Abnormal noise detection of electric machines based on HPSS-CIS and CNN-CBAM
For a long time, the traditional motor manufacturing industry relies on the artificial hearing method to identify whether there is abnormal noise in the motor, thus leading to low efficiency and poor accuracy consistency. To solve these problems, a new prediction method based on the algorithm of har...
        Saved in:
      
    
          | Published in | Acta acustica Vol. 9; p. 39 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            EDP Sciences
    
        2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2681-4617 2681-4617  | 
| DOI | 10.1051/aacus/2025023 | 
Cover
| Abstract | For a long time, the traditional motor manufacturing industry relies on the artificial hearing method to identify whether there is abnormal noise in the motor, thus leading to low efficiency and poor accuracy consistency. To solve these problems, a new prediction method based on the algorithm of harmonic percussion sound separation (HPSS) and continuous interphase sampling (CIS) of cochlear implants and the CNN-CBAM (Convolutional neural network based on Convolutional Block Attention Module) model, is proposed in this paper. Firstly, the original sound signals are separated into harmonic and percussive components by the HPSS algorithm, and then each component is processed by the CIS algorithm of cochlear implant to obtain electrode stimulation signal that can simulate human hearing. Subsequently, the classification task of motors are achieved by a deep learning model that combines CNN and CBAM. The proposed method is verified that the highest accuracy of 99.27% is achieved in the motor data set. Afterward for feature extraction, the results of ablation experiments with HPSS-CIS show that the average accuracy of this method is more than 4.5% higher than that of any single component. In addition, for the human auditory feature extraction method after HPSS processing, the CIS method is compared with the widely used Mel filter bank, and shows better performance. | 
    
|---|---|
| AbstractList | For a long time, the traditional motor manufacturing industry relies on the artificial hearing method to identify whether there is abnormal noise in the motor, thus leading to low efficiency and poor accuracy consistency. To solve these problems, a new prediction method based on the algorithm of harmonic percussion sound separation (HPSS) and continuous interphase sampling (CIS) of cochlear implants and the CNN-CBAM (Convolutional neural network based on Convolutional Block Attention Module) model, is proposed in this paper. Firstly, the original sound signals are separated into harmonic and percussive components by the HPSS algorithm, and then each component is processed by the CIS algorithm of cochlear implant to obtain electrode stimulation signal that can simulate human hearing. Subsequently, the classification task of motors are achieved by a deep learning model that combines CNN and CBAM. The proposed method is verified that the highest accuracy of 99.27% is achieved in the motor data set. Afterward for feature extraction, the results of ablation experiments with HPSS-CIS show that the average accuracy of this method is more than 4.5% higher than that of any single component. In addition, for the human auditory feature extraction method after HPSS processing, the CIS method is compared with the widely used Mel filter bank, and shows better performance. | 
    
| Author | Zhao, Qingsong Luo, Kun Liu, Xiang He, Dan Wang, Xiufeng  | 
    
| Author_xml | – sequence: 1 givenname: Qingsong orcidid: 0009-0002-7379-7359 surname: Zhao fullname: Zhao, Qingsong – sequence: 2 givenname: Xiufeng surname: Wang fullname: Wang, Xiufeng – sequence: 3 givenname: Kun surname: Luo fullname: Luo, Kun – sequence: 4 givenname: Dan surname: He fullname: He, Dan – sequence: 5 givenname: Xiang surname: Liu fullname: Liu, Xiang  | 
    
| BookMark | eNqFkEtPwkAUhScGExFZup8_UJhnO11io0KCjwRdT27noSVlhnQghn9vBWLcubon95zzLc41GoQYHEK3lEwokXQKYPZpygiThPELNGS5opnIaTH4o6_QOKU1IX2EcpGTIVrO6hC7DbQ4xCY5bN3OmV0TA44eu7bXXWPwBsxnE1zCNSRnce_OX1errFqsMASLq-fnrLqbPd2gSw9tcuPzHaH3h_u3ap4tXx4X1WyZGU7ILlO5FNII6gqlfE2UYkoAc0SWpjAOTO4EE2VeUOm940QUVtbWAilzw0vBPB-hxYlrI6z1tms20B10hEYfH7H70NDtGtM6XUrOGat7kmfCK1UbWxpGa1pQAK6KnjU5sfZhC4cvaNtfICX6Z1p9nFafp-0L2alguphS5_w_-W-GF3rR | 
    
| Cites_doi | 10.1016/j.measurement.2022.112408 10.1016/j.ymssp.2016.06.032 10.1109/CAC59555.2023.10451467 10.1016/j.apacoust.2023.109811 10.1016/j.ymssp.2013.12.002 10.3390/en16145311 10.1007/s13762-020-02982-9 10.1016/j.apacoust.2021.108325 10.1109/CODEC60112.2023.10466070 10.1016/j.apacoust.2021.108578 10.1007/s11042-024-19253-1 10.1016/j.eswa.2024.124169 10.1016/j.compeleceng.2024.109231 10.1016/j.jsv.2023.117971 10.1080/00016489.2021.1888504 10.1007/978-3-031-76173-7_7 10.1016/j.matpr.2024.01.043 10.1109/JSTSP.2011.2159700 10.1109/ICDT61202.2024.10489646 10.1016/j.jsv.2016.09.012 10.1109/JSTSP.2011.2158803 10.32604/sv.2023.044203 10.1007/s12541-022-00635-0 10.1121/10.0009801  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.1051/aacus/2025023 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ)  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 2681-4617 | 
    
| ExternalDocumentID | oai_doaj_org_article_953322b5fff24f88bcd9c21b171aa387 10.1051/aacus/2025023 10_1051_aacus_2025023  | 
    
| GroupedDBID | AAFWJ AAYXX ADMLS AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION EBS GROUPED_DOAJ M~E OK1 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c300t-86545c41e788fb088284a2e059c7ceac6e42496715ffe3047d5bdda096c3942f3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2681-4617 | 
    
| IngestDate | Fri Oct 03 12:50:42 EDT 2025 Wed Oct 01 15:40:12 EDT 2025 Wed Oct 01 05:49:19 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c300t-86545c41e788fb088284a2e059c7ceac6e42496715ffe3047d5bdda096c3942f3 | 
    
| ORCID | 0009-0002-7379-7359 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://acta-acustica.edpsciences.org/articles/aacus/pdf/forth/aacus240138.pdf | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_953322b5fff24f88bcd9c21b171aa387 unpaywall_primary_10_1051_aacus_2025023 crossref_primary_10_1051_aacus_2025023  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-00-00 | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – year: 2025 text: 2025-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Acta acustica | 
    
| PublicationYear | 2025 | 
    
| Publisher | EDP Sciences | 
    
| Publisher_xml | – name: EDP Sciences | 
    
| References | Wilson (R29) 1995; 16 Dhanasingh (R27) 2021; 141 Delgado-Arredondo (R3) 2017; 83 Carabias-Orti (R22) 2011; 5 Germen (R7) 2014; 46 R20 R23 Altinors (R5) 2021; 183 Lu (R6) 2016; 385 Kundu (R2) 2024; 252 Shan (R32) 2023; 207 R28 Kim (R21) 2011; 5 R1 Zhao (R25) 2023; 57 Torija (R13) 2022; 151 R4 Sidhu (R12) 2025; 84 González-Martínez (R24) 2024; 216 Suman (R10) 2022; 188 Hirono (R14) 2024; 569 R31 Qin (R30) 2024; 116 R11 Gonzalez (R26) 2023; 16 Ahmed (R8) 2022; 19 R16 R15 R18 R17 R19 Son (R9) 2022; 23  | 
    
| References_xml | – volume: 207 start-page: 112408 year: 2023 ident: R32 publication-title: Measurement doi: 10.1016/j.measurement.2022.112408 – volume: 83 start-page: 568 year: 2017 ident: R3 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2016.06.032 – volume: 16 start-page: 669 year: 1995 ident: R29 publication-title: Otology & Neurotology – ident: R31 doi: 10.1109/CAC59555.2023.10451467 – ident: R23 – volume: 216 start-page: 109811 year: 2024 ident: R24 publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2023.109811 – ident: R28 – volume: 46 start-page: 45 year: 2014 ident: R7 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2013.12.002 – volume: 16 start-page: 5311 year: 2023 ident: R26 publication-title: Energies doi: 10.3390/en16145311 – volume: 19 start-page: 851 year: 2022 ident: R8 publication-title: International Journal of Environmental Science and Technology doi: 10.1007/s13762-020-02982-9 – volume: 183 start-page: 108325 year: 2021 ident: R5 publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2021.108325 – ident: R4 doi: 10.1109/CODEC60112.2023.10466070 – ident: R18 – volume: 188 start-page: 108578 year: 2022 ident: R10 publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2021.108578 – volume: 84 start-page: 8015 year: 2025 ident: R12 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-024-19253-1 – ident: R20 – volume: 252 start-page: 124169 year: 2024 ident: R2 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2024.124169 – volume: 116 start-page: 109231 year: 2024 ident: R30 publication-title: Computers and Electrical Engineering doi: 10.1016/j.compeleceng.2024.109231 – volume: 569 start-page: 117971 year: 2024 ident: R14 publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2023.117971 – volume: 141 start-page: 106 year: 2021 ident: R27 publication-title: Acta Oto-Laryngologica doi: 10.1080/00016489.2021.1888504 – ident: R16 doi: 10.1007/978-3-031-76173-7_7 – ident: R1 doi: 10.1016/j.matpr.2024.01.043 – volume: 5 start-page: 1144 year: 2011 ident: R22 publication-title: IEEE Journal of Selected Topics in Signal Processing doi: 10.1109/JSTSP.2011.2159700 – ident: R19 – ident: R11 doi: 10.1109/ICDT61202.2024.10489646 – volume: 385 start-page: 16 year: 2016 ident: R6 publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2016.09.012 – volume: 5 start-page: 1192 year: 2011 ident: R21 publication-title: IEEE Journal of Selected Topics in Signal Processing doi: 10.1109/JSTSP.2011.2158803 – ident: R15 – volume: 57 start-page: 133 year: 2023 ident: R25 publication-title: Sound and Vibration doi: 10.32604/sv.2023.044203 – volume: 23 start-page: 421 year: 2022 ident: R9 publication-title: International Journal of Precision Engineering and Manufacturing doi: 10.1007/s12541-022-00635-0 – volume: 151 start-page: 1804 year: 2022 ident: R13 publication-title: The Journal of the Acoustical Society of America doi: 10.1121/10.0009801 – ident: R17  | 
    
| SSID | ssj0002313460 | 
    
| Score | 2.2813706 | 
    
| Snippet | For a long time, the traditional motor manufacturing industry relies on the artificial hearing method to identify whether there is abnormal noise in the motor,... | 
    
| SourceID | doaj unpaywall crossref  | 
    
| SourceType | Open Website Open Access Repository Index Database  | 
    
| StartPage | 39 | 
    
| SubjectTerms | abnormal noise detection continuous interphase sampling convolutional block attention module harmonic percussion sound separation  | 
    
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS8MwFA0yEPVB_MT5RR5En8LaNGnTx604prghzMHeSj5hMrthO8R_b5LWMV_0xde0NOXc0Htuc3IuADeaMk4opyikTCGikwClluUiN264UIlI3QHn4SgeTMjjlE43Wn05TVhtD1wD13HyR4wFNcZgYhgTUqUShyJMQs4j5s-RByzdKKZevYlLGJE4aEw17cLrcC5XpSv1aYCjH0nIe_XvgZ1VseSfH3w-30gw_QOw3zBD2K3f6BBs6eIIbHuFpiyPwVNXFI5fzmGxmJUaKl15FVUBFwbWzWxmEr55baQuoctOCtqrg-fxGGUPY8gLBbPRCGW97vAETPr3L9kANa0QkIyCoEIstkxHklDbitUIR4sZ4VhbbiQTab-dsSa2joqT0OKk3U6aokIpbusTGVnsTXQKWsWi0GcAxs5SPsBaOIEaE0maCox5THlkmBQqboPbb2zyZe14kfudahrmHsS8AbENeg659U3OqNoP2PDlTfjyv8LXBndr3H-f7vw_prsAu-5x9T-US9Cq3lf6yrKKSlz7BfQFh4fH7Q priority: 102 providerName: Directory of Open Access Journals  | 
    
| Title | Abnormal noise detection of electric machines based on HPSS-CIS and CNN-CBAM | 
    
| URI | https://acta-acustica.edpsciences.org/articles/aacus/pdf/forth/aacus240138.pdf https://doaj.org/article/953322b5fff24f88bcd9c21b171aa387  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2681-4617 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002313460 issn: 2681-4617 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2681-4617 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002313460 issn: 2681-4617 databaseCode: ADMLS dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2681-4617 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002313460 issn: 2681-4617 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB4trRBw4I0oj8oHBCe3jRMnzjFbWBW0jVYqlZZT5Ke0oqQVTYXg1-Nx3BVwQBy4Jc4kcTxW5hvP5xmAV5YLmXHJacKFoZktZrT0KJdiu5PKFKrEDc7LOl-ssw-X_PIE6uNeGKk7SaUOlawwlruLhmDf5wyOZLGpRJHpzripw_BGf87QVxAT33oDhjn32HwAw3V9UX3CCnO58M6St9cx0aafjPEpDGEAS38zTCF__x24dWh38vs3udn8YnTO7sH22N2ea_J5cujURP_4I5Pj__ue-3A34lNS9bc8gBPbPoSbgSeq94_gvFItotwNabdXe0uM7QKXqyVbR_qSOleafAkMTbsnaCMN8VcXF6sVnb9fEdkaMq9rOj-tlo9hffbu43xBY0EGqtPZrKMi93hLZ4n1frNTCM5FJpn1CE0X2v_Bc5t5by4vEu6cxXie4coY6b0knfoZ4NInMGi3rX0KJMfE9jNmFdLkhCrKUjEmcy5TJ7Qy-QheH7XR7Pq8G02Il_OkCYPTRLWN4BR1dS2E6bJDgx_fJo5vgxxaxpTvlmOZE0JpU2qWqKRIpExFMYI315r---ue_bPkc7iNR_1yzQsYdF8P9qUHMJ0aw7B6uzxfjcMCwDjO0Z9pd_Tl | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFH50KWPbod1PlnYdOpTtpCSWLVk-pqElHasppIHuZPQTSjMnLA5j--urZytl3WHs0Jsty7asJ_y-5_f5ewDHjkuVccVpwqWlmctHtAgol2K7V9rmusAfnC9KMZ1nX6759Q6U239hlGkUVaatZIW53FV0BOtOMziSxYYKuwxX1g89pje6fYaxghyE1iewK3jA5j3YnZeX429YYU7IECwFfx2FNsNijFdhCANY-sAxtfr9L-DZpl6pXz_VYvGH0znbh-V2uB3X5HawafTA_P5LyfHxnucl7EV8SsbdKa9gx9Wv4WnLEzXrN_B1rGtEuQtSL2_WjljXtFyumiw96Urq3BjyvWVoujVBH2lJODq9nM3o5HxGVG3JpCzp5GR88RbmZ6dXkymNBRmoSUejhkoR8JbJEhfiZq8RnMtMMRcQmslNeIMLl4VoTuQJ995hPs9yba0KUZJJwwrw6Tvo1cvavQciUNh-xJxGmpzUeVFoxpTgKvXSaCv68GlrjWrV6W5Ubb6cJ1U7OVU0Wx9O0Fb3nVAuu20I81vF-a2QQ8uYDsPyLPNSamMLwxKd5IlSqcz78Pne0v--3cF_9zyE57jVfa75AL3mx8YdBQDT6I9xVd4BGezyXA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abnormal+noise+detection+of+electric+machines+based+on+HPSS-CIS+and+CNN-CBAM&rft.jtitle=Acta+acustica&rft.au=Zhao+Qingsong&rft.au=Wang+Xiufeng&rft.au=Luo+Kun&rft.au=He+Dan&rft.date=2025&rft.pub=EDP+Sciences&rft.eissn=2681-4617&rft.volume=9&rft.spage=39&rft_id=info:doi/10.1051%2Faacus%2F2025023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_953322b5fff24f88bcd9c21b171aa387 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2681-4617&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2681-4617&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2681-4617&client=summon |