Single channel EEG analysis for detection of depression

•Effectiveness of EEG spectral asymmetry index SASI to detect depression is confirmed.•Classification accuracy of linear SASI is comparable with that of nonlinear DFA.•Combination of SASI and DFA in single channel EEG provides accuracy of 91%. This study is aimed at finding a simple method for detec...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 31; pp. 391 - 397
Main Authors Bachmann, Maie, Lass, Jaanus, Hinrikus, Hiie
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2017
Subjects
Online AccessGet full text
ISSN1746-8094
DOI10.1016/j.bspc.2016.09.010

Cover

Abstract •Effectiveness of EEG spectral asymmetry index SASI to detect depression is confirmed.•Classification accuracy of linear SASI is comparable with that of nonlinear DFA.•Combination of SASI and DFA in single channel EEG provides accuracy of 91%. This study is aimed at finding a simple method for detection of depression based on the analysis of single channel short-term EEG signals. The accuracy of linear, spectral asymmetry index (SASI), and nonlinear, detrended fluctuation analysis (DFA), methods for differentiating depressive and healthy subjects was compared. The eyes closed EEG was recorded from 18 common reference (Cz) channels for 34 subjects (17 depressive and 17 control). The signals were stored at 400Hz sampling frequency and digitally filtered with cutoff frequencies at 0.5Hz and at 40Hz. The first 5min of each recording was selected for further analysis. The experiments indicated maximum difference for SASI values in channel Pz and for DFA values in channels Pz and O2. Therefore, channel Pz was selected for comparison of two methods. The results of statistical analysis show that SASI values are significantly higher for depressive than for control group (p=3.577e–05), while DFA values are significantly lower for depressive group (p=0.033). SASI has superior discrimination ability with classification accuracy of 76.5%, while the classification accuracy of DFA was 70.6%. Linear combination of SASI and DFA resulted in 91.2% classification accuracy. Our results demonstrate that the analysis of single channel signal can provide high accuracy of differentiation depression EEG.
AbstractList •Effectiveness of EEG spectral asymmetry index SASI to detect depression is confirmed.•Classification accuracy of linear SASI is comparable with that of nonlinear DFA.•Combination of SASI and DFA in single channel EEG provides accuracy of 91%. This study is aimed at finding a simple method for detection of depression based on the analysis of single channel short-term EEG signals. The accuracy of linear, spectral asymmetry index (SASI), and nonlinear, detrended fluctuation analysis (DFA), methods for differentiating depressive and healthy subjects was compared. The eyes closed EEG was recorded from 18 common reference (Cz) channels for 34 subjects (17 depressive and 17 control). The signals were stored at 400Hz sampling frequency and digitally filtered with cutoff frequencies at 0.5Hz and at 40Hz. The first 5min of each recording was selected for further analysis. The experiments indicated maximum difference for SASI values in channel Pz and for DFA values in channels Pz and O2. Therefore, channel Pz was selected for comparison of two methods. The results of statistical analysis show that SASI values are significantly higher for depressive than for control group (p=3.577e–05), while DFA values are significantly lower for depressive group (p=0.033). SASI has superior discrimination ability with classification accuracy of 76.5%, while the classification accuracy of DFA was 70.6%. Linear combination of SASI and DFA resulted in 91.2% classification accuracy. Our results demonstrate that the analysis of single channel signal can provide high accuracy of differentiation depression EEG.
Author Bachmann, Maie
Lass, Jaanus
Hinrikus, Hiie
Author_xml – sequence: 1
  givenname: Maie
  surname: Bachmann
  fullname: Bachmann, Maie
  email: maie@cb.ttu.ee
– sequence: 2
  givenname: Jaanus
  surname: Lass
  fullname: Lass, Jaanus
– sequence: 3
  givenname: Hiie
  surname: Hinrikus
  fullname: Hinrikus, Hiie
BookMark eNp9kLFOwzAQhj0UibbwAkx5gYRzbGJHYkFVKUiVGIDZcuwzOApOZUdIfXsclalDh9PdP3yn-25FFmEMSMgdhYoCbe77qksHU9V5rqCtgMKCLKngTSmh5ddklVIPwKWgfEnEuw9fAxbmW4eAQ7Hd7god9HBMPhVujIXFCc3kx1CMLodDxJRyuiFXTg8Jb__7mnw-bz82L-X-bfe6edqXhgFMpbBCMkRnEMRDLioNdg1zTMu2aw3jVsraanDWCa155zRwoTkzUBtOW8HWRJ72mjimFNEp4yc93zNF7QdFQc3SqleztJqlFbQqS2e0PkMP0f_oeLwMPZ4gzFK_HqNKxmMwaH3Mf1B29JfwP0DcdUk
CitedBy_id crossref_primary_10_1016_j_bspc_2023_104873
crossref_primary_10_1016_j_jad_2023_06_007
crossref_primary_10_1038_s41598_024_80448_5
crossref_primary_10_3389_fpsyt_2022_970993
crossref_primary_10_1109_ACCESS_2020_3046993
crossref_primary_10_1063_5_0213044
crossref_primary_10_1007_s13246_020_00897_w
crossref_primary_10_1007_s12559_022_10042_2
crossref_primary_10_1109_ACCESS_2019_2901950
crossref_primary_10_30699_jergon_9_2_69
crossref_primary_10_1109_TBCAS_2023_3292237
crossref_primary_10_4015_S1016237218500266
crossref_primary_10_1007_s00542_018_4075_z
crossref_primary_10_1016_j_csbj_2024_03_022
crossref_primary_10_54097_hset_v39i_6582
crossref_primary_10_1111_ejn_15800
crossref_primary_10_1016_j_heliyon_2023_e20684
crossref_primary_10_1177_1550059420965431
crossref_primary_10_1016_j_neubiorev_2019_07_021
crossref_primary_10_1016_j_bspc_2021_102755
crossref_primary_10_1016_j_ijmedinf_2019_103983
crossref_primary_10_1109_ACCESS_2023_3262930
crossref_primary_10_1016_j_artmed_2019_07_004
crossref_primary_10_1016_j_jneumeth_2020_108927
crossref_primary_10_3389_fnagi_2022_912283
crossref_primary_10_1016_j_bspc_2018_08_009
crossref_primary_10_1016_j_bspc_2018_11_009
crossref_primary_10_1109_JSEN_2024_3493960
crossref_primary_10_3390_s24237438
crossref_primary_10_1109_TAFFC_2019_2934412
crossref_primary_10_3390_e24020211
crossref_primary_10_3390_math10224177
crossref_primary_10_3389_fpsyg_2022_850159
crossref_primary_10_1016_j_ijpsycho_2020_11_013
crossref_primary_10_1002_jnr_24947
crossref_primary_10_1097_JOM_0000000000001622
crossref_primary_10_1080_00051144_2023_2297481
crossref_primary_10_1007_s11517_022_02647_4
crossref_primary_10_59883_ajp_55
crossref_primary_10_1038_s41598_019_42732_7
crossref_primary_10_1155_2020_6925107
crossref_primary_10_1515_bmt_2021_0232
crossref_primary_10_21122_2309_4923_2020_4_45_53
crossref_primary_10_1140_epjs_s11734_024_01453_3
crossref_primary_10_1109_TIM_2021_3094619
crossref_primary_10_1038_s41598_020_59264_0
crossref_primary_10_1109_JBHI_2024_3487012
crossref_primary_10_1007_s11571_020_09619_0
crossref_primary_10_1177_15500594211018545
crossref_primary_10_1108_IJPCC_09_2021_0216
crossref_primary_10_1109_JBHI_2020_3045718
crossref_primary_10_1093_cercor_bhae505
crossref_primary_10_1109_TAFFC_2022_3171782
crossref_primary_10_1109_TNSRE_2022_3221962
Cites_doi 10.1103/PhysRevE.64.011114
10.1088/1741-2560/12/1/016018
10.1109/TBME.2009.2014819
10.1109/TBME.2008.2005949
10.1186/1753-4631-1-9
10.1073/pnas.0811699106
10.1166/jmihi.2013.1126
10.1016/j.clinph.2007.01.003
10.1016/j.clinph.2009.04.018
10.1016/j.neuroscience.2004.10.007
10.1109/TBME.2008.2001286
10.3389/fnins.2014.00373
10.1016/j.clinph.2007.08.001
10.1016/j.physleta.2004.06.070
10.1007/s11517-009-0554-9
10.1016/j.cmpb.2012.10.008
10.1103/PhysRevE.49.1685
10.1016/j.jmr.2012.11.027
10.1016/j.brainresbull.2008.05.001
10.1016/j.physa.2007.05.022
10.1016/j.crvi.2003.09.011
10.1109/TBME.2007.893453
10.1109/TBME.2014.2306424
10.1007/BF02228814
10.1103/PhysRevE.67.032902
10.1109/TNSRE.2008.925071
10.1523/JNEUROSCI.3244-05.2005
10.1109/TBME.2008.923145
10.1017/S0048577298000134
10.1016/S1389-9457(07)70167-3
10.3389/fphys.2012.00116
10.1016/S0165-0270(00)00356-3
10.1063/1.166141
10.1515/bmt.2010.011
10.1016/j.clinph.2005.06.011
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2016.09.010
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 397
ExternalDocumentID 10_1016_j_bspc_2016_09_010
S1746809416301367
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-7d783eefce075e0718ceb63f3a89b9c34d882da0fdf7aa4bfa047a43c02c41973
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 23:04:11 EDT 2025
Tue Jul 01 01:34:02 EDT 2025
Mon Nov 18 09:13:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Single channel
Spectral asymmetry index (SASI)
Electroencephalography (EEG)
Classification accuracy
Detrended fluctuation analysis (DFA)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-7d783eefce075e0718ceb63f3a89b9c34d882da0fdf7aa4bfa047a43c02c41973
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2016_09_010
crossref_primary_10_1016_j_bspc_2016_09_010
elsevier_sciencedirect_doi_10_1016_j_bspc_2016_09_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationTitle Biomedical signal processing and control
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rosso, Blanco, Yordanova (bib0040) 2001; 105
Nikulin, Brismar (bib0110) 2005; 130
Korn, Faure (bib0020) 2003; 326
Robinson (bib0150) 2003; 67
Sun, Tang, Lim (bib0125) 2014; 61
Hu, Ivanov, Chen (bib0145) 2001; 64
Peng, Buldyrev, Havlin (bib0045) 1994; 49
Khandoker, Taylor, Karmakar (bib0085) 2008; 16
Abásolo, Hornero, Escudero (bib0130) 2008; 55
Wijnants, Cox, Hasselman (bib0105) 2012; 3
Shah, Oros-Peusquens, Arrubla (bib0190) 2013; 229
Peng, Havlin, Stanley (bib0065) 1995; 5
Gallego-Jutglà, Solé-Casals, Vialatte (bib0180) 2015; 12
Hinrikus, Suhhova, Bachmann (bib0140) 2010; 55
Montroll, Shlesinger (bib0160) 1984
Hinrikus, Bachmann, Kalda (bib0035) 2007; 1
Jospin, Caminal, Jensen (bib0115) 2007; 54
Pan, Zheng, Wu (bib0135) 2004; 329
Linkenkaer-Hansen, Monto, Rytsälä (bib0070) 2005; 25
Misra, Chattopadhyay, Kanhar (bib0175) 2013; 3
Kim, Shin, Robinson (bib0120) 2009; 120
Stam (bib0025) 2005; 116
Leistedt, Dumont, Lanquart (bib0050) 2007; 118
Lee, Yang, Lee (bib0055) 2007; 118
Montez, Poil, Jones (bib0095) 2009; 106
Putze, Hesslinger, Tse (bib0185) 2014; 8
Sun, Li, Zhu (bib0165) 2008; 76
Hinrikus, Suhhova, Bachmann (bib0010) 2009; 47
Davidson (bib0170) 1998; 35
World Health Organization (bib0005) 2008
Rodriguez, Echeverria, Alvarez-Ramirez (bib0075) 2007; 384
Castiglioni, Parati, Civijian (bib0090) 2009; 56
H. Hinrikus, M. Bachmann, J. Lass, et al., Method and device for determining depressive disorders by measuring bioelectromagnetic signals of the brain, US2009/0054801 (2009).
Czegledy, Katz (bib0030) 1995; 3
Burr, Kirkness, Mitchell (bib0080) 2008; 55
Hosseinifard, Moradi, Rostami (bib0060) 2012; 109
Kim, Shin (bib0155) 2007; 8
Schmitt, Stein, Ch Ivanov (bib0100) 2009; 56
Montroll (10.1016/j.bspc.2016.09.010_bib0160) 1984
Leistedt (10.1016/j.bspc.2016.09.010_bib0050) 2007; 118
Pan (10.1016/j.bspc.2016.09.010_bib0135) 2004; 329
Kim (10.1016/j.bspc.2016.09.010_bib0120) 2009; 120
Kim (10.1016/j.bspc.2016.09.010_bib0155) 2007; 8
Jospin (10.1016/j.bspc.2016.09.010_bib0115) 2007; 54
Shah (10.1016/j.bspc.2016.09.010_bib0190) 2013; 229
Czegledy (10.1016/j.bspc.2016.09.010_bib0030) 1995; 3
Rosso (10.1016/j.bspc.2016.09.010_bib0040) 2001; 105
Linkenkaer-Hansen (10.1016/j.bspc.2016.09.010_bib0070) 2005; 25
Abásolo (10.1016/j.bspc.2016.09.010_bib0130) 2008; 55
Hinrikus (10.1016/j.bspc.2016.09.010_bib0010) 2009; 47
Robinson (10.1016/j.bspc.2016.09.010_bib0150) 2003; 67
Schmitt (10.1016/j.bspc.2016.09.010_bib0100) 2009; 56
Montez (10.1016/j.bspc.2016.09.010_bib0095) 2009; 106
Castiglioni (10.1016/j.bspc.2016.09.010_bib0090) 2009; 56
Hosseinifard (10.1016/j.bspc.2016.09.010_bib0060) 2012; 109
Gallego-Jutglà (10.1016/j.bspc.2016.09.010_bib0180) 2015; 12
Peng (10.1016/j.bspc.2016.09.010_bib0045) 1994; 49
Khandoker (10.1016/j.bspc.2016.09.010_bib0085) 2008; 16
Sun (10.1016/j.bspc.2016.09.010_bib0125) 2014; 61
Hu (10.1016/j.bspc.2016.09.010_bib0145) 2001; 64
Korn (10.1016/j.bspc.2016.09.010_bib0020) 2003; 326
Sun (10.1016/j.bspc.2016.09.010_bib0165) 2008; 76
Rodriguez (10.1016/j.bspc.2016.09.010_bib0075) 2007; 384
Burr (10.1016/j.bspc.2016.09.010_bib0080) 2008; 55
World Health Organization (10.1016/j.bspc.2016.09.010_bib0005) 2008
Stam (10.1016/j.bspc.2016.09.010_bib0025) 2005; 116
Putze (10.1016/j.bspc.2016.09.010_bib0185) 2014; 8
Lee (10.1016/j.bspc.2016.09.010_bib0055) 2007; 118
Wijnants (10.1016/j.bspc.2016.09.010_bib0105) 2012; 3
Misra (10.1016/j.bspc.2016.09.010_bib0175) 2013; 3
Hinrikus (10.1016/j.bspc.2016.09.010_bib0035) 2007; 1
10.1016/j.bspc.2016.09.010_bib0015
Peng (10.1016/j.bspc.2016.09.010_bib0065) 1995; 5
Hinrikus (10.1016/j.bspc.2016.09.010_bib0140) 2010; 55
Nikulin (10.1016/j.bspc.2016.09.010_bib0110) 2005; 130
Davidson (10.1016/j.bspc.2016.09.010_bib0170) 1998; 35
References_xml – volume: 120
  start-page: 1245
  year: 2009
  end-page: 1251
  ident: bib0120
  article-title: Quantitative study of the sleep onset period via detrended fluctuation analysis: normal vs. narcoleptic subjects
  publication-title: Clin. Neurophysiol.
– volume: 3
  start-page: 179
  year: 1995
  end-page: 188
  ident: bib0030
  article-title: Biological systems: stochastic deterministic or both
  publication-title: Open Syst. Inf. Dyn.
– volume: 109
  start-page: 339
  year: 2012
  end-page: 345
  ident: bib0060
  article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal
  publication-title: Comput. Methods Programs Biomed.
– volume: 54
  start-page: 840
  year: 2007
  end-page: 846
  ident: bib0115
  article-title: Detrended fluctuation analysis of EEG as a measure of depth of anesthesia
  publication-title: IEEE Trans. Biomed. Eng.
– year: 1984
  ident: bib0160
  article-title: Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics
– volume: 1
  start-page: 9
  year: 2007
  ident: bib0035
  article-title: Methods of electroencephalographic signal analysis for detection of small hidden changes
  publication-title: Nonlinear Biomed. Phys.
– volume: 229
  start-page: 101
  year: 2013
  end-page: 115
  ident: bib0190
  article-title: Advances in multimodal neuroimaging: hybrid MR-PET and MR-PET-EEG at 3
  publication-title: J. Magn. Reson.
– volume: 105
  start-page: 65
  year: 2001
  end-page: 75
  ident: bib0040
  article-title: Wavelet entropy: a new tool for analysis of short duration brain electrical signals
  publication-title: J. Neurosci. Methods
– volume: 3
  start-page: 42
  year: 2013
  end-page: 47
  ident: bib0175
  article-title: A hybrid expert tool for the diagnosis of depression
  publication-title: J. Med. Imaging Health Inf.
– volume: 49
  start-page: 1685
  year: 1994
  end-page: 1689
  ident: bib0045
  article-title: Mosaic organization of DNA nucleotides
  publication-title: Phys. Rev. E
– volume: 116
  start-page: 2266
  year: 2005
  end-page: 2301
  ident: bib0025
  article-title: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field
  publication-title: Clin. Neurophysiol.
– volume: 55
  start-page: 155
  year: 2010
  end-page: 161
  ident: bib0140
  article-title: Spectral features of EEG in depression
  publication-title: Biomeditzinische Technik
– volume: 118
  start-page: 940
  year: 2007
  end-page: 950
  ident: bib0050
  article-title: Characterization of the sleep EEG in acutely depressed men using detrended fluctuation analysis
  publication-title: Clin. Neurophysiol.
– year: 2008
  ident: bib0005
  article-title: The Global Burden of Disease: 2004 Update
– volume: 67
  start-page: 032902
  year: 2003
  ident: bib0150
  article-title: Interpretation of scaling properties of electro-encephalographic fluctuations via spectral analysis and underlying physiology
  publication-title: Phys. Rev. E
– volume: 384
  start-page: 429
  year: 2007
  end-page: 438
  ident: bib0075
  article-title: Detrended fluctuation analysis of heart intrabeat dynamics
  publication-title: Phys. A
– volume: 326
  start-page: 787
  year: 2003
  end-page: 840
  ident: bib0020
  article-title: Is there chaos in the brain? II. Experimental evidence and related models
  publication-title: C. R. Biol.
– volume: 5
  start-page: 82
  year: 1995
  end-page: 87
  ident: bib0065
  article-title: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series
  publication-title: Chaos
– volume: 76
  start-page: 559
  year: 2008
  end-page: 564
  ident: bib0165
  article-title: Electroencephalographic differences between depressed and control subjects: an aspect of interdependence analysis
  publication-title: Brain Res. Bull.
– volume: 106
  start-page: 1614
  year: 2009
  end-page: 1619
  ident: bib0095
  article-title: Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease
  publication-title: PNAS
– volume: 130
  start-page: 549
  year: 2005
  end-page: 558
  ident: bib0110
  article-title: Long-range temporal correlations in electroencephalographic oscillations: relation to topography, frequency band, age and gender
  publication-title: Neuroscience
– volume: 3
  start-page: 116
  year: 2012
  ident: bib0105
  article-title: A trade-off study revealing nested timescales of constraint
  publication-title: Front. Physiol.
– volume: 55
  start-page: 2171
  year: 2008
  end-page: 2179
  ident: bib0130
  article-title: A study on the possible usefulness of detrended fluctuation analysis of the electroencephalogram background activity in Alzheimer's disease
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 47
  start-page: 1291
  year: 2009
  end-page: 1299
  ident: bib0010
  article-title: Electroencephalographic spectral asymmetry index for detection of depression
  publication-title: Med. Biol. Eng. Comput.
– volume: 56
  start-page: 1564
  year: 2009
  end-page: 1573
  ident: bib0100
  article-title: Stratification pattern of static and scale-Invariant dynamic measures of heartbeat fluctuations across sleep stages in young and elderly
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 56
  start-page: 675
  year: 2009
  end-page: 684
  ident: bib0090
  article-title: Local scale exponents of blood pressure and heart rate variability by detrended fluctuation analysis: effects of posture, exercise, and aging
  publication-title: IEEE Trans. Biomed. Eng.
– reference: H. Hinrikus, M. Bachmann, J. Lass, et al., Method and device for determining depressive disorders by measuring bioelectromagnetic signals of the brain, US2009/0054801 (2009).
– volume: 35
  start-page: 607
  year: 1998
  end-page: 614
  ident: bib0170
  article-title: Anterior electrophysiological asymmetries emotion, and depression: conceptual and methodological conundrums
  publication-title: Psychophysiology
– volume: 12
  start-page: 016018
  year: 2015
  ident: bib0180
  article-title: A hybrid feature selection approach for the early diagnosis of Alzheimer's disease
  publication-title: J. Neural Eng.
– volume: 61
  start-page: 1756
  year: 2014
  end-page: 1764
  ident: bib0125
  article-title: Abnormal dynamics of EEG oscillations in schizophrenia patients on multiple time scales
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 55
  start-page: 2509
  year: 2008
  end-page: 2518
  ident: bib0080
  article-title: Detrended fluctuation analysis of intracranial pressure predicts outcome following traumatic brain injury
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 329
  start-page: 130
  year: 2004
  end-page: 135
  ident: bib0135
  article-title: Detrended fluctuation analysis of human brain electroencephalogram
  publication-title: Phys. Lett. A
– volume: 118
  start-page: 2489
  year: 2007
  end-page: 2496
  ident: bib0055
  article-title: Detrended fluctuation analysis of resting EEG in depressed outpatients and healthy controls
  publication-title: Clin. Neurophysiol.
– volume: 64
  start-page: 111
  year: 2001
  end-page: 114
  ident: bib0145
  article-title: Effect of trends on detrended fluctuation analysis
  publication-title: Phys. Rev. E
– volume: 8
  start-page: 373
  year: 2014
  ident: bib0185
  article-title: Hybrid fNIRS-EEG based classification of auditory and visual perception processes
  publication-title: Front. Neurosci.
– volume: 16
  start-page: 380
  year: 2008
  end-page: 389
  ident: bib0085
  article-title: Investigating scale invariant dynamics in minimum toe clearance variability of the young and elderly during treadmill walking
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 25
  start-page: 10131
  year: 2005
  end-page: 10137
  ident: bib0070
  article-title: Breakdown of long-range temporal correlations in theta oscillations in patients with major depressive disorder
  publication-title: J. Neurosci.
– volume: 8
  start-page: S42
  year: 2007
  ident: bib0155
  article-title: Nonlinear properties of electroencephalograms during nocturnal sleep of narcoleptic patients
  publication-title: Sleep Med.
– volume: 64
  start-page: 111
  year: 2001
  ident: 10.1016/j.bspc.2016.09.010_bib0145
  article-title: Effect of trends on detrended fluctuation analysis
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.011114
– volume: 12
  start-page: 016018
  year: 2015
  ident: 10.1016/j.bspc.2016.09.010_bib0180
  article-title: A hybrid feature selection approach for the early diagnosis of Alzheimer's disease
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/1/016018
– volume: 56
  start-page: 1564
  year: 2009
  ident: 10.1016/j.bspc.2016.09.010_bib0100
  article-title: Stratification pattern of static and scale-Invariant dynamic measures of heartbeat fluctuations across sleep stages in young and elderly
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2014819
– volume: 56
  start-page: 675
  year: 2009
  ident: 10.1016/j.bspc.2016.09.010_bib0090
  article-title: Local scale exponents of blood pressure and heart rate variability by detrended fluctuation analysis: effects of posture, exercise, and aging
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2005949
– volume: 1
  start-page: 9
  issue: 1
  year: 2007
  ident: 10.1016/j.bspc.2016.09.010_bib0035
  article-title: Methods of electroencephalographic signal analysis for detection of small hidden changes
  publication-title: Nonlinear Biomed. Phys.
  doi: 10.1186/1753-4631-1-9
– volume: 106
  start-page: 1614
  year: 2009
  ident: 10.1016/j.bspc.2016.09.010_bib0095
  article-title: Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease
  publication-title: PNAS
  doi: 10.1073/pnas.0811699106
– volume: 3
  start-page: 42
  year: 2013
  ident: 10.1016/j.bspc.2016.09.010_bib0175
  article-title: A hybrid expert tool for the diagnosis of depression
  publication-title: J. Med. Imaging Health Inf.
  doi: 10.1166/jmihi.2013.1126
– volume: 118
  start-page: 940
  year: 2007
  ident: 10.1016/j.bspc.2016.09.010_bib0050
  article-title: Characterization of the sleep EEG in acutely depressed men using detrended fluctuation analysis
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.01.003
– volume: 120
  start-page: 1245
  year: 2009
  ident: 10.1016/j.bspc.2016.09.010_bib0120
  article-title: Quantitative study of the sleep onset period via detrended fluctuation analysis: normal vs. narcoleptic subjects
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.04.018
– volume: 130
  start-page: 549
  year: 2005
  ident: 10.1016/j.bspc.2016.09.010_bib0110
  article-title: Long-range temporal correlations in electroencephalographic oscillations: relation to topography, frequency band, age and gender
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2004.10.007
– volume: 55
  start-page: 2509
  year: 2008
  ident: 10.1016/j.bspc.2016.09.010_bib0080
  article-title: Detrended fluctuation analysis of intracranial pressure predicts outcome following traumatic brain injury
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2001286
– volume: 8
  start-page: 373
  year: 2014
  ident: 10.1016/j.bspc.2016.09.010_bib0185
  article-title: Hybrid fNIRS-EEG based classification of auditory and visual perception processes
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00373
– volume: 118
  start-page: 2489
  year: 2007
  ident: 10.1016/j.bspc.2016.09.010_bib0055
  article-title: Detrended fluctuation analysis of resting EEG in depressed outpatients and healthy controls
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.08.001
– volume: 329
  start-page: 130
  year: 2004
  ident: 10.1016/j.bspc.2016.09.010_bib0135
  article-title: Detrended fluctuation analysis of human brain electroencephalogram
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2004.06.070
– volume: 47
  start-page: 1291
  year: 2009
  ident: 10.1016/j.bspc.2016.09.010_bib0010
  article-title: Electroencephalographic spectral asymmetry index for detection of depression
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-009-0554-9
– volume: 109
  start-page: 339
  year: 2012
  ident: 10.1016/j.bspc.2016.09.010_bib0060
  article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2012.10.008
– volume: 49
  start-page: 1685
  year: 1994
  ident: 10.1016/j.bspc.2016.09.010_bib0045
  article-title: Mosaic organization of DNA nucleotides
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.49.1685
– volume: 229
  start-page: 101
  year: 2013
  ident: 10.1016/j.bspc.2016.09.010_bib0190
  article-title: Advances in multimodal neuroimaging: hybrid MR-PET and MR-PET-EEG at 3T and 9.4T
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2012.11.027
– volume: 76
  start-page: 559
  year: 2008
  ident: 10.1016/j.bspc.2016.09.010_bib0165
  article-title: Electroencephalographic differences between depressed and control subjects: an aspect of interdependence analysis
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2008.05.001
– volume: 384
  start-page: 429
  year: 2007
  ident: 10.1016/j.bspc.2016.09.010_bib0075
  article-title: Detrended fluctuation analysis of heart intrabeat dynamics
  publication-title: Phys. A
  doi: 10.1016/j.physa.2007.05.022
– volume: 326
  start-page: 787
  year: 2003
  ident: 10.1016/j.bspc.2016.09.010_bib0020
  article-title: Is there chaos in the brain? II. Experimental evidence and related models
  publication-title: C. R. Biol.
  doi: 10.1016/j.crvi.2003.09.011
– volume: 54
  start-page: 840
  year: 2007
  ident: 10.1016/j.bspc.2016.09.010_bib0115
  article-title: Detrended fluctuation analysis of EEG as a measure of depth of anesthesia
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.893453
– volume: 61
  start-page: 1756
  year: 2014
  ident: 10.1016/j.bspc.2016.09.010_bib0125
  article-title: Abnormal dynamics of EEG oscillations in schizophrenia patients on multiple time scales
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2306424
– ident: 10.1016/j.bspc.2016.09.010_bib0015
– year: 1984
  ident: 10.1016/j.bspc.2016.09.010_bib0160
– volume: 3
  start-page: 179
  year: 1995
  ident: 10.1016/j.bspc.2016.09.010_bib0030
  article-title: Biological systems: stochastic deterministic or both
  publication-title: Open Syst. Inf. Dyn.
  doi: 10.1007/BF02228814
– volume: 67
  start-page: 032902
  issue: 3 Pt. 1
  year: 2003
  ident: 10.1016/j.bspc.2016.09.010_bib0150
  article-title: Interpretation of scaling properties of electro-encephalographic fluctuations via spectral analysis and underlying physiology
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.032902
– volume: 16
  start-page: 380
  year: 2008
  ident: 10.1016/j.bspc.2016.09.010_bib0085
  article-title: Investigating scale invariant dynamics in minimum toe clearance variability of the young and elderly during treadmill walking
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2008.925071
– volume: 25
  start-page: 10131
  year: 2005
  ident: 10.1016/j.bspc.2016.09.010_bib0070
  article-title: Breakdown of long-range temporal correlations in theta oscillations in patients with major depressive disorder
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3244-05.2005
– volume: 55
  start-page: 2171
  year: 2008
  ident: 10.1016/j.bspc.2016.09.010_bib0130
  article-title: A study on the possible usefulness of detrended fluctuation analysis of the electroencephalogram background activity in Alzheimer's disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.923145
– volume: 35
  start-page: 607
  year: 1998
  ident: 10.1016/j.bspc.2016.09.010_bib0170
  article-title: Anterior electrophysiological asymmetries emotion, and depression: conceptual and methodological conundrums
  publication-title: Psychophysiology
  doi: 10.1017/S0048577298000134
– volume: 8
  start-page: S42
  year: 2007
  ident: 10.1016/j.bspc.2016.09.010_bib0155
  article-title: Nonlinear properties of electroencephalograms during nocturnal sleep of narcoleptic patients
  publication-title: Sleep Med.
  doi: 10.1016/S1389-9457(07)70167-3
– volume: 3
  start-page: 116
  year: 2012
  ident: 10.1016/j.bspc.2016.09.010_bib0105
  article-title: A trade-off study revealing nested timescales of constraint
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2012.00116
– volume: 105
  start-page: 65
  year: 2001
  ident: 10.1016/j.bspc.2016.09.010_bib0040
  article-title: Wavelet entropy: a new tool for analysis of short duration brain electrical signals
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(00)00356-3
– volume: 5
  start-page: 82
  year: 1995
  ident: 10.1016/j.bspc.2016.09.010_bib0065
  article-title: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series
  publication-title: Chaos
  doi: 10.1063/1.166141
– volume: 55
  start-page: 155
  year: 2010
  ident: 10.1016/j.bspc.2016.09.010_bib0140
  article-title: Spectral features of EEG in depression
  publication-title: Biomeditzinische Technik
  doi: 10.1515/bmt.2010.011
– year: 2008
  ident: 10.1016/j.bspc.2016.09.010_bib0005
– volume: 116
  start-page: 2266
  year: 2005
  ident: 10.1016/j.bspc.2016.09.010_bib0025
  article-title: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2005.06.011
SSID ssj0048714
Score 2.38047
Snippet •Effectiveness of EEG spectral asymmetry index SASI to detect depression is confirmed.•Classification accuracy of linear SASI is comparable with that of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 391
SubjectTerms Classification accuracy
Detrended fluctuation analysis (DFA)
Electroencephalography (EEG)
Single channel
Spectral asymmetry index (SASI)
Title Single channel EEG analysis for detection of depression
URI https://dx.doi.org/10.1016/j.bspc.2016.09.010
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sT5ixy8SVy7JE16HGNzKu4yB7uVJH2FyeiG1qt_u0majgmyg4dSKO9B-Zq-97V87wtCdymHFCQHAkxEhCUxEF1wTnpMRibhIHLvU_A6ScYz9jzn8xYaNLMwTlYZan9d0321Dle6Ac3uerHoTi2XTqT9OrGMwhuPuQl2Jtxaf_jeyDwsH_f-3i6YuOgwOFNrvPTn2tkYxon3OnVTtH81p62GMzpCh4Ep4n59M8eoBeUJOtjyDzxFYmpPS8BuereEJR4OH7EKLiPYslGcQ-WlViVeFXgjei3P0Gw0fBuMSdgJgRgaRRURuZAUoDBgO7w9YmlAJ7SgSqY6NZTllijnKiryQijFdKEiJhSjJuoZFqeCnqN2uSrhAmGm7SsKCdWWqbEiTqWSPBc9yjjTSnDeQXEDQWaCTbjbrWKZNXqw98zBljnYsijNLGwddL_JWdcmGTujeYNs9utRZ7aK78i7_GfeFdrvuV7s_5tco3b18QU3lklU-tYvlVu01396GU9-ALWcxmM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zHtSD-BPnzxy8SV3bJE16lLE5ddtlG-wWkvYVJqMbWq_-7SZpOybIDh5KobwH5Uv73tfyvS8I3ccMYhAMPKDc92gUgKczxryQCj-JGPDU-RQMR1F_Sl9nbNZAnXoWxsoqq9pf1nRXrasr7QrN9mo-b48Nl46E-ToxjMIZj-2gXcoItwb6j99rnYch5M7g20Z7NryanClFXvpzZX0Mg8iZndox2r-600bH6R2hw4oq4qfybo5RA_ITdLBhIHiK-NicFoDt-G4OC9ztPmNV2YxgQ0dxCoXTWuV4meG16jU_Q9Ned9Lpe9VWCF5CfL_weMoFAcgSMC3eHIFIQEckI0rEOk4ITQ1TTpWfpRlXiupM-ZQrShI_TGgQc3KOmvkyhwuEqTbvKEREG6pGsyAWSrCUh4QyqhVnrIWCGgKZVD7hdruKhawFYe_SwiYtbNKPpYGthR7WOavSJWNrNKuRlb_WWpoyviXv8p95d2ivPxkO5OBl9HaF9kPbmN1PlGvULD6-4MbQikLfusfmB4HJx_U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+channel+EEG+analysis+for+detection+of+depression&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Bachmann%2C+Maie&rft.au=Lass%2C+Jaanus&rft.au=Hinrikus%2C+Hiie&rft.date=2017-01-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=31&rft.spage=391&rft.epage=397&rft_id=info:doi/10.1016%2Fj.bspc.2016.09.010&rft.externalDocID=S1746809416301367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon