Single channel EEG analysis for detection of depression
•Effectiveness of EEG spectral asymmetry index SASI to detect depression is confirmed.•Classification accuracy of linear SASI is comparable with that of nonlinear DFA.•Combination of SASI and DFA in single channel EEG provides accuracy of 91%. This study is aimed at finding a simple method for detec...
Saved in:
Published in | Biomedical signal processing and control Vol. 31; pp. 391 - 397 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 |
DOI | 10.1016/j.bspc.2016.09.010 |
Cover
Abstract | •Effectiveness of EEG spectral asymmetry index SASI to detect depression is confirmed.•Classification accuracy of linear SASI is comparable with that of nonlinear DFA.•Combination of SASI and DFA in single channel EEG provides accuracy of 91%.
This study is aimed at finding a simple method for detection of depression based on the analysis of single channel short-term EEG signals.
The accuracy of linear, spectral asymmetry index (SASI), and nonlinear, detrended fluctuation analysis (DFA), methods for differentiating depressive and healthy subjects was compared. The eyes closed EEG was recorded from 18 common reference (Cz) channels for 34 subjects (17 depressive and 17 control). The signals were stored at 400Hz sampling frequency and digitally filtered with cutoff frequencies at 0.5Hz and at 40Hz. The first 5min of each recording was selected for further analysis.
The experiments indicated maximum difference for SASI values in channel Pz and for DFA values in channels Pz and O2. Therefore, channel Pz was selected for comparison of two methods. The results of statistical analysis show that SASI values are significantly higher for depressive than for control group (p=3.577e–05), while DFA values are significantly lower for depressive group (p=0.033). SASI has superior discrimination ability with classification accuracy of 76.5%, while the classification accuracy of DFA was 70.6%. Linear combination of SASI and DFA resulted in 91.2% classification accuracy.
Our results demonstrate that the analysis of single channel signal can provide high accuracy of differentiation depression EEG. |
---|---|
AbstractList | •Effectiveness of EEG spectral asymmetry index SASI to detect depression is confirmed.•Classification accuracy of linear SASI is comparable with that of nonlinear DFA.•Combination of SASI and DFA in single channel EEG provides accuracy of 91%.
This study is aimed at finding a simple method for detection of depression based on the analysis of single channel short-term EEG signals.
The accuracy of linear, spectral asymmetry index (SASI), and nonlinear, detrended fluctuation analysis (DFA), methods for differentiating depressive and healthy subjects was compared. The eyes closed EEG was recorded from 18 common reference (Cz) channels for 34 subjects (17 depressive and 17 control). The signals were stored at 400Hz sampling frequency and digitally filtered with cutoff frequencies at 0.5Hz and at 40Hz. The first 5min of each recording was selected for further analysis.
The experiments indicated maximum difference for SASI values in channel Pz and for DFA values in channels Pz and O2. Therefore, channel Pz was selected for comparison of two methods. The results of statistical analysis show that SASI values are significantly higher for depressive than for control group (p=3.577e–05), while DFA values are significantly lower for depressive group (p=0.033). SASI has superior discrimination ability with classification accuracy of 76.5%, while the classification accuracy of DFA was 70.6%. Linear combination of SASI and DFA resulted in 91.2% classification accuracy.
Our results demonstrate that the analysis of single channel signal can provide high accuracy of differentiation depression EEG. |
Author | Bachmann, Maie Lass, Jaanus Hinrikus, Hiie |
Author_xml | – sequence: 1 givenname: Maie surname: Bachmann fullname: Bachmann, Maie email: maie@cb.ttu.ee – sequence: 2 givenname: Jaanus surname: Lass fullname: Lass, Jaanus – sequence: 3 givenname: Hiie surname: Hinrikus fullname: Hinrikus, Hiie |
BookMark | eNp9kLFOwzAQhj0UibbwAkx5gYRzbGJHYkFVKUiVGIDZcuwzOApOZUdIfXsclalDh9PdP3yn-25FFmEMSMgdhYoCbe77qksHU9V5rqCtgMKCLKngTSmh5ddklVIPwKWgfEnEuw9fAxbmW4eAQ7Hd7god9HBMPhVujIXFCc3kx1CMLodDxJRyuiFXTg8Jb__7mnw-bz82L-X-bfe6edqXhgFMpbBCMkRnEMRDLioNdg1zTMu2aw3jVsraanDWCa155zRwoTkzUBtOW8HWRJ72mjimFNEp4yc93zNF7QdFQc3SqleztJqlFbQqS2e0PkMP0f_oeLwMPZ4gzFK_HqNKxmMwaH3Mf1B29JfwP0DcdUk |
CitedBy_id | crossref_primary_10_1016_j_bspc_2023_104873 crossref_primary_10_1016_j_jad_2023_06_007 crossref_primary_10_1038_s41598_024_80448_5 crossref_primary_10_3389_fpsyt_2022_970993 crossref_primary_10_1109_ACCESS_2020_3046993 crossref_primary_10_1063_5_0213044 crossref_primary_10_1007_s13246_020_00897_w crossref_primary_10_1007_s12559_022_10042_2 crossref_primary_10_1109_ACCESS_2019_2901950 crossref_primary_10_30699_jergon_9_2_69 crossref_primary_10_1109_TBCAS_2023_3292237 crossref_primary_10_4015_S1016237218500266 crossref_primary_10_1007_s00542_018_4075_z crossref_primary_10_1016_j_csbj_2024_03_022 crossref_primary_10_54097_hset_v39i_6582 crossref_primary_10_1111_ejn_15800 crossref_primary_10_1016_j_heliyon_2023_e20684 crossref_primary_10_1177_1550059420965431 crossref_primary_10_1016_j_neubiorev_2019_07_021 crossref_primary_10_1016_j_bspc_2021_102755 crossref_primary_10_1016_j_ijmedinf_2019_103983 crossref_primary_10_1109_ACCESS_2023_3262930 crossref_primary_10_1016_j_artmed_2019_07_004 crossref_primary_10_1016_j_jneumeth_2020_108927 crossref_primary_10_3389_fnagi_2022_912283 crossref_primary_10_1016_j_bspc_2018_08_009 crossref_primary_10_1016_j_bspc_2018_11_009 crossref_primary_10_1109_JSEN_2024_3493960 crossref_primary_10_3390_s24237438 crossref_primary_10_1109_TAFFC_2019_2934412 crossref_primary_10_3390_e24020211 crossref_primary_10_3390_math10224177 crossref_primary_10_3389_fpsyg_2022_850159 crossref_primary_10_1016_j_ijpsycho_2020_11_013 crossref_primary_10_1002_jnr_24947 crossref_primary_10_1097_JOM_0000000000001622 crossref_primary_10_1080_00051144_2023_2297481 crossref_primary_10_1007_s11517_022_02647_4 crossref_primary_10_59883_ajp_55 crossref_primary_10_1038_s41598_019_42732_7 crossref_primary_10_1155_2020_6925107 crossref_primary_10_1515_bmt_2021_0232 crossref_primary_10_21122_2309_4923_2020_4_45_53 crossref_primary_10_1140_epjs_s11734_024_01453_3 crossref_primary_10_1109_TIM_2021_3094619 crossref_primary_10_1038_s41598_020_59264_0 crossref_primary_10_1109_JBHI_2024_3487012 crossref_primary_10_1007_s11571_020_09619_0 crossref_primary_10_1177_15500594211018545 crossref_primary_10_1108_IJPCC_09_2021_0216 crossref_primary_10_1109_JBHI_2020_3045718 crossref_primary_10_1093_cercor_bhae505 crossref_primary_10_1109_TAFFC_2022_3171782 crossref_primary_10_1109_TNSRE_2022_3221962 |
Cites_doi | 10.1103/PhysRevE.64.011114 10.1088/1741-2560/12/1/016018 10.1109/TBME.2009.2014819 10.1109/TBME.2008.2005949 10.1186/1753-4631-1-9 10.1073/pnas.0811699106 10.1166/jmihi.2013.1126 10.1016/j.clinph.2007.01.003 10.1016/j.clinph.2009.04.018 10.1016/j.neuroscience.2004.10.007 10.1109/TBME.2008.2001286 10.3389/fnins.2014.00373 10.1016/j.clinph.2007.08.001 10.1016/j.physleta.2004.06.070 10.1007/s11517-009-0554-9 10.1016/j.cmpb.2012.10.008 10.1103/PhysRevE.49.1685 10.1016/j.jmr.2012.11.027 10.1016/j.brainresbull.2008.05.001 10.1016/j.physa.2007.05.022 10.1016/j.crvi.2003.09.011 10.1109/TBME.2007.893453 10.1109/TBME.2014.2306424 10.1007/BF02228814 10.1103/PhysRevE.67.032902 10.1109/TNSRE.2008.925071 10.1523/JNEUROSCI.3244-05.2005 10.1109/TBME.2008.923145 10.1017/S0048577298000134 10.1016/S1389-9457(07)70167-3 10.3389/fphys.2012.00116 10.1016/S0165-0270(00)00356-3 10.1063/1.166141 10.1515/bmt.2010.011 10.1016/j.clinph.2005.06.011 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2016.09.010 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 397 |
ExternalDocumentID | 10_1016_j_bspc_2016_09_010 S1746809416301367 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-7d783eefce075e0718ceb63f3a89b9c34d882da0fdf7aa4bfa047a43c02c41973 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 23:04:11 EDT 2025 Tue Jul 01 01:34:02 EDT 2025 Mon Nov 18 09:13:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Single channel Spectral asymmetry index (SASI) Electroencephalography (EEG) Classification accuracy Detrended fluctuation analysis (DFA) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-7d783eefce075e0718ceb63f3a89b9c34d882da0fdf7aa4bfa047a43c02c41973 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2016_09_010 crossref_primary_10_1016_j_bspc_2016_09_010 elsevier_sciencedirect_doi_10_1016_j_bspc_2016_09_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Rosso, Blanco, Yordanova (bib0040) 2001; 105 Nikulin, Brismar (bib0110) 2005; 130 Korn, Faure (bib0020) 2003; 326 Robinson (bib0150) 2003; 67 Sun, Tang, Lim (bib0125) 2014; 61 Hu, Ivanov, Chen (bib0145) 2001; 64 Peng, Buldyrev, Havlin (bib0045) 1994; 49 Khandoker, Taylor, Karmakar (bib0085) 2008; 16 Abásolo, Hornero, Escudero (bib0130) 2008; 55 Wijnants, Cox, Hasselman (bib0105) 2012; 3 Shah, Oros-Peusquens, Arrubla (bib0190) 2013; 229 Peng, Havlin, Stanley (bib0065) 1995; 5 Gallego-Jutglà, Solé-Casals, Vialatte (bib0180) 2015; 12 Hinrikus, Suhhova, Bachmann (bib0140) 2010; 55 Montroll, Shlesinger (bib0160) 1984 Hinrikus, Bachmann, Kalda (bib0035) 2007; 1 Jospin, Caminal, Jensen (bib0115) 2007; 54 Pan, Zheng, Wu (bib0135) 2004; 329 Linkenkaer-Hansen, Monto, Rytsälä (bib0070) 2005; 25 Misra, Chattopadhyay, Kanhar (bib0175) 2013; 3 Kim, Shin, Robinson (bib0120) 2009; 120 Stam (bib0025) 2005; 116 Leistedt, Dumont, Lanquart (bib0050) 2007; 118 Lee, Yang, Lee (bib0055) 2007; 118 Montez, Poil, Jones (bib0095) 2009; 106 Putze, Hesslinger, Tse (bib0185) 2014; 8 Sun, Li, Zhu (bib0165) 2008; 76 Hinrikus, Suhhova, Bachmann (bib0010) 2009; 47 Davidson (bib0170) 1998; 35 World Health Organization (bib0005) 2008 Rodriguez, Echeverria, Alvarez-Ramirez (bib0075) 2007; 384 Castiglioni, Parati, Civijian (bib0090) 2009; 56 H. Hinrikus, M. Bachmann, J. Lass, et al., Method and device for determining depressive disorders by measuring bioelectromagnetic signals of the brain, US2009/0054801 (2009). Czegledy, Katz (bib0030) 1995; 3 Burr, Kirkness, Mitchell (bib0080) 2008; 55 Hosseinifard, Moradi, Rostami (bib0060) 2012; 109 Kim, Shin (bib0155) 2007; 8 Schmitt, Stein, Ch Ivanov (bib0100) 2009; 56 Montroll (10.1016/j.bspc.2016.09.010_bib0160) 1984 Leistedt (10.1016/j.bspc.2016.09.010_bib0050) 2007; 118 Pan (10.1016/j.bspc.2016.09.010_bib0135) 2004; 329 Kim (10.1016/j.bspc.2016.09.010_bib0120) 2009; 120 Kim (10.1016/j.bspc.2016.09.010_bib0155) 2007; 8 Jospin (10.1016/j.bspc.2016.09.010_bib0115) 2007; 54 Shah (10.1016/j.bspc.2016.09.010_bib0190) 2013; 229 Czegledy (10.1016/j.bspc.2016.09.010_bib0030) 1995; 3 Rosso (10.1016/j.bspc.2016.09.010_bib0040) 2001; 105 Linkenkaer-Hansen (10.1016/j.bspc.2016.09.010_bib0070) 2005; 25 Abásolo (10.1016/j.bspc.2016.09.010_bib0130) 2008; 55 Hinrikus (10.1016/j.bspc.2016.09.010_bib0010) 2009; 47 Robinson (10.1016/j.bspc.2016.09.010_bib0150) 2003; 67 Schmitt (10.1016/j.bspc.2016.09.010_bib0100) 2009; 56 Montez (10.1016/j.bspc.2016.09.010_bib0095) 2009; 106 Castiglioni (10.1016/j.bspc.2016.09.010_bib0090) 2009; 56 Hosseinifard (10.1016/j.bspc.2016.09.010_bib0060) 2012; 109 Gallego-Jutglà (10.1016/j.bspc.2016.09.010_bib0180) 2015; 12 Peng (10.1016/j.bspc.2016.09.010_bib0045) 1994; 49 Khandoker (10.1016/j.bspc.2016.09.010_bib0085) 2008; 16 Sun (10.1016/j.bspc.2016.09.010_bib0125) 2014; 61 Hu (10.1016/j.bspc.2016.09.010_bib0145) 2001; 64 Korn (10.1016/j.bspc.2016.09.010_bib0020) 2003; 326 Sun (10.1016/j.bspc.2016.09.010_bib0165) 2008; 76 Rodriguez (10.1016/j.bspc.2016.09.010_bib0075) 2007; 384 Burr (10.1016/j.bspc.2016.09.010_bib0080) 2008; 55 World Health Organization (10.1016/j.bspc.2016.09.010_bib0005) 2008 Stam (10.1016/j.bspc.2016.09.010_bib0025) 2005; 116 Putze (10.1016/j.bspc.2016.09.010_bib0185) 2014; 8 Lee (10.1016/j.bspc.2016.09.010_bib0055) 2007; 118 Wijnants (10.1016/j.bspc.2016.09.010_bib0105) 2012; 3 Misra (10.1016/j.bspc.2016.09.010_bib0175) 2013; 3 Hinrikus (10.1016/j.bspc.2016.09.010_bib0035) 2007; 1 10.1016/j.bspc.2016.09.010_bib0015 Peng (10.1016/j.bspc.2016.09.010_bib0065) 1995; 5 Hinrikus (10.1016/j.bspc.2016.09.010_bib0140) 2010; 55 Nikulin (10.1016/j.bspc.2016.09.010_bib0110) 2005; 130 Davidson (10.1016/j.bspc.2016.09.010_bib0170) 1998; 35 |
References_xml | – volume: 120 start-page: 1245 year: 2009 end-page: 1251 ident: bib0120 article-title: Quantitative study of the sleep onset period via detrended fluctuation analysis: normal vs. narcoleptic subjects publication-title: Clin. Neurophysiol. – volume: 3 start-page: 179 year: 1995 end-page: 188 ident: bib0030 article-title: Biological systems: stochastic deterministic or both publication-title: Open Syst. Inf. Dyn. – volume: 109 start-page: 339 year: 2012 end-page: 345 ident: bib0060 article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal publication-title: Comput. Methods Programs Biomed. – volume: 54 start-page: 840 year: 2007 end-page: 846 ident: bib0115 article-title: Detrended fluctuation analysis of EEG as a measure of depth of anesthesia publication-title: IEEE Trans. Biomed. Eng. – year: 1984 ident: bib0160 article-title: Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics – volume: 1 start-page: 9 year: 2007 ident: bib0035 article-title: Methods of electroencephalographic signal analysis for detection of small hidden changes publication-title: Nonlinear Biomed. Phys. – volume: 229 start-page: 101 year: 2013 end-page: 115 ident: bib0190 article-title: Advances in multimodal neuroimaging: hybrid MR-PET and MR-PET-EEG at 3 publication-title: J. Magn. Reson. – volume: 105 start-page: 65 year: 2001 end-page: 75 ident: bib0040 article-title: Wavelet entropy: a new tool for analysis of short duration brain electrical signals publication-title: J. Neurosci. Methods – volume: 3 start-page: 42 year: 2013 end-page: 47 ident: bib0175 article-title: A hybrid expert tool for the diagnosis of depression publication-title: J. Med. Imaging Health Inf. – volume: 49 start-page: 1685 year: 1994 end-page: 1689 ident: bib0045 article-title: Mosaic organization of DNA nucleotides publication-title: Phys. Rev. E – volume: 116 start-page: 2266 year: 2005 end-page: 2301 ident: bib0025 article-title: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field publication-title: Clin. Neurophysiol. – volume: 55 start-page: 155 year: 2010 end-page: 161 ident: bib0140 article-title: Spectral features of EEG in depression publication-title: Biomeditzinische Technik – volume: 118 start-page: 940 year: 2007 end-page: 950 ident: bib0050 article-title: Characterization of the sleep EEG in acutely depressed men using detrended fluctuation analysis publication-title: Clin. Neurophysiol. – year: 2008 ident: bib0005 article-title: The Global Burden of Disease: 2004 Update – volume: 67 start-page: 032902 year: 2003 ident: bib0150 article-title: Interpretation of scaling properties of electro-encephalographic fluctuations via spectral analysis and underlying physiology publication-title: Phys. Rev. E – volume: 384 start-page: 429 year: 2007 end-page: 438 ident: bib0075 article-title: Detrended fluctuation analysis of heart intrabeat dynamics publication-title: Phys. A – volume: 326 start-page: 787 year: 2003 end-page: 840 ident: bib0020 article-title: Is there chaos in the brain? II. Experimental evidence and related models publication-title: C. R. Biol. – volume: 5 start-page: 82 year: 1995 end-page: 87 ident: bib0065 article-title: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series publication-title: Chaos – volume: 76 start-page: 559 year: 2008 end-page: 564 ident: bib0165 article-title: Electroencephalographic differences between depressed and control subjects: an aspect of interdependence analysis publication-title: Brain Res. Bull. – volume: 106 start-page: 1614 year: 2009 end-page: 1619 ident: bib0095 article-title: Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease publication-title: PNAS – volume: 130 start-page: 549 year: 2005 end-page: 558 ident: bib0110 article-title: Long-range temporal correlations in electroencephalographic oscillations: relation to topography, frequency band, age and gender publication-title: Neuroscience – volume: 3 start-page: 116 year: 2012 ident: bib0105 article-title: A trade-off study revealing nested timescales of constraint publication-title: Front. Physiol. – volume: 55 start-page: 2171 year: 2008 end-page: 2179 ident: bib0130 article-title: A study on the possible usefulness of detrended fluctuation analysis of the electroencephalogram background activity in Alzheimer's disease publication-title: IEEE Trans. Biomed. Eng. – volume: 47 start-page: 1291 year: 2009 end-page: 1299 ident: bib0010 article-title: Electroencephalographic spectral asymmetry index for detection of depression publication-title: Med. Biol. Eng. Comput. – volume: 56 start-page: 1564 year: 2009 end-page: 1573 ident: bib0100 article-title: Stratification pattern of static and scale-Invariant dynamic measures of heartbeat fluctuations across sleep stages in young and elderly publication-title: IEEE Trans. Biomed. Eng. – volume: 56 start-page: 675 year: 2009 end-page: 684 ident: bib0090 article-title: Local scale exponents of blood pressure and heart rate variability by detrended fluctuation analysis: effects of posture, exercise, and aging publication-title: IEEE Trans. Biomed. Eng. – reference: H. Hinrikus, M. Bachmann, J. Lass, et al., Method and device for determining depressive disorders by measuring bioelectromagnetic signals of the brain, US2009/0054801 (2009). – volume: 35 start-page: 607 year: 1998 end-page: 614 ident: bib0170 article-title: Anterior electrophysiological asymmetries emotion, and depression: conceptual and methodological conundrums publication-title: Psychophysiology – volume: 12 start-page: 016018 year: 2015 ident: bib0180 article-title: A hybrid feature selection approach for the early diagnosis of Alzheimer's disease publication-title: J. Neural Eng. – volume: 61 start-page: 1756 year: 2014 end-page: 1764 ident: bib0125 article-title: Abnormal dynamics of EEG oscillations in schizophrenia patients on multiple time scales publication-title: IEEE Trans. Biomed. Eng. – volume: 55 start-page: 2509 year: 2008 end-page: 2518 ident: bib0080 article-title: Detrended fluctuation analysis of intracranial pressure predicts outcome following traumatic brain injury publication-title: IEEE Trans. Biomed. Eng. – volume: 329 start-page: 130 year: 2004 end-page: 135 ident: bib0135 article-title: Detrended fluctuation analysis of human brain electroencephalogram publication-title: Phys. Lett. A – volume: 118 start-page: 2489 year: 2007 end-page: 2496 ident: bib0055 article-title: Detrended fluctuation analysis of resting EEG in depressed outpatients and healthy controls publication-title: Clin. Neurophysiol. – volume: 64 start-page: 111 year: 2001 end-page: 114 ident: bib0145 article-title: Effect of trends on detrended fluctuation analysis publication-title: Phys. Rev. E – volume: 8 start-page: 373 year: 2014 ident: bib0185 article-title: Hybrid fNIRS-EEG based classification of auditory and visual perception processes publication-title: Front. Neurosci. – volume: 16 start-page: 380 year: 2008 end-page: 389 ident: bib0085 article-title: Investigating scale invariant dynamics in minimum toe clearance variability of the young and elderly during treadmill walking publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 25 start-page: 10131 year: 2005 end-page: 10137 ident: bib0070 article-title: Breakdown of long-range temporal correlations in theta oscillations in patients with major depressive disorder publication-title: J. Neurosci. – volume: 8 start-page: S42 year: 2007 ident: bib0155 article-title: Nonlinear properties of electroencephalograms during nocturnal sleep of narcoleptic patients publication-title: Sleep Med. – volume: 64 start-page: 111 year: 2001 ident: 10.1016/j.bspc.2016.09.010_bib0145 article-title: Effect of trends on detrended fluctuation analysis publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.011114 – volume: 12 start-page: 016018 year: 2015 ident: 10.1016/j.bspc.2016.09.010_bib0180 article-title: A hybrid feature selection approach for the early diagnosis of Alzheimer's disease publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/1/016018 – volume: 56 start-page: 1564 year: 2009 ident: 10.1016/j.bspc.2016.09.010_bib0100 article-title: Stratification pattern of static and scale-Invariant dynamic measures of heartbeat fluctuations across sleep stages in young and elderly publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2014819 – volume: 56 start-page: 675 year: 2009 ident: 10.1016/j.bspc.2016.09.010_bib0090 article-title: Local scale exponents of blood pressure and heart rate variability by detrended fluctuation analysis: effects of posture, exercise, and aging publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2005949 – volume: 1 start-page: 9 issue: 1 year: 2007 ident: 10.1016/j.bspc.2016.09.010_bib0035 article-title: Methods of electroencephalographic signal analysis for detection of small hidden changes publication-title: Nonlinear Biomed. Phys. doi: 10.1186/1753-4631-1-9 – volume: 106 start-page: 1614 year: 2009 ident: 10.1016/j.bspc.2016.09.010_bib0095 article-title: Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease publication-title: PNAS doi: 10.1073/pnas.0811699106 – volume: 3 start-page: 42 year: 2013 ident: 10.1016/j.bspc.2016.09.010_bib0175 article-title: A hybrid expert tool for the diagnosis of depression publication-title: J. Med. Imaging Health Inf. doi: 10.1166/jmihi.2013.1126 – volume: 118 start-page: 940 year: 2007 ident: 10.1016/j.bspc.2016.09.010_bib0050 article-title: Characterization of the sleep EEG in acutely depressed men using detrended fluctuation analysis publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2007.01.003 – volume: 120 start-page: 1245 year: 2009 ident: 10.1016/j.bspc.2016.09.010_bib0120 article-title: Quantitative study of the sleep onset period via detrended fluctuation analysis: normal vs. narcoleptic subjects publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2009.04.018 – volume: 130 start-page: 549 year: 2005 ident: 10.1016/j.bspc.2016.09.010_bib0110 article-title: Long-range temporal correlations in electroencephalographic oscillations: relation to topography, frequency band, age and gender publication-title: Neuroscience doi: 10.1016/j.neuroscience.2004.10.007 – volume: 55 start-page: 2509 year: 2008 ident: 10.1016/j.bspc.2016.09.010_bib0080 article-title: Detrended fluctuation analysis of intracranial pressure predicts outcome following traumatic brain injury publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2001286 – volume: 8 start-page: 373 year: 2014 ident: 10.1016/j.bspc.2016.09.010_bib0185 article-title: Hybrid fNIRS-EEG based classification of auditory and visual perception processes publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00373 – volume: 118 start-page: 2489 year: 2007 ident: 10.1016/j.bspc.2016.09.010_bib0055 article-title: Detrended fluctuation analysis of resting EEG in depressed outpatients and healthy controls publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2007.08.001 – volume: 329 start-page: 130 year: 2004 ident: 10.1016/j.bspc.2016.09.010_bib0135 article-title: Detrended fluctuation analysis of human brain electroencephalogram publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2004.06.070 – volume: 47 start-page: 1291 year: 2009 ident: 10.1016/j.bspc.2016.09.010_bib0010 article-title: Electroencephalographic spectral asymmetry index for detection of depression publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-009-0554-9 – volume: 109 start-page: 339 year: 2012 ident: 10.1016/j.bspc.2016.09.010_bib0060 article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2012.10.008 – volume: 49 start-page: 1685 year: 1994 ident: 10.1016/j.bspc.2016.09.010_bib0045 article-title: Mosaic organization of DNA nucleotides publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.49.1685 – volume: 229 start-page: 101 year: 2013 ident: 10.1016/j.bspc.2016.09.010_bib0190 article-title: Advances in multimodal neuroimaging: hybrid MR-PET and MR-PET-EEG at 3T and 9.4T publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2012.11.027 – volume: 76 start-page: 559 year: 2008 ident: 10.1016/j.bspc.2016.09.010_bib0165 article-title: Electroencephalographic differences between depressed and control subjects: an aspect of interdependence analysis publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2008.05.001 – volume: 384 start-page: 429 year: 2007 ident: 10.1016/j.bspc.2016.09.010_bib0075 article-title: Detrended fluctuation analysis of heart intrabeat dynamics publication-title: Phys. A doi: 10.1016/j.physa.2007.05.022 – volume: 326 start-page: 787 year: 2003 ident: 10.1016/j.bspc.2016.09.010_bib0020 article-title: Is there chaos in the brain? II. Experimental evidence and related models publication-title: C. R. Biol. doi: 10.1016/j.crvi.2003.09.011 – volume: 54 start-page: 840 year: 2007 ident: 10.1016/j.bspc.2016.09.010_bib0115 article-title: Detrended fluctuation analysis of EEG as a measure of depth of anesthesia publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.893453 – volume: 61 start-page: 1756 year: 2014 ident: 10.1016/j.bspc.2016.09.010_bib0125 article-title: Abnormal dynamics of EEG oscillations in schizophrenia patients on multiple time scales publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2306424 – ident: 10.1016/j.bspc.2016.09.010_bib0015 – year: 1984 ident: 10.1016/j.bspc.2016.09.010_bib0160 – volume: 3 start-page: 179 year: 1995 ident: 10.1016/j.bspc.2016.09.010_bib0030 article-title: Biological systems: stochastic deterministic or both publication-title: Open Syst. Inf. Dyn. doi: 10.1007/BF02228814 – volume: 67 start-page: 032902 issue: 3 Pt. 1 year: 2003 ident: 10.1016/j.bspc.2016.09.010_bib0150 article-title: Interpretation of scaling properties of electro-encephalographic fluctuations via spectral analysis and underlying physiology publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.032902 – volume: 16 start-page: 380 year: 2008 ident: 10.1016/j.bspc.2016.09.010_bib0085 article-title: Investigating scale invariant dynamics in minimum toe clearance variability of the young and elderly during treadmill walking publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2008.925071 – volume: 25 start-page: 10131 year: 2005 ident: 10.1016/j.bspc.2016.09.010_bib0070 article-title: Breakdown of long-range temporal correlations in theta oscillations in patients with major depressive disorder publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3244-05.2005 – volume: 55 start-page: 2171 year: 2008 ident: 10.1016/j.bspc.2016.09.010_bib0130 article-title: A study on the possible usefulness of detrended fluctuation analysis of the electroencephalogram background activity in Alzheimer's disease publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.923145 – volume: 35 start-page: 607 year: 1998 ident: 10.1016/j.bspc.2016.09.010_bib0170 article-title: Anterior electrophysiological asymmetries emotion, and depression: conceptual and methodological conundrums publication-title: Psychophysiology doi: 10.1017/S0048577298000134 – volume: 8 start-page: S42 year: 2007 ident: 10.1016/j.bspc.2016.09.010_bib0155 article-title: Nonlinear properties of electroencephalograms during nocturnal sleep of narcoleptic patients publication-title: Sleep Med. doi: 10.1016/S1389-9457(07)70167-3 – volume: 3 start-page: 116 year: 2012 ident: 10.1016/j.bspc.2016.09.010_bib0105 article-title: A trade-off study revealing nested timescales of constraint publication-title: Front. Physiol. doi: 10.3389/fphys.2012.00116 – volume: 105 start-page: 65 year: 2001 ident: 10.1016/j.bspc.2016.09.010_bib0040 article-title: Wavelet entropy: a new tool for analysis of short duration brain electrical signals publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(00)00356-3 – volume: 5 start-page: 82 year: 1995 ident: 10.1016/j.bspc.2016.09.010_bib0065 article-title: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series publication-title: Chaos doi: 10.1063/1.166141 – volume: 55 start-page: 155 year: 2010 ident: 10.1016/j.bspc.2016.09.010_bib0140 article-title: Spectral features of EEG in depression publication-title: Biomeditzinische Technik doi: 10.1515/bmt.2010.011 – year: 2008 ident: 10.1016/j.bspc.2016.09.010_bib0005 – volume: 116 start-page: 2266 year: 2005 ident: 10.1016/j.bspc.2016.09.010_bib0025 article-title: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2005.06.011 |
SSID | ssj0048714 |
Score | 2.38047 |
Snippet | •Effectiveness of EEG spectral asymmetry index SASI to detect depression is confirmed.•Classification accuracy of linear SASI is comparable with that of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 391 |
SubjectTerms | Classification accuracy Detrended fluctuation analysis (DFA) Electroencephalography (EEG) Single channel Spectral asymmetry index (SASI) |
Title | Single channel EEG analysis for detection of depression |
URI | https://dx.doi.org/10.1016/j.bspc.2016.09.010 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sT5ixy8SVy7JE16HGNzKu4yB7uVJH2FyeiG1qt_u0majgmyg4dSKO9B-Zq-97V87wtCdymHFCQHAkxEhCUxEF1wTnpMRibhIHLvU_A6ScYz9jzn8xYaNLMwTlYZan9d0321Dle6Ac3uerHoTi2XTqT9OrGMwhuPuQl2Jtxaf_jeyDwsH_f-3i6YuOgwOFNrvPTn2tkYxon3OnVTtH81p62GMzpCh4Ep4n59M8eoBeUJOtjyDzxFYmpPS8BuereEJR4OH7EKLiPYslGcQ-WlViVeFXgjei3P0Gw0fBuMSdgJgRgaRRURuZAUoDBgO7w9YmlAJ7SgSqY6NZTllijnKiryQijFdKEiJhSjJuoZFqeCnqN2uSrhAmGm7SsKCdWWqbEiTqWSPBc9yjjTSnDeQXEDQWaCTbjbrWKZNXqw98zBljnYsijNLGwddL_JWdcmGTujeYNs9utRZ7aK78i7_GfeFdrvuV7s_5tco3b18QU3lklU-tYvlVu01396GU9-ALWcxmM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zHtSD-BPnzxy8SV3bJE16lLE5ddtlG-wWkvYVJqMbWq_-7SZpOybIDh5KobwH5Uv73tfyvS8I3ccMYhAMPKDc92gUgKczxryQCj-JGPDU-RQMR1F_Sl9nbNZAnXoWxsoqq9pf1nRXrasr7QrN9mo-b48Nl46E-ToxjMIZj-2gXcoItwb6j99rnYch5M7g20Z7NryanClFXvpzZX0Mg8iZndox2r-600bH6R2hw4oq4qfybo5RA_ITdLBhIHiK-NicFoDt-G4OC9ztPmNV2YxgQ0dxCoXTWuV4meG16jU_Q9Ned9Lpe9VWCF5CfL_weMoFAcgSMC3eHIFIQEckI0rEOk4ITQ1TTpWfpRlXiupM-ZQrShI_TGgQc3KOmvkyhwuEqTbvKEREG6pGsyAWSrCUh4QyqhVnrIWCGgKZVD7hdruKhawFYe_SwiYtbNKPpYGthR7WOavSJWNrNKuRlb_WWpoyviXv8p95d2ivPxkO5OBl9HaF9kPbmN1PlGvULD6-4MbQikLfusfmB4HJx_U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+channel+EEG+analysis+for+detection+of+depression&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Bachmann%2C+Maie&rft.au=Lass%2C+Jaanus&rft.au=Hinrikus%2C+Hiie&rft.date=2017-01-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=31&rft.spage=391&rft.epage=397&rft_id=info:doi/10.1016%2Fj.bspc.2016.09.010&rft.externalDocID=S1746809416301367 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |