
  ident: b0015
  article-title: Clinical decision support system: Risk level prediction of heart dis- ease using weighted fuzzy rules
  publication-title: Journal of King Saud University-Computer and Information Sciences
– volume: 49
  start-page: 3383
  year: 2019
  end-page: 3391
  ident: b0050
  article-title: Decision support system for arrhythmia prediction using convolutional neural network structure without preprocessing
  publication-title: Applied Intelligence
– volume: 11
  start-page: 64
  year: 2017
  end-page: 70
  ident: b0045
  article-title: Grey wolf optimization and naive bayes classifier incorporation for heart disease diagnosis
  publication-title: Australian Journal of Basic and Applied Sciences
– volume: 54
  start-page: 215
  year: 2021
  end-page: 251
  ident: b0150
  article-title: Deep learning for biomedical image reconstruction: A survey
  publication-title: Artificial intelligence review
– start-page: 701
  year: 2016
  end-page: 710
  ident: b0010
  article-title: Random forest ensemble classi- fier to predict the coronary heart disease using risk factors
  publication-title: In Proceedings of the international conference on soft computing systems
– start-page: 557
  year: 2011
  end-page: 560
  ident: b0030
  article-title: Hdps: Heart disease prediction system
  publication-title: In 2011 computing in cardiology
– start-page: 1211
  year: 2019
  end-page: 1215
  ident: b0035
  article-title: Designing disease prediction model using machine learning approach
  publication-title: In 2019 3rd international conference on computing methodologies and communication (iccmc)
– volume: 101
  start-page: 136
  year: 2019
  end-page: 151
  ident: b0125
  article-title: Smart healthcare framework for ambient assisted living using iomt and big data analytics techniques
  publication-title: Future Generation Computer Systems
– volume: 12
  start-page: 1140
  year: 2021
  end-page: 1147
  ident: b0130
  article-title: An efficient disease prediction in big data using neuralnet- work based optimization method
  publication-title: Turkish Journal of Computer and Mathematics Education (TURCOMAT)
– volume: 4
  year: 2016
  ident: b0105
  article-title: Epidemiology of coronary heart disease and acute coronary syndrome
  publication-title: Annals of Translational Medicine
– volume: 220
  start-page: 250
  year: 2012
  end-page: 256
  ident: b0110
  article-title: Hdl-cholesterol and prediction of coronary heart disease: Modified by physical fitness?: A 28-year follow-up of apparently healthy men
  publication-title: Atherosclerosis
– reference: Qawqzeh, Y. K., Otoom, M. M., Al-Fayez, F., Almarashdeh, I., Alsmadi, M., & Jaradat, G. (2019). A proposed decision tree classifier for atherosclerosis prediction and classification. International Journal of Computer Science and Network Security, 19 (12), 197.
– volume: 179
  year: 2019
  ident: b0005
  article-title: A new machine learning technique for an accurate diagnosis of coronary artery disease
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 936
  start-page: 169
  year: 2021
  ident: b0095
  article-title: Deep learning neural network and cnn- based diagnosis of heart diseases
  publication-title: Technical Advancements of Machine Learning in Healthcare
– volume: 39
  start-page: 7771
  year: 2014
  end-page: 7783
  ident: b0025
  article-title: Mv5: A clinical decision support framework for heart disease prediction using majority vote based classifier ensemble
  publication-title: Arabian Journal for Science and Engineering
– volume: 33
  start-page: 277
  year: 2016
  end-page: 292
  ident: b0140
  article-title: Disease prediction with different types of neural network classifiers
  publication-title: Telematics and Informatics
– volume: 159
  year: 2020
  ident: b0040
  article-title: An efficient convolutional neu- ral network for coronary heart disease prediction
  publication-title: Expert Systems with Applications
– volume: 138
  year: 2019
  ident: b0145
  article-title: A systematic survey of computer-aided diagnosis in medicine: Past and present developments
  publication-title: Expert Systems with Applications
– volume: 81
  start-page: 74
  year: 2018
  end-page: 82
  ident: b0080
  article-title: Incorporating repeating temporal association rules in naïve bayes classifiers for coronary heart disease diagnosis
  publication-title: Journal of Biomedical Informatics
– volume: 16
  start-page: 1211
  year: 2017
  end-page: 1245
  ident: b0100
  article-title: Novel methodology for triage and prioritizing using “big data” patients with chronic heart dis- eases through telemedicine environmental
  publication-title: International Journal of Information Technology & Decision Making
– volume: 151
  year: 2020
  ident: b0165
  article-title: Modeling methodology for early warning of chronic heart failure based on real medical big data
  publication-title: Expert Systems with Applications
– volume: 10
  start-page: 2609
  year: 2019
  end-page: 2618
  ident: b0070
  article-title: Random forest for big data classification in the internet of things using optimal features
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 77
  start-page: 10091
  year: 2018
  end-page: 10121
  ident: b0160
  article-title: Image pattern recognition in big data: Taxonomy and open challenges: Survey
  publication-title: Multimedia Tools and Applications
– reference: Haq, A. U., Li, J. P., Memon, M. H., Nazir, S., & Sun, R. (2018). A hybrid intelli- gent system framework for the prediction of heart disease using machine learning algorithms. Mobile Information Systems, 2018.
– volume: 2
  start-page: 164
  year: 2015
  end-page: 168
  ident: b0020
  article-title: Prediction and diagnosis of heart disease by data mining techniques
  publication-title: Journal of Multidisciplinary Engineering Science and Technology
– volume: 101
  start-page: 136
  year: 2019
  ident: 10.1016/j.eswa.2023.119859_b0125
  article-title: Smart healthcare framework for ambient assisted living using iomt and big data analytics techniques
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.06.004
– volume: 81
  start-page: 74
  year: 2018
  ident: 10.1016/j.eswa.2023.119859_b0080
  article-title: Incorporating repeating temporal association rules in naïve bayes classifiers for coronary heart disease diagnosis
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2018.03.002
– volume: 2
  start-page: 164
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2023.119859_b0020
  article-title: Prediction and diagnosis of heart disease by data mining techniques
  publication-title: Journal of Multidisciplinary Engineering Science and Technology
– volume: 138
  year: 2019
  ident: 10.1016/j.eswa.2023.119859_b0145
  article-title: A systematic survey of computer-aided diagnosis in medicine: Past and present developments
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112821
– start-page: 1211
  year: 2019
  ident: 10.1016/j.eswa.2023.119859_b0035
  article-title: Designing disease prediction model using machine learning approach
– volume: 159
  year: 2020
  ident: 10.1016/j.eswa.2023.119859_b0040
  article-title: An efficient convolutional neu- ral network for coronary heart disease prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113408
– volume: 3
  start-page: 2385
  issue: 6
  year: 2011
  ident: 10.1016/j.eswa.2023.119859_b0115
  article-title: Intelligent and effective heart disease prediction system using weighted associative classifiers
  publication-title: International Journal on Computer Science and Engineering
– volume: 49
  start-page: 3383
  issue: 9
  year: 2019
  ident: 10.1016/j.eswa.2023.119859_b0050
  article-title: Decision support system for arrhythmia prediction using convolutional neural network structure without preprocessing
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-019-01461-0
– volume: 39
  start-page: 7771
  issue: 11
  year: 2014
  ident: 10.1016/j.eswa.2023.119859_b0025
  article-title: Mv5: A clinical decision support framework for heart disease prediction using majority vote based classifier ensemble
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-014-1315-0
– volume: 33
  start-page: 277
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2023.119859_b0140
  article-title: Disease prediction with different types of neural network classifiers
  publication-title: Telematics and Informatics
  doi: 10.1016/j.tele.2015.08.006
– volume: 22
  start-page: 196
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2023.119859_b0075
  article-title: Detection of cardiovascular disease risk’s level for adults using naive bayes classifier
  publication-title: Healthcare Informatics Research
  doi: 10.4258/hir.2016.22.3.196
– volume: 16
  start-page: 1211
  issue: 05
  year: 2017
  ident: 10.1016/j.eswa.2023.119859_b0100
  article-title: Novel methodology for triage and prioritizing using “big data” patients with chronic heart dis- eases through telemedicine environmental
  publication-title: International Journal of Information Technology & Decision Making
  doi: 10.1142/S0219622017500225
– start-page: 701
  year: 2016
  ident: 10.1016/j.eswa.2023.119859_b0010
  article-title: Random forest ensemble classi- fier to predict the coronary heart disease using risk factors
– volume: 220
  start-page: 250
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2023.119859_b0110
  article-title: Hdl-cholesterol and prediction of coronary heart disease: Modified by physical fitness?: A 28-year follow-up of apparently healthy men
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2011.10.009
– volume: 351
  start-page: 1166
  issue: 6278
  year: 2016
  ident: 10.1016/j.eswa.2023.119859_b0155
  article-title: Rare variant in scavenger receptor bi raises hdl cholesterol and increases risk of coronary heart disease
  publication-title: Science
  doi: 10.1126/science.aad3517
– volume: 179
  year: 2019
  ident: 10.1016/j.eswa.2023.119859_b0005
  article-title: A new machine learning technique for an accurate diagnosis of coronary artery disease
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2019.104992
– volume: 39
  start-page: 2857
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2023.119859_b0120
  article-title: Rough-fuzzy classifier: A system to predict the heart disease by blending two different set theories
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-013-0934-1
– volume: 54
  start-page: 215
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.119859_b0150
  article-title: Deep learning for biomedical image reconstruction: A survey
  publication-title: Artificial intelligence review
  doi: 10.1007/s10462-020-09861-2
– start-page: 557
  year: 2011
  ident: 10.1016/j.eswa.2023.119859_b0030
  article-title: Hdps: Heart disease prediction system
– volume: 11
  start-page: 64
  issue: 7
  year: 2017
  ident: 10.1016/j.eswa.2023.119859_b0045
  article-title: Grey wolf optimization and naive bayes classifier incorporation for heart disease diagnosis
  publication-title: Australian Journal of Basic and Applied Sciences
– volume: 12
  start-page: 1140
  issue: 10
  year: 2021
  ident: 10.1016/j.eswa.2023.119859_b0130
  article-title: An efficient disease prediction in big data using neuralnet- work based optimization method
  publication-title: Turkish Journal of Computer and Mathematics Education (TURCOMAT)
– volume: 10
  start-page: 2609
  issue: 10
  year: 2019
  ident: 10.1016/j.eswa.2023.119859_b0070
  article-title: Random forest for big data classification in the internet of things using optimal features
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-018-00916-z
– volume: 24
  start-page: 27
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2023.119859_b0015
  article-title: Clinical decision support system: Risk level prediction of heart dis- ease using weighted fuzzy rules
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2011.09.002
– volume: 151
  year: 2020
  ident: 10.1016/j.eswa.2023.119859_b0165
  article-title: Modeling methodology for early warning of chronic heart failure based on real medical big data
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113361
– volume: 936
  start-page: 169
  year: 2021
  ident: 10.1016/j.eswa.2023.119859_b0095
  article-title: Deep learning neural network and cnn- based diagnosis of heart diseases
  publication-title: Technical Advancements of Machine Learning in Healthcare
  doi: 10.1007/978-981-33-4698-7_9
– volume: 77
  start-page: 10091
  issue: 8
  year: 2018
  ident: 10.1016/j.eswa.2023.119859_b0160
  article-title: Image pattern recognition in big data: Taxonomy and open challenges: Survey
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-017-5045-7
– volume: 35
  start-page: 619
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2023.119859_b0055
  article-title: A sunflower optimization (sfo) algorithm applied to damage identification on laminated composite plates
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-018-0620-8
– ident: 10.1016/j.eswa.2023.119859_b0065
  doi: 10.1109/iMac4s.2013.6526381
– ident: 10.1016/j.eswa.2023.119859_b0090
– volume: 54
  start-page: 305
  year: 2015
  ident: 10.1016/j.eswa.2023.119859_b0135
  article-title: A novel neural-inspired learning algorithm with application to clinical risk prediction
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2014.12.014
– volume: 4
  issue: 13
  year: 2016
  ident: 10.1016/j.eswa.2023.119859_b0105
  article-title: Epidemiology of coronary heart disease and acute coronary syndrome
  publication-title: Annals of Translational Medicine
  doi: 10.21037/atm.2016.06.33
– ident: 10.1016/j.eswa.2023.119859_b0060
  doi: 10.1155/2018/3860146
SSID ssj0017007
Score 2.5476255
Snippet Cardiac disease is one of the most complex diseases globally. It affects the lives of humans critically. It is essential for accurate and timely diagnosis to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119859
SubjectTerms Big data
Convolution neural networks
Heart disease prediction
Optimization
Swarm intelligence algorithm
Title Optimized levy flight model for heart disease prediction using CNN framework in big data application
URI https://dx.doi.org/10.1016/j.eswa.2023.119859
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZHmYM3ic1jt02OpViqYjxoobeQfZVIjaVGRQ_-dneSTakgPXhM2IFldnfmW-bbbwg5T6mgPdaVDtORdqjSyuGeuayEzNfS00rTklV5F3dHY3ozYZMGGdRvYZBWaWN_FdPLaG3_dKw3O_Ms6zwYcGDSIVYaUVSlVPyktIddDC6_lzQPlJ_rVXp7PQdH24czFcdLvX6g9pAfmMgRhahX-ldyWkk4wx2yZZEi9KvJ7JKGyvfIdt2FAeyh3Cfy3pz65-xLSZip90_QM7xvQ9niBgwkBexZXYCtxMB8gaUZXA5AzvsUBnEMuqZoQZYDz6aAxFFYKW4fkPHw6nEwcmzvBEcYdxROqKiOqApRPs2NJBeBDlIeuiEXqcI3aN0Upfa0SiOmqQ609kXKGBcGchjQooND0sxfcnVEwARA5crQ9YWglIUikgGPlHCF9IRBQ2mLeLXTEmGFxbG_xSypGWRPCTo6QUcnlaNb5GJpM69kNdaOZvVaJL82R2Li_hq743_anZBN_Kp4fqekWSze1JnBHgVvl5urTTb617ej-AerDdrB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1GeN7Ch0DzsJhlRRVWgDQOt1M1KHLsKKqUqAQQDvx1f4lRFQh1YE1uyzvbdd7rP3xFyEVNBfdZKLaZCZVGppJU4OlkJmKtSR0lFC1ZlP2p1h_RuxEY10q7ewiCt0vj-0qcX3tp8aRprNmdZ1nzU4ECHQ6w0oqgKKn6uUeb6mIFdfS94Hqg_55eCe76Fw83LmZLkJV8_UHzI9bTrCAMULP0rOi1FnM422TRQEa7L1eyQmpzukq2qDQOYW7lH0gd97Z-zL5nCRL5_gppgwg1FjxvQmBSwaXUOphQDsznWZnA_AEnvY2hHEaiKowXZFJJsDMgchaXq9j4Zdm4G7a5lmidYQtsjtwJJVUhlgPppdpgmwlNenAR2kIhY4iO0Voxae0rGIVNUeUq5ImYsERpzaNSivANSn75M5SEB7QGlnQa2KwSlLBBh6iWhFLZIHaHhUNwgTmU0LoyyODa4mPCKQvbE0dAcDc1LQzfI5WLOrNTVWDmaVXvBf50Orh3_inlH_5x3Tta7g36P926j-2OygX9K0t8JqefzN3mqgUienBUH7QfbD9xW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+levy+flight+model+for+heart+disease+prediction+using+CNN+framework+in+big+data+application&rft.jtitle=Expert+systems+with+applications&rft.au=Jain%2C+Arushi&rft.au=Chandra+Sekhara+Rao%2C+Annavarapu&rft.au=Kumar+Jain%2C+Praphula&rft.au=Hu%2C+Yu-Chen&rft.date=2023-08-01&rft.issn=0957-4174&rft.volume=223&rft.spage=119859&rft_id=info:doi/10.1016%2Fj.eswa.2023.119859&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_119859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon