Multi-channel content based image retrieval method for skin diseases using similarity network fusion and deep community analysis
•A new method for skin lesion image retrieval using multiple input channels is proposed.•Similarity network fusion solves the problem of dimensional imbalance among inputs.•Community-based search technique helps find strongly connected subjects within similarity networks.•The technique is applicable...
Saved in:
Published in | Biomedical signal processing and control Vol. 78; p. 103893 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 1746-8108 |
DOI | 10.1016/j.bspc.2022.103893 |
Cover
Abstract | •A new method for skin lesion image retrieval using multiple input channels is proposed.•Similarity network fusion solves the problem of dimensional imbalance among inputs.•Community-based search technique helps find strongly connected subjects within similarity networks.•The technique is applicable to complex clinical scenarios and produces state-of-the-art performance.
Content-based image retrieval (CBIR) could be an efficient diagnostic tool. Physicians could consult a CBIR system before making a diagnosis for a clinical case by retrieving a set of images with similar appearance and pathological diagnosis from a data archive. With access to various imaging modalities, physicians may want to match more than one image modality and non-image information. How to make full use of this diverse information is an important research question. In this paper, we propose a CBIR framework for skin diseases that incorporates multi-sourced information including dermoscopic images, clinical images, and meta information. The proposed framework fuses the multi-sourced features in mutual similarity level; thus, solving severe dimensional bias problems for image and non-image information. We then utilize a graph-based community analysis on similarity networks where similar images are strongly connected and help retrieve similar images with improved performance. Evaluations were carried out using two well-known skin datasets EDRA and ISIC 2019. The carefully designed framework demonstrates a substantial improvement in finding similar cases for different skin diseases with an average precision of 0.836, which is the state-of-the-art performance for retrieving skin disease types. In addition, the proposed framework is also applicable to scenarios with a single typed feature with improved performance. By integrating multi-sourced information from the same patient, the proposed CBIR system could be potentially used in complex clinical scenarios with a trustable performance benefitting from both abundant information and advanced community search technique. |
---|---|
AbstractList | •A new method for skin lesion image retrieval using multiple input channels is proposed.•Similarity network fusion solves the problem of dimensional imbalance among inputs.•Community-based search technique helps find strongly connected subjects within similarity networks.•The technique is applicable to complex clinical scenarios and produces state-of-the-art performance.
Content-based image retrieval (CBIR) could be an efficient diagnostic tool. Physicians could consult a CBIR system before making a diagnosis for a clinical case by retrieving a set of images with similar appearance and pathological diagnosis from a data archive. With access to various imaging modalities, physicians may want to match more than one image modality and non-image information. How to make full use of this diverse information is an important research question. In this paper, we propose a CBIR framework for skin diseases that incorporates multi-sourced information including dermoscopic images, clinical images, and meta information. The proposed framework fuses the multi-sourced features in mutual similarity level; thus, solving severe dimensional bias problems for image and non-image information. We then utilize a graph-based community analysis on similarity networks where similar images are strongly connected and help retrieve similar images with improved performance. Evaluations were carried out using two well-known skin datasets EDRA and ISIC 2019. The carefully designed framework demonstrates a substantial improvement in finding similar cases for different skin diseases with an average precision of 0.836, which is the state-of-the-art performance for retrieving skin disease types. In addition, the proposed framework is also applicable to scenarios with a single typed feature with improved performance. By integrating multi-sourced information from the same patient, the proposed CBIR system could be potentially used in complex clinical scenarios with a trustable performance benefitting from both abundant information and advanced community search technique. |
ArticleNumber | 103893 |
Author | Cai, Jiayue Lee, Tim K. Wang, Yuheng Kalia, Sunil Fariah Haq, Nandinee Lui, Harvey Jane Wang, Z. |
Author_xml | – sequence: 1 givenname: Yuheng surname: Wang fullname: Wang, Yuheng organization: School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada – sequence: 2 givenname: Nandinee surname: Fariah Haq fullname: Fariah Haq, Nandinee organization: Hitachi Energy Research, Hitachi Energy, Montreal, QC, Canada – sequence: 3 givenname: Jiayue surname: Cai fullname: Cai, Jiayue email: jiayuec@szu.edu.cn organization: School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China – sequence: 4 givenname: Sunil surname: Kalia fullname: Kalia, Sunil organization: Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada – sequence: 5 givenname: Harvey surname: Lui fullname: Lui, Harvey organization: Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada – sequence: 6 givenname: Z. surname: Jane Wang fullname: Jane Wang, Z. organization: School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada – sequence: 7 givenname: Tim K. surname: Lee fullname: Lee, Tim K. organization: School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada |
BookMark | eNp9kEtPAjEQgBuDiYD-AU_9A4ttt-wj8WKIrwTjRc9NH7NQ2O2StmC4-dPtBr144DSTmfkmM98EjVzvAKFbSmaU0OJuM1Nhp2eMMJYKeVXnF2hMS15kFSXV6C8nNb9CkxA2hPCqpHyMvt_2bbSZXkvnoMW6dxFcxEoGMNh2cgXYQ_QWDrLFHcR1b3DTexy21mFjA6TBgPfBuhUOtrOt9DYesYP41fstblKnd1g6gw3ALu3vur0bJqST7THYcI0uG9kGuPmNU_T59PixeMmW78-vi4dlpnNCYlbW80LVuZo3psg1pw0tyopwkLysWWFSYgwozctSV0blDJhkiiumVAPEMMinqDrt1b4PwUMjtI0ypuuil7YVlIjBpNiIwaQYTIqTyYSyf-jOJzX-eB66P0GQnjpY8CJoC06DsR50FKa35_Af4sCTnw |
CitedBy_id | crossref_primary_10_1007_s11227_024_06792_5 crossref_primary_10_1007_s11042_024_18958_7 crossref_primary_10_1016_j_bspc_2023_105743 |
Cites_doi | 10.1007/s40264-016-0487-9 10.1038/nmeth.2810 10.1016/j.media.2021.102307 10.1016/j.compbiomed.2019.103545 10.1109/JBHI.2019.2895803 10.1016/j.mex.2020.100864 10.1001/jama.292.22.2771 10.1038/s41419-017-0059-7 10.1109/JBHI.2021.3062002 10.1109/JBHI.2018.2845939 10.1016/j.media.2022.102693 10.1109/ISBI.2018.8363547 10.1103/PhysRevE.69.026113 10.1016/j.jaad.2006.09.003 10.1007/s13555-016-0165-y 10.1111/bjd.17189 10.1016/j.bspc.2021.102631 10.1016/S0010-4825(97)00020-6 10.1016/j.compbiomed.2021.104825 10.1016/j.jid.2018.01.028 10.1007/978-3-030-01201-4_33 10.1016/j.compbiomed.2020.104065 10.1016/j.bspc.2022.103549 10.1007/s10916-019-1414-2 10.1001/archderm.134.12.1563 10.1109/ACCESS.2019.2962617 10.1111/exd.13777 10.1016/j.patrec.2019.02.005 10.1016/j.artmed.2019.101756 10.1109/JBHI.2018.2824327 10.1038/nature21056 10.1038/sdata.2018.161 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2022.103893 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2022_103893 S1746809422004049 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
ID | FETCH-LOGICAL-c300t-7956b93b5fd63c41f167804ea47926d4eaddebc477c8db32e2a2b4b2bbfe0d2e3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 23:08:34 EDT 2025 Wed Oct 01 02:17:54 EDT 2025 Fri Feb 23 02:38:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-channel Graph analysis Image retrieval Deep community Skin cancer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-7956b93b5fd63c41f167804ea47926d4eaddebc477c8db32e2a2b4b2bbfe0d2e3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2022_103893 crossref_primary_10_1016_j_bspc_2022_103893 elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103893 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | N.C. Codella et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic) 2018). 2018. IEEE. arXiv preprint arXiv:1908.02288, 2019. Barhoumi, Khelifa (b0130) 2021; 137 Celebi, Codella, Halpern (b0030) 2019; 23 Wang, Y., et al. Wang, Mezlini, Demir, Fiume, Tu, Brudno, Haibe-Kains, Goldenberg (b0145) 2014; 11 Ge (b0055) 2017 Newman, Girvan (b0185) 2004; 69 Nguyen, Bai (b0180) 2010 Goyal (b0035) 2020 Haq, Moradi, Wang (b0190) 2019; 122 Yap, Yolland, Tschandl (b0060) 2018; 27 Nardone, Majewski, Kim, Kiguradze, Martinez-Escala, Friedland, Amin, Laumann, Edwards, Rademaker, Martini, West (b0015) 2017; 40 Zhao, Wu, Li, Li, Huang, Huang, He, Fan, Wu, Chen, Li, Luo, Su, Xie, Zhao (b0045) 2019; 43 Gessert (b0110) 2020; 7 Abbasi, Shaw, Rigel, Friedman, McCarthy, Osman, Kopf, Polsky (b0085) 2004; 292 Pacheco, Krohling (b0230) 2021; 25 Bi (b0125) 2021; 68 arXiv preprint arXiv:2203.11490, 2022. He (b0175) 2016 Ho, Wookey (b0195) 2019; 8 Apalla, Nashan, Weller, Castellsagué (b0005) 2017; 7 . Gulli, A. and S. Pal Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (b0100) 2017; 542 2017: Packt Publishing Ltd. Pacheco, Krohling (b0050) 2020; 116 Kawahara, Daneshvar, Argenziano, Hamarneh (b0070) 2019; 23 Pu (b0075) 2017 Sonthalia, S. and F. Kaliyadan Han, Kim, Lim, Park, Park, Chang (b0040) 2018; 138 Abadi, M., et al. Tensorflow: A system for large-scale machine learning. in 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16). 2016. Perez, F., et al., Data augmentation for skin lesion analysis, in OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis. 2018, Springer. pp. 303–311. Barata, Celebi, Marques (b0025) 2018; 23 Wei, Li, Song (b0140) 2022; 74 Akram (b0135) 2018 Lee, Ng, Gallagher, Coldman, McLean (b0170) 1997; 27 Allegretti (b0065) 2021 Tschandl, Argenziano, Razmara, Yap (b0080) 2019; 181 Tang (b0225) 2022; 76 Krizhevsky, Sutskever, Hinton (b0205) 2012; 25 Combalia, M., et al. Argenziano, Fabbrocini, Carli, De Giorgi, Sammarco, Delfino (b0090) 1998; 134 Kingma, D.P. and J. Ba arXiv preprint arXiv:1412.6980, 2014. 2020, Treasure Island (FL: StatPearls Publishing Copyright© 2020, StatPearls Henning, Dusza, Wang, Marghoob, Rabinovitz, Polsky, Kopf (b0095) 2007; 56 Tschandl, Rosendahl, Kittler (b0150) 2018; 5 Höhn (b0120) 2021; 23 Kawahara, BenTaieb, Hamarneh (b0105) 2016 Mattia, Puglisi, Ascione, Malorni, Carè, Matarrese (b0010) 2018; 9 Zhang (b0115) 2020; 102 Zhao (10.1016/j.bspc.2022.103893_b0045) 2019; 43 Bi (10.1016/j.bspc.2022.103893_b0125) 2021; 68 Newman (10.1016/j.bspc.2022.103893_b0185) 2004; 69 Goyal (10.1016/j.bspc.2022.103893_b0035) 2020 Han (10.1016/j.bspc.2022.103893_b0040) 2018; 138 Abbasi (10.1016/j.bspc.2022.103893_b0085) 2004; 292 Akram (10.1016/j.bspc.2022.103893_b0135) 2018 Henning (10.1016/j.bspc.2022.103893_b0095) 2007; 56 Barhoumi (10.1016/j.bspc.2022.103893_b0130) 2021; 137 Lee (10.1016/j.bspc.2022.103893_b0170) 1997; 27 Tschandl (10.1016/j.bspc.2022.103893_b0080) 2019; 181 Wei (10.1016/j.bspc.2022.103893_b0140) 2022; 74 Ge (10.1016/j.bspc.2022.103893_b0055) 2017 Zhang (10.1016/j.bspc.2022.103893_b0115) 2020; 102 10.1016/j.bspc.2022.103893_b0155 10.1016/j.bspc.2022.103893_b0210 Pacheco (10.1016/j.bspc.2022.103893_b0230) 2021; 25 Nguyen (10.1016/j.bspc.2022.103893_b0180) 2010 10.1016/j.bspc.2022.103893_b0215 Pacheco (10.1016/j.bspc.2022.103893_b0050) 2020; 116 Pu (10.1016/j.bspc.2022.103893_b0075) 2017 Allegretti (10.1016/j.bspc.2022.103893_b0065) 2021 Kawahara (10.1016/j.bspc.2022.103893_b0105) 2016 Krizhevsky (10.1016/j.bspc.2022.103893_b0205) 2012; 25 Kawahara (10.1016/j.bspc.2022.103893_b0070) 2019; 23 Tang (10.1016/j.bspc.2022.103893_b0225) 2022; 76 Nardone (10.1016/j.bspc.2022.103893_b0015) 2017; 40 Celebi (10.1016/j.bspc.2022.103893_b0030) 2019; 23 Ho (10.1016/j.bspc.2022.103893_b0195) 2019; 8 Gessert (10.1016/j.bspc.2022.103893_b0110) 2020; 7 He (10.1016/j.bspc.2022.103893_b0175) 2016 Wang (10.1016/j.bspc.2022.103893_b0145) 2014; 11 10.1016/j.bspc.2022.103893_b0160 Haq (10.1016/j.bspc.2022.103893_b0190) 2019; 122 10.1016/j.bspc.2022.103893_b0020 Barata (10.1016/j.bspc.2022.103893_b0025) 2018; 23 Argenziano (10.1016/j.bspc.2022.103893_b0090) 1998; 134 Esteva (10.1016/j.bspc.2022.103893_b0100) 2017; 542 10.1016/j.bspc.2022.103893_b0165 10.1016/j.bspc.2022.103893_b0220 Tschandl (10.1016/j.bspc.2022.103893_b0150) 2018; 5 10.1016/j.bspc.2022.103893_b0200 Mattia (10.1016/j.bspc.2022.103893_b0010) 2018; 9 Apalla (10.1016/j.bspc.2022.103893_b0005) 2017; 7 Höhn (10.1016/j.bspc.2022.103893_b0120) 2021; 23 Yap (10.1016/j.bspc.2022.103893_b0060) 2018; 27 |
References_xml | – volume: 27 start-page: 533 year: 1997 end-page: 543 ident: b0170 article-title: Dullrazor®: A software approach to hair removal from images publication-title: Comput. Biol. Med. – volume: 23 start-page: e20708 year: 2021 ident: b0120 article-title: Integrating patient data into skin cancer classification using convolutional neural networks: systematic review publication-title: J. Med. Int. Res. – volume: 11 start-page: 333 year: 2014 end-page: 337 ident: b0145 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nat. Methods – volume: 292 start-page: 2771 year: 2004 ident: b0085 article-title: Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria publication-title: JAMA – volume: 68 year: 2021 ident: b0125 article-title: Computer-aided skin cancer diagnosis based on a New meta-heuristic algorithm combined with support vector method publication-title: Biomed. Signal Process. Control – reference: . 2020, Treasure Island (FL: StatPearls Publishing Copyright© 2020, StatPearls – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: b0100 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – volume: 74 year: 2022 ident: b0140 article-title: Dual attention based network for skin lesion classification with auxiliary learning publication-title: Biomed. Signal Process. Control – reference: …. – year: 2017 ident: b0075 article-title: Deep Semantics-Preserving Hashing Based Skin Lesion Image Retrieval publication-title: International Symposium on Neural Networks – reference: Sonthalia, S. and F. Kaliyadan, – volume: 27 start-page: 1261 year: 2018 end-page: 1267 ident: b0060 article-title: Multimodal skin lesion classification using deep learning publication-title: Exp. Dermatol. – volume: 7 year: 2020 ident: b0110 article-title: Skin lesion classification using ensembles of multi-resolution EfficientNets with meta data publication-title: MethodsX – reference: Gulli, A. and S. Pal, – year: 2020 ident: b0035 article-title: Artificial intelligence-based image classification for diagnosis of skin cancer: Challenges and opportunities publication-title: Comput. Biol. Med. – reference: Combalia, M., et al., – volume: 56 start-page: 45 year: 2007 end-page: 52 ident: b0095 article-title: The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy publication-title: J. Am. Acad. Dermatol. – reference: Abadi, M., et al. Tensorflow: A system for large-scale machine learning. in 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16). 2016. – volume: 138 start-page: 1529 year: 2018 end-page: 1538 ident: b0040 article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm publication-title: J, Invest. Dermatol. – reference: arXiv preprint arXiv:1908.02288, 2019. – volume: 40 start-page: 249 year: 2017 end-page: 255 ident: b0015 article-title: Melanoma and non-melanoma skin cancer associated with angiotensin-converting-enzyme inhibitors, angiotensin-receptor blockers and thiazides: a matched cohort study publication-title: Drug Saf. – reference: Wang, Y., et al., – start-page: 1 year: 2018 end-page: 20 ident: b0135 article-title: Skin lesion segmentation and recognition using multichannel saliency estimation and M-SVM on selected serially fused features publication-title: J. Ambient Intell. Hum. Comput. – volume: 25 year: 2012 ident: b0205 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inform. Process. Syst. – volume: 134 year: 1998 ident: b0090 article-title: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis publication-title: Arch. Dermatol. – volume: 102 year: 2020 ident: b0115 article-title: Skin cancer diagnosis based on optimized convolutional neural network publication-title: Artif. Intell. Med. – volume: 137 year: 2021 ident: b0130 article-title: Skin lesion image retrieval using transfer learning-based approach for query-driven distance recommendation publication-title: Comput. Biol. Med. – volume: 69 year: 2004 ident: b0185 article-title: Finding and evaluating community structure in networks publication-title: Phys. Rev. E – year: 2021 ident: b0065 article-title: Supporting Skin Lesion Diagnosis with Content-Based Image Retrieval – reference: arXiv preprint arXiv:2203.11490, 2022. – reference: . 2017: Packt Publishing Ltd. – volume: 7 start-page: 5 year: 2017 end-page: 19 ident: b0005 article-title: Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches publication-title: Dermatol. Ther. – volume: 116 year: 2020 ident: b0050 article-title: The impact of patient clinical information on automated skin cancer detection publication-title: Comput. Biol. Med. – year: 2016 ident: b0105 article-title: Deep features to classify skin lesions – volume: 23 start-page: 538 year: 2019 end-page: 546 ident: b0070 article-title: Seven-point checklist and skin lesion classification using multitask multimodal neural nets publication-title: IEEE J. Biomed. Health. Inf. – volume: 122 start-page: 14 year: 2019 end-page: 22 ident: b0190 article-title: Community structure detection from networks with weighted modularity publication-title: Pattern Recogn. Lett. – volume: 23 start-page: 1096 year: 2018 end-page: 1109 ident: b0025 article-title: A survey of feature extraction in dermoscopy image analysis of skin cancer publication-title: IEEE J. Biomed. Health. Inf. – year: 2017 ident: b0055 article-title: Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 8 start-page: 4806 year: 2019 end-page: 4813 ident: b0195 article-title: The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling publication-title: IEEE Access – reference: N.C. Codella et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic) 2018). 2018. IEEE. – year: 2016 ident: b0175 article-title: Deep residual learning for image recognition publication-title: in – volume: 43 year: 2019 ident: b0045 article-title: The application of deep learning in the risk grading of skin tumors for patients using clinical images publication-title: J. Med. Syst. – reference: Kingma, D.P. and J. Ba, – reference: arXiv preprint arXiv:1412.6980, 2014. – reference: Perez, F., et al., Data augmentation for skin lesion analysis, in OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis. 2018, Springer. pp. 303–311. – volume: 25 start-page: 3554 year: 2021 end-page: 3563 ident: b0230 article-title: An attention-based mechanism to combine images and metadata in deep learning models applied to skin cancer classification publication-title: IEEE J. Biomed. Health. Inf. – volume: 9 year: 2018 ident: b0010 article-title: Cell death-based treatments of melanoma: conventional treatments and new therapeutic strategies publication-title: Cell Death Dis. – volume: 76 year: 2022 ident: b0225 article-title: FusionM4Net: a multi-stage multi-modal learning algorithm for multi-label skin lesion classification publication-title: Med. Image Anal. – volume: 23 start-page: 474 year: 2019 end-page: 478 ident: b0030 article-title: Dermoscopy image analysis: overview and future directions publication-title: IEEE J. Biomed. Health. Inf. – year: 2010 ident: b0180 article-title: Cosine similarity metric learning for face verification publication-title: Asian conference on computer vision – volume: 181 start-page: 155 year: 2019 end-page: 165 ident: b0080 article-title: Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features publication-title: Br. J. Dermatol. – volume: 5 start-page: 1 year: 2018 end-page: 9 ident: b0150 article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions publication-title: Sci. Data – volume: 40 start-page: 249 issue: 3 year: 2017 ident: 10.1016/j.bspc.2022.103893_b0015 article-title: Melanoma and non-melanoma skin cancer associated with angiotensin-converting-enzyme inhibitors, angiotensin-receptor blockers and thiazides: a matched cohort study publication-title: Drug Saf. doi: 10.1007/s40264-016-0487-9 – volume: 11 start-page: 333 issue: 3 year: 2014 ident: 10.1016/j.bspc.2022.103893_b0145 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nat. Methods doi: 10.1038/nmeth.2810 – volume: 76 year: 2022 ident: 10.1016/j.bspc.2022.103893_b0225 article-title: FusionM4Net: a multi-stage multi-modal learning algorithm for multi-label skin lesion classification publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102307 – volume: 116 year: 2020 ident: 10.1016/j.bspc.2022.103893_b0050 article-title: The impact of patient clinical information on automated skin cancer detection publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103545 – ident: 10.1016/j.bspc.2022.103893_b0215 – volume: 23 start-page: 474 issue: 2 year: 2019 ident: 10.1016/j.bspc.2022.103893_b0030 article-title: Dermoscopy image analysis: overview and future directions publication-title: IEEE J. Biomed. Health. Inf. doi: 10.1109/JBHI.2019.2895803 – year: 2021 ident: 10.1016/j.bspc.2022.103893_b0065 – year: 2017 ident: 10.1016/j.bspc.2022.103893_b0075 article-title: Deep Semantics-Preserving Hashing Based Skin Lesion Image Retrieval – volume: 7 year: 2020 ident: 10.1016/j.bspc.2022.103893_b0110 article-title: Skin lesion classification using ensembles of multi-resolution EfficientNets with meta data publication-title: MethodsX doi: 10.1016/j.mex.2020.100864 – volume: 292 start-page: 2771 issue: 22 year: 2004 ident: 10.1016/j.bspc.2022.103893_b0085 article-title: Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria publication-title: JAMA doi: 10.1001/jama.292.22.2771 – volume: 9 issue: 2 year: 2018 ident: 10.1016/j.bspc.2022.103893_b0010 article-title: Cell death-based treatments of melanoma: conventional treatments and new therapeutic strategies publication-title: Cell Death Dis. doi: 10.1038/s41419-017-0059-7 – ident: 10.1016/j.bspc.2022.103893_b0020 – volume: 25 year: 2012 ident: 10.1016/j.bspc.2022.103893_b0205 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inform. Process. Syst. – year: 2010 ident: 10.1016/j.bspc.2022.103893_b0180 article-title: Cosine similarity metric learning for face verification – volume: 25 start-page: 3554 issue: 9 year: 2021 ident: 10.1016/j.bspc.2022.103893_b0230 article-title: An attention-based mechanism to combine images and metadata in deep learning models applied to skin cancer classification publication-title: IEEE J. Biomed. Health. Inf. doi: 10.1109/JBHI.2021.3062002 – volume: 23 start-page: 1096 issue: 3 year: 2018 ident: 10.1016/j.bspc.2022.103893_b0025 article-title: A survey of feature extraction in dermoscopy image analysis of skin cancer publication-title: IEEE J. Biomed. Health. Inf. doi: 10.1109/JBHI.2018.2845939 – volume: 23 start-page: e20708 issue: 7 year: 2021 ident: 10.1016/j.bspc.2022.103893_b0120 article-title: Integrating patient data into skin cancer classification using convolutional neural networks: systematic review publication-title: J. Med. Int. Res. – year: 2016 ident: 10.1016/j.bspc.2022.103893_b0175 article-title: Deep residual learning for image recognition – start-page: 1 year: 2018 ident: 10.1016/j.bspc.2022.103893_b0135 article-title: Skin lesion segmentation and recognition using multichannel saliency estimation and M-SVM on selected serially fused features publication-title: J. Ambient Intell. Hum. Comput. – ident: 10.1016/j.bspc.2022.103893_b0165 doi: 10.1016/j.media.2022.102693 – ident: 10.1016/j.bspc.2022.103893_b0155 doi: 10.1109/ISBI.2018.8363547 – volume: 69 issue: 2 year: 2004 ident: 10.1016/j.bspc.2022.103893_b0185 article-title: Finding and evaluating community structure in networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.026113 – volume: 56 start-page: 45 issue: 1 year: 2007 ident: 10.1016/j.bspc.2022.103893_b0095 article-title: The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2006.09.003 – ident: 10.1016/j.bspc.2022.103893_b0160 – ident: 10.1016/j.bspc.2022.103893_b0210 – volume: 7 start-page: 5 issue: S1 year: 2017 ident: 10.1016/j.bspc.2022.103893_b0005 article-title: Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches publication-title: Dermatol. Ther. doi: 10.1007/s13555-016-0165-y – volume: 181 start-page: 155 issue: 1 year: 2019 ident: 10.1016/j.bspc.2022.103893_b0080 article-title: Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features publication-title: Br. J. Dermatol. doi: 10.1111/bjd.17189 – volume: 68 year: 2021 ident: 10.1016/j.bspc.2022.103893_b0125 article-title: Computer-aided skin cancer diagnosis based on a New meta-heuristic algorithm combined with support vector method publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102631 – volume: 27 start-page: 533 issue: 6 year: 1997 ident: 10.1016/j.bspc.2022.103893_b0170 article-title: Dullrazor®: A software approach to hair removal from images publication-title: Comput. Biol. Med. doi: 10.1016/S0010-4825(97)00020-6 – volume: 137 year: 2021 ident: 10.1016/j.bspc.2022.103893_b0130 article-title: Skin lesion image retrieval using transfer learning-based approach for query-driven distance recommendation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104825 – volume: 138 start-page: 1529 issue: 7 year: 2018 ident: 10.1016/j.bspc.2022.103893_b0040 article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm publication-title: J, Invest. Dermatol. doi: 10.1016/j.jid.2018.01.028 – ident: 10.1016/j.bspc.2022.103893_b0200 doi: 10.1007/978-3-030-01201-4_33 – year: 2020 ident: 10.1016/j.bspc.2022.103893_b0035 article-title: Artificial intelligence-based image classification for diagnosis of skin cancer: Challenges and opportunities publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.104065 – volume: 74 year: 2022 ident: 10.1016/j.bspc.2022.103893_b0140 article-title: Dual attention based network for skin lesion classification with auxiliary learning publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.103549 – volume: 43 issue: 8 year: 2019 ident: 10.1016/j.bspc.2022.103893_b0045 article-title: The application of deep learning in the risk grading of skin tumors for patients using clinical images publication-title: J. Med. Syst. doi: 10.1007/s10916-019-1414-2 – year: 2016 ident: 10.1016/j.bspc.2022.103893_b0105 – ident: 10.1016/j.bspc.2022.103893_b0220 – volume: 134 issue: 12 year: 1998 ident: 10.1016/j.bspc.2022.103893_b0090 article-title: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis publication-title: Arch. Dermatol. doi: 10.1001/archderm.134.12.1563 – volume: 8 start-page: 4806 year: 2019 ident: 10.1016/j.bspc.2022.103893_b0195 article-title: The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962617 – volume: 27 start-page: 1261 issue: 11 year: 2018 ident: 10.1016/j.bspc.2022.103893_b0060 article-title: Multimodal skin lesion classification using deep learning publication-title: Exp. Dermatol. doi: 10.1111/exd.13777 – volume: 122 start-page: 14 year: 2019 ident: 10.1016/j.bspc.2022.103893_b0190 article-title: Community structure detection from networks with weighted modularity publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2019.02.005 – year: 2017 ident: 10.1016/j.bspc.2022.103893_b0055 article-title: Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images – volume: 102 year: 2020 ident: 10.1016/j.bspc.2022.103893_b0115 article-title: Skin cancer diagnosis based on optimized convolutional neural network publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.101756 – volume: 23 start-page: 538 issue: 2 year: 2019 ident: 10.1016/j.bspc.2022.103893_b0070 article-title: Seven-point checklist and skin lesion classification using multitask multimodal neural nets publication-title: IEEE J. Biomed. Health. Inf. doi: 10.1109/JBHI.2018.2824327 – volume: 542 start-page: 115 issue: 7639 year: 2017 ident: 10.1016/j.bspc.2022.103893_b0100 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 5 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.bspc.2022.103893_b0150 article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions publication-title: Sci. Data doi: 10.1038/sdata.2018.161 |
SSID | ssj0048714 |
Score | 2.312489 |
Snippet | •A new method for skin lesion image retrieval using multiple input channels is proposed.•Similarity network fusion solves the problem of dimensional imbalance... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103893 |
SubjectTerms | Deep community Graph analysis Image retrieval Multi-channel Skin cancer |
Title | Multi-channel content based image retrieval method for skin diseases using similarity network fusion and deep community analysis |
URI | https://dx.doi.org/10.1016/j.bspc.2022.103893 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k7XJ5n0sxVIVe9FCb2FfkWiNoY-r-NOdSTalgvTgLQkzYZldZmZ3v_mGkGsv0zrhkcsyoRLmCy9gsXBdpt1EciUkzwSeQz6Nw9HEf5gG0xYZNLUwCKu0vr_26ZW3tl961pq9Ms97z5BLhzHsTjhONCS6WMHuhwjru_1awzwgH6_4vVGYobQtnKkxXnJRIo0h5xVPeOL9HZw2As7wgOzbTJH268EckpYpjsjeBn_gMfmuymcZFu8WZkYRdg4xhGJk0jT_AFdB51XHLFhOtO4VTSFJpYv3vKD2amZBEfr-Shf5Rw67XEjKaVFDw2m2wqM0KgpNtTEl_L8qJgEJYalMTshkePcyGDHbUoEpz3GWLILtkEw8GWQ69JTvZm6IDERG-FHCQw0P4O6k8qNIxVp63HDBpS-5lJlxNDfeKWkXn4U5I9To2JFaR1LG2geFxFWZcBzhKBiSiFWHuI0tU2X5xrHtxSxtgGVvKdo_Rfuntf075GatU9ZsG1ulg2aK0l9rJoVwsEXv_J96F2QX32qE2SVpL-crcwUpyVJ2qzXXJTv9-8fR-Ad4G-VG |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BOwAD4inK0wMbspo477GqQC20XSgSW-RXUHiEqGl3fjrnxEEgIQa2KPFF0dn67ux89x3ApZcplbDIpRmXCfW5F9CYuy5VbiKY5IJl3JxDTmfh6MG_fQwe12DY1sIYWqXF_gbTa7S2d_rWm_0yz_v3mEuHMe5OmJloTHTXoesHiMkd6A7Gd6NZC8iYktcS32Y8NQa2dqaheYmqNEqGjNVS4Yn3e3z6FnNudmDbJotk0HzPLqzpYg-2vkkI7sNHXUFLTf1uoV-JYZ5jGCEmOCmSvyFakEXdNAtXFGnaRRPMU0n1khfE_p2piGG_P5Eqf8txo4t5OSkadjjJVuY0jfBCEaV1ie-v60lwBLdqJgfwcHM9H46o7apApec4SxrhjkgknggyFXrSdzM3NCJEmvtRwkKFF4h4QvpRJGMlPKYZZ8IXTIhMO4pp7xA6xXuhj4BoFTtCqUiIWPlokLgy447DHYmfxGPZA7f1ZSqt5LjpfPGattyy59T4PzX-Txv_9-Dqy6ZsBDf-HB20U5T-WDYpRoQ_7I7_aXcBG6P5dJJOxrO7E9g0TxrC2Sl0louVPsMMZSnO7Qr8BEHD5_E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-channel+content+based+image+retrieval+method+for+skin+diseases+using+similarity+network+fusion+and+deep+community+analysis&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Wang%2C+Yuheng&rft.au=Fariah+Haq%2C+Nandinee&rft.au=Cai%2C+Jiayue&rft.au=Kalia%2C+Sunil&rft.date=2022-09-01&rft.issn=1746-8094&rft.volume=78&rft.spage=103893&rft_id=info:doi/10.1016%2Fj.bspc.2022.103893&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_103893 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |