Abnormal noise detection of electric machines based on HPSS-CIS and CNN-CBAM

For a long time, the traditional motor manufacturing industry relies on the artificial hearing method to identify whether there is abnormal noise in the motor, thus leading to low efficiency and poor accuracy consistency. To solve these problems, a new prediction method based on the algorithm of har...

Full description

Saved in:
Bibliographic Details
Published inActa acustica Vol. 9; p. 39
Main Authors Zhao, Qingsong, Wang, Xiufeng, Luo, Kun, He, Dan, Liu, Xiang
Format Journal Article
LanguageEnglish
Published EDP Sciences 2025
Subjects
Online AccessGet full text
ISSN2681-4617
2681-4617
DOI10.1051/aacus/2025023

Cover

Abstract For a long time, the traditional motor manufacturing industry relies on the artificial hearing method to identify whether there is abnormal noise in the motor, thus leading to low efficiency and poor accuracy consistency. To solve these problems, a new prediction method based on the algorithm of harmonic percussion sound separation (HPSS) and continuous interphase sampling (CIS) of cochlear implants and the CNN-CBAM (Convolutional neural network based on Convolutional Block Attention Module) model, is proposed in this paper. Firstly, the original sound signals are separated into harmonic and percussive components by the HPSS algorithm, and then each component is processed by the CIS algorithm of cochlear implant to obtain electrode stimulation signal that can simulate human hearing. Subsequently, the classification task of motors are achieved by a deep learning model that combines CNN and CBAM. The proposed method is verified that the highest accuracy of 99.27% is achieved in the motor data set. Afterward for feature extraction, the results of ablation experiments with HPSS-CIS show that the average accuracy of this method is more than 4.5% higher than that of any single component. In addition, for the human auditory feature extraction method after HPSS processing, the CIS method is compared with the widely used Mel filter bank, and shows better performance.
AbstractList For a long time, the traditional motor manufacturing industry relies on the artificial hearing method to identify whether there is abnormal noise in the motor, thus leading to low efficiency and poor accuracy consistency. To solve these problems, a new prediction method based on the algorithm of harmonic percussion sound separation (HPSS) and continuous interphase sampling (CIS) of cochlear implants and the CNN-CBAM (Convolutional neural network based on Convolutional Block Attention Module) model, is proposed in this paper. Firstly, the original sound signals are separated into harmonic and percussive components by the HPSS algorithm, and then each component is processed by the CIS algorithm of cochlear implant to obtain electrode stimulation signal that can simulate human hearing. Subsequently, the classification task of motors are achieved by a deep learning model that combines CNN and CBAM. The proposed method is verified that the highest accuracy of 99.27% is achieved in the motor data set. Afterward for feature extraction, the results of ablation experiments with HPSS-CIS show that the average accuracy of this method is more than 4.5% higher than that of any single component. In addition, for the human auditory feature extraction method after HPSS processing, the CIS method is compared with the widely used Mel filter bank, and shows better performance.
Author Zhao, Qingsong
Luo, Kun
Liu, Xiang
He, Dan
Wang, Xiufeng
Author_xml – sequence: 1
  givenname: Qingsong
  orcidid: 0009-0002-7379-7359
  surname: Zhao
  fullname: Zhao, Qingsong
– sequence: 2
  givenname: Xiufeng
  surname: Wang
  fullname: Wang, Xiufeng
– sequence: 3
  givenname: Kun
  surname: Luo
  fullname: Luo, Kun
– sequence: 4
  givenname: Dan
  surname: He
  fullname: He, Dan
– sequence: 5
  givenname: Xiang
  surname: Liu
  fullname: Liu, Xiang
BookMark eNqFkEtPwkAUhScGExFZup8_UJhnO11io0KCjwRdT27noSVlhnQghn9vBWLcubon95zzLc41GoQYHEK3lEwokXQKYPZpygiThPELNGS5opnIaTH4o6_QOKU1IX2EcpGTIVrO6hC7DbQ4xCY5bN3OmV0TA44eu7bXXWPwBsxnE1zCNSRnce_OX1errFqsMASLq-fnrLqbPd2gSw9tcuPzHaH3h_u3ap4tXx4X1WyZGU7ILlO5FNII6gqlfE2UYkoAc0SWpjAOTO4EE2VeUOm940QUVtbWAilzw0vBPB-hxYlrI6z1tms20B10hEYfH7H70NDtGtM6XUrOGat7kmfCK1UbWxpGa1pQAK6KnjU5sfZhC4cvaNtfICX6Z1p9nFafp-0L2alguphS5_w_-W-GF3rR
Cites_doi 10.1016/j.measurement.2022.112408
10.1016/j.ymssp.2016.06.032
10.1109/CAC59555.2023.10451467
10.1016/j.apacoust.2023.109811
10.1016/j.ymssp.2013.12.002
10.3390/en16145311
10.1007/s13762-020-02982-9
10.1016/j.apacoust.2021.108325
10.1109/CODEC60112.2023.10466070
10.1016/j.apacoust.2021.108578
10.1007/s11042-024-19253-1
10.1016/j.eswa.2024.124169
10.1016/j.compeleceng.2024.109231
10.1016/j.jsv.2023.117971
10.1080/00016489.2021.1888504
10.1007/978-3-031-76173-7_7
10.1016/j.matpr.2024.01.043
10.1109/JSTSP.2011.2159700
10.1109/ICDT61202.2024.10489646
10.1016/j.jsv.2016.09.012
10.1109/JSTSP.2011.2158803
10.32604/sv.2023.044203
10.1007/s12541-022-00635-0
10.1121/10.0009801
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1051/aacus/2025023
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2681-4617
ExternalDocumentID oai_doaj_org_article_953322b5fff24f88bcd9c21b171aa387
10.1051/aacus/2025023
10_1051_aacus_2025023
GroupedDBID AAFWJ
AAYXX
ADMLS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
M~E
OK1
ADTOC
UNPAY
ID FETCH-LOGICAL-c300t-86545c41e788fb088284a2e059c7ceac6e42496715ffe3047d5bdda096c3942f3
IEDL.DBID UNPAY
ISSN 2681-4617
IngestDate Fri Oct 03 12:50:42 EDT 2025
Wed Oct 01 15:40:12 EDT 2025
Wed Oct 01 05:49:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-86545c41e788fb088284a2e059c7ceac6e42496715ffe3047d5bdda096c3942f3
ORCID 0009-0002-7379-7359
OpenAccessLink https://proxy.k.utb.cz/login?url=https://acta-acustica.edpsciences.org/articles/aacus/pdf/forth/aacus240138.pdf
ParticipantIDs doaj_primary_oai_doaj_org_article_953322b5fff24f88bcd9c21b171aa387
unpaywall_primary_10_1051_aacus_2025023
crossref_primary_10_1051_aacus_2025023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle Acta acustica
PublicationYear 2025
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Wilson (R29) 1995; 16
Dhanasingh (R27) 2021; 141
Delgado-Arredondo (R3) 2017; 83
Carabias-Orti (R22) 2011; 5
Germen (R7) 2014; 46
R20
R23
Altinors (R5) 2021; 183
Lu (R6) 2016; 385
Kundu (R2) 2024; 252
Shan (R32) 2023; 207
R28
Kim (R21) 2011; 5
R1
Zhao (R25) 2023; 57
Torija (R13) 2022; 151
R4
Sidhu (R12) 2025; 84
González-Martínez (R24) 2024; 216
Suman (R10) 2022; 188
Hirono (R14) 2024; 569
R31
Qin (R30) 2024; 116
R11
Gonzalez (R26) 2023; 16
Ahmed (R8) 2022; 19
R16
R15
R18
R17
R19
Son (R9) 2022; 23
References_xml – volume: 207
  start-page: 112408
  year: 2023
  ident: R32
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112408
– volume: 83
  start-page: 568
  year: 2017
  ident: R3
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2016.06.032
– volume: 16
  start-page: 669
  year: 1995
  ident: R29
  publication-title: Otology & Neurotology
– ident: R31
  doi: 10.1109/CAC59555.2023.10451467
– ident: R23
– volume: 216
  start-page: 109811
  year: 2024
  ident: R24
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2023.109811
– ident: R28
– volume: 46
  start-page: 45
  year: 2014
  ident: R7
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2013.12.002
– volume: 16
  start-page: 5311
  year: 2023
  ident: R26
  publication-title: Energies
  doi: 10.3390/en16145311
– volume: 19
  start-page: 851
  year: 2022
  ident: R8
  publication-title: International Journal of Environmental Science and Technology
  doi: 10.1007/s13762-020-02982-9
– volume: 183
  start-page: 108325
  year: 2021
  ident: R5
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2021.108325
– ident: R4
  doi: 10.1109/CODEC60112.2023.10466070
– ident: R18
– volume: 188
  start-page: 108578
  year: 2022
  ident: R10
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2021.108578
– volume: 84
  start-page: 8015
  year: 2025
  ident: R12
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-024-19253-1
– ident: R20
– volume: 252
  start-page: 124169
  year: 2024
  ident: R2
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.124169
– volume: 116
  start-page: 109231
  year: 2024
  ident: R30
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2024.109231
– volume: 569
  start-page: 117971
  year: 2024
  ident: R14
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2023.117971
– volume: 141
  start-page: 106
  year: 2021
  ident: R27
  publication-title: Acta Oto-Laryngologica
  doi: 10.1080/00016489.2021.1888504
– ident: R16
  doi: 10.1007/978-3-031-76173-7_7
– ident: R1
  doi: 10.1016/j.matpr.2024.01.043
– volume: 5
  start-page: 1144
  year: 2011
  ident: R22
  publication-title: IEEE Journal of Selected Topics in Signal Processing
  doi: 10.1109/JSTSP.2011.2159700
– ident: R19
– ident: R11
  doi: 10.1109/ICDT61202.2024.10489646
– volume: 385
  start-page: 16
  year: 2016
  ident: R6
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2016.09.012
– volume: 5
  start-page: 1192
  year: 2011
  ident: R21
  publication-title: IEEE Journal of Selected Topics in Signal Processing
  doi: 10.1109/JSTSP.2011.2158803
– ident: R15
– volume: 57
  start-page: 133
  year: 2023
  ident: R25
  publication-title: Sound and Vibration
  doi: 10.32604/sv.2023.044203
– volume: 23
  start-page: 421
  year: 2022
  ident: R9
  publication-title: International Journal of Precision Engineering and Manufacturing
  doi: 10.1007/s12541-022-00635-0
– volume: 151
  start-page: 1804
  year: 2022
  ident: R13
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/10.0009801
– ident: R17
SSID ssj0002313460
Score 2.2813706
Snippet For a long time, the traditional motor manufacturing industry relies on the artificial hearing method to identify whether there is abnormal noise in the motor,...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 39
SubjectTerms abnormal noise detection
continuous interphase sampling
convolutional block attention module
harmonic percussion sound separation
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS8MwFA0yEPVB_MT5RR5En8LaNGnTx604prghzMHeSj5hMrthO8R_b5LWMV_0xde0NOXc0Htuc3IuADeaMk4opyikTCGikwClluUiN264UIlI3QHn4SgeTMjjlE43Wn05TVhtD1wD13HyR4wFNcZgYhgTUqUShyJMQs4j5s-RByzdKKZevYlLGJE4aEw17cLrcC5XpSv1aYCjH0nIe_XvgZ1VseSfH3w-30gw_QOw3zBD2K3f6BBs6eIIbHuFpiyPwVNXFI5fzmGxmJUaKl15FVUBFwbWzWxmEr55baQuoctOCtqrg-fxGGUPY8gLBbPRCGW97vAETPr3L9kANa0QkIyCoEIstkxHklDbitUIR4sZ4VhbbiQTab-dsSa2joqT0OKk3U6aokIpbusTGVnsTXQKWsWi0GcAxs5SPsBaOIEaE0maCox5THlkmBQqboPbb2zyZe14kfudahrmHsS8AbENeg659U3OqNoP2PDlTfjyv8LXBndr3H-f7vw_prsAu-5x9T-US9Cq3lf6yrKKSlz7BfQFh4fH7Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Abnormal noise detection of electric machines based on HPSS-CIS and CNN-CBAM
URI https://acta-acustica.edpsciences.org/articles/aacus/pdf/forth/aacus240138.pdf
https://doaj.org/article/953322b5fff24f88bcd9c21b171aa387
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2681-4617
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002313460
  issn: 2681-4617
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2681-4617
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002313460
  issn: 2681-4617
  databaseCode: ADMLS
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2681-4617
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002313460
  issn: 2681-4617
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB4trRBw4I0oj8oHBCe3jRMnzjFbWBW0jVYqlZZT5Ke0oqQVTYXg1-Nx3BVwQBy4Jc4kcTxW5hvP5xmAV5YLmXHJacKFoZktZrT0KJdiu5PKFKrEDc7LOl-ssw-X_PIE6uNeGKk7SaUOlawwlruLhmDf5wyOZLGpRJHpzripw_BGf87QVxAT33oDhjn32HwAw3V9UX3CCnO58M6St9cx0aafjPEpDGEAS38zTCF__x24dWh38vs3udn8YnTO7sH22N2ea_J5cujURP_4I5Pj__ue-3A34lNS9bc8gBPbPoSbgSeq94_gvFItotwNabdXe0uM7QKXqyVbR_qSOleafAkMTbsnaCMN8VcXF6sVnb9fEdkaMq9rOj-tlo9hffbu43xBY0EGqtPZrKMi93hLZ4n1frNTCM5FJpn1CE0X2v_Bc5t5by4vEu6cxXie4coY6b0knfoZ4NInMGi3rX0KJMfE9jNmFdLkhCrKUjEmcy5TJ7Qy-QheH7XR7Pq8G02Il_OkCYPTRLWN4BR1dS2E6bJDgx_fJo5vgxxaxpTvlmOZE0JpU2qWqKRIpExFMYI315r---ue_bPkc7iNR_1yzQsYdF8P9qUHMJ0aw7B6uzxfjcMCwDjO0Z9pd_Tl
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFH50KWPbod1PlnYdOpTtpCSWLVk-pqElHasppIHuZPQTSjMnLA5j--urZytl3WHs0Jsty7asJ_y-5_f5ewDHjkuVccVpwqWlmctHtAgol2K7V9rmusAfnC9KMZ1nX6759Q6U239hlGkUVaatZIW53FV0BOtOMziSxYYKuwxX1g89pje6fYaxghyE1iewK3jA5j3YnZeX429YYU7IECwFfx2FNsNijFdhCANY-sAxtfr9L-DZpl6pXz_VYvGH0znbh-V2uB3X5HawafTA_P5LyfHxnucl7EV8SsbdKa9gx9Wv4WnLEzXrN_B1rGtEuQtSL2_WjljXtFyumiw96Urq3BjyvWVoujVBH2lJODq9nM3o5HxGVG3JpCzp5GR88RbmZ6dXkymNBRmoSUejhkoR8JbJEhfiZq8RnMtMMRcQmslNeIMLl4VoTuQJ995hPs9yba0KUZJJwwrw6Tvo1cvavQciUNh-xJxGmpzUeVFoxpTgKvXSaCv68GlrjWrV6W5Ubb6cJ1U7OVU0Wx9O0Fb3nVAuu20I81vF-a2QQ8uYDsPyLPNSamMLwxKd5IlSqcz78Pne0v--3cF_9zyE57jVfa75AL3mx8YdBQDT6I9xVd4BGezyXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abnormal+noise+detection+of+electric+machines+based+on+HPSS-CIS+and+CNN-CBAM&rft.jtitle=Acta+acustica&rft.au=Zhao+Qingsong&rft.au=Wang+Xiufeng&rft.au=Luo+Kun&rft.au=He+Dan&rft.date=2025&rft.pub=EDP+Sciences&rft.eissn=2681-4617&rft.volume=9&rft.spage=39&rft_id=info:doi/10.1051%2Faacus%2F2025023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_953322b5fff24f88bcd9c21b171aa387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2681-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2681-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2681-4617&client=summon