A new hybrid SSA-TA: Salp Swarm Algorithm with threshold accepting for band selection in hyperspectral images

Hyperspectral images classification is a primordial step to produce the Land Use maps. Unfortunately, the classification accuracy depends largely on the quality of spectral bands. Several bands are non-informative and the adjacent bands are generally highly correlated. This paper presents a novel ba...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 95; p. 106534
Main Authors Medjahed, Seyyid Ahmed, Ouali, Mohammed
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2020
Subjects
Online AccessGet full text
ISSN1568-4946
DOI10.1016/j.asoc.2020.106534

Cover

Abstract Hyperspectral images classification is a primordial step to produce the Land Use maps. Unfortunately, the classification accuracy depends largely on the quality of spectral bands. Several bands are non-informative and the adjacent bands are generally highly correlated. This paper presents a novel band selection approach named SSA-TA based on Salp Swarm Algorithm (SSA) which a new metaheuristic recently developed and Threshold Acceptance(TA). The proposed approach SSA-TA is a hybrid metaheuristic used to select the relevant bands by eliminating the irrelevant and redundant bands to enhance the hyperspectral image classification. This work presents two main ideas. Firstly, we propose a hybridization model based on SSA and Threshold Acceptance (TA). The basic idea is using SSA to find the promising region and use TA to enhance the exploration of the best solution. Secondly, the fitness function is designed to take into consideration three important terms: (1) the maximization of classification accuracy rate (2) the minimization of the number of selected bands (3) the minimization of correlated bands. The performance evaluation of the proposed approach is tested on three hyperspectral images widely used on remote sensing. The proposed approach is compared to other algorithms. The experimental results demonstrate the efficiency of our approach in improving the classification accuracy rate. [Display omitted] •A novel band selection approach is proposed for hyperspectral image classification.•A new hybrid metaheuristic is proposed based on SSA and Threshold Acceptance.•A new objective function is designed based on three terms.•The experimentation is conducted on three images widely used in the literature.•The numerical results show the efficacy of the proposed approach compared to other.
AbstractList Hyperspectral images classification is a primordial step to produce the Land Use maps. Unfortunately, the classification accuracy depends largely on the quality of spectral bands. Several bands are non-informative and the adjacent bands are generally highly correlated. This paper presents a novel band selection approach named SSA-TA based on Salp Swarm Algorithm (SSA) which a new metaheuristic recently developed and Threshold Acceptance(TA). The proposed approach SSA-TA is a hybrid metaheuristic used to select the relevant bands by eliminating the irrelevant and redundant bands to enhance the hyperspectral image classification. This work presents two main ideas. Firstly, we propose a hybridization model based on SSA and Threshold Acceptance (TA). The basic idea is using SSA to find the promising region and use TA to enhance the exploration of the best solution. Secondly, the fitness function is designed to take into consideration three important terms: (1) the maximization of classification accuracy rate (2) the minimization of the number of selected bands (3) the minimization of correlated bands. The performance evaluation of the proposed approach is tested on three hyperspectral images widely used on remote sensing. The proposed approach is compared to other algorithms. The experimental results demonstrate the efficiency of our approach in improving the classification accuracy rate. [Display omitted] •A novel band selection approach is proposed for hyperspectral image classification.•A new hybrid metaheuristic is proposed based on SSA and Threshold Acceptance.•A new objective function is designed based on three terms.•The experimentation is conducted on three images widely used in the literature.•The numerical results show the efficacy of the proposed approach compared to other.
ArticleNumber 106534
Author Ouali, Mohammed
Medjahed, Seyyid Ahmed
Author_xml – sequence: 1
  givenname: Seyyid Ahmed
  surname: Medjahed
  fullname: Medjahed, Seyyid Ahmed
  email: seyyidahmed.medjahed@cu-relizane.dz, seyyid.ahmed@univ-usto.dz
  organization: Relizane University Center Ahmed Zabana, Relizane, Algeria
– sequence: 2
  givenname: Mohammed
  surname: Ouali
  fullname: Ouali, Mohammed
  email: mohammed.ouali@usherbrooke.ca
  organization: Thales Canada Inc., 105 Moatfield Drive, North York, ON, M3B0A4, Canada
BookMark eNp9kMtqwzAQRbVIoUnaH-hKP-BU8kORSzcm9AWBLpyuhSyPYgVbMpJpyN9XJl110c0MXHSGq7NCC-ssIPRAyYYSyh5PGxmc2qQknQNWZPkCLWnBeJKXObtFqxBOJD4sU75EQ4UtnHF3abxpcV1XyaF6wrXsR1yfpR9w1R-dN1M34HOceOo8hM71LZZKwTgZe8TaedxI2-IAPajJOIuNjSdH8GGMgZc9NoM8QrhDN1r2Ae5_9xp9vb4cdu_J_vPtY1ftE5URMiVbXqbFluVE5Zxplpc0zfJWc0I5LbWGBhTILG2oamK8hUIVCniji5IpyKTM1ohf7yrvQvCghTKTnJvFMqYXlIhZlTiJWZWYVYmrqoimf9DRx_L-8j_0fIUgfurbgBdBGbAKWuOjANE68x_-AwmWiDk
CitedBy_id crossref_primary_10_1007_s11227_024_06507_w
crossref_primary_10_3390_math12111625
crossref_primary_10_1016_j_eswa_2022_117401
crossref_primary_10_1016_j_asoc_2023_110753
crossref_primary_10_1016_j_egyr_2022_09_025
crossref_primary_10_1109_LGRS_2022_3147272
crossref_primary_10_1016_j_infrared_2025_105726
crossref_primary_10_1007_s10489_022_03976_5
crossref_primary_10_1007_s00500_021_05757_7
crossref_primary_10_1007_s12145_024_01527_9
crossref_primary_10_1109_JSTARS_2020_3037353
crossref_primary_10_1109_TGRS_2023_3339828
Cites_doi 10.1016/j.asoc.2015.09.045
10.1109/JSTARS.2014.2320299
10.1016/0021-9991(90)90201-B
10.1016/j.asoc.2018.03.029
10.1016/S0305-0548(03)00172-2
10.1016/j.neucom.2017.04.053
10.1016/j.ins.2009.03.004
10.1016/j.advengsoft.2017.07.002
10.1016/S0010-4655(00)00153-3
10.1109/JSTARS.2014.2312539
10.1016/0375-9601(90)90166-L
10.1109/ICNN.1995.488968
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106534
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2020_106534
S1568494620304737
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-789257640c486f6491234df801819ffebecea32b1cb4df7e5c5ce8bf596ce3aa3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Wed Oct 01 02:32:18 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Sun Apr 06 06:53:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Threshold Acceptance
Band selection
Hybrid metaheuristic
Salp Swarm Algorithm
Hyperspectral image classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-789257640c486f6491234df801819ffebecea32b1cb4df7e5c5ce8bf596ce3aa3
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_106534
crossref_primary_10_1016_j_asoc_2020_106534
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106534
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Moscato, Fontanari (b22) 1990; 146
Mirjalili, Mirjalili, Yang (b23) 2013; 25
Harada, Ikeda, Kobayashi (b18) 2006
Dueck, Scheuer (b19) 1990; 90
Fachat, Hoffmann, Franz (b11) 2000; 132
Salimi, Ziaii, Amiri, Zadeh, Karimpouli, Moradkhani (b1) 2018; 21
Barraza, Rodríguez, Castillo, Melin, Valdez (b16) 2018; 2018
Liu, Yang, Gou, Liu, Jiao (b3) 2018; 68
Wen, Zhang, Lin, Xu (b9) 2017
Medjahed, Ouali (b2) 2016; 19
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b13) 2017; 114
Hegazy, Makhlouf, El-Tawel (b14) 2018; 32
Medjahed, Ouali (b4) 2018
Sun, Geng, Ji, Lu (b8) 2014; 7
Rashedi, Nezamabadi, Saryazdi (b12) 2009; 179
K. J., E. R., Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks IV, Vol. 4, 1995, pp. 1942–1948.
Medjahed, Saadi, Benyettou, Ouali (b6) 2015; 42
Wang, Ting (b21) 2009; 8
Medjahed, Saadi, Benyettou, Ouali (b5) 2016; 40
Lee, Vassiliadis, park (b20) 2004; 31
He, Yang, Yao (b17) 2006
Mafarja, Mirjalili (b15) 2017; 260
Su, Du, Chen, Du (b7) 2014; 7
Hegazy (10.1016/j.asoc.2020.106534_b14) 2018; 32
Mirjalili (10.1016/j.asoc.2020.106534_b13) 2017; 114
Mirjalili (10.1016/j.asoc.2020.106534_b23) 2013; 25
Su (10.1016/j.asoc.2020.106534_b7) 2014; 7
Barraza (10.1016/j.asoc.2020.106534_b16) 2018; 2018
Medjahed (10.1016/j.asoc.2020.106534_b6) 2015; 42
He (10.1016/j.asoc.2020.106534_b17) 2006
Liu (10.1016/j.asoc.2020.106534_b3) 2018; 68
Sun (10.1016/j.asoc.2020.106534_b8) 2014; 7
Rashedi (10.1016/j.asoc.2020.106534_b12) 2009; 179
Medjahed (10.1016/j.asoc.2020.106534_b4) 2018
Moscato (10.1016/j.asoc.2020.106534_b22) 1990; 146
Salimi (10.1016/j.asoc.2020.106534_b1) 2018; 21
Fachat (10.1016/j.asoc.2020.106534_b11) 2000; 132
Wang (10.1016/j.asoc.2020.106534_b21) 2009; 8
Mafarja (10.1016/j.asoc.2020.106534_b15) 2017; 260
Harada (10.1016/j.asoc.2020.106534_b18) 2006
Medjahed (10.1016/j.asoc.2020.106534_b2) 2016; 19
Dueck (10.1016/j.asoc.2020.106534_b19) 1990; 90
Wen (10.1016/j.asoc.2020.106534_b9) 2017
Medjahed (10.1016/j.asoc.2020.106534_b5) 2016; 40
Lee (10.1016/j.asoc.2020.106534_b20) 2004; 31
10.1016/j.asoc.2020.106534_b10
References_xml – volume: 19
  start-page: 163
  year: 2016
  end-page: 173
  ident: b2
  article-title: A new post-classification and band selection frameworks for hyperspectral image classification
  publication-title: Egypt. J. Remote Sens. Space Sci.
– start-page: 667
  year: 2006
  end-page: 674
  ident: b18
  article-title: Hybridization of genetic algorithm and local search in multiobjective function optimization: recommendation of GA then LS
  publication-title: GECCO ’06: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation GECCO’06
– year: 2018
  ident: b4
  article-title: Band selection based on optimization approach for hyperspectral image classification
  publication-title: Egypt. J. Remote Sens. Space Sci.
– volume: 8
  year: 2009
  ident: b21
  article-title: A threshold accepting algorithm for the uncapacitated single allocation p-hub median problem
  publication-title: J. East. Asia Soc. Transp. Stud.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b13
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– volume: 146
  start-page: 204
  year: 1990
  end-page: 208
  ident: b22
  article-title: Stochastic versus deterministic update in simulated annealing
  publication-title: Phys. Lett. A
– volume: 7
  start-page: 2697
  year: 2014
  end-page: 2703
  ident: b8
  article-title: A new band selection method for hyperspectral image based on data quality
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 31
  start-page: 2199
  year: 2004
  end-page: 2213
  ident: b20
  article-title: A novel thresholdaccepting meta-heuristic for the job-shop scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 42
  start-page: 183
  year: 2015
  end-page: 191
  ident: b6
  article-title: Binary cuckoo search algorithm for band selection in hyperspectral image classification
  publication-title: IAENG Int. J. Comput. Sci.
– start-page: 392
  year: 2006
  end-page: 399
  ident: b17
  article-title: Hybridisation of particle swarm optimization and fast evolutionary programming
  publication-title: Asia-Pacific Conference on Simulated Evolution and Learning SEAL 2006: Simulated Evolution and Learning
– volume: 7
  start-page: 2659
  year: 2014
  end-page: 2670
  ident: b7
  article-title: Optimized hyperspectral band selection using particle swarm optimization
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 260
  start-page: 302
  year: 2017
  end-page: 312
  ident: b15
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 18
  ident: b16
  article-title: A new hybridization approach between the fireworks algorithm and grey wolf optimizer algorithm
  publication-title: J. Optim.
– volume: 68
  start-page: 24
  year: 2018
  end-page: 38
  ident: b3
  article-title: Terrain classification based on spatial multi-attribute graph using polarimetric SAR data
  publication-title: Appl. Soft Comput.
– volume: 32
  start-page: 335
  year: 2018
  end-page: 344
  ident: b14
  article-title: Improved salp swarm algorithm for feature selection
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– volume: 40
  start-page: 178
  year: 2016
  end-page: 186
  ident: b5
  article-title: Gray wolf optimizer for hyperspectral band selection
  publication-title: Appl. Soft Comput. J.
– volume: 132
  start-page: 232
  year: 2000
  end-page: 240
  ident: b11
  article-title: Simulated annealing with threshold accepting or tsallis statistics
  publication-title: Comput. Phys. Comm.
– reference: K. J., E. R., Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks IV, Vol. 4, 1995, pp. 1942–1948.
– volume: 90
  start-page: 161
  year: 1990
  end-page: 175
  ident: b19
  article-title: Threshold accepting. A general purpose optimization algorithm superior to simulated annealing
  publication-title: J. Comput. Phys.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b12
  article-title: GSA: A gravitational search algorithm
  publication-title: Inform. Sci.
– volume: 21
  start-page: 27
  year: 2018
  end-page: 36
  ident: b1
  article-title: Using a feature subset selection method and support vector machine to address curse of dimensionality and redundancy in hyperion hyperspectral data classification
  publication-title: Egypt. J. Remote Sens. Space Sci.
– year: 2017
  ident: b9
  article-title: Band selection based on genetic algorithms for classification of hyperspectral data
  publication-title: International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)
– volume: 25
  start-page: 663
  year: 2013
  end-page: 681
  ident: b23
  article-title: Binary bat algorithm
  publication-title: Neural Comput. Appl.
– volume: 8
  year: 2009
  ident: 10.1016/j.asoc.2020.106534_b21
  article-title: A threshold accepting algorithm for the uncapacitated single allocation p-hub median problem
  publication-title: J. East. Asia Soc. Transp. Stud.
– volume: 19
  start-page: 163
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2020.106534_b2
  article-title: A new post-classification and band selection frameworks for hyperspectral image classification
  publication-title: Egypt. J. Remote Sens. Space Sci.
– volume: 40
  start-page: 178
  year: 2016
  ident: 10.1016/j.asoc.2020.106534_b5
  article-title: Gray wolf optimizer for hyperspectral band selection
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2015.09.045
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106534_b16
  article-title: A new hybridization approach between the fireworks algorithm and grey wolf optimizer algorithm
  publication-title: J. Optim.
– volume: 7
  start-page: 2697
  issue: 6
  year: 2014
  ident: 10.1016/j.asoc.2020.106534_b8
  article-title: A new band selection method for hyperspectral image based on data quality
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2320299
– volume: 21
  start-page: 27
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106534_b1
  article-title: Using a feature subset selection method and support vector machine to address curse of dimensionality and redundancy in hyperion hyperspectral data classification
  publication-title: Egypt. J. Remote Sens. Space Sci.
– volume: 90
  start-page: 161
  year: 1990
  ident: 10.1016/j.asoc.2020.106534_b19
  article-title: Threshold accepting. A general purpose optimization algorithm superior to simulated annealing
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(90)90201-B
– volume: 68
  start-page: 24
  year: 2018
  ident: 10.1016/j.asoc.2020.106534_b3
  article-title: Terrain classification based on spatial multi-attribute graph using polarimetric SAR data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.03.029
– volume: 31
  start-page: 2199
  year: 2004
  ident: 10.1016/j.asoc.2020.106534_b20
  article-title: A novel thresholdaccepting meta-heuristic for the job-shop scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(03)00172-2
– volume: 260
  start-page: 302
  year: 2017
  ident: 10.1016/j.asoc.2020.106534_b15
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 32
  start-page: 335
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2020.106534_b14
  article-title: Improved salp swarm algorithm for feature selection
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.asoc.2020.106534_b12
  article-title: GSA: A gravitational search algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2009.03.004
– year: 2017
  ident: 10.1016/j.asoc.2020.106534_b9
  article-title: Band selection based on genetic algorithms for classification of hyperspectral data
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.asoc.2020.106534_b13
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– year: 2018
  ident: 10.1016/j.asoc.2020.106534_b4
  article-title: Band selection based on optimization approach for hyperspectral image classification
  publication-title: Egypt. J. Remote Sens. Space Sci.
– volume: 42
  start-page: 183
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2020.106534_b6
  article-title: Binary cuckoo search algorithm for band selection in hyperspectral image classification
  publication-title: IAENG Int. J. Comput. Sci.
– volume: 132
  start-page: 232
  year: 2000
  ident: 10.1016/j.asoc.2020.106534_b11
  article-title: Simulated annealing with threshold accepting or tsallis statistics
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/S0010-4655(00)00153-3
– volume: 7
  start-page: 2659
  issue: 6
  year: 2014
  ident: 10.1016/j.asoc.2020.106534_b7
  article-title: Optimized hyperspectral band selection using particle swarm optimization
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2312539
– start-page: 392
  year: 2006
  ident: 10.1016/j.asoc.2020.106534_b17
  article-title: Hybridisation of particle swarm optimization and fast evolutionary programming
– start-page: 667
  year: 2006
  ident: 10.1016/j.asoc.2020.106534_b18
  article-title: Hybridization of genetic algorithm and local search in multiobjective function optimization: recommendation of GA then LS
– volume: 146
  start-page: 204
  year: 1990
  ident: 10.1016/j.asoc.2020.106534_b22
  article-title: Stochastic versus deterministic update in simulated annealing
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(90)90166-L
– volume: 25
  start-page: 663
  issue: 3–4
  year: 2013
  ident: 10.1016/j.asoc.2020.106534_b23
  article-title: Binary bat algorithm
  publication-title: Neural Comput. Appl.
– ident: 10.1016/j.asoc.2020.106534_b10
  doi: 10.1109/ICNN.1995.488968
SSID ssj0016928
Score 2.3970022
Snippet Hyperspectral images classification is a primordial step to produce the Land Use maps. Unfortunately, the classification accuracy depends largely on the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106534
SubjectTerms Band selection
Hybrid metaheuristic
Hyperspectral image classification
Salp Swarm Algorithm
Threshold Acceptance
Title A new hybrid SSA-TA: Salp Swarm Algorithm with threshold accepting for band selection in hyperspectral images
URI https://dx.doi.org/10.1016/j.asoc.2020.106534
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016928
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016928
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016928
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016928
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXLiUPqjKo8gHbpXZZO04MbdoBVoKrFADErfIdhwI2g2r3VSIC7-dmcRBRar2wCmKNY6sGWce9sx8hByqSIe6lI6Bu1swkZiQgXPEWYwwBGGhQhtgNfLlRI5vxO_b6HaNjPpaGEyr9Lq_0-mttvYjA8_NwbyqBhlEHolQQg7xdi_mWFEuRIwoBkcvb2keoVQtvioSM6T2hTNdjpcGDkCMOMQBGXHxf-P0j8E5_Uw-eU-Rpt1ivpA1V38lWz0KA_U_5TcySym4xvT-GWuvaJal7Do9ppmezmn2pBczmk7vHhdVcz-jeOhKG5DeEi-dqLZtTkt9R8FzpUbXBV22sDggK1rV8Mm5L8VcwEKqGaie5Ta5OT25Ho2ZB1FglgdBw-JEYUwhAisSWUqhwFSJokywUZcqS5Sh03xoQmtgOHaRjaxLTBkpaR3Xmn8n6_Vj7X4Qyq0NsLcPF1aJ0llTGgnhpUtcERoIhXZI2HMvt77DOAJdTPM-lewhR47nyPG84_gO-fU2Z97111hJHfVCyd_tkhwMwIp5ux-ct0c28a1L3tsn683ir_sJTkhjDtpddkA20tGfiyt8np2PJ6_6Od1q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELa2cGgvPEorHi340BtyN1k7TtxbtCralscli8Qtsh0HgnbDajcIcelv70ziIJAQB64TT2TNODPzxfMg5IeKdKhL6RiEuwUTiQkZBEecxTiGICxUaAOsRj6_kJNL8fcquhqQcV8Lg2mV3vZ3Nr211p4y9NIcLqpqmAHySIQScoS3ezGPP5B1EY1iRGA__z3leYRStQNWcTXD5b5ypkvy0iACAIkjJMiIi9e90zOPc7JFNnyoSNNuN9tk4OrPZLMfw0D9V7lD5imF2JjePGLxFc2ylE3TXzTTswXNHvRyTtPZ9d2yam7mFP-60gbUt8JbJ6ptm9RSX1MIXanRdUFX7VwcUBatanjlwtdiLmEj1Rxsz-oLuTz5PR1PmJ-iwCwPgobFiUJQIQIrEllKocBXiaJMsFOXKktUotN8ZEJrgBy7yEbWJaaMlLSOa82_krX6rna7hHJrA2zuw4VVonTWlEYCvnSJK0IDWGiPhL30cutbjOOki1ne55Ld5ijxHCWedxLfI8dPPIuuwcabq6NeKfmLY5KDB3iDb_-dfEfk42R6fpaf_bk4PSCf8EmXyfeNrDXLe_cdIpLGHLYn7j9L4d1q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hybrid+SSA-TA%3A+Salp+Swarm+Algorithm+with+threshold+accepting+for+band+selection+in+hyperspectral+images&rft.jtitle=Applied+soft+computing&rft.au=Medjahed%2C+Seyyid+Ahmed&rft.au=Ouali%2C+Mohammed&rft.date=2020-10-01&rft.issn=1568-4946&rft.volume=95&rft.spage=106534&rft_id=info:doi/10.1016%2Fj.asoc.2020.106534&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon