A relative uncertainty measure for fuzzy rough feature selection
Uncertainty measure is an important tool for data analysis. In practical applications, the collected data are subject to different probability distributions. This requires that the uncertainty measure has generalization performance. Fuzzy rough set (FRS) theory is a popular mathematical tool for unc...
        Saved in:
      
    
          | Published in | International journal of approximate reasoning Vol. 139; pp. 130 - 142 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Inc
    
        01.12.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0888-613X 1873-4731  | 
| DOI | 10.1016/j.ijar.2021.09.014 | 
Cover
| Abstract | Uncertainty measure is an important tool for data analysis. In practical applications, the collected data are subject to different probability distributions. This requires that the uncertainty measure has generalization performance. Fuzzy rough set (FRS) theory is a popular mathematical tool for uncertainty measure, but the theory does not work well for some data distributions. For example, when the class density difference of the data set is large, FRS theory cannot effectively evaluate the classification uncertainty of samples. In this study, we combine the relative measure with the lower approximation of FRSs to propose a relative uncertainty measure which can address the above-mentioned problem. Furthermore, a fuzzy rough feature selection algorithm is designed, and it is mainly used to test the effectiveness and efficiency of the proposed measure. Experimental results demonstrate that the proposed feature selection algorithm has good performance. It indirectly proves that the relative uncertainty measure is effective and efficient in classification tasks. | 
    
|---|---|
| AbstractList | Uncertainty measure is an important tool for data analysis. In practical applications, the collected data are subject to different probability distributions. This requires that the uncertainty measure has generalization performance. Fuzzy rough set (FRS) theory is a popular mathematical tool for uncertainty measure, but the theory does not work well for some data distributions. For example, when the class density difference of the data set is large, FRS theory cannot effectively evaluate the classification uncertainty of samples. In this study, we combine the relative measure with the lower approximation of FRSs to propose a relative uncertainty measure which can address the above-mentioned problem. Furthermore, a fuzzy rough feature selection algorithm is designed, and it is mainly used to test the effectiveness and efficiency of the proposed measure. Experimental results demonstrate that the proposed feature selection algorithm has good performance. It indirectly proves that the relative uncertainty measure is effective and efficient in classification tasks. | 
    
| Author | An, Shuang Liu, Jiaying Zhao, Suyun Wang, Changzhong  | 
    
| Author_xml | – sequence: 1 givenname: Shuang surname: An fullname: An, Shuang email: anshuang503@163.com organization: Northeastern University at Qinhuangdao, Qinhuangdao 066004, China – sequence: 2 givenname: Jiaying surname: Liu fullname: Liu, Jiaying organization: Northeastern University at Qinhuangdao, Qinhuangdao 066004, China – sequence: 3 givenname: Changzhong surname: Wang fullname: Wang, Changzhong organization: Bohai University, Jinzhou 121013, China – sequence: 4 givenname: Suyun surname: Zhao fullname: Zhao, Suyun organization: Renmin University of China, Beijing 100872, China  | 
    
| BookMark | eNp9kMtqwzAQRUVJoUnaH-hKP2B3ZNmyDF00hL4g0E0L3QlFHrUyjl0kOZB8fW3SVRdZzTBwhnvPgsy6vkNCbhmkDJi4a1LXaJ9mkLEUqhRYfkHmTJY8yUvOZmQOUspEMP55RRYhNAAgylzOycOKemx1dHukQ2fQR-26eKA71GHwSG3vqR2OxwP1_fD1TS3qON0Dtmii67trcml1G_Dmby7Jx9Pj-_ol2bw9v65Xm8RwgJhIbnlW8NIWzEhZQ54zsEJvhTFiywzmxRi2Bm5rm2te1tW4bqFGI4qKFRXnSyJPf43vQ_BolXFRTwmi165VDNRkQjVqMqEmEwoqNZoY0ewf-uPdTvvDeej-BOFYau_Qq2AcjoZq58fmqu7dOfwXwGd6mg | 
    
| CitedBy_id | crossref_primary_10_1109_TETCI_2024_3398027 crossref_primary_10_1016_j_knosys_2022_109092 crossref_primary_10_1016_j_ijar_2023_109039 crossref_primary_10_1007_s11227_024_06631_7 crossref_primary_10_1016_j_fss_2024_108916 crossref_primary_10_1016_j_asoc_2024_112572  | 
    
| Cites_doi | 10.1109/TSMC.2016.2574538 10.1007/s00704-019-02954-1 10.1007/s00500-020-05050-z 10.1016/j.fss.2013.06.012 10.1016/j.knosys.2018.04.023 10.1016/j.ins.2008.05.024 10.1016/j.knosys.2018.10.038 10.1016/j.asoc.2020.107064 10.1007/s10489-020-01863-5 10.1016/j.fss.2017.12.012 10.1007/s13042-020-01142-2 10.1080/03081079008935107 10.1016/j.ins.2010.07.010 10.1016/j.fss.2011.01.016 10.1109/TFUZZ.2011.2181180 10.1109/TFUZZ.2019.2955894 10.1109/TFUZZ.2009.2013204 10.1016/j.ins.2014.03.090 10.1016/j.ijar.2017.03.002 10.1109/TKDE.2017.2650906 10.1007/BF01001956 10.1109/TFUZZ.2019.2949765 10.1007/s00500-018-3178-x 10.1007/s40815-020-00849-2 10.1109/TFUZZ.2017.2768044 10.1016/j.ijar.2017.08.004  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Inc. | 
    
| Copyright_xml | – notice: 2021 Elsevier Inc. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.ijar.2021.09.014 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1873-4731 | 
    
| EndPage | 142 | 
    
| ExternalDocumentID | 10_1016_j_ijar_2021_09_014 S0888613X21001560  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ IHE IXB J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K UHS WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c300t-83f32537f51c88d04410f6ab6cc6b1ce45873d03fdf4a37d903fb0dec65915933 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0888-613X | 
    
| IngestDate | Thu Apr 24 23:12:34 EDT 2025 Thu Oct 16 04:38:27 EDT 2025 Fri Feb 23 02:43:08 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Relative uncertainty Sample quality Fuzzy rough sets Relative fuzzy dependency Feature selection  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c300t-83f32537f51c88d04410f6ab6cc6b1ce45873d03fdf4a37d903fb0dec65915933 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijar_2021_09_014 crossref_primary_10_1016_j_ijar_2021_09_014 elsevier_sciencedirect_doi_10_1016_j_ijar_2021_09_014  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2021 2021-12-00  | 
    
| PublicationDateYYYYMMDD | 2021-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | International journal of approximate reasoning | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Liu, Dai, Chen, Wang, Zhan (br0180) 2020 Mieszkowicz-Rolka, Rolka (br0220) 2004; vol. 3100 Chen, Chen (br0050) 2020; 11 Wang, Qian, Liang, Guo, Liang (br0270) 2018; 153 Liu, Liu, Dai, Chen, Fujita (br0190) 2020; 196 Ron, George (br0250) 1997; 97 Xu, Tse (br0310) 2019; 23 Hu, An, Yu (br0120) 2010; 180 Dai, Hu, Wu, Qian, Huang (br0070) 2018; 26 Wang, Huang, Fan, Shao (br0280) 2019; 164 Kong, Qu, Yu, Zuo, Pan, Lin, Qiu (br0160) 2020; 28 Pawlak (br0240) 1982; 11 Manish (br0210) 2020; 24 Wang, Wang, Shao, Qian, Chen (br0300) 2020; 28 Cornelis, De Cock, Radzikowska (br0060) 2007; vol. 4482 Zhang, Yang, Wang (br0330) 2017; 47 An, Shi, Hu, Qi, Dang (br0010) 2014; 282 An, Hu, Wang (br0030) 2021; 102 Feng, Fan, Mi (br0110) 2017; 85 Zhang (br0340) 2020; 22 Navares, Aznarte (br0230) 2020; 139 Wang, Wei, Yang, Wang (br0260) 2017; 29 Hu, Zhang, An, Zhang, Yu (br0140) 2012; 20 Ma, Zou, Pan (br0200) 2017; 90 Dubois, Prade (br0090) 1990; 17 Hu, An, Yu, Yu (br0130) 2011; 183 Wang, Huang, Shao, Hu, Chen (br0290) 2019; 99 Hu, Yu, Liu (br0150) 2008; 18 Fang, Hu (br0100) 2019; 359 Dua, Graff (br0080) 2019 Liu, Gao, Yu, Qu, Yang (br0170) 2018; 10 An, Hu, Pedrycz, Zhu, Tsang (br0020) 2016; 46 Bai, Lin, Lv, Chen, Wang (br0040) 2021; 51 Zhao, Tsang, Chen (br0350) 2009; 17 Yao, Mi, Li (br0320) 2014; 236 Liu (10.1016/j.ijar.2021.09.014_br0170) 2018; 10 Wang (10.1016/j.ijar.2021.09.014_br0260) 2017; 29 Wang (10.1016/j.ijar.2021.09.014_br0270) 2018; 153 Zhao (10.1016/j.ijar.2021.09.014_br0350) 2009; 17 An (10.1016/j.ijar.2021.09.014_br0010) 2014; 282 Pawlak (10.1016/j.ijar.2021.09.014_br0240) 1982; 11 Xu (10.1016/j.ijar.2021.09.014_br0310) 2019; 23 Chen (10.1016/j.ijar.2021.09.014_br0050) 2020; 11 Wang (10.1016/j.ijar.2021.09.014_br0290) 2019; 99 Cornelis (10.1016/j.ijar.2021.09.014_br0060) 2007; vol. 4482 Wang (10.1016/j.ijar.2021.09.014_br0300) 2020; 28 Liu (10.1016/j.ijar.2021.09.014_br0190) 2020; 196 Fang (10.1016/j.ijar.2021.09.014_br0100) 2019; 359 Hu (10.1016/j.ijar.2021.09.014_br0120) 2010; 180 Feng (10.1016/j.ijar.2021.09.014_br0110) 2017; 85 Hu (10.1016/j.ijar.2021.09.014_br0140) 2012; 20 Wang (10.1016/j.ijar.2021.09.014_br0280) 2019; 164 Hu (10.1016/j.ijar.2021.09.014_br0150) 2008; 18 Ron (10.1016/j.ijar.2021.09.014_br0250) 1997; 97 Bai (10.1016/j.ijar.2021.09.014_br0040) 2021; 51 Dua (10.1016/j.ijar.2021.09.014_br0080) Zhang (10.1016/j.ijar.2021.09.014_br0330) 2017; 47 Mieszkowicz-Rolka (10.1016/j.ijar.2021.09.014_br0220) 2004; vol. 3100 Navares (10.1016/j.ijar.2021.09.014_br0230) 2020; 139 An (10.1016/j.ijar.2021.09.014_br0030) 2021; 102 Ma (10.1016/j.ijar.2021.09.014_br0200) 2017; 90 Liu (10.1016/j.ijar.2021.09.014_br0180) 2020 Manish (10.1016/j.ijar.2021.09.014_br0210) 2020; 24 Zhang (10.1016/j.ijar.2021.09.014_br0340) 2020; 22 Dai (10.1016/j.ijar.2021.09.014_br0070) 2018; 26 Kong (10.1016/j.ijar.2021.09.014_br0160) 2020; 28 Dubois (10.1016/j.ijar.2021.09.014_br0090) 1990; 17 Hu (10.1016/j.ijar.2021.09.014_br0130) 2011; 183 Yao (10.1016/j.ijar.2021.09.014_br0320) 2014; 236 An (10.1016/j.ijar.2021.09.014_br0020) 2016; 46  | 
    
| References_xml | – volume: 85 start-page: 36 year: 2017 end-page: 58 ident: br0110 article-title: Uncertainty and reduction of variable precision multigranulation fuzzy rough sets based on three-way decisions publication-title: Int. J. Approx. Reason. – volume: 28 start-page: 818 year: 2020 end-page: 830 ident: br0300 article-title: Fuzzy rough attribute reduction for categorical data publication-title: IEEE Trans. Fuzzy Syst. – volume: 20 start-page: 636 year: 2012 end-page: 651 ident: br0140 article-title: On robust fuzzy rough set models publication-title: IEEE Trans. Fuzzy Syst. – volume: 47 start-page: 3299 year: 2017 end-page: 3309 ident: br0330 article-title: Measuring uncertainty of probabilistic rough set model from its three regions publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 46 start-page: 3073 year: 2016 end-page: 3085 ident: br0020 article-title: Data-distribution-aware fuzzy rough set model and its application to robust classification publication-title: IEEE Trans. Cybern. – volume: 183 start-page: 26 year: 2011 end-page: 43 ident: br0130 article-title: Robust fuzzy rough classifiers publication-title: Fuzzy Sets Syst. – volume: 26 start-page: 2174 year: 2018 end-page: 2187 ident: br0070 article-title: Maximal-discernibility-pair-based approach to attribute reduction in fuzzy rough sets publication-title: IEEE Trans. Fuzzy Syst. – volume: 180 start-page: 4384 year: 2010 end-page: 4400 ident: br0120 article-title: Soft fuzzy rough sets for robust feature evaluation and selection publication-title: Inf. Sci. – volume: 282 start-page: 388 year: 2014 end-page: 400 ident: br0010 article-title: Fuzzy rough regression with application to wind speed prediction publication-title: Inf. Sci. – volume: 102 year: 2021 ident: br0030 article-title: Probability granular distance-based fuzzy rough set model publication-title: Appl. Soft Comput. – volume: 359 start-page: 112 year: 2019 end-page: 139 ident: br0100 article-title: Granular fuzzy rough sets based on fuzzy implications and complications publication-title: Fuzzy Sets Syst. – volume: 99 start-page: 1 year: 2019 end-page: 12 ident: br0290 article-title: Feature selection based on neighborhood self-information publication-title: IEEE Trans. Cybern. – volume: 11 start-page: 341 year: 1982 end-page: 356 ident: br0240 article-title: Rough sets publication-title: Int. J. Comput. Inf. Sci. – volume: 164 start-page: 205 year: 2019 end-page: 212 ident: br0280 article-title: Fuzzy rough set-based attribute reduction using distance measures publication-title: Knowl.-Based Syst. – volume: 17 start-page: 451 year: 2009 end-page: 467 ident: br0350 article-title: The model of fuzzy variable precision rough sets publication-title: IEEE Trans. Fuzzy Syst. – volume: 23 start-page: 5117 year: 2019 end-page: 5128 ident: br0310 article-title: Automatic roller bearings fault diagnosis using DSAE in deep learning and CFS algorithm publication-title: Soft Comput. – volume: vol. 3100 start-page: 44 year: 2004 end-page: 160 ident: br0220 article-title: Variable precision fuzzy rough sets publication-title: Transactions on Rough Sets I – volume: 10 year: 2018 ident: br0170 article-title: Quantum relief algorithm publication-title: Quantum Inf. Process. – volume: 236 start-page: 58 year: 2014 end-page: 72 ident: br0320 article-title: A novel variable precision publication-title: Fuzzy Sets Syst. – volume: 196 year: 2020 ident: br0190 article-title: Measures of uncertainty based on Gaussian kernel for a fully fuzzy information system publication-title: Knowl.-Based Syst. – volume: 18 start-page: 3577 year: 2008 end-page: 3594 ident: br0150 article-title: Neighborhood rough set based heterogeneous feature subset selection publication-title: Inf. Sci. – year: 2020 ident: br0180 article-title: Measures of uncertainty based on Gaussian kernel for type-2 fuzzy information systems publication-title: Int. J. Fuzzy Syst. – volume: 97 start-page: 273 year: 1997 end-page: 324 ident: br0250 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. – volume: 51 start-page: 1602 year: 2021 end-page: 1615 ident: br0040 article-title: Kernelized fuzzy rough sets based online streaming feature selection for large-scale hierarchical classification publication-title: Appl. Intell. – volume: 11 start-page: 2565 year: 2020 end-page: 2572 ident: br0050 article-title: A novel classification algorithm based on kernelized fuzzy rough sets publication-title: Int. J. Mach. Learn. Cybern. – volume: 17 start-page: 191 year: 1990 end-page: 209 ident: br0090 article-title: Rough fuzzy sets and fuzzy rough sets publication-title: Gen. Syst. – volume: 90 start-page: 319 year: 2017 end-page: 332 ident: br0200 article-title: Structured probabilistic rough set approximations publication-title: Int. J. Approx. Reason. – volume: 153 start-page: 53 year: 2018 end-page: 64 ident: br0270 article-title: Local neighborhood rough set publication-title: Knowl.-Based Syst. – volume: 24 start-page: 12691 year: 2020 end-page: 12707 ident: br0210 article-title: Representing uncertainty about fuzzy membership grade publication-title: Soft Comput. – volume: vol. 4482 start-page: 87 year: 2007 end-page: 94 ident: br0060 article-title: Vaguely Quantified Rough Sets publication-title: LNAI – volume: 139 start-page: 163 year: 2020 end-page: 174 ident: br0230 article-title: Forecasting Plantago pollen: improving feature selection through random forests, clustering, and Friedman tests publication-title: Theor. Appl. Climatol. – volume: 28 start-page: 846 year: 2020 end-page: 857 ident: br0160 article-title: Distributed feature selection for big data using fuzzy rough sets publication-title: IEEE Trans. Fuzzy Syst. – year: 2019 ident: br0080 article-title: UCI Machine Learning Repository – volume: 22 start-page: 1694 year: 2020 end-page: 1715 ident: br0340 article-title: Classification rule mining algorithm combining intuitionistic fuzzy rough sets and genetic algorithm publication-title: Int. J. Fuzzy Syst. – volume: 29 start-page: 828 year: 2017 end-page: 841 ident: br0260 article-title: Feature selection by maximizing independent classification information publication-title: IEEE Trans. Knowl. Data Eng. – volume: 47 start-page: 3299 issue: 12 year: 2017 ident: 10.1016/j.ijar.2021.09.014_br0330 article-title: Measuring uncertainty of probabilistic rough set model from its three regions publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2016.2574538 – volume: 139 start-page: 163 issue: 1–2 year: 2020 ident: 10.1016/j.ijar.2021.09.014_br0230 article-title: Forecasting Plantago pollen: improving feature selection through random forests, clustering, and Friedman tests publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-019-02954-1 – volume: 24 start-page: 12691 issue: 17 year: 2020 ident: 10.1016/j.ijar.2021.09.014_br0210 article-title: Representing uncertainty about fuzzy membership grade publication-title: Soft Comput. doi: 10.1007/s00500-020-05050-z – volume: 236 start-page: 58 year: 2014 ident: 10.1016/j.ijar.2021.09.014_br0320 article-title: A novel variable precision (θ,σ)-fuzzy rough set model based on fuzzy granules publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2013.06.012 – volume: 153 start-page: 53 year: 2018 ident: 10.1016/j.ijar.2021.09.014_br0270 article-title: Local neighborhood rough set publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.04.023 – volume: 18 start-page: 3577 issue: 178 year: 2008 ident: 10.1016/j.ijar.2021.09.014_br0150 article-title: Neighborhood rough set based heterogeneous feature subset selection publication-title: Inf. Sci. doi: 10.1016/j.ins.2008.05.024 – volume: 164 start-page: 205 year: 2019 ident: 10.1016/j.ijar.2021.09.014_br0280 article-title: Fuzzy rough set-based attribute reduction using distance measures publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.10.038 – volume: vol. 4482 start-page: 87 year: 2007 ident: 10.1016/j.ijar.2021.09.014_br0060 article-title: Vaguely Quantified Rough Sets – volume: 102 year: 2021 ident: 10.1016/j.ijar.2021.09.014_br0030 article-title: Probability granular distance-based fuzzy rough set model publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.107064 – volume: 51 start-page: 1602 issue: 3 year: 2021 ident: 10.1016/j.ijar.2021.09.014_br0040 article-title: Kernelized fuzzy rough sets based online streaming feature selection for large-scale hierarchical classification publication-title: Appl. Intell. doi: 10.1007/s10489-020-01863-5 – volume: 46 start-page: 3073 issue: 12 year: 2016 ident: 10.1016/j.ijar.2021.09.014_br0020 article-title: Data-distribution-aware fuzzy rough set model and its application to robust classification publication-title: IEEE Trans. Cybern. – volume: 10 issue: 17 year: 2018 ident: 10.1016/j.ijar.2021.09.014_br0170 article-title: Quantum relief algorithm publication-title: Quantum Inf. Process. – volume: 196 year: 2020 ident: 10.1016/j.ijar.2021.09.014_br0190 article-title: Measures of uncertainty based on Gaussian kernel for a fully fuzzy information system publication-title: Knowl.-Based Syst. – volume: 359 start-page: 112 year: 2019 ident: 10.1016/j.ijar.2021.09.014_br0100 article-title: Granular fuzzy rough sets based on fuzzy implications and complications publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2017.12.012 – volume: 11 start-page: 2565 issue: 11 year: 2020 ident: 10.1016/j.ijar.2021.09.014_br0050 article-title: A novel classification algorithm based on kernelized fuzzy rough sets publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-020-01142-2 – volume: 17 start-page: 191 year: 1990 ident: 10.1016/j.ijar.2021.09.014_br0090 article-title: Rough fuzzy sets and fuzzy rough sets publication-title: Gen. Syst. doi: 10.1080/03081079008935107 – volume: 180 start-page: 4384 year: 2010 ident: 10.1016/j.ijar.2021.09.014_br0120 article-title: Soft fuzzy rough sets for robust feature evaluation and selection publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.07.010 – volume: 183 start-page: 26 year: 2011 ident: 10.1016/j.ijar.2021.09.014_br0130 article-title: Robust fuzzy rough classifiers publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2011.01.016 – year: 2020 ident: 10.1016/j.ijar.2021.09.014_br0180 article-title: Measures of uncertainty based on Gaussian kernel for type-2 fuzzy information systems publication-title: Int. J. Fuzzy Syst. – volume: 20 start-page: 636 issue: 4 year: 2012 ident: 10.1016/j.ijar.2021.09.014_br0140 article-title: On robust fuzzy rough set models publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2011.2181180 – ident: 10.1016/j.ijar.2021.09.014_br0080 – volume: 28 start-page: 846 issue: 5 year: 2020 ident: 10.1016/j.ijar.2021.09.014_br0160 article-title: Distributed feature selection for big data using fuzzy rough sets publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2019.2955894 – volume: 17 start-page: 451 issue: 2 year: 2009 ident: 10.1016/j.ijar.2021.09.014_br0350 article-title: The model of fuzzy variable precision rough sets publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2009.2013204 – volume: 282 start-page: 388 year: 2014 ident: 10.1016/j.ijar.2021.09.014_br0010 article-title: Fuzzy rough regression with application to wind speed prediction publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.03.090 – volume: 85 start-page: 36 year: 2017 ident: 10.1016/j.ijar.2021.09.014_br0110 article-title: Uncertainty and reduction of variable precision multigranulation fuzzy rough sets based on three-way decisions publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2017.03.002 – volume: 29 start-page: 828 issue: 4 year: 2017 ident: 10.1016/j.ijar.2021.09.014_br0260 article-title: Feature selection by maximizing independent classification information publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2650906 – volume: 11 start-page: 341 year: 1982 ident: 10.1016/j.ijar.2021.09.014_br0240 article-title: Rough sets publication-title: Int. J. Comput. Inf. Sci. doi: 10.1007/BF01001956 – volume: 97 start-page: 273 issue: 1–2 year: 1997 ident: 10.1016/j.ijar.2021.09.014_br0250 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. – volume: 28 start-page: 818 issue: 5 year: 2020 ident: 10.1016/j.ijar.2021.09.014_br0300 article-title: Fuzzy rough attribute reduction for categorical data publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2019.2949765 – volume: 23 start-page: 5117 issue: 13 year: 2019 ident: 10.1016/j.ijar.2021.09.014_br0310 article-title: Automatic roller bearings fault diagnosis using DSAE in deep learning and CFS algorithm publication-title: Soft Comput. doi: 10.1007/s00500-018-3178-x – volume: 22 start-page: 1694 issue: 5 year: 2020 ident: 10.1016/j.ijar.2021.09.014_br0340 article-title: Classification rule mining algorithm combining intuitionistic fuzzy rough sets and genetic algorithm publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-020-00849-2 – volume: 99 start-page: 1 year: 2019 ident: 10.1016/j.ijar.2021.09.014_br0290 article-title: Feature selection based on neighborhood self-information publication-title: IEEE Trans. Cybern. – volume: vol. 3100 start-page: 44 year: 2004 ident: 10.1016/j.ijar.2021.09.014_br0220 article-title: Variable precision fuzzy rough sets – volume: 26 start-page: 2174 issue: 4 year: 2018 ident: 10.1016/j.ijar.2021.09.014_br0070 article-title: Maximal-discernibility-pair-based approach to attribute reduction in fuzzy rough sets publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2017.2768044 – volume: 90 start-page: 319 year: 2017 ident: 10.1016/j.ijar.2021.09.014_br0200 article-title: Structured probabilistic rough set approximations publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2017.08.004  | 
    
| SSID | ssj0006748 | 
    
| Score | 2.3716292 | 
    
| Snippet | Uncertainty measure is an important tool for data analysis. In practical applications, the collected data are subject to different probability distributions.... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 130 | 
    
| SubjectTerms | Feature selection Fuzzy rough sets Relative fuzzy dependency Relative uncertainty Sample quality  | 
    
| Title | A relative uncertainty measure for fuzzy rough feature selection | 
    
| URI | https://dx.doi.org/10.1016/j.ijar.2021.09.014 | 
    
| Volume | 139 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4731 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006748 issn: 0888-613X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-4731 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006748 issn: 0888-613X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-4731 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006748 issn: 0888-613X databaseCode: ACRLP dateStart: 20211101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-4731 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006748 issn: 0888-613X databaseCode: AIKHN dateStart: 20211101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4731 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006748 issn: 0888-613X databaseCode: AKRWK dateStart: 19870101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4FuuLHLzJ2mST7ONmKZaq0IsWegu7eUCL1qKt0B787U42WR8gPbinzZKB5ctm5mMzMx9CFwlQZO6ypwpGecRjraOSaxWlNlUGRlTYqtvnIOkP-d1IjBqoW9fCuLTK4Pu9T6-8dXjSDmi2Z-Nx-wH2RwbBaBRTXw_sKth56lQMrj6-0zycmIZnklnkZofCGZ_jNZ4UridoTKtep5T_HZx-BJzeDtoKTBF3_MvsooaZ7qHtWoUBh025j6472BekvBsMQcof8c-X-Nn__cPASrFdrFZLXCnyYGuqXp74rVLAgWU5QMPezWO3HwVdhEgxQuZRxiyLBUutoCrLNAFGQ2xSlIlSSUmV4SJLmSbMassLluocbkuijUpEDuyFsUPUnL5MzRHCmgtRFDHgWFIuclIKuLQwApifzoRpIVoDIlVoGu60K55knR02kQ5E6UCUJJcAYgtdftnMfMuMtbNFjbP8tfASfPoau-N_2p2gTTfyGSmnqDl_XZgz4BXz8rz6cM7RRuf2vj_4BLRGzA8 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOcCFHVFWH7ihUDu2s9yoKqoCpRdaqTcr8SK1glJBitQe-Hbs2GGREAdyyuKRoud45iWZmQfAeWQoMrXZUxnBNKChlEFOpQhiHQtljjDTZbfPftQd0tsRG9VAu6qFsWmV3vc7n156a3-m6dFszsbj5oNZH4kJRqMQu3rgFbBKWRjbN7DL9688D6um4ahkEtjhvnLGJXmNJ5ltChristkppr9Hp28Rp7MFNjxVhC13N9ugpqY7YLOSYYB-Ve6CqxZ0FSlvCpoo5f7xFwv45D7_QUNLoZ4vlwtYSvJArcpmnvC1lMAx87IHhp3rQbsbeGGEQBCEiiAhmoSMxJphkSQSGUqDdJTlkRBRjoWiLImJRERLTTMSy9Ts5kgqEbHU0BdC9kF9-jxVBwBKyliWhQbIHFOWopyZTTLFDPWTCVMNgCtAuPBdw614xSOv0sMm3ILILYgcpdyA2AAXnzYz1zPjz9Gswpn_mHlunPofdof_tDsDa93BfY_3bvp3R2DdXnHpKcegXrzM1YkhGUV-Wj5EH6FyzaQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+relative+uncertainty+measure+for+fuzzy+rough+feature+selection&rft.jtitle=International+journal+of+approximate+reasoning&rft.au=An%2C+Shuang&rft.au=Liu%2C+Jiaying&rft.au=Wang%2C+Changzhong&rft.au=Zhao%2C+Suyun&rft.date=2021-12-01&rft.pub=Elsevier+Inc&rft.issn=0888-613X&rft.eissn=1873-4731&rft.volume=139&rft.spage=130&rft.epage=142&rft_id=info:doi/10.1016%2Fj.ijar.2021.09.014&rft.externalDocID=S0888613X21001560 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-613X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-613X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-613X&client=summon |