Multi-channel content based image retrieval method for skin diseases using similarity network fusion and deep community analysis

•A new method for skin lesion image retrieval using multiple input channels is proposed.•Similarity network fusion solves the problem of dimensional imbalance among inputs.•Community-based search technique helps find strongly connected subjects within similarity networks.•The technique is applicable...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 78; p. 103893
Main Authors Wang, Yuheng, Fariah Haq, Nandinee, Cai, Jiayue, Kalia, Sunil, Lui, Harvey, Jane Wang, Z., Lee, Tim K.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2022
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2022.103893

Cover

Abstract •A new method for skin lesion image retrieval using multiple input channels is proposed.•Similarity network fusion solves the problem of dimensional imbalance among inputs.•Community-based search technique helps find strongly connected subjects within similarity networks.•The technique is applicable to complex clinical scenarios and produces state-of-the-art performance. Content-based image retrieval (CBIR) could be an efficient diagnostic tool. Physicians could consult a CBIR system before making a diagnosis for a clinical case by retrieving a set of images with similar appearance and pathological diagnosis from a data archive. With access to various imaging modalities, physicians may want to match more than one image modality and non-image information. How to make full use of this diverse information is an important research question. In this paper, we propose a CBIR framework for skin diseases that incorporates multi-sourced information including dermoscopic images, clinical images, and meta information. The proposed framework fuses the multi-sourced features in mutual similarity level; thus, solving severe dimensional bias problems for image and non-image information. We then utilize a graph-based community analysis on similarity networks where similar images are strongly connected and help retrieve similar images with improved performance. Evaluations were carried out using two well-known skin datasets EDRA and ISIC 2019. The carefully designed framework demonstrates a substantial improvement in finding similar cases for different skin diseases with an average precision of 0.836, which is the state-of-the-art performance for retrieving skin disease types. In addition, the proposed framework is also applicable to scenarios with a single typed feature with improved performance. By integrating multi-sourced information from the same patient, the proposed CBIR system could be potentially used in complex clinical scenarios with a trustable performance benefitting from both abundant information and advanced community search technique.
AbstractList •A new method for skin lesion image retrieval using multiple input channels is proposed.•Similarity network fusion solves the problem of dimensional imbalance among inputs.•Community-based search technique helps find strongly connected subjects within similarity networks.•The technique is applicable to complex clinical scenarios and produces state-of-the-art performance. Content-based image retrieval (CBIR) could be an efficient diagnostic tool. Physicians could consult a CBIR system before making a diagnosis for a clinical case by retrieving a set of images with similar appearance and pathological diagnosis from a data archive. With access to various imaging modalities, physicians may want to match more than one image modality and non-image information. How to make full use of this diverse information is an important research question. In this paper, we propose a CBIR framework for skin diseases that incorporates multi-sourced information including dermoscopic images, clinical images, and meta information. The proposed framework fuses the multi-sourced features in mutual similarity level; thus, solving severe dimensional bias problems for image and non-image information. We then utilize a graph-based community analysis on similarity networks where similar images are strongly connected and help retrieve similar images with improved performance. Evaluations were carried out using two well-known skin datasets EDRA and ISIC 2019. The carefully designed framework demonstrates a substantial improvement in finding similar cases for different skin diseases with an average precision of 0.836, which is the state-of-the-art performance for retrieving skin disease types. In addition, the proposed framework is also applicable to scenarios with a single typed feature with improved performance. By integrating multi-sourced information from the same patient, the proposed CBIR system could be potentially used in complex clinical scenarios with a trustable performance benefitting from both abundant information and advanced community search technique.
ArticleNumber 103893
Author Cai, Jiayue
Lee, Tim K.
Wang, Yuheng
Kalia, Sunil
Fariah Haq, Nandinee
Lui, Harvey
Jane Wang, Z.
Author_xml – sequence: 1
  givenname: Yuheng
  surname: Wang
  fullname: Wang, Yuheng
  organization: School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
– sequence: 2
  givenname: Nandinee
  surname: Fariah Haq
  fullname: Fariah Haq, Nandinee
  organization: Hitachi Energy Research, Hitachi Energy, Montreal, QC, Canada
– sequence: 3
  givenname: Jiayue
  surname: Cai
  fullname: Cai, Jiayue
  email: jiayuec@szu.edu.cn
  organization: School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
– sequence: 4
  givenname: Sunil
  surname: Kalia
  fullname: Kalia, Sunil
  organization: Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
– sequence: 5
  givenname: Harvey
  surname: Lui
  fullname: Lui, Harvey
  organization: Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
– sequence: 6
  givenname: Z.
  surname: Jane Wang
  fullname: Jane Wang, Z.
  organization: School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
– sequence: 7
  givenname: Tim K.
  surname: Lee
  fullname: Lee, Tim K.
  organization: School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
BookMark eNp9kEtPAjEQgBuDiYD-AU_9A4ttt-wj8WKIrwTjRc9NH7NQ2O2StmC4-dPtBr144DSTmfkmM98EjVzvAKFbSmaU0OJuM1Nhp2eMMJYKeVXnF2hMS15kFSXV6C8nNb9CkxA2hPCqpHyMvt_2bbSZXkvnoMW6dxFcxEoGMNh2cgXYQ_QWDrLFHcR1b3DTexy21mFjA6TBgPfBuhUOtrOt9DYesYP41fstblKnd1g6gw3ALu3vur0bJqST7THYcI0uG9kGuPmNU_T59PixeMmW78-vi4dlpnNCYlbW80LVuZo3psg1pw0tyopwkLysWWFSYgwozctSV0blDJhkiiumVAPEMMinqDrt1b4PwUMjtI0ypuuil7YVlIjBpNiIwaQYTIqTyYSyf-jOJzX-eB66P0GQnjpY8CJoC06DsR50FKa35_Af4sCTnw
CitedBy_id crossref_primary_10_1007_s11227_024_06792_5
crossref_primary_10_1007_s11042_024_18958_7
crossref_primary_10_1016_j_bspc_2023_105743
Cites_doi 10.1007/s40264-016-0487-9
10.1038/nmeth.2810
10.1016/j.media.2021.102307
10.1016/j.compbiomed.2019.103545
10.1109/JBHI.2019.2895803
10.1016/j.mex.2020.100864
10.1001/jama.292.22.2771
10.1038/s41419-017-0059-7
10.1109/JBHI.2021.3062002
10.1109/JBHI.2018.2845939
10.1016/j.media.2022.102693
10.1109/ISBI.2018.8363547
10.1103/PhysRevE.69.026113
10.1016/j.jaad.2006.09.003
10.1007/s13555-016-0165-y
10.1111/bjd.17189
10.1016/j.bspc.2021.102631
10.1016/S0010-4825(97)00020-6
10.1016/j.compbiomed.2021.104825
10.1016/j.jid.2018.01.028
10.1007/978-3-030-01201-4_33
10.1016/j.compbiomed.2020.104065
10.1016/j.bspc.2022.103549
10.1007/s10916-019-1414-2
10.1001/archderm.134.12.1563
10.1109/ACCESS.2019.2962617
10.1111/exd.13777
10.1016/j.patrec.2019.02.005
10.1016/j.artmed.2019.101756
10.1109/JBHI.2018.2824327
10.1038/nature21056
10.1038/sdata.2018.161
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.103893
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_103893
S1746809422004049
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-7956b93b5fd63c41f167804ea47926d4eaddebc477c8db32e2a2b4b2bbfe0d2e3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 23:08:34 EDT 2025
Wed Oct 01 02:17:54 EDT 2025
Fri Feb 23 02:38:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-channel
Graph analysis
Image retrieval
Deep community
Skin cancer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-7956b93b5fd63c41f167804ea47926d4eaddebc477c8db32e2a2b4b2bbfe0d2e3
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2022_103893
crossref_primary_10_1016_j_bspc_2022_103893
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103893
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References N.C. Codella et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic) 2018). 2018. IEEE.
arXiv preprint arXiv:1908.02288, 2019.
Barhoumi, Khelifa (b0130) 2021; 137
Celebi, Codella, Halpern (b0030) 2019; 23
Wang, Y., et al.
Wang, Mezlini, Demir, Fiume, Tu, Brudno, Haibe-Kains, Goldenberg (b0145) 2014; 11
Ge (b0055) 2017
Newman, Girvan (b0185) 2004; 69
Nguyen, Bai (b0180) 2010
Goyal (b0035) 2020
Haq, Moradi, Wang (b0190) 2019; 122
Yap, Yolland, Tschandl (b0060) 2018; 27
Nardone, Majewski, Kim, Kiguradze, Martinez-Escala, Friedland, Amin, Laumann, Edwards, Rademaker, Martini, West (b0015) 2017; 40
Zhao, Wu, Li, Li, Huang, Huang, He, Fan, Wu, Chen, Li, Luo, Su, Xie, Zhao (b0045) 2019; 43
Gessert (b0110) 2020; 7
Abbasi, Shaw, Rigel, Friedman, McCarthy, Osman, Kopf, Polsky (b0085) 2004; 292
Pacheco, Krohling (b0230) 2021; 25
Bi (b0125) 2021; 68
arXiv preprint arXiv:2203.11490, 2022.
He (b0175) 2016
Ho, Wookey (b0195) 2019; 8
Apalla, Nashan, Weller, Castellsagué (b0005) 2017; 7
.
Gulli, A. and S. Pal
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (b0100) 2017; 542
2017: Packt Publishing Ltd.
Pacheco, Krohling (b0050) 2020; 116
Kawahara, Daneshvar, Argenziano, Hamarneh (b0070) 2019; 23
Pu (b0075) 2017
Sonthalia, S. and F. Kaliyadan
Han, Kim, Lim, Park, Park, Chang (b0040) 2018; 138
Abadi, M., et al. Tensorflow: A system for large-scale machine learning. in 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16). 2016.
Perez, F., et al., Data augmentation for skin lesion analysis, in OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis. 2018, Springer. pp. 303–311.
Barata, Celebi, Marques (b0025) 2018; 23
Wei, Li, Song (b0140) 2022; 74
Akram (b0135) 2018
Lee, Ng, Gallagher, Coldman, McLean (b0170) 1997; 27
Allegretti (b0065) 2021
Tschandl, Argenziano, Razmara, Yap (b0080) 2019; 181
Tang (b0225) 2022; 76
Krizhevsky, Sutskever, Hinton (b0205) 2012; 25
Combalia, M., et al.
Argenziano, Fabbrocini, Carli, De Giorgi, Sammarco, Delfino (b0090) 1998; 134
Kingma, D.P. and J. Ba
arXiv preprint arXiv:1412.6980, 2014.
2020, Treasure Island (FL: StatPearls Publishing Copyright© 2020, StatPearls
Henning, Dusza, Wang, Marghoob, Rabinovitz, Polsky, Kopf (b0095) 2007; 56
Tschandl, Rosendahl, Kittler (b0150) 2018; 5
Höhn (b0120) 2021; 23
Kawahara, BenTaieb, Hamarneh (b0105) 2016
Mattia, Puglisi, Ascione, Malorni, Carè, Matarrese (b0010) 2018; 9
Zhang (b0115) 2020; 102
Zhao (10.1016/j.bspc.2022.103893_b0045) 2019; 43
Bi (10.1016/j.bspc.2022.103893_b0125) 2021; 68
Newman (10.1016/j.bspc.2022.103893_b0185) 2004; 69
Goyal (10.1016/j.bspc.2022.103893_b0035) 2020
Han (10.1016/j.bspc.2022.103893_b0040) 2018; 138
Abbasi (10.1016/j.bspc.2022.103893_b0085) 2004; 292
Akram (10.1016/j.bspc.2022.103893_b0135) 2018
Henning (10.1016/j.bspc.2022.103893_b0095) 2007; 56
Barhoumi (10.1016/j.bspc.2022.103893_b0130) 2021; 137
Lee (10.1016/j.bspc.2022.103893_b0170) 1997; 27
Tschandl (10.1016/j.bspc.2022.103893_b0080) 2019; 181
Wei (10.1016/j.bspc.2022.103893_b0140) 2022; 74
Ge (10.1016/j.bspc.2022.103893_b0055) 2017
Zhang (10.1016/j.bspc.2022.103893_b0115) 2020; 102
10.1016/j.bspc.2022.103893_b0155
10.1016/j.bspc.2022.103893_b0210
Pacheco (10.1016/j.bspc.2022.103893_b0230) 2021; 25
Nguyen (10.1016/j.bspc.2022.103893_b0180) 2010
10.1016/j.bspc.2022.103893_b0215
Pacheco (10.1016/j.bspc.2022.103893_b0050) 2020; 116
Pu (10.1016/j.bspc.2022.103893_b0075) 2017
Allegretti (10.1016/j.bspc.2022.103893_b0065) 2021
Kawahara (10.1016/j.bspc.2022.103893_b0105) 2016
Krizhevsky (10.1016/j.bspc.2022.103893_b0205) 2012; 25
Kawahara (10.1016/j.bspc.2022.103893_b0070) 2019; 23
Tang (10.1016/j.bspc.2022.103893_b0225) 2022; 76
Nardone (10.1016/j.bspc.2022.103893_b0015) 2017; 40
Celebi (10.1016/j.bspc.2022.103893_b0030) 2019; 23
Ho (10.1016/j.bspc.2022.103893_b0195) 2019; 8
Gessert (10.1016/j.bspc.2022.103893_b0110) 2020; 7
He (10.1016/j.bspc.2022.103893_b0175) 2016
Wang (10.1016/j.bspc.2022.103893_b0145) 2014; 11
10.1016/j.bspc.2022.103893_b0160
Haq (10.1016/j.bspc.2022.103893_b0190) 2019; 122
10.1016/j.bspc.2022.103893_b0020
Barata (10.1016/j.bspc.2022.103893_b0025) 2018; 23
Argenziano (10.1016/j.bspc.2022.103893_b0090) 1998; 134
Esteva (10.1016/j.bspc.2022.103893_b0100) 2017; 542
10.1016/j.bspc.2022.103893_b0165
10.1016/j.bspc.2022.103893_b0220
Tschandl (10.1016/j.bspc.2022.103893_b0150) 2018; 5
10.1016/j.bspc.2022.103893_b0200
Mattia (10.1016/j.bspc.2022.103893_b0010) 2018; 9
Apalla (10.1016/j.bspc.2022.103893_b0005) 2017; 7
Höhn (10.1016/j.bspc.2022.103893_b0120) 2021; 23
Yap (10.1016/j.bspc.2022.103893_b0060) 2018; 27
References_xml – volume: 27
  start-page: 533
  year: 1997
  end-page: 543
  ident: b0170
  article-title: Dullrazor®: A software approach to hair removal from images
  publication-title: Comput. Biol. Med.
– volume: 23
  start-page: e20708
  year: 2021
  ident: b0120
  article-title: Integrating patient data into skin cancer classification using convolutional neural networks: systematic review
  publication-title: J. Med. Int. Res.
– volume: 11
  start-page: 333
  year: 2014
  end-page: 337
  ident: b0145
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nat. Methods
– volume: 292
  start-page: 2771
  year: 2004
  ident: b0085
  article-title: Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria
  publication-title: JAMA
– volume: 68
  year: 2021
  ident: b0125
  article-title: Computer-aided skin cancer diagnosis based on a New meta-heuristic algorithm combined with support vector method
  publication-title: Biomed. Signal Process. Control
– reference: . 2020, Treasure Island (FL: StatPearls Publishing Copyright© 2020, StatPearls
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: b0100
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 74
  year: 2022
  ident: b0140
  article-title: Dual attention based network for skin lesion classification with auxiliary learning
  publication-title: Biomed. Signal Process. Control
– reference: ….
– year: 2017
  ident: b0075
  article-title: Deep Semantics-Preserving Hashing Based Skin Lesion Image Retrieval
  publication-title: International Symposium on Neural Networks
– reference: Sonthalia, S. and F. Kaliyadan,
– volume: 27
  start-page: 1261
  year: 2018
  end-page: 1267
  ident: b0060
  article-title: Multimodal skin lesion classification using deep learning
  publication-title: Exp. Dermatol.
– volume: 7
  year: 2020
  ident: b0110
  article-title: Skin lesion classification using ensembles of multi-resolution EfficientNets with meta data
  publication-title: MethodsX
– reference: Gulli, A. and S. Pal,
– year: 2020
  ident: b0035
  article-title: Artificial intelligence-based image classification for diagnosis of skin cancer: Challenges and opportunities
  publication-title: Comput. Biol. Med.
– reference: Combalia, M., et al.,
– volume: 56
  start-page: 45
  year: 2007
  end-page: 52
  ident: b0095
  article-title: The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy
  publication-title: J. Am. Acad. Dermatol.
– reference: Abadi, M., et al. Tensorflow: A system for large-scale machine learning. in 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16). 2016.
– volume: 138
  start-page: 1529
  year: 2018
  end-page: 1538
  ident: b0040
  article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm
  publication-title: J, Invest. Dermatol.
– reference: arXiv preprint arXiv:1908.02288, 2019.
– volume: 40
  start-page: 249
  year: 2017
  end-page: 255
  ident: b0015
  article-title: Melanoma and non-melanoma skin cancer associated with angiotensin-converting-enzyme inhibitors, angiotensin-receptor blockers and thiazides: a matched cohort study
  publication-title: Drug Saf.
– reference: Wang, Y., et al.,
– start-page: 1
  year: 2018
  end-page: 20
  ident: b0135
  article-title: Skin lesion segmentation and recognition using multichannel saliency estimation and M-SVM on selected serially fused features
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 25
  year: 2012
  ident: b0205
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 134
  year: 1998
  ident: b0090
  article-title: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis
  publication-title: Arch. Dermatol.
– volume: 102
  year: 2020
  ident: b0115
  article-title: Skin cancer diagnosis based on optimized convolutional neural network
  publication-title: Artif. Intell. Med.
– volume: 137
  year: 2021
  ident: b0130
  article-title: Skin lesion image retrieval using transfer learning-based approach for query-driven distance recommendation
  publication-title: Comput. Biol. Med.
– volume: 69
  year: 2004
  ident: b0185
  article-title: Finding and evaluating community structure in networks
  publication-title: Phys. Rev. E
– year: 2021
  ident: b0065
  article-title: Supporting Skin Lesion Diagnosis with Content-Based Image Retrieval
– reference: arXiv preprint arXiv:2203.11490, 2022.
– reference: . 2017: Packt Publishing Ltd.
– volume: 7
  start-page: 5
  year: 2017
  end-page: 19
  ident: b0005
  article-title: Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches
  publication-title: Dermatol. Ther.
– volume: 116
  year: 2020
  ident: b0050
  article-title: The impact of patient clinical information on automated skin cancer detection
  publication-title: Comput. Biol. Med.
– year: 2016
  ident: b0105
  article-title: Deep features to classify skin lesions
– volume: 23
  start-page: 538
  year: 2019
  end-page: 546
  ident: b0070
  article-title: Seven-point checklist and skin lesion classification using multitask multimodal neural nets
  publication-title: IEEE J. Biomed. Health. Inf.
– volume: 122
  start-page: 14
  year: 2019
  end-page: 22
  ident: b0190
  article-title: Community structure detection from networks with weighted modularity
  publication-title: Pattern Recogn. Lett.
– volume: 23
  start-page: 1096
  year: 2018
  end-page: 1109
  ident: b0025
  article-title: A survey of feature extraction in dermoscopy image analysis of skin cancer
  publication-title: IEEE J. Biomed. Health. Inf.
– year: 2017
  ident: b0055
  article-title: Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 8
  start-page: 4806
  year: 2019
  end-page: 4813
  ident: b0195
  article-title: The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling
  publication-title: IEEE Access
– reference: N.C. Codella et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic) 2018). 2018. IEEE.
– year: 2016
  ident: b0175
  article-title: Deep residual learning for image recognition
  publication-title: in
– volume: 43
  year: 2019
  ident: b0045
  article-title: The application of deep learning in the risk grading of skin tumors for patients using clinical images
  publication-title: J. Med. Syst.
– reference: Kingma, D.P. and J. Ba,
– reference: arXiv preprint arXiv:1412.6980, 2014.
– reference: Perez, F., et al., Data augmentation for skin lesion analysis, in OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis. 2018, Springer. pp. 303–311.
– volume: 25
  start-page: 3554
  year: 2021
  end-page: 3563
  ident: b0230
  article-title: An attention-based mechanism to combine images and metadata in deep learning models applied to skin cancer classification
  publication-title: IEEE J. Biomed. Health. Inf.
– volume: 9
  year: 2018
  ident: b0010
  article-title: Cell death-based treatments of melanoma: conventional treatments and new therapeutic strategies
  publication-title: Cell Death Dis.
– volume: 76
  year: 2022
  ident: b0225
  article-title: FusionM4Net: a multi-stage multi-modal learning algorithm for multi-label skin lesion classification
  publication-title: Med. Image Anal.
– volume: 23
  start-page: 474
  year: 2019
  end-page: 478
  ident: b0030
  article-title: Dermoscopy image analysis: overview and future directions
  publication-title: IEEE J. Biomed. Health. Inf.
– year: 2010
  ident: b0180
  article-title: Cosine similarity metric learning for face verification
  publication-title: Asian conference on computer vision
– volume: 181
  start-page: 155
  year: 2019
  end-page: 165
  ident: b0080
  article-title: Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features
  publication-title: Br. J. Dermatol.
– volume: 5
  start-page: 1
  year: 2018
  end-page: 9
  ident: b0150
  article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions
  publication-title: Sci. Data
– volume: 40
  start-page: 249
  issue: 3
  year: 2017
  ident: 10.1016/j.bspc.2022.103893_b0015
  article-title: Melanoma and non-melanoma skin cancer associated with angiotensin-converting-enzyme inhibitors, angiotensin-receptor blockers and thiazides: a matched cohort study
  publication-title: Drug Saf.
  doi: 10.1007/s40264-016-0487-9
– volume: 11
  start-page: 333
  issue: 3
  year: 2014
  ident: 10.1016/j.bspc.2022.103893_b0145
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2810
– volume: 76
  year: 2022
  ident: 10.1016/j.bspc.2022.103893_b0225
  article-title: FusionM4Net: a multi-stage multi-modal learning algorithm for multi-label skin lesion classification
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102307
– volume: 116
  year: 2020
  ident: 10.1016/j.bspc.2022.103893_b0050
  article-title: The impact of patient clinical information on automated skin cancer detection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103545
– ident: 10.1016/j.bspc.2022.103893_b0215
– volume: 23
  start-page: 474
  issue: 2
  year: 2019
  ident: 10.1016/j.bspc.2022.103893_b0030
  article-title: Dermoscopy image analysis: overview and future directions
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2019.2895803
– year: 2021
  ident: 10.1016/j.bspc.2022.103893_b0065
– year: 2017
  ident: 10.1016/j.bspc.2022.103893_b0075
  article-title: Deep Semantics-Preserving Hashing Based Skin Lesion Image Retrieval
– volume: 7
  year: 2020
  ident: 10.1016/j.bspc.2022.103893_b0110
  article-title: Skin lesion classification using ensembles of multi-resolution EfficientNets with meta data
  publication-title: MethodsX
  doi: 10.1016/j.mex.2020.100864
– volume: 292
  start-page: 2771
  issue: 22
  year: 2004
  ident: 10.1016/j.bspc.2022.103893_b0085
  article-title: Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria
  publication-title: JAMA
  doi: 10.1001/jama.292.22.2771
– volume: 9
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2022.103893_b0010
  article-title: Cell death-based treatments of melanoma: conventional treatments and new therapeutic strategies
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-017-0059-7
– ident: 10.1016/j.bspc.2022.103893_b0020
– volume: 25
  year: 2012
  ident: 10.1016/j.bspc.2022.103893_b0205
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inform. Process. Syst.
– year: 2010
  ident: 10.1016/j.bspc.2022.103893_b0180
  article-title: Cosine similarity metric learning for face verification
– volume: 25
  start-page: 3554
  issue: 9
  year: 2021
  ident: 10.1016/j.bspc.2022.103893_b0230
  article-title: An attention-based mechanism to combine images and metadata in deep learning models applied to skin cancer classification
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2021.3062002
– volume: 23
  start-page: 1096
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2022.103893_b0025
  article-title: A survey of feature extraction in dermoscopy image analysis of skin cancer
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2018.2845939
– volume: 23
  start-page: e20708
  issue: 7
  year: 2021
  ident: 10.1016/j.bspc.2022.103893_b0120
  article-title: Integrating patient data into skin cancer classification using convolutional neural networks: systematic review
  publication-title: J. Med. Int. Res.
– year: 2016
  ident: 10.1016/j.bspc.2022.103893_b0175
  article-title: Deep residual learning for image recognition
– start-page: 1
  year: 2018
  ident: 10.1016/j.bspc.2022.103893_b0135
  article-title: Skin lesion segmentation and recognition using multichannel saliency estimation and M-SVM on selected serially fused features
  publication-title: J. Ambient Intell. Hum. Comput.
– ident: 10.1016/j.bspc.2022.103893_b0165
  doi: 10.1016/j.media.2022.102693
– ident: 10.1016/j.bspc.2022.103893_b0155
  doi: 10.1109/ISBI.2018.8363547
– volume: 69
  issue: 2
  year: 2004
  ident: 10.1016/j.bspc.2022.103893_b0185
  article-title: Finding and evaluating community structure in networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.026113
– volume: 56
  start-page: 45
  issue: 1
  year: 2007
  ident: 10.1016/j.bspc.2022.103893_b0095
  article-title: The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy
  publication-title: J. Am. Acad. Dermatol.
  doi: 10.1016/j.jaad.2006.09.003
– ident: 10.1016/j.bspc.2022.103893_b0160
– ident: 10.1016/j.bspc.2022.103893_b0210
– volume: 7
  start-page: 5
  issue: S1
  year: 2017
  ident: 10.1016/j.bspc.2022.103893_b0005
  article-title: Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches
  publication-title: Dermatol. Ther.
  doi: 10.1007/s13555-016-0165-y
– volume: 181
  start-page: 155
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2022.103893_b0080
  article-title: Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features
  publication-title: Br. J. Dermatol.
  doi: 10.1111/bjd.17189
– volume: 68
  year: 2021
  ident: 10.1016/j.bspc.2022.103893_b0125
  article-title: Computer-aided skin cancer diagnosis based on a New meta-heuristic algorithm combined with support vector method
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102631
– volume: 27
  start-page: 533
  issue: 6
  year: 1997
  ident: 10.1016/j.bspc.2022.103893_b0170
  article-title: Dullrazor®: A software approach to hair removal from images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/S0010-4825(97)00020-6
– volume: 137
  year: 2021
  ident: 10.1016/j.bspc.2022.103893_b0130
  article-title: Skin lesion image retrieval using transfer learning-based approach for query-driven distance recommendation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104825
– volume: 138
  start-page: 1529
  issue: 7
  year: 2018
  ident: 10.1016/j.bspc.2022.103893_b0040
  article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm
  publication-title: J, Invest. Dermatol.
  doi: 10.1016/j.jid.2018.01.028
– ident: 10.1016/j.bspc.2022.103893_b0200
  doi: 10.1007/978-3-030-01201-4_33
– year: 2020
  ident: 10.1016/j.bspc.2022.103893_b0035
  article-title: Artificial intelligence-based image classification for diagnosis of skin cancer: Challenges and opportunities
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104065
– volume: 74
  year: 2022
  ident: 10.1016/j.bspc.2022.103893_b0140
  article-title: Dual attention based network for skin lesion classification with auxiliary learning
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103549
– volume: 43
  issue: 8
  year: 2019
  ident: 10.1016/j.bspc.2022.103893_b0045
  article-title: The application of deep learning in the risk grading of skin tumors for patients using clinical images
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1414-2
– year: 2016
  ident: 10.1016/j.bspc.2022.103893_b0105
– ident: 10.1016/j.bspc.2022.103893_b0220
– volume: 134
  issue: 12
  year: 1998
  ident: 10.1016/j.bspc.2022.103893_b0090
  article-title: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis
  publication-title: Arch. Dermatol.
  doi: 10.1001/archderm.134.12.1563
– volume: 8
  start-page: 4806
  year: 2019
  ident: 10.1016/j.bspc.2022.103893_b0195
  article-title: The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962617
– volume: 27
  start-page: 1261
  issue: 11
  year: 2018
  ident: 10.1016/j.bspc.2022.103893_b0060
  article-title: Multimodal skin lesion classification using deep learning
  publication-title: Exp. Dermatol.
  doi: 10.1111/exd.13777
– volume: 122
  start-page: 14
  year: 2019
  ident: 10.1016/j.bspc.2022.103893_b0190
  article-title: Community structure detection from networks with weighted modularity
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2019.02.005
– year: 2017
  ident: 10.1016/j.bspc.2022.103893_b0055
  article-title: Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images
– volume: 102
  year: 2020
  ident: 10.1016/j.bspc.2022.103893_b0115
  article-title: Skin cancer diagnosis based on optimized convolutional neural network
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.101756
– volume: 23
  start-page: 538
  issue: 2
  year: 2019
  ident: 10.1016/j.bspc.2022.103893_b0070
  article-title: Seven-point checklist and skin lesion classification using multitask multimodal neural nets
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2018.2824327
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 10.1016/j.bspc.2022.103893_b0100
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.bspc.2022.103893_b0150
  article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.161
SSID ssj0048714
Score 2.312489
Snippet •A new method for skin lesion image retrieval using multiple input channels is proposed.•Similarity network fusion solves the problem of dimensional imbalance...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103893
SubjectTerms Deep community
Graph analysis
Image retrieval
Multi-channel
Skin cancer
Title Multi-channel content based image retrieval method for skin diseases using similarity network fusion and deep community analysis
URI https://dx.doi.org/10.1016/j.bspc.2022.103893
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k7XJ5n0sxVIVe9FCb2FfkWiNoY-r-NOdSTalgvTgLQkzYZldZmZ3v_mGkGsv0zrhkcsyoRLmCy9gsXBdpt1EciUkzwSeQz6Nw9HEf5gG0xYZNLUwCKu0vr_26ZW3tl961pq9Ms97z5BLhzHsTjhONCS6WMHuhwjru_1awzwgH6_4vVGYobQtnKkxXnJRIo0h5xVPeOL9HZw2As7wgOzbTJH268EckpYpjsjeBn_gMfmuymcZFu8WZkYRdg4xhGJk0jT_AFdB51XHLFhOtO4VTSFJpYv3vKD2amZBEfr-Shf5Rw67XEjKaVFDw2m2wqM0KgpNtTEl_L8qJgEJYalMTshkePcyGDHbUoEpz3GWLILtkEw8GWQ69JTvZm6IDERG-FHCQw0P4O6k8qNIxVp63HDBpS-5lJlxNDfeKWkXn4U5I9To2JFaR1LG2geFxFWZcBzhKBiSiFWHuI0tU2X5xrHtxSxtgGVvKdo_Rfuntf075GatU9ZsG1ulg2aK0l9rJoVwsEXv_J96F2QX32qE2SVpL-crcwUpyVJ2qzXXJTv9-8fR-Ad4G-VG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BOwAD4inK0wMbspo477GqQC20XSgSW-RXUHiEqGl3fjrnxEEgIQa2KPFF0dn67ux89x3ApZcplbDIpRmXCfW5F9CYuy5VbiKY5IJl3JxDTmfh6MG_fQwe12DY1sIYWqXF_gbTa7S2d_rWm_0yz_v3mEuHMe5OmJloTHTXoesHiMkd6A7Gd6NZC8iYktcS32Y8NQa2dqaheYmqNEqGjNVS4Yn3e3z6FnNudmDbJotk0HzPLqzpYg-2vkkI7sNHXUFLTf1uoV-JYZ5jGCEmOCmSvyFakEXdNAtXFGnaRRPMU0n1khfE_p2piGG_P5Eqf8txo4t5OSkadjjJVuY0jfBCEaV1ie-v60lwBLdqJgfwcHM9H46o7apApec4SxrhjkgknggyFXrSdzM3NCJEmvtRwkKFF4h4QvpRJGMlPKYZZ8IXTIhMO4pp7xA6xXuhj4BoFTtCqUiIWPlokLgy447DHYmfxGPZA7f1ZSqt5LjpfPGattyy59T4PzX-Txv_9-Dqy6ZsBDf-HB20U5T-WDYpRoQ_7I7_aXcBG6P5dJJOxrO7E9g0TxrC2Sl0louVPsMMZSnO7Qr8BEHD5_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-channel+content+based+image+retrieval+method+for+skin+diseases+using+similarity+network+fusion+and+deep+community+analysis&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Wang%2C+Yuheng&rft.au=Fariah+Haq%2C+Nandinee&rft.au=Cai%2C+Jiayue&rft.au=Kalia%2C+Sunil&rft.date=2022-09-01&rft.issn=1746-8094&rft.volume=78&rft.spage=103893&rft_id=info:doi/10.1016%2Fj.bspc.2022.103893&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_103893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon