A relative uncertainty measure for fuzzy rough feature selection

Uncertainty measure is an important tool for data analysis. In practical applications, the collected data are subject to different probability distributions. This requires that the uncertainty measure has generalization performance. Fuzzy rough set (FRS) theory is a popular mathematical tool for unc...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of approximate reasoning Vol. 139; pp. 130 - 142
Main Authors An, Shuang, Liu, Jiaying, Wang, Changzhong, Zhao, Suyun
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2021
Subjects
Online AccessGet full text
ISSN0888-613X
1873-4731
DOI10.1016/j.ijar.2021.09.014

Cover

Abstract Uncertainty measure is an important tool for data analysis. In practical applications, the collected data are subject to different probability distributions. This requires that the uncertainty measure has generalization performance. Fuzzy rough set (FRS) theory is a popular mathematical tool for uncertainty measure, but the theory does not work well for some data distributions. For example, when the class density difference of the data set is large, FRS theory cannot effectively evaluate the classification uncertainty of samples. In this study, we combine the relative measure with the lower approximation of FRSs to propose a relative uncertainty measure which can address the above-mentioned problem. Furthermore, a fuzzy rough feature selection algorithm is designed, and it is mainly used to test the effectiveness and efficiency of the proposed measure. Experimental results demonstrate that the proposed feature selection algorithm has good performance. It indirectly proves that the relative uncertainty measure is effective and efficient in classification tasks.
AbstractList Uncertainty measure is an important tool for data analysis. In practical applications, the collected data are subject to different probability distributions. This requires that the uncertainty measure has generalization performance. Fuzzy rough set (FRS) theory is a popular mathematical tool for uncertainty measure, but the theory does not work well for some data distributions. For example, when the class density difference of the data set is large, FRS theory cannot effectively evaluate the classification uncertainty of samples. In this study, we combine the relative measure with the lower approximation of FRSs to propose a relative uncertainty measure which can address the above-mentioned problem. Furthermore, a fuzzy rough feature selection algorithm is designed, and it is mainly used to test the effectiveness and efficiency of the proposed measure. Experimental results demonstrate that the proposed feature selection algorithm has good performance. It indirectly proves that the relative uncertainty measure is effective and efficient in classification tasks.
Author An, Shuang
Liu, Jiaying
Zhao, Suyun
Wang, Changzhong
Author_xml – sequence: 1
  givenname: Shuang
  surname: An
  fullname: An, Shuang
  email: anshuang503@163.com
  organization: Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
– sequence: 2
  givenname: Jiaying
  surname: Liu
  fullname: Liu, Jiaying
  organization: Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
– sequence: 3
  givenname: Changzhong
  surname: Wang
  fullname: Wang, Changzhong
  organization: Bohai University, Jinzhou 121013, China
– sequence: 4
  givenname: Suyun
  surname: Zhao
  fullname: Zhao, Suyun
  organization: Renmin University of China, Beijing 100872, China
BookMark eNp9kMtqwzAQRUVJoUnaH-hKP2B3ZNmyDF00hL4g0E0L3QlFHrUyjl0kOZB8fW3SVRdZzTBwhnvPgsy6vkNCbhmkDJi4a1LXaJ9mkLEUqhRYfkHmTJY8yUvOZmQOUspEMP55RRYhNAAgylzOycOKemx1dHukQ2fQR-26eKA71GHwSG3vqR2OxwP1_fD1TS3qON0Dtmii67trcml1G_Dmby7Jx9Pj-_ol2bw9v65Xm8RwgJhIbnlW8NIWzEhZQ54zsEJvhTFiywzmxRi2Bm5rm2te1tW4bqFGI4qKFRXnSyJPf43vQ_BolXFRTwmi165VDNRkQjVqMqEmEwoqNZoY0ewf-uPdTvvDeej-BOFYau_Qq2AcjoZq58fmqu7dOfwXwGd6mg
CitedBy_id crossref_primary_10_1109_TETCI_2024_3398027
crossref_primary_10_1016_j_knosys_2022_109092
crossref_primary_10_1016_j_ijar_2023_109039
crossref_primary_10_1007_s11227_024_06631_7
crossref_primary_10_1016_j_fss_2024_108916
crossref_primary_10_1016_j_asoc_2024_112572
Cites_doi 10.1109/TSMC.2016.2574538
10.1007/s00704-019-02954-1
10.1007/s00500-020-05050-z
10.1016/j.fss.2013.06.012
10.1016/j.knosys.2018.04.023
10.1016/j.ins.2008.05.024
10.1016/j.knosys.2018.10.038
10.1016/j.asoc.2020.107064
10.1007/s10489-020-01863-5
10.1016/j.fss.2017.12.012
10.1007/s13042-020-01142-2
10.1080/03081079008935107
10.1016/j.ins.2010.07.010
10.1016/j.fss.2011.01.016
10.1109/TFUZZ.2011.2181180
10.1109/TFUZZ.2019.2955894
10.1109/TFUZZ.2009.2013204
10.1016/j.ins.2014.03.090
10.1016/j.ijar.2017.03.002
10.1109/TKDE.2017.2650906
10.1007/BF01001956
10.1109/TFUZZ.2019.2949765
10.1007/s00500-018-3178-x
10.1007/s40815-020-00849-2
10.1109/TFUZZ.2017.2768044
10.1016/j.ijar.2017.08.004
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ijar.2021.09.014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-4731
EndPage 142
ExternalDocumentID 10_1016_j_ijar_2021_09_014
S0888613X21001560
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
UHS
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-83f32537f51c88d04410f6ab6cc6b1ce45873d03fdf4a37d903fb0dec65915933
IEDL.DBID .~1
ISSN 0888-613X
IngestDate Thu Apr 24 23:12:34 EDT 2025
Thu Oct 16 04:38:27 EDT 2025
Fri Feb 23 02:43:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Relative uncertainty
Sample quality
Fuzzy rough sets
Relative fuzzy dependency
Feature selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-83f32537f51c88d04410f6ab6cc6b1ce45873d03fdf4a37d903fb0dec65915933
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_ijar_2021_09_014
crossref_primary_10_1016_j_ijar_2021_09_014
elsevier_sciencedirect_doi_10_1016_j_ijar_2021_09_014
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle International journal of approximate reasoning
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Dai, Chen, Wang, Zhan (br0180) 2020
Mieszkowicz-Rolka, Rolka (br0220) 2004; vol. 3100
Chen, Chen (br0050) 2020; 11
Wang, Qian, Liang, Guo, Liang (br0270) 2018; 153
Liu, Liu, Dai, Chen, Fujita (br0190) 2020; 196
Ron, George (br0250) 1997; 97
Xu, Tse (br0310) 2019; 23
Hu, An, Yu (br0120) 2010; 180
Dai, Hu, Wu, Qian, Huang (br0070) 2018; 26
Wang, Huang, Fan, Shao (br0280) 2019; 164
Kong, Qu, Yu, Zuo, Pan, Lin, Qiu (br0160) 2020; 28
Pawlak (br0240) 1982; 11
Manish (br0210) 2020; 24
Wang, Wang, Shao, Qian, Chen (br0300) 2020; 28
Cornelis, De Cock, Radzikowska (br0060) 2007; vol. 4482
Zhang, Yang, Wang (br0330) 2017; 47
An, Shi, Hu, Qi, Dang (br0010) 2014; 282
An, Hu, Wang (br0030) 2021; 102
Feng, Fan, Mi (br0110) 2017; 85
Zhang (br0340) 2020; 22
Navares, Aznarte (br0230) 2020; 139
Wang, Wei, Yang, Wang (br0260) 2017; 29
Hu, Zhang, An, Zhang, Yu (br0140) 2012; 20
Ma, Zou, Pan (br0200) 2017; 90
Dubois, Prade (br0090) 1990; 17
Hu, An, Yu, Yu (br0130) 2011; 183
Wang, Huang, Shao, Hu, Chen (br0290) 2019; 99
Hu, Yu, Liu (br0150) 2008; 18
Fang, Hu (br0100) 2019; 359
Dua, Graff (br0080) 2019
Liu, Gao, Yu, Qu, Yang (br0170) 2018; 10
An, Hu, Pedrycz, Zhu, Tsang (br0020) 2016; 46
Bai, Lin, Lv, Chen, Wang (br0040) 2021; 51
Zhao, Tsang, Chen (br0350) 2009; 17
Yao, Mi, Li (br0320) 2014; 236
Liu (10.1016/j.ijar.2021.09.014_br0170) 2018; 10
Wang (10.1016/j.ijar.2021.09.014_br0260) 2017; 29
Wang (10.1016/j.ijar.2021.09.014_br0270) 2018; 153
Zhao (10.1016/j.ijar.2021.09.014_br0350) 2009; 17
An (10.1016/j.ijar.2021.09.014_br0010) 2014; 282
Pawlak (10.1016/j.ijar.2021.09.014_br0240) 1982; 11
Xu (10.1016/j.ijar.2021.09.014_br0310) 2019; 23
Chen (10.1016/j.ijar.2021.09.014_br0050) 2020; 11
Wang (10.1016/j.ijar.2021.09.014_br0290) 2019; 99
Cornelis (10.1016/j.ijar.2021.09.014_br0060) 2007; vol. 4482
Wang (10.1016/j.ijar.2021.09.014_br0300) 2020; 28
Liu (10.1016/j.ijar.2021.09.014_br0190) 2020; 196
Fang (10.1016/j.ijar.2021.09.014_br0100) 2019; 359
Hu (10.1016/j.ijar.2021.09.014_br0120) 2010; 180
Feng (10.1016/j.ijar.2021.09.014_br0110) 2017; 85
Hu (10.1016/j.ijar.2021.09.014_br0140) 2012; 20
Wang (10.1016/j.ijar.2021.09.014_br0280) 2019; 164
Hu (10.1016/j.ijar.2021.09.014_br0150) 2008; 18
Ron (10.1016/j.ijar.2021.09.014_br0250) 1997; 97
Bai (10.1016/j.ijar.2021.09.014_br0040) 2021; 51
Dua (10.1016/j.ijar.2021.09.014_br0080)
Zhang (10.1016/j.ijar.2021.09.014_br0330) 2017; 47
Mieszkowicz-Rolka (10.1016/j.ijar.2021.09.014_br0220) 2004; vol. 3100
Navares (10.1016/j.ijar.2021.09.014_br0230) 2020; 139
An (10.1016/j.ijar.2021.09.014_br0030) 2021; 102
Ma (10.1016/j.ijar.2021.09.014_br0200) 2017; 90
Liu (10.1016/j.ijar.2021.09.014_br0180) 2020
Manish (10.1016/j.ijar.2021.09.014_br0210) 2020; 24
Zhang (10.1016/j.ijar.2021.09.014_br0340) 2020; 22
Dai (10.1016/j.ijar.2021.09.014_br0070) 2018; 26
Kong (10.1016/j.ijar.2021.09.014_br0160) 2020; 28
Dubois (10.1016/j.ijar.2021.09.014_br0090) 1990; 17
Hu (10.1016/j.ijar.2021.09.014_br0130) 2011; 183
Yao (10.1016/j.ijar.2021.09.014_br0320) 2014; 236
An (10.1016/j.ijar.2021.09.014_br0020) 2016; 46
References_xml – volume: 85
  start-page: 36
  year: 2017
  end-page: 58
  ident: br0110
  article-title: Uncertainty and reduction of variable precision multigranulation fuzzy rough sets based on three-way decisions
  publication-title: Int. J. Approx. Reason.
– volume: 28
  start-page: 818
  year: 2020
  end-page: 830
  ident: br0300
  article-title: Fuzzy rough attribute reduction for categorical data
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 20
  start-page: 636
  year: 2012
  end-page: 651
  ident: br0140
  article-title: On robust fuzzy rough set models
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 47
  start-page: 3299
  year: 2017
  end-page: 3309
  ident: br0330
  article-title: Measuring uncertainty of probabilistic rough set model from its three regions
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 46
  start-page: 3073
  year: 2016
  end-page: 3085
  ident: br0020
  article-title: Data-distribution-aware fuzzy rough set model and its application to robust classification
  publication-title: IEEE Trans. Cybern.
– volume: 183
  start-page: 26
  year: 2011
  end-page: 43
  ident: br0130
  article-title: Robust fuzzy rough classifiers
  publication-title: Fuzzy Sets Syst.
– volume: 26
  start-page: 2174
  year: 2018
  end-page: 2187
  ident: br0070
  article-title: Maximal-discernibility-pair-based approach to attribute reduction in fuzzy rough sets
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 180
  start-page: 4384
  year: 2010
  end-page: 4400
  ident: br0120
  article-title: Soft fuzzy rough sets for robust feature evaluation and selection
  publication-title: Inf. Sci.
– volume: 282
  start-page: 388
  year: 2014
  end-page: 400
  ident: br0010
  article-title: Fuzzy rough regression with application to wind speed prediction
  publication-title: Inf. Sci.
– volume: 102
  year: 2021
  ident: br0030
  article-title: Probability granular distance-based fuzzy rough set model
  publication-title: Appl. Soft Comput.
– volume: 359
  start-page: 112
  year: 2019
  end-page: 139
  ident: br0100
  article-title: Granular fuzzy rough sets based on fuzzy implications and complications
  publication-title: Fuzzy Sets Syst.
– volume: 99
  start-page: 1
  year: 2019
  end-page: 12
  ident: br0290
  article-title: Feature selection based on neighborhood self-information
  publication-title: IEEE Trans. Cybern.
– volume: 11
  start-page: 341
  year: 1982
  end-page: 356
  ident: br0240
  article-title: Rough sets
  publication-title: Int. J. Comput. Inf. Sci.
– volume: 164
  start-page: 205
  year: 2019
  end-page: 212
  ident: br0280
  article-title: Fuzzy rough set-based attribute reduction using distance measures
  publication-title: Knowl.-Based Syst.
– volume: 17
  start-page: 451
  year: 2009
  end-page: 467
  ident: br0350
  article-title: The model of fuzzy variable precision rough sets
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 23
  start-page: 5117
  year: 2019
  end-page: 5128
  ident: br0310
  article-title: Automatic roller bearings fault diagnosis using DSAE in deep learning and CFS algorithm
  publication-title: Soft Comput.
– volume: vol. 3100
  start-page: 44
  year: 2004
  end-page: 160
  ident: br0220
  article-title: Variable precision fuzzy rough sets
  publication-title: Transactions on Rough Sets I
– volume: 10
  year: 2018
  ident: br0170
  article-title: Quantum relief algorithm
  publication-title: Quantum Inf. Process.
– volume: 236
  start-page: 58
  year: 2014
  end-page: 72
  ident: br0320
  article-title: A novel variable precision
  publication-title: Fuzzy Sets Syst.
– volume: 196
  year: 2020
  ident: br0190
  article-title: Measures of uncertainty based on Gaussian kernel for a fully fuzzy information system
  publication-title: Knowl.-Based Syst.
– volume: 18
  start-page: 3577
  year: 2008
  end-page: 3594
  ident: br0150
  article-title: Neighborhood rough set based heterogeneous feature subset selection
  publication-title: Inf. Sci.
– year: 2020
  ident: br0180
  article-title: Measures of uncertainty based on Gaussian kernel for type-2 fuzzy information systems
  publication-title: Int. J. Fuzzy Syst.
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: br0250
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
– volume: 51
  start-page: 1602
  year: 2021
  end-page: 1615
  ident: br0040
  article-title: Kernelized fuzzy rough sets based online streaming feature selection for large-scale hierarchical classification
  publication-title: Appl. Intell.
– volume: 11
  start-page: 2565
  year: 2020
  end-page: 2572
  ident: br0050
  article-title: A novel classification algorithm based on kernelized fuzzy rough sets
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 17
  start-page: 191
  year: 1990
  end-page: 209
  ident: br0090
  article-title: Rough fuzzy sets and fuzzy rough sets
  publication-title: Gen. Syst.
– volume: 90
  start-page: 319
  year: 2017
  end-page: 332
  ident: br0200
  article-title: Structured probabilistic rough set approximations
  publication-title: Int. J. Approx. Reason.
– volume: 153
  start-page: 53
  year: 2018
  end-page: 64
  ident: br0270
  article-title: Local neighborhood rough set
  publication-title: Knowl.-Based Syst.
– volume: 24
  start-page: 12691
  year: 2020
  end-page: 12707
  ident: br0210
  article-title: Representing uncertainty about fuzzy membership grade
  publication-title: Soft Comput.
– volume: vol. 4482
  start-page: 87
  year: 2007
  end-page: 94
  ident: br0060
  article-title: Vaguely Quantified Rough Sets
  publication-title: LNAI
– volume: 139
  start-page: 163
  year: 2020
  end-page: 174
  ident: br0230
  article-title: Forecasting Plantago pollen: improving feature selection through random forests, clustering, and Friedman tests
  publication-title: Theor. Appl. Climatol.
– volume: 28
  start-page: 846
  year: 2020
  end-page: 857
  ident: br0160
  article-title: Distributed feature selection for big data using fuzzy rough sets
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 2019
  ident: br0080
  article-title: UCI Machine Learning Repository
– volume: 22
  start-page: 1694
  year: 2020
  end-page: 1715
  ident: br0340
  article-title: Classification rule mining algorithm combining intuitionistic fuzzy rough sets and genetic algorithm
  publication-title: Int. J. Fuzzy Syst.
– volume: 29
  start-page: 828
  year: 2017
  end-page: 841
  ident: br0260
  article-title: Feature selection by maximizing independent classification information
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 47
  start-page: 3299
  issue: 12
  year: 2017
  ident: 10.1016/j.ijar.2021.09.014_br0330
  article-title: Measuring uncertainty of probabilistic rough set model from its three regions
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2016.2574538
– volume: 139
  start-page: 163
  issue: 1–2
  year: 2020
  ident: 10.1016/j.ijar.2021.09.014_br0230
  article-title: Forecasting Plantago pollen: improving feature selection through random forests, clustering, and Friedman tests
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-019-02954-1
– volume: 24
  start-page: 12691
  issue: 17
  year: 2020
  ident: 10.1016/j.ijar.2021.09.014_br0210
  article-title: Representing uncertainty about fuzzy membership grade
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-05050-z
– volume: 236
  start-page: 58
  year: 2014
  ident: 10.1016/j.ijar.2021.09.014_br0320
  article-title: A novel variable precision (θ,σ)-fuzzy rough set model based on fuzzy granules
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2013.06.012
– volume: 153
  start-page: 53
  year: 2018
  ident: 10.1016/j.ijar.2021.09.014_br0270
  article-title: Local neighborhood rough set
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.04.023
– volume: 18
  start-page: 3577
  issue: 178
  year: 2008
  ident: 10.1016/j.ijar.2021.09.014_br0150
  article-title: Neighborhood rough set based heterogeneous feature subset selection
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2008.05.024
– volume: 164
  start-page: 205
  year: 2019
  ident: 10.1016/j.ijar.2021.09.014_br0280
  article-title: Fuzzy rough set-based attribute reduction using distance measures
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.10.038
– volume: vol. 4482
  start-page: 87
  year: 2007
  ident: 10.1016/j.ijar.2021.09.014_br0060
  article-title: Vaguely Quantified Rough Sets
– volume: 102
  year: 2021
  ident: 10.1016/j.ijar.2021.09.014_br0030
  article-title: Probability granular distance-based fuzzy rough set model
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.107064
– volume: 51
  start-page: 1602
  issue: 3
  year: 2021
  ident: 10.1016/j.ijar.2021.09.014_br0040
  article-title: Kernelized fuzzy rough sets based online streaming feature selection for large-scale hierarchical classification
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01863-5
– volume: 46
  start-page: 3073
  issue: 12
  year: 2016
  ident: 10.1016/j.ijar.2021.09.014_br0020
  article-title: Data-distribution-aware fuzzy rough set model and its application to robust classification
  publication-title: IEEE Trans. Cybern.
– volume: 10
  issue: 17
  year: 2018
  ident: 10.1016/j.ijar.2021.09.014_br0170
  article-title: Quantum relief algorithm
  publication-title: Quantum Inf. Process.
– volume: 196
  year: 2020
  ident: 10.1016/j.ijar.2021.09.014_br0190
  article-title: Measures of uncertainty based on Gaussian kernel for a fully fuzzy information system
  publication-title: Knowl.-Based Syst.
– volume: 359
  start-page: 112
  year: 2019
  ident: 10.1016/j.ijar.2021.09.014_br0100
  article-title: Granular fuzzy rough sets based on fuzzy implications and complications
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2017.12.012
– volume: 11
  start-page: 2565
  issue: 11
  year: 2020
  ident: 10.1016/j.ijar.2021.09.014_br0050
  article-title: A novel classification algorithm based on kernelized fuzzy rough sets
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-020-01142-2
– volume: 17
  start-page: 191
  year: 1990
  ident: 10.1016/j.ijar.2021.09.014_br0090
  article-title: Rough fuzzy sets and fuzzy rough sets
  publication-title: Gen. Syst.
  doi: 10.1080/03081079008935107
– volume: 180
  start-page: 4384
  year: 2010
  ident: 10.1016/j.ijar.2021.09.014_br0120
  article-title: Soft fuzzy rough sets for robust feature evaluation and selection
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.07.010
– volume: 183
  start-page: 26
  year: 2011
  ident: 10.1016/j.ijar.2021.09.014_br0130
  article-title: Robust fuzzy rough classifiers
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2011.01.016
– year: 2020
  ident: 10.1016/j.ijar.2021.09.014_br0180
  article-title: Measures of uncertainty based on Gaussian kernel for type-2 fuzzy information systems
  publication-title: Int. J. Fuzzy Syst.
– volume: 20
  start-page: 636
  issue: 4
  year: 2012
  ident: 10.1016/j.ijar.2021.09.014_br0140
  article-title: On robust fuzzy rough set models
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2011.2181180
– ident: 10.1016/j.ijar.2021.09.014_br0080
– volume: 28
  start-page: 846
  issue: 5
  year: 2020
  ident: 10.1016/j.ijar.2021.09.014_br0160
  article-title: Distributed feature selection for big data using fuzzy rough sets
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2955894
– volume: 17
  start-page: 451
  issue: 2
  year: 2009
  ident: 10.1016/j.ijar.2021.09.014_br0350
  article-title: The model of fuzzy variable precision rough sets
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2009.2013204
– volume: 282
  start-page: 388
  year: 2014
  ident: 10.1016/j.ijar.2021.09.014_br0010
  article-title: Fuzzy rough regression with application to wind speed prediction
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.03.090
– volume: 85
  start-page: 36
  year: 2017
  ident: 10.1016/j.ijar.2021.09.014_br0110
  article-title: Uncertainty and reduction of variable precision multigranulation fuzzy rough sets based on three-way decisions
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2017.03.002
– volume: 29
  start-page: 828
  issue: 4
  year: 2017
  ident: 10.1016/j.ijar.2021.09.014_br0260
  article-title: Feature selection by maximizing independent classification information
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2650906
– volume: 11
  start-page: 341
  year: 1982
  ident: 10.1016/j.ijar.2021.09.014_br0240
  article-title: Rough sets
  publication-title: Int. J. Comput. Inf. Sci.
  doi: 10.1007/BF01001956
– volume: 97
  start-page: 273
  issue: 1–2
  year: 1997
  ident: 10.1016/j.ijar.2021.09.014_br0250
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
– volume: 28
  start-page: 818
  issue: 5
  year: 2020
  ident: 10.1016/j.ijar.2021.09.014_br0300
  article-title: Fuzzy rough attribute reduction for categorical data
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2949765
– volume: 23
  start-page: 5117
  issue: 13
  year: 2019
  ident: 10.1016/j.ijar.2021.09.014_br0310
  article-title: Automatic roller bearings fault diagnosis using DSAE in deep learning and CFS algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3178-x
– volume: 22
  start-page: 1694
  issue: 5
  year: 2020
  ident: 10.1016/j.ijar.2021.09.014_br0340
  article-title: Classification rule mining algorithm combining intuitionistic fuzzy rough sets and genetic algorithm
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-020-00849-2
– volume: 99
  start-page: 1
  year: 2019
  ident: 10.1016/j.ijar.2021.09.014_br0290
  article-title: Feature selection based on neighborhood self-information
  publication-title: IEEE Trans. Cybern.
– volume: vol. 3100
  start-page: 44
  year: 2004
  ident: 10.1016/j.ijar.2021.09.014_br0220
  article-title: Variable precision fuzzy rough sets
– volume: 26
  start-page: 2174
  issue: 4
  year: 2018
  ident: 10.1016/j.ijar.2021.09.014_br0070
  article-title: Maximal-discernibility-pair-based approach to attribute reduction in fuzzy rough sets
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2017.2768044
– volume: 90
  start-page: 319
  year: 2017
  ident: 10.1016/j.ijar.2021.09.014_br0200
  article-title: Structured probabilistic rough set approximations
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2017.08.004
SSID ssj0006748
Score 2.3716292
Snippet Uncertainty measure is an important tool for data analysis. In practical applications, the collected data are subject to different probability distributions....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 130
SubjectTerms Feature selection
Fuzzy rough sets
Relative fuzzy dependency
Relative uncertainty
Sample quality
Title A relative uncertainty measure for fuzzy rough feature selection
URI https://dx.doi.org/10.1016/j.ijar.2021.09.014
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4731
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006748
  issn: 0888-613X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-4731
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006748
  issn: 0888-613X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4731
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006748
  issn: 0888-613X
  databaseCode: ACRLP
  dateStart: 20211101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-4731
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006748
  issn: 0888-613X
  databaseCode: AIKHN
  dateStart: 20211101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4731
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006748
  issn: 0888-613X
  databaseCode: AKRWK
  dateStart: 19870101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4FuuLHLzJ2mST7ONmKZaq0IsWegu7eUCL1qKt0B787U42WR8gPbinzZKB5ctm5mMzMx9CFwlQZO6ypwpGecRjraOSaxWlNlUGRlTYqtvnIOkP-d1IjBqoW9fCuLTK4Pu9T6-8dXjSDmi2Z-Nx-wH2RwbBaBRTXw_sKth56lQMrj6-0zycmIZnklnkZofCGZ_jNZ4UridoTKtep5T_HZx-BJzeDtoKTBF3_MvsooaZ7qHtWoUBh025j6472BekvBsMQcof8c-X-Nn__cPASrFdrFZLXCnyYGuqXp74rVLAgWU5QMPezWO3HwVdhEgxQuZRxiyLBUutoCrLNAFGQ2xSlIlSSUmV4SJLmSbMassLluocbkuijUpEDuyFsUPUnL5MzRHCmgtRFDHgWFIuclIKuLQwApifzoRpIVoDIlVoGu60K55knR02kQ5E6UCUJJcAYgtdftnMfMuMtbNFjbP8tfASfPoau-N_2p2gTTfyGSmnqDl_XZgz4BXz8rz6cM7RRuf2vj_4BLRGzA8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOcCFHVFWH7ihUDu2s9yoKqoCpRdaqTcr8SK1glJBitQe-Hbs2GGREAdyyuKRoud45iWZmQfAeWQoMrXZUxnBNKChlEFOpQhiHQtljjDTZbfPftQd0tsRG9VAu6qFsWmV3vc7n156a3-m6dFszsbj5oNZH4kJRqMQu3rgFbBKWRjbN7DL9688D6um4ahkEtjhvnLGJXmNJ5ltChristkppr9Hp28Rp7MFNjxVhC13N9ugpqY7YLOSYYB-Ve6CqxZ0FSlvCpoo5f7xFwv45D7_QUNLoZ4vlwtYSvJArcpmnvC1lMAx87IHhp3rQbsbeGGEQBCEiiAhmoSMxJphkSQSGUqDdJTlkRBRjoWiLImJRERLTTMSy9Ts5kgqEbHU0BdC9kF9-jxVBwBKyliWhQbIHFOWopyZTTLFDPWTCVMNgCtAuPBdw614xSOv0sMm3ILILYgcpdyA2AAXnzYz1zPjz9Gswpn_mHlunPofdof_tDsDa93BfY_3bvp3R2DdXnHpKcegXrzM1YkhGUV-Wj5EH6FyzaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+relative+uncertainty+measure+for+fuzzy+rough+feature+selection&rft.jtitle=International+journal+of+approximate+reasoning&rft.au=An%2C+Shuang&rft.au=Liu%2C+Jiaying&rft.au=Wang%2C+Changzhong&rft.au=Zhao%2C+Suyun&rft.date=2021-12-01&rft.pub=Elsevier+Inc&rft.issn=0888-613X&rft.eissn=1873-4731&rft.volume=139&rft.spage=130&rft.epage=142&rft_id=info:doi/10.1016%2Fj.ijar.2021.09.014&rft.externalDocID=S0888613X21001560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-613X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-613X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-613X&client=summon