A new hybrid SSA-TA: Salp Swarm Algorithm with threshold accepting for band selection in hyperspectral images
Hyperspectral images classification is a primordial step to produce the Land Use maps. Unfortunately, the classification accuracy depends largely on the quality of spectral bands. Several bands are non-informative and the adjacent bands are generally highly correlated. This paper presents a novel ba...
Saved in:
| Published in | Applied soft computing Vol. 95; p. 106534 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 |
| DOI | 10.1016/j.asoc.2020.106534 |
Cover
| Abstract | Hyperspectral images classification is a primordial step to produce the Land Use maps. Unfortunately, the classification accuracy depends largely on the quality of spectral bands. Several bands are non-informative and the adjacent bands are generally highly correlated. This paper presents a novel band selection approach named SSA-TA based on Salp Swarm Algorithm (SSA) which a new metaheuristic recently developed and Threshold Acceptance(TA). The proposed approach SSA-TA is a hybrid metaheuristic used to select the relevant bands by eliminating the irrelevant and redundant bands to enhance the hyperspectral image classification. This work presents two main ideas. Firstly, we propose a hybridization model based on SSA and Threshold Acceptance (TA). The basic idea is using SSA to find the promising region and use TA to enhance the exploration of the best solution. Secondly, the fitness function is designed to take into consideration three important terms: (1) the maximization of classification accuracy rate (2) the minimization of the number of selected bands (3) the minimization of correlated bands. The performance evaluation of the proposed approach is tested on three hyperspectral images widely used on remote sensing. The proposed approach is compared to other algorithms. The experimental results demonstrate the efficiency of our approach in improving the classification accuracy rate.
[Display omitted]
•A novel band selection approach is proposed for hyperspectral image classification.•A new hybrid metaheuristic is proposed based on SSA and Threshold Acceptance.•A new objective function is designed based on three terms.•The experimentation is conducted on three images widely used in the literature.•The numerical results show the efficacy of the proposed approach compared to other. |
|---|---|
| AbstractList | Hyperspectral images classification is a primordial step to produce the Land Use maps. Unfortunately, the classification accuracy depends largely on the quality of spectral bands. Several bands are non-informative and the adjacent bands are generally highly correlated. This paper presents a novel band selection approach named SSA-TA based on Salp Swarm Algorithm (SSA) which a new metaheuristic recently developed and Threshold Acceptance(TA). The proposed approach SSA-TA is a hybrid metaheuristic used to select the relevant bands by eliminating the irrelevant and redundant bands to enhance the hyperspectral image classification. This work presents two main ideas. Firstly, we propose a hybridization model based on SSA and Threshold Acceptance (TA). The basic idea is using SSA to find the promising region and use TA to enhance the exploration of the best solution. Secondly, the fitness function is designed to take into consideration three important terms: (1) the maximization of classification accuracy rate (2) the minimization of the number of selected bands (3) the minimization of correlated bands. The performance evaluation of the proposed approach is tested on three hyperspectral images widely used on remote sensing. The proposed approach is compared to other algorithms. The experimental results demonstrate the efficiency of our approach in improving the classification accuracy rate.
[Display omitted]
•A novel band selection approach is proposed for hyperspectral image classification.•A new hybrid metaheuristic is proposed based on SSA and Threshold Acceptance.•A new objective function is designed based on three terms.•The experimentation is conducted on three images widely used in the literature.•The numerical results show the efficacy of the proposed approach compared to other. |
| ArticleNumber | 106534 |
| Author | Ouali, Mohammed Medjahed, Seyyid Ahmed |
| Author_xml | – sequence: 1 givenname: Seyyid Ahmed surname: Medjahed fullname: Medjahed, Seyyid Ahmed email: seyyidahmed.medjahed@cu-relizane.dz, seyyid.ahmed@univ-usto.dz organization: Relizane University Center Ahmed Zabana, Relizane, Algeria – sequence: 2 givenname: Mohammed surname: Ouali fullname: Ouali, Mohammed email: mohammed.ouali@usherbrooke.ca organization: Thales Canada Inc., 105 Moatfield Drive, North York, ON, M3B0A4, Canada |
| BookMark | eNp9kMtqwzAQRbVIoUnaH-hKP-BU8kORSzcm9AWBLpyuhSyPYgVbMpJpyN9XJl110c0MXHSGq7NCC-ssIPRAyYYSyh5PGxmc2qQknQNWZPkCLWnBeJKXObtFqxBOJD4sU75EQ4UtnHF3abxpcV1XyaF6wrXsR1yfpR9w1R-dN1M34HOceOo8hM71LZZKwTgZe8TaedxI2-IAPajJOIuNjSdH8GGMgZc9NoM8QrhDN1r2Ae5_9xp9vb4cdu_J_vPtY1ftE5URMiVbXqbFluVE5Zxplpc0zfJWc0I5LbWGBhTILG2oamK8hUIVCniji5IpyKTM1ohf7yrvQvCghTKTnJvFMqYXlIhZlTiJWZWYVYmrqoimf9DRx_L-8j_0fIUgfurbgBdBGbAKWuOjANE68x_-AwmWiDk |
| CitedBy_id | crossref_primary_10_1007_s11227_024_06507_w crossref_primary_10_3390_math12111625 crossref_primary_10_1016_j_eswa_2022_117401 crossref_primary_10_1016_j_asoc_2023_110753 crossref_primary_10_1016_j_egyr_2022_09_025 crossref_primary_10_1109_LGRS_2022_3147272 crossref_primary_10_1016_j_infrared_2025_105726 crossref_primary_10_1007_s10489_022_03976_5 crossref_primary_10_1007_s00500_021_05757_7 crossref_primary_10_1007_s12145_024_01527_9 crossref_primary_10_1109_JSTARS_2020_3037353 crossref_primary_10_1109_TGRS_2023_3339828 |
| Cites_doi | 10.1016/j.asoc.2015.09.045 10.1109/JSTARS.2014.2320299 10.1016/0021-9991(90)90201-B 10.1016/j.asoc.2018.03.029 10.1016/S0305-0548(03)00172-2 10.1016/j.neucom.2017.04.053 10.1016/j.ins.2009.03.004 10.1016/j.advengsoft.2017.07.002 10.1016/S0010-4655(00)00153-3 10.1109/JSTARS.2014.2312539 10.1016/0375-9601(90)90166-L 10.1109/ICNN.1995.488968 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2020.106534 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_asoc_2020_106534 S1568494620304737 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SST SSV SSZ T5K UHS UNMZH ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-789257640c486f6491234df801819ffebecea32b1cb4df7e5c5ce8bf596ce3aa3 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Wed Oct 01 02:32:18 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Sun Apr 06 06:53:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Threshold Acceptance Band selection Hybrid metaheuristic Salp Swarm Algorithm Hyperspectral image classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-789257640c486f6491234df801819ffebecea32b1cb4df7e5c5ce8bf596ce3aa3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106534 crossref_primary_10_1016_j_asoc_2020_106534 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106534 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | October 2020 2020-10-00 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Moscato, Fontanari (b22) 1990; 146 Mirjalili, Mirjalili, Yang (b23) 2013; 25 Harada, Ikeda, Kobayashi (b18) 2006 Dueck, Scheuer (b19) 1990; 90 Fachat, Hoffmann, Franz (b11) 2000; 132 Salimi, Ziaii, Amiri, Zadeh, Karimpouli, Moradkhani (b1) 2018; 21 Barraza, Rodríguez, Castillo, Melin, Valdez (b16) 2018; 2018 Liu, Yang, Gou, Liu, Jiao (b3) 2018; 68 Wen, Zhang, Lin, Xu (b9) 2017 Medjahed, Ouali (b2) 2016; 19 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b13) 2017; 114 Hegazy, Makhlouf, El-Tawel (b14) 2018; 32 Medjahed, Ouali (b4) 2018 Sun, Geng, Ji, Lu (b8) 2014; 7 Rashedi, Nezamabadi, Saryazdi (b12) 2009; 179 K. J., E. R., Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks IV, Vol. 4, 1995, pp. 1942–1948. Medjahed, Saadi, Benyettou, Ouali (b6) 2015; 42 Wang, Ting (b21) 2009; 8 Medjahed, Saadi, Benyettou, Ouali (b5) 2016; 40 Lee, Vassiliadis, park (b20) 2004; 31 He, Yang, Yao (b17) 2006 Mafarja, Mirjalili (b15) 2017; 260 Su, Du, Chen, Du (b7) 2014; 7 Hegazy (10.1016/j.asoc.2020.106534_b14) 2018; 32 Mirjalili (10.1016/j.asoc.2020.106534_b13) 2017; 114 Mirjalili (10.1016/j.asoc.2020.106534_b23) 2013; 25 Su (10.1016/j.asoc.2020.106534_b7) 2014; 7 Barraza (10.1016/j.asoc.2020.106534_b16) 2018; 2018 Medjahed (10.1016/j.asoc.2020.106534_b6) 2015; 42 He (10.1016/j.asoc.2020.106534_b17) 2006 Liu (10.1016/j.asoc.2020.106534_b3) 2018; 68 Sun (10.1016/j.asoc.2020.106534_b8) 2014; 7 Rashedi (10.1016/j.asoc.2020.106534_b12) 2009; 179 Medjahed (10.1016/j.asoc.2020.106534_b4) 2018 Moscato (10.1016/j.asoc.2020.106534_b22) 1990; 146 Salimi (10.1016/j.asoc.2020.106534_b1) 2018; 21 Fachat (10.1016/j.asoc.2020.106534_b11) 2000; 132 Wang (10.1016/j.asoc.2020.106534_b21) 2009; 8 Mafarja (10.1016/j.asoc.2020.106534_b15) 2017; 260 Harada (10.1016/j.asoc.2020.106534_b18) 2006 Medjahed (10.1016/j.asoc.2020.106534_b2) 2016; 19 Dueck (10.1016/j.asoc.2020.106534_b19) 1990; 90 Wen (10.1016/j.asoc.2020.106534_b9) 2017 Medjahed (10.1016/j.asoc.2020.106534_b5) 2016; 40 Lee (10.1016/j.asoc.2020.106534_b20) 2004; 31 10.1016/j.asoc.2020.106534_b10 |
| References_xml | – volume: 19 start-page: 163 year: 2016 end-page: 173 ident: b2 article-title: A new post-classification and band selection frameworks for hyperspectral image classification publication-title: Egypt. J. Remote Sens. Space Sci. – start-page: 667 year: 2006 end-page: 674 ident: b18 article-title: Hybridization of genetic algorithm and local search in multiobjective function optimization: recommendation of GA then LS publication-title: GECCO ’06: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation GECCO’06 – year: 2018 ident: b4 article-title: Band selection based on optimization approach for hyperspectral image classification publication-title: Egypt. J. Remote Sens. Space Sci. – volume: 8 year: 2009 ident: b21 article-title: A threshold accepting algorithm for the uncapacitated single allocation p-hub median problem publication-title: J. East. Asia Soc. Transp. Stud. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b13 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – volume: 146 start-page: 204 year: 1990 end-page: 208 ident: b22 article-title: Stochastic versus deterministic update in simulated annealing publication-title: Phys. Lett. A – volume: 7 start-page: 2697 year: 2014 end-page: 2703 ident: b8 article-title: A new band selection method for hyperspectral image based on data quality publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 31 start-page: 2199 year: 2004 end-page: 2213 ident: b20 article-title: A novel thresholdaccepting meta-heuristic for the job-shop scheduling problem publication-title: Comput. Oper. Res. – volume: 42 start-page: 183 year: 2015 end-page: 191 ident: b6 article-title: Binary cuckoo search algorithm for band selection in hyperspectral image classification publication-title: IAENG Int. J. Comput. Sci. – start-page: 392 year: 2006 end-page: 399 ident: b17 article-title: Hybridisation of particle swarm optimization and fast evolutionary programming publication-title: Asia-Pacific Conference on Simulated Evolution and Learning SEAL 2006: Simulated Evolution and Learning – volume: 7 start-page: 2659 year: 2014 end-page: 2670 ident: b7 article-title: Optimized hyperspectral band selection using particle swarm optimization publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 260 start-page: 302 year: 2017 end-page: 312 ident: b15 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing – volume: 2018 start-page: 1 year: 2018 end-page: 18 ident: b16 article-title: A new hybridization approach between the fireworks algorithm and grey wolf optimizer algorithm publication-title: J. Optim. – volume: 68 start-page: 24 year: 2018 end-page: 38 ident: b3 article-title: Terrain classification based on spatial multi-attribute graph using polarimetric SAR data publication-title: Appl. Soft Comput. – volume: 32 start-page: 335 year: 2018 end-page: 344 ident: b14 article-title: Improved salp swarm algorithm for feature selection publication-title: J. King Saud Univ. Comput. Inf. Sci. – volume: 40 start-page: 178 year: 2016 end-page: 186 ident: b5 article-title: Gray wolf optimizer for hyperspectral band selection publication-title: Appl. Soft Comput. J. – volume: 132 start-page: 232 year: 2000 end-page: 240 ident: b11 article-title: Simulated annealing with threshold accepting or tsallis statistics publication-title: Comput. Phys. Comm. – reference: K. J., E. R., Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks IV, Vol. 4, 1995, pp. 1942–1948. – volume: 90 start-page: 161 year: 1990 end-page: 175 ident: b19 article-title: Threshold accepting. A general purpose optimization algorithm superior to simulated annealing publication-title: J. Comput. Phys. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b12 article-title: GSA: A gravitational search algorithm publication-title: Inform. Sci. – volume: 21 start-page: 27 year: 2018 end-page: 36 ident: b1 article-title: Using a feature subset selection method and support vector machine to address curse of dimensionality and redundancy in hyperion hyperspectral data classification publication-title: Egypt. J. Remote Sens. Space Sci. – year: 2017 ident: b9 article-title: Band selection based on genetic algorithms for classification of hyperspectral data publication-title: International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) – volume: 25 start-page: 663 year: 2013 end-page: 681 ident: b23 article-title: Binary bat algorithm publication-title: Neural Comput. Appl. – volume: 8 year: 2009 ident: 10.1016/j.asoc.2020.106534_b21 article-title: A threshold accepting algorithm for the uncapacitated single allocation p-hub median problem publication-title: J. East. Asia Soc. Transp. Stud. – volume: 19 start-page: 163 issue: 2 year: 2016 ident: 10.1016/j.asoc.2020.106534_b2 article-title: A new post-classification and band selection frameworks for hyperspectral image classification publication-title: Egypt. J. Remote Sens. Space Sci. – volume: 40 start-page: 178 year: 2016 ident: 10.1016/j.asoc.2020.106534_b5 article-title: Gray wolf optimizer for hyperspectral band selection publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2015.09.045 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106534_b16 article-title: A new hybridization approach between the fireworks algorithm and grey wolf optimizer algorithm publication-title: J. Optim. – volume: 7 start-page: 2697 issue: 6 year: 2014 ident: 10.1016/j.asoc.2020.106534_b8 article-title: A new band selection method for hyperspectral image based on data quality publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2320299 – volume: 21 start-page: 27 issue: 1 year: 2018 ident: 10.1016/j.asoc.2020.106534_b1 article-title: Using a feature subset selection method and support vector machine to address curse of dimensionality and redundancy in hyperion hyperspectral data classification publication-title: Egypt. J. Remote Sens. Space Sci. – volume: 90 start-page: 161 year: 1990 ident: 10.1016/j.asoc.2020.106534_b19 article-title: Threshold accepting. A general purpose optimization algorithm superior to simulated annealing publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(90)90201-B – volume: 68 start-page: 24 year: 2018 ident: 10.1016/j.asoc.2020.106534_b3 article-title: Terrain classification based on spatial multi-attribute graph using polarimetric SAR data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.03.029 – volume: 31 start-page: 2199 year: 2004 ident: 10.1016/j.asoc.2020.106534_b20 article-title: A novel thresholdaccepting meta-heuristic for the job-shop scheduling problem publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(03)00172-2 – volume: 260 start-page: 302 year: 2017 ident: 10.1016/j.asoc.2020.106534_b15 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – volume: 32 start-page: 335 issue: 3 year: 2018 ident: 10.1016/j.asoc.2020.106534_b14 article-title: Improved salp swarm algorithm for feature selection publication-title: J. King Saud Univ. Comput. Inf. Sci. – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.asoc.2020.106534_b12 article-title: GSA: A gravitational search algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2009.03.004 – year: 2017 ident: 10.1016/j.asoc.2020.106534_b9 article-title: Band selection based on genetic algorithms for classification of hyperspectral data – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.asoc.2020.106534_b13 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – year: 2018 ident: 10.1016/j.asoc.2020.106534_b4 article-title: Band selection based on optimization approach for hyperspectral image classification publication-title: Egypt. J. Remote Sens. Space Sci. – volume: 42 start-page: 183 issue: 3 year: 2015 ident: 10.1016/j.asoc.2020.106534_b6 article-title: Binary cuckoo search algorithm for band selection in hyperspectral image classification publication-title: IAENG Int. J. Comput. Sci. – volume: 132 start-page: 232 year: 2000 ident: 10.1016/j.asoc.2020.106534_b11 article-title: Simulated annealing with threshold accepting or tsallis statistics publication-title: Comput. Phys. Comm. doi: 10.1016/S0010-4655(00)00153-3 – volume: 7 start-page: 2659 issue: 6 year: 2014 ident: 10.1016/j.asoc.2020.106534_b7 article-title: Optimized hyperspectral band selection using particle swarm optimization publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2312539 – start-page: 392 year: 2006 ident: 10.1016/j.asoc.2020.106534_b17 article-title: Hybridisation of particle swarm optimization and fast evolutionary programming – start-page: 667 year: 2006 ident: 10.1016/j.asoc.2020.106534_b18 article-title: Hybridization of genetic algorithm and local search in multiobjective function optimization: recommendation of GA then LS – volume: 146 start-page: 204 year: 1990 ident: 10.1016/j.asoc.2020.106534_b22 article-title: Stochastic versus deterministic update in simulated annealing publication-title: Phys. Lett. A doi: 10.1016/0375-9601(90)90166-L – volume: 25 start-page: 663 issue: 3–4 year: 2013 ident: 10.1016/j.asoc.2020.106534_b23 article-title: Binary bat algorithm publication-title: Neural Comput. Appl. – ident: 10.1016/j.asoc.2020.106534_b10 doi: 10.1109/ICNN.1995.488968 |
| SSID | ssj0016928 |
| Score | 2.3970022 |
| Snippet | Hyperspectral images classification is a primordial step to produce the Land Use maps. Unfortunately, the classification accuracy depends largely on the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106534 |
| SubjectTerms | Band selection Hybrid metaheuristic Hyperspectral image classification Salp Swarm Algorithm Threshold Acceptance |
| Title | A new hybrid SSA-TA: Salp Swarm Algorithm with threshold accepting for band selection in hyperspectral images |
| URI | https://dx.doi.org/10.1016/j.asoc.2020.106534 |
| Volume | 95 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXLiUPqjKo8gHbpXZZO04MbdoBVoKrFADErfIdhwI2g2r3VSIC7-dmcRBRar2wCmKNY6sGWce9sx8hByqSIe6lI6Bu1swkZiQgXPEWYwwBGGhQhtgNfLlRI5vxO_b6HaNjPpaGEyr9Lq_0-mttvYjA8_NwbyqBhlEHolQQg7xdi_mWFEuRIwoBkcvb2keoVQtvioSM6T2hTNdjpcGDkCMOMQBGXHxf-P0j8E5_Uw-eU-Rpt1ivpA1V38lWz0KA_U_5TcySym4xvT-GWuvaJal7Do9ppmezmn2pBczmk7vHhdVcz-jeOhKG5DeEi-dqLZtTkt9R8FzpUbXBV22sDggK1rV8Mm5L8VcwEKqGaie5Ta5OT25Ho2ZB1FglgdBw-JEYUwhAisSWUqhwFSJokywUZcqS5Sh03xoQmtgOHaRjaxLTBkpaR3Xmn8n6_Vj7X4Qyq0NsLcPF1aJ0llTGgnhpUtcERoIhXZI2HMvt77DOAJdTPM-lewhR47nyPG84_gO-fU2Z97111hJHfVCyd_tkhwMwIp5ux-ct0c28a1L3tsn683ir_sJTkhjDtpddkA20tGfiyt8np2PJ6_6Od1q |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELa2cGgvPEorHi340BtyN1k7TtxbtCralscli8Qtsh0HgnbDajcIcelv70ziIJAQB64TT2TNODPzxfMg5IeKdKhL6RiEuwUTiQkZBEecxTiGICxUaAOsRj6_kJNL8fcquhqQcV8Lg2mV3vZ3Nr211p4y9NIcLqpqmAHySIQScoS3ezGPP5B1EY1iRGA__z3leYRStQNWcTXD5b5ypkvy0iACAIkjJMiIi9e90zOPc7JFNnyoSNNuN9tk4OrPZLMfw0D9V7lD5imF2JjePGLxFc2ylE3TXzTTswXNHvRyTtPZ9d2yam7mFP-60gbUt8JbJ6ptm9RSX1MIXanRdUFX7VwcUBatanjlwtdiLmEj1Rxsz-oLuTz5PR1PmJ-iwCwPgobFiUJQIQIrEllKocBXiaJMsFOXKktUotN8ZEJrgBy7yEbWJaaMlLSOa82_krX6rna7hHJrA2zuw4VVonTWlEYCvnSJK0IDWGiPhL30cutbjOOki1ne55Ld5ijxHCWedxLfI8dPPIuuwcabq6NeKfmLY5KDB3iDb_-dfEfk42R6fpaf_bk4PSCf8EmXyfeNrDXLe_cdIpLGHLYn7j9L4d1q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hybrid+SSA-TA%3A+Salp+Swarm+Algorithm+with+threshold+accepting+for+band+selection+in+hyperspectral+images&rft.jtitle=Applied+soft+computing&rft.au=Medjahed%2C+Seyyid+Ahmed&rft.au=Ouali%2C+Mohammed&rft.date=2020-10-01&rft.issn=1568-4946&rft.volume=95&rft.spage=106534&rft_id=info:doi/10.1016%2Fj.asoc.2020.106534&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106534 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |