Maintenance planning recommendation of complex industrial equipment based on knowledge graph and graph neural network
Maintenance planning is a significant part of predictive maintenance, which involves task planning, resource scheduling, and prevention. With large-scale sensor systems in modern factories, much data will be captured during monitoring and maintenance of complex industrial equipment. Accumulated data...
Saved in:
| Published in | Reliability engineering & system safety Vol. 232; p. 109068 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.04.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0951-8320 1879-0836 |
| DOI | 10.1016/j.ress.2022.109068 |
Cover
| Abstract | Maintenance planning is a significant part of predictive maintenance, which involves task planning, resource scheduling, and prevention. With large-scale sensor systems in modern factories, much data will be captured during monitoring and maintenance of complex industrial equipment. Accumulated data facilitates maintenance planning becomes more thorough and timely. Recently, a knowledge graph (KG) was offered to handle large-scale, unorganized maintenance data semantically, resulting in better data usage. Some prior studies have utilized KG for maintenance planning with semantic searching or graph structure-based algorithms, nevertheless neglecting the prediction of potential linkage. To fill this gap, a maintenance-oriented KG is established firstly based on a well-defined domain-specific ontology schema and accumulated maintenance data. Then, an Attention-Based Compressed Relational Graph Convolutional Network is proposed to predict potential solutions and explain fault in maintenance tasks. Lastly, a maintenance case of oil drilling equipment is carried out, where the proposed model is compared with other cutting-edge models to demonstrate its effectiveness in link prediction. This research is anticipated to shed light on future adoption of KG in maintenance planning recommendations.
•A Manufacturing Knowledge Graph’s schema is proposed in light of the low efficiency of knowledge use and the absence of uniform standards in maintenance scenarios.•A link prediction model, ACRGCN, is proposed, which is tailored for the sparsity and imbalance node types characteristics of Manufacturing Knowledge Graph.•A question-and-answer system is provided to reduce the operational difficulty of knowledge graph search reasoning, satisfying convenient and user-friendly purposes. |
|---|---|
| AbstractList | Maintenance planning is a significant part of predictive maintenance, which involves task planning, resource scheduling, and prevention. With large-scale sensor systems in modern factories, much data will be captured during monitoring and maintenance of complex industrial equipment. Accumulated data facilitates maintenance planning becomes more thorough and timely. Recently, a knowledge graph (KG) was offered to handle large-scale, unorganized maintenance data semantically, resulting in better data usage. Some prior studies have utilized KG for maintenance planning with semantic searching or graph structure-based algorithms, nevertheless neglecting the prediction of potential linkage. To fill this gap, a maintenance-oriented KG is established firstly based on a well-defined domain-specific ontology schema and accumulated maintenance data. Then, an Attention-Based Compressed Relational Graph Convolutional Network is proposed to predict potential solutions and explain fault in maintenance tasks. Lastly, a maintenance case of oil drilling equipment is carried out, where the proposed model is compared with other cutting-edge models to demonstrate its effectiveness in link prediction. This research is anticipated to shed light on future adoption of KG in maintenance planning recommendations.
•A Manufacturing Knowledge Graph’s schema is proposed in light of the low efficiency of knowledge use and the absence of uniform standards in maintenance scenarios.•A link prediction model, ACRGCN, is proposed, which is tailored for the sparsity and imbalance node types characteristics of Manufacturing Knowledge Graph.•A question-and-answer system is provided to reduce the operational difficulty of knowledge graph search reasoning, satisfying convenient and user-friendly purposes. |
| ArticleNumber | 109068 |
| Author | Xia, Liqiao Zheng, Pai Liang, Yongshi Leng, Jiewu |
| Author_xml | – sequence: 1 givenname: Liqiao surname: Xia fullname: Xia, Liqiao organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China – sequence: 2 givenname: Yongshi orcidid: 0000-0003-0241-0495 surname: Liang fullname: Liang, Yongshi organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China – sequence: 3 givenname: Jiewu surname: Leng fullname: Leng, Jiewu organization: State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, China – sequence: 4 givenname: Pai orcidid: 0000-0002-2329-8634 surname: Zheng fullname: Zheng, Pai email: pai.zheng@polyu.edu.hk organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China |
| BookMark | eNp9kMtOAyEUhompiW31BVzxAlOBmQKTuDGNt6TGja4JwplKO2VGYKy-vdS6ctHVueT_TnK-CRr5zgNCl5TMKKH8aj0LEOOMEcbyoiZcnqAxlaIuiCz5CI1JPaeFLBk5Q5MY14SQqp6LMRqetPMJvPYGcN9q751f4QCm227BW51c53HX4Dz3LXxh5-0QU3C6xfAxuD6HEn7TESzOwY3vdi3YFeBV0P071t7-dR6GkBkPadeFzTk6bXQb4eKvTtHr3e3L4qFYPt8_Lm6WhSkJSYWoGmos40RIVpkGhGVQSjBCM2lY2RhaacsZl5VlrKnrimrWUDCUCypIycspYoe7JnQxBmhUH9xWh29FidqLU2u1F6f24tRBXIbkP8i49CsiBe3a4-j1AYX81KeDoKJxkNVal5UmZTt3DP8BC2COgA |
| CitedBy_id | crossref_primary_10_1016_j_rcim_2025_103013 crossref_primary_10_1016_j_cie_2024_110475 crossref_primary_10_1016_j_ress_2024_110684 crossref_primary_10_1016_j_aei_2024_103098 crossref_primary_10_3390_electronics13050845 crossref_primary_10_1016_j_rcim_2024_102728 crossref_primary_10_1016_j_aei_2023_102115 crossref_primary_10_7717_peerj_cs_1876 crossref_primary_10_1016_j_jmsy_2023_08_023 crossref_primary_10_1016_j_ress_2024_110126 crossref_primary_10_1109_ACCESS_2023_3280798 crossref_primary_10_1016_j_ress_2024_110328 crossref_primary_10_1016_j_cie_2025_110955 crossref_primary_10_1109_TIM_2025_3545526 crossref_primary_10_1016_j_jmsy_2024_07_009 crossref_primary_10_1145_3686802 crossref_primary_10_3390_machines12100723 crossref_primary_10_1016_j_ress_2024_110254 crossref_primary_10_1080_09544828_2025_2450762 crossref_primary_10_1016_j_autcon_2024_105634 crossref_primary_10_1080_00207543_2025_2472298 crossref_primary_10_3390_app14031220 crossref_primary_10_32604_cmc_2023_040693 crossref_primary_10_1016_j_ress_2023_109418 crossref_primary_10_1080_09544828_2024_2332121 crossref_primary_10_1016_j_ress_2023_109656 crossref_primary_10_3390_app14020898 crossref_primary_10_1007_s41019_024_00268_5 crossref_primary_10_1080_00207543_2023_2274335 crossref_primary_10_1016_j_mfglet_2023_08_045 crossref_primary_10_1016_j_rcim_2024_102736 crossref_primary_10_1007_s10845_024_02325_2 crossref_primary_10_1016_j_ress_2024_110464 crossref_primary_10_1016_j_aei_2025_103235 crossref_primary_10_1038_s41598_023_42751_5 crossref_primary_10_3390_math11234833 crossref_primary_10_1016_j_aei_2023_102333 crossref_primary_10_1016_j_neucom_2024_128721 crossref_primary_10_1007_s10845_024_02441_z crossref_primary_10_1016_j_ymssp_2025_112449 crossref_primary_10_1016_j_eswa_2023_121136 crossref_primary_10_1049_cim2_70003 crossref_primary_10_1109_ACCESS_2024_3391130 crossref_primary_10_1016_j_ress_2025_111021 crossref_primary_10_1080_09544828_2024_2340392 crossref_primary_10_1002_eng2_12952 crossref_primary_10_1016_j_jmsy_2023_08_005 crossref_primary_10_1016_j_aei_2024_102868 crossref_primary_10_1016_j_eswa_2023_122713 crossref_primary_10_1016_j_rcim_2023_102578 crossref_primary_10_1109_ACCESS_2024_3420877 crossref_primary_10_1016_j_aap_2025_108009 crossref_primary_10_1016_j_jii_2025_100824 crossref_primary_10_1016_j_ress_2023_109232 crossref_primary_10_1088_1361_6501_ad950a crossref_primary_10_1631_FITEE_2400220 |
| Cites_doi | 10.1016/j.jmsy.2021.12.008 10.1016/j.websem.2019.100546 10.1145/3267305.3267528 10.1109/ICCV.2019.00929 10.3390/app10186325 10.3390/info10050172 10.18653/v1/P19-2044 10.1109/ACCESS.2022.3150409 10.1609/aaai.v31i1.10805 10.1016/j.aei.2022.101781 10.1109/TNNLS.2018.2876865 10.1016/j.mfglet.2019.06.004 10.1145/3366423.3380027 10.1016/j.ress.2020.107352 10.1016/j.rcim.2022.102510 10.1109/CVPR.2016.90 10.3390/en15051810 10.1162/tacl_a_00051 10.1016/j.ress.2020.107354 10.3390/app10062166 10.1016/j.procs.2019.09.218 10.1109/TKDE.2020.2981314 10.1016/j.knosys.2021.106739 10.1016/j.aei.2022.101540 10.3390/s18020471 10.1016/j.ress.2021.108270 10.1016/j.knosys.2017.05.021 10.1016/j.jmsy.2022.06.002 10.1016/j.future.2020.02.068 10.1109/ACCESS.2020.2992475 10.1155/2020/8269082 10.1016/j.jmsy.2021.08.002 10.1007/s10010-021-00466-x 10.1016/j.ress.2021.107878 10.3390/sym13030485 10.1016/j.aei.2021.101518 10.1016/j.aei.2022.101530 10.1016/j.ress.2019.02.014 10.1016/j.aei.2021.101369 10.1016/j.patcog.2019.107000 10.1049/cim2.12057 10.1016/j.cirpj.2022.11.003 10.1609/aaai.v32i1.11573 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ress.2022.109068 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0836 |
| ExternalDocumentID | 10_1016_j_ress_2022_109068 S0951832022006834 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-74f1cd2607824cfe7d2e38ec7a28c23fc14ad62684d22f9941a2f1ec167170363 |
| IEDL.DBID | .~1 |
| ISSN | 0951-8320 |
| IngestDate | Sat Oct 25 05:14:13 EDT 2025 Thu Apr 24 23:04:16 EDT 2025 Fri Feb 23 02:38:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Link prediction Graph neural network Knowledge graph Maintenance management Predictive maintenance |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-74f1cd2607824cfe7d2e38ec7a28c23fc14ad62684d22f9941a2f1ec167170363 |
| ORCID | 0000-0002-2329-8634 0000-0003-0241-0495 |
| ParticipantIDs | crossref_primary_10_1016_j_ress_2022_109068 crossref_citationtrail_10_1016_j_ress_2022_109068 elsevier_sciencedirect_doi_10_1016_j_ress_2022_109068 |
| PublicationCentury | 2000 |
| PublicationDate | April 2023 2023-04-00 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zheng, Xia, Li, Li, Liu (b12) 2021; 61 Zhang, Cao, Zhang (b24) 2021; 2021 Montero Jiménez, Vingerhoeds, Grabot, Schwartz (b30) 2021 Wang, Li, Li, Fu (b45) 2020; 109 Schlichtkrull, Kipf, Bloem, Berg, Titov, Welling (b41) 2018 Velickovic, Cucurull, Casanova, Romero, Lio, Bengio (b54) 2017; 1050 Li, Sun, Han, Li (b43) 2020; 34 Keung, Chan, Ng, Mak, Li, Qin, Yu (b8) 2022; 52 Li, Zheng, Yin, Wang, Wang (b23) 2023; 40 Strack, Lenart, Frank, Kramer (b31) 2021; 85 Cao, Samet, Zanni-Merk, de Beuvron, Reich (b11) 2019; 159 Yang, Yih, He, Gao, Deng (b56) 2014 Sevgili Özge, Panchenko Alexander, Biemann Chris. Improving neural entity disambiguation with graph embeddings. In: Proceedings of the 57th annual meeting of the association for computational linguistics: student research workshop. 2019, p. 315–22. Wang Hao, Shi Xingjian, Yeung Dit-Yan. Relational deep learning: A deep latent variable model for link prediction. In: Thirty-first AAAI conference on artificial intelligence. 2017. Deng, Wang, Wang, Zhou, Cheng (b27) 2022; 10 Manessi, Rozza, Manzo (b58) 2020; 97 Jing, Tian, Hu, Ma (b2) 2021 Li, Zhao, Sun, Yan, Chen (b37) 2021; 215 Xia, Liang, Zheng, Huang (b4) 2022 Zhu, Iglesias (b36) 2017; 130 Liu, Sun, Zheng, Lu, Bao (b6) 2022; 62 Kipf, Welling (b51) 2016 Liang, Zhou, Zhang, Li, Zhang, Zhang (b26) 2022; 15 Xia, Zheng, Li, Tang, Zhang (b9) 2022 Dettmers Tim, Minervini Pasquale, Stenetorp Pontus, Riedel Sebastian. Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI conference on artificial intelligence, Vol. 32. 2018. Zhang, Zheng, Peng, He, Lee, Tang (b7) 2022; 51 Hu Ziniu, Dong Yuxiao, Wang Kuansan, Sun Yizhou. Heterogeneous graph transformer. In: Proceedings of the web conference 2020. 2020, p. 2704–10. Huang, Hong, Zhou, Wu, Jin (b29) 2020; 2020 Liu, Schmid, Li, Zheng (b16) 2021; 207 Yang, Chen, Zhang, Yang (b14) 2021; 207 Xia, Zheng, Li, Gao, Wang (b13) 2022; 64 Wang, Qiu, Wang (b18) 2021; 13 Zhou, Shen, Lu, Li, Hua, Liu, Bao (b19) 2022 Hossayni, Khan, Aazam, Taleghani-Isfahani, Crespi (b34) 2020; 10 Sun, Hu, Zhang, Qu (b50) 2018 Alanen, Linnosmaa, Malm, Papakonstantinou, Ahonen, Heikkilä, Tiusanen (b33) 2022; 220 Jing, Zheng, Xia, Liu (b5) 2022; 54 Bojanowski, Grave, Joulin, Mikolov (b57) 2017; 5 Li, Chen, Zheng, Jiang, Wang (b52) 2021; 215 Martínez-Galán Fernández, Guillén López, Márquez, Gomez Fernández, Marcos (b3) 2022; 223 Wang, Wu, Huang, Wang, Zhu (b59) 2019; 10 Wang Kaixin, Liew Jun Hao, Zou Yingtian, Zhou Daquan, Feng Jiashi. Panet: Few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF international conference on computer vision. 2019, p. 9197–206. Akbari Ali, Wu Jian, Grimsley Reese, Jafari Roozbeh. Hierarchical signal segmentation and classification for accurate activity recognition. In: Proceedings of the 2018 ACM international joint conference and 2018 international symposium on pervasive and ubiquitous computing and wearable computers. 2018, p. 1596–605. Zhao, Zheng, Xu, Wu (b48) 2019; 30 Yepez, Alsayyed, Ahmad (b32) 2019; 21 Thanapalasingam, van Berkel, Bloem, Groth (b53) 2021 Zhao, Smidts (b15) 2019; 186 Li, Zheng, Liu, Wang, Wang, Wang (b17) 2023; 81 Wang, Wan, Li, Liu (b28) 2018; 18 Ristoski, Gentile, Alba, Gruhl, Welch (b44) 2020; 60 Keung, Lee, Ji, Ng (b10) 2020; 8 Keung, Lee, Ji (b22) 2021; 50 Nguyen, Nguyen, Nguyen, Phung (b39) 2017 Keung, Lee, Ji (b21) 2022; 52 Zio (b1) 2022; 218 Qiu, Du, Yin, Zhang, Qian (b25) 2020; 10 Bordes, Usunier, Garcia-Duran, Weston, Yakhnenko (b35) 2013; 26 He Kaiming, Zhang Xiangyu, Ren Shaoqing, Sun Jian. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8. Balažević, Allen, Hospedales (b40) 2019 Xia, Zheng, Huang, Liu (b20) 2021 Xia (10.1016/j.ress.2022.109068_b9) 2022 Wang (10.1016/j.ress.2022.109068_b18) 2021; 13 Keung (10.1016/j.ress.2022.109068_b10) 2020; 8 Martínez-Galán Fernández (10.1016/j.ress.2022.109068_b3) 2022; 223 Li (10.1016/j.ress.2022.109068_b23) 2023; 40 Xia (10.1016/j.ress.2022.109068_b20) 2021 Yang (10.1016/j.ress.2022.109068_b14) 2021; 207 Huang (10.1016/j.ress.2022.109068_b29) 2020; 2020 Thanapalasingam (10.1016/j.ress.2022.109068_b53) 2021 10.1016/j.ress.2022.109068_b38 Li (10.1016/j.ress.2022.109068_b43) 2020; 34 Keung (10.1016/j.ress.2022.109068_b22) 2021; 50 Qiu (10.1016/j.ress.2022.109068_b25) 2020; 10 Wang (10.1016/j.ress.2022.109068_b28) 2018; 18 Jing (10.1016/j.ress.2022.109068_b5) 2022; 54 Wang (10.1016/j.ress.2022.109068_b45) 2020; 109 Manessi (10.1016/j.ress.2022.109068_b58) 2020; 97 Strack (10.1016/j.ress.2022.109068_b31) 2021; 85 Zhang (10.1016/j.ress.2022.109068_b7) 2022; 51 Kipf (10.1016/j.ress.2022.109068_b51) 2016 Li (10.1016/j.ress.2022.109068_b37) 2021; 215 Zio (10.1016/j.ress.2022.109068_b1) 2022; 218 Bojanowski (10.1016/j.ress.2022.109068_b57) 2017; 5 10.1016/j.ress.2022.109068_b60 Jing (10.1016/j.ress.2022.109068_b2) 2021 Zhao (10.1016/j.ress.2022.109068_b48) 2019; 30 Schlichtkrull (10.1016/j.ress.2022.109068_b41) 2018 Zhang (10.1016/j.ress.2022.109068_b24) 2021; 2021 Zheng (10.1016/j.ress.2022.109068_b12) 2021; 61 Nguyen (10.1016/j.ress.2022.109068_b39) 2017 Wang (10.1016/j.ress.2022.109068_b59) 2019; 10 Li (10.1016/j.ress.2022.109068_b52) 2021; 215 Xia (10.1016/j.ress.2022.109068_b4) 2022 Xia (10.1016/j.ress.2022.109068_b13) 2022; 64 Keung (10.1016/j.ress.2022.109068_b8) 2022; 52 Li (10.1016/j.ress.2022.109068_b17) 2023; 81 Liang (10.1016/j.ress.2022.109068_b26) 2022; 15 Hossayni (10.1016/j.ress.2022.109068_b34) 2020; 10 Alanen (10.1016/j.ress.2022.109068_b33) 2022; 220 Velickovic (10.1016/j.ress.2022.109068_b54) 2017; 1050 Balažević (10.1016/j.ress.2022.109068_b40) 2019 Sun (10.1016/j.ress.2022.109068_b50) 2018 10.1016/j.ress.2022.109068_b55 Yang (10.1016/j.ress.2022.109068_b56) 2014 Ristoski (10.1016/j.ress.2022.109068_b44) 2020; 60 Cao (10.1016/j.ress.2022.109068_b11) 2019; 159 Zhao (10.1016/j.ress.2022.109068_b15) 2019; 186 Zhou (10.1016/j.ress.2022.109068_b19) 2022 Yepez (10.1016/j.ress.2022.109068_b32) 2019; 21 10.1016/j.ress.2022.109068_b42 Bordes (10.1016/j.ress.2022.109068_b35) 2013; 26 Deng (10.1016/j.ress.2022.109068_b27) 2022; 10 Liu (10.1016/j.ress.2022.109068_b6) 2022; 62 10.1016/j.ress.2022.109068_b49 10.1016/j.ress.2022.109068_b46 10.1016/j.ress.2022.109068_b47 Liu (10.1016/j.ress.2022.109068_b16) 2021; 207 Montero Jiménez (10.1016/j.ress.2022.109068_b30) 2021 Zhu (10.1016/j.ress.2022.109068_b36) 2017; 130 Keung (10.1016/j.ress.2022.109068_b21) 2022; 52 |
| References_xml | – year: 2021 ident: b2 article-title: Cloud-edge collaboration framework with deep learning-based for remaining useful life prediction of machinery publication-title: IEEE Trans Ind Inf – volume: 109 start-page: 56 year: 2020 end-page: 66 ident: b45 article-title: A knowledge-based deep learning method for ECG signal delineation publication-title: Future Gener Comput Syst – volume: 10 start-page: 6325 year: 2020 ident: b34 article-title: SemKoRe: improving machine maintenance in industrial iot with semantic knowledge graphs publication-title: Appl Sci – volume: 51 start-page: 101518 year: 2022 ident: b7 article-title: Promoting employee health in smart office: a survey publication-title: Advanced Engineering Informatics – volume: 223 year: 2022 ident: b3 article-title: Dynamic risk assessment for CBM-based adaptation of maintenance planning publication-title: Reliab Eng Syst Saf – volume: 10 start-page: 172 year: 2019 ident: b59 article-title: Link prediction based on deep convolutional neural network publication-title: Information – volume: 215 year: 2021 ident: b52 article-title: A context-aware diversity-oriented knowledge recommendation approach for smart engineering solution design publication-title: Knowl-Based Syst – year: 2017 ident: b39 article-title: A novel embedding model for knowledge base completion based on convolutional neural network – volume: 13 start-page: 485 year: 2021 ident: b18 article-title: A survey on knowledge graph embeddings for link prediction publication-title: Symmetry – volume: 34 start-page: 50 year: 2020 end-page: 70 ident: b43 article-title: A survey on deep learning for named entity recognition publication-title: IEEE Trans Knowl Data Eng – start-page: 1 year: 2021 end-page: 19 ident: b30 article-title: An ontology model for maintenance strategy selection and assessment publication-title: J Intell Manuf – volume: 21 start-page: 7 year: 2019 end-page: 11 ident: b32 article-title: Intelligent assisted maintenance plan generation for corrective maintenance publication-title: Manuf Lett – volume: 52 year: 2022 ident: b21 article-title: Industrial internet of things-driven storage location assignment and order picking in a resource synchronization and sharing-based robotic mobile fulfillment system publication-title: Adv Eng Inform – volume: 10 start-page: 17656 year: 2022 end-page: 17673 ident: b27 article-title: Research on event logic knowledge graph construction method of robot transmission system fault diagnosis publication-title: IEEE Access – volume: 15 start-page: 1810 year: 2022 ident: b26 article-title: PF2RM: A power fault retrieval and recommendation model based on knowledge graph publication-title: Energies – volume: 220 year: 2022 ident: b33 article-title: Hybrid ontology for safety, security, and dependability risk assessments and security threat analysis (STA) method for industrial control systems publication-title: Reliab Eng Syst Saf – reference: Hu Ziniu, Dong Yuxiao, Wang Kuansan, Sun Yizhou. Heterogeneous graph transformer. In: Proceedings of the web conference 2020. 2020, p. 2704–10. – volume: 30 start-page: 3212 year: 2019 end-page: 3232 ident: b48 article-title: Object detection with deep learning: A review publication-title: IEEE Trans Neural Netw Learn Syst – start-page: 553 year: 2019 end-page: 565 ident: b40 article-title: Hypernetwork knowledge graph embeddings publication-title: International conference on artificial neural networks – volume: 40 start-page: 75 year: 2023 end-page: 101 ident: b23 article-title: Deep reinforcement learning in smart manufacturing: a review and prospects publication-title: CIRP Journal of Manufacturing Science and Technology – volume: 8 start-page: 89318 year: 2020 end-page: 89336 ident: b10 article-title: Cloud-based cyber-physical robotic mobile fulfillment systems: A case study of collision avoidance publication-title: IEEE Access – volume: 130 start-page: 30 year: 2017 end-page: 32 ident: b36 article-title: Sematch: Semantic similarity framework for knowledge graphs publication-title: Knowl-Based Syst – volume: 159 start-page: 630 year: 2019 end-page: 639 ident: b11 article-title: An ontology-based approach for failure classification in predictive maintenance using fuzzy C-means and SWRL rules publication-title: Procedia Comput Sci – start-page: 4396 year: 2018 end-page: 4402 ident: b50 article-title: Bootstrapping entity alignment with knowledge graph embedding publication-title: IJCAI, Vol. 18 – volume: 218 year: 2022 ident: b1 article-title: Prognostics and health management (PHM): Where are we and where do we (need to) go in theory and practice publication-title: Reliab Eng Syst Saf – reference: Wang Hao, Shi Xingjian, Yeung Dit-Yan. Relational deep learning: A deep latent variable model for link prediction. In: Thirty-first AAAI conference on artificial intelligence. 2017. – volume: 52 start-page: 101530 year: 2022 ident: b8 article-title: Edge intelligence and agnostic robotic paradigm in resource synchronisation and sharing in flexible robotic and facility control system publication-title: Advanced Engineering Informatics – year: 2022 ident: b9 article-title: Privacy-preserving gradient boosting tree: Vertical federated learning for collaborative bearing fault diagnosis publication-title: IET Collab Intell Manuf – volume: 18 start-page: 471 year: 2018 ident: b28 article-title: Knowledge reasoning with semantic data for real-time data processing in smart factory publication-title: Sensors – start-page: 1 year: 2022 end-page: 18 ident: b19 article-title: Semantic-aware event link reasoning over industrial knowledge graph embedding time series data publication-title: Int J Prod Res – volume: 2020 year: 2020 ident: b29 article-title: Knowledge graph construction and application of power grid equipment publication-title: Math Probl Eng – volume: 10 start-page: 2166 year: 2020 ident: b25 article-title: A causality mining and knowledge graph based method of root cause diagnosis for performance anomaly in cloud applications publication-title: Appl Sci – reference: Dettmers Tim, Minervini Pasquale, Stenetorp Pontus, Riedel Sebastian. Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI conference on artificial intelligence, Vol. 32. 2018. – year: 2022 ident: b4 article-title: Residual-hypergraph convolution network: a model-based and data-driven integrated approach for fault diagnosis in complex equipment publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 62 start-page: 390 year: 2022 end-page: 401 ident: b6 article-title: Establishing a reliable mechanism model of the digital twin machining system: an adaptive evaluation network approach publication-title: Journal of Manufacturing Systems – volume: 186 start-page: 64 year: 2019 end-page: 77 ident: b15 article-title: A method for systematically developing the knowledge base of reactor operators in nuclear power plants to support cognitive modeling of operator performance publication-title: Reliab Eng Syst Saf – volume: 207 year: 2021 ident: b16 article-title: A knowledge graph-based approach for exploring railway operational accidents publication-title: Reliab Eng Syst Saf – volume: 60 year: 2020 ident: b44 article-title: Large-scale relation extraction from web documents and knowledge graphs with human-in-the-loop publication-title: J Web Semant – volume: 85 start-page: 265 year: 2021 end-page: 272 ident: b31 article-title: Ontology for maintenance of onshore wind turbines publication-title: Forschung Ing – year: 2016 ident: b51 article-title: Semi-supervised classification with graph convolutional networks – reference: Sevgili Özge, Panchenko Alexander, Biemann Chris. Improving neural entity disambiguation with graph embeddings. In: Proceedings of the 57th annual meeting of the association for computational linguistics: student research workshop. 2019, p. 315–22. – volume: 64 start-page: 107 year: 2022 end-page: 120 ident: b13 article-title: Toward cognitive predictive maintenance: A survey of graph-based approaches publication-title: J Manuf Syst – reference: Akbari Ali, Wu Jian, Grimsley Reese, Jafari Roozbeh. Hierarchical signal segmentation and classification for accurate activity recognition. In: Proceedings of the 2018 ACM international joint conference and 2018 international symposium on pervasive and ubiquitous computing and wearable computers. 2018, p. 1596–605. – volume: 5 start-page: 135 year: 2017 end-page: 146 ident: b57 article-title: Enriching word vectors with subword information publication-title: Trans Assoc Comput Linguist – volume: 50 year: 2021 ident: b22 article-title: Data-driven order correlation pattern and storage location assignment in robotic mobile fulfillment and process automation system publication-title: Adv Eng Inform – volume: 54 start-page: 101781 year: 2022 ident: b5 article-title: Transformer-based hierarchical latent space vae for interpretable remaining useful life prediction publication-title: Advanced Engineering Informatics – volume: 1050 start-page: 20 year: 2017 ident: b54 article-title: Graph attention networks publication-title: Stat – volume: 215 year: 2021 ident: b37 article-title: Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction publication-title: Reliab Eng Syst Saf – volume: 61 start-page: 16 year: 2021 end-page: 26 ident: b12 article-title: Towards self-x cognitive manufacturing network: An industrial knowledge graph-based multi-agent reinforcement learning approach publication-title: J Manuf Syst – volume: 81 start-page: 102510 year: 2023 ident: b17 article-title: Proactive human–robot collaboration: mutual-cognitive, predictable, and self-organising perspectives publication-title: Robotics and Computer-Integrated Manufacturing – reference: Wang Kaixin, Liew Jun Hao, Zou Yingtian, Zhou Daquan, Feng Jiashi. Panet: Few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF international conference on computer vision. 2019, p. 9197–206. – volume: 97 year: 2020 ident: b58 article-title: Dynamic graph convolutional networks publication-title: Pattern Recognit – start-page: 1 year: 2021 end-page: 12 ident: b20 article-title: A novel hypergraph convolution network-based approach for predicting the material removal rate in chemical mechanical planarization publication-title: J Intell Manuf – start-page: 593 year: 2018 end-page: 607 ident: b41 article-title: Modeling relational data with graph convolutional networks publication-title: European semantic web conference – reference: He Kaiming, Zhang Xiangyu, Ren Shaoqing, Sun Jian. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8. – year: 2014 ident: b56 article-title: Embedding entities and relations for learning and inference in knowledge bases – volume: 207 year: 2021 ident: b14 article-title: A graph-based method for vulnerability analysis of renewable energy integrated power systems to cascading failures publication-title: Reliab Eng Syst Saf – volume: 2021 year: 2021 ident: b24 article-title: A knowledge graph system for the maintenance of coal mine equipment publication-title: Math Probl Eng – volume: 26 year: 2013 ident: b35 article-title: Translating embeddings for modeling multi-relational data publication-title: Adv Neural Inf Process Syst – year: 2021 ident: b53 article-title: Relational graph convolutional networks: A closer look – volume: 62 start-page: 390 year: 2022 ident: 10.1016/j.ress.2022.109068_b6 article-title: Establishing a reliable mechanism model of the digital twin machining system: an adaptive evaluation network approach publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2021.12.008 – volume: 60 year: 2020 ident: 10.1016/j.ress.2022.109068_b44 article-title: Large-scale relation extraction from web documents and knowledge graphs with human-in-the-loop publication-title: J Web Semant doi: 10.1016/j.websem.2019.100546 – ident: 10.1016/j.ress.2022.109068_b46 doi: 10.1145/3267305.3267528 – volume: 26 year: 2013 ident: 10.1016/j.ress.2022.109068_b35 article-title: Translating embeddings for modeling multi-relational data publication-title: Adv Neural Inf Process Syst – ident: 10.1016/j.ress.2022.109068_b47 doi: 10.1109/ICCV.2019.00929 – volume: 10 start-page: 6325 issue: 18 year: 2020 ident: 10.1016/j.ress.2022.109068_b34 article-title: SemKoRe: improving machine maintenance in industrial iot with semantic knowledge graphs publication-title: Appl Sci doi: 10.3390/app10186325 – start-page: 4396 year: 2018 ident: 10.1016/j.ress.2022.109068_b50 article-title: Bootstrapping entity alignment with knowledge graph embedding – volume: 10 start-page: 172 issue: 5 year: 2019 ident: 10.1016/j.ress.2022.109068_b59 article-title: Link prediction based on deep convolutional neural network publication-title: Information doi: 10.3390/info10050172 – ident: 10.1016/j.ress.2022.109068_b49 doi: 10.18653/v1/P19-2044 – volume: 10 start-page: 17656 year: 2022 ident: 10.1016/j.ress.2022.109068_b27 article-title: Research on event logic knowledge graph construction method of robot transmission system fault diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3150409 – ident: 10.1016/j.ress.2022.109068_b60 doi: 10.1609/aaai.v31i1.10805 – volume: 54 start-page: 101781 year: 2022 ident: 10.1016/j.ress.2022.109068_b5 article-title: Transformer-based hierarchical latent space vae for interpretable remaining useful life prediction publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2022.101781 – volume: 30 start-page: 3212 issue: 11 year: 2019 ident: 10.1016/j.ress.2022.109068_b48 article-title: Object detection with deep learning: A review publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2876865 – year: 2021 ident: 10.1016/j.ress.2022.109068_b2 article-title: Cloud-edge collaboration framework with deep learning-based for remaining useful life prediction of machinery publication-title: IEEE Trans Ind Inf – volume: 21 start-page: 7 year: 2019 ident: 10.1016/j.ress.2022.109068_b32 article-title: Intelligent assisted maintenance plan generation for corrective maintenance publication-title: Manuf Lett doi: 10.1016/j.mfglet.2019.06.004 – start-page: 1 year: 2022 ident: 10.1016/j.ress.2022.109068_b19 article-title: Semantic-aware event link reasoning over industrial knowledge graph embedding time series data publication-title: Int J Prod Res – ident: 10.1016/j.ress.2022.109068_b42 doi: 10.1145/3366423.3380027 – volume: 207 year: 2021 ident: 10.1016/j.ress.2022.109068_b16 article-title: A knowledge graph-based approach for exploring railway operational accidents publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107352 – volume: 81 start-page: 102510 year: 2023 ident: 10.1016/j.ress.2022.109068_b17 article-title: Proactive human–robot collaboration: mutual-cognitive, predictable, and self-organising perspectives publication-title: Robotics and Computer-Integrated Manufacturing doi: 10.1016/j.rcim.2022.102510 – volume: 2021 year: 2021 ident: 10.1016/j.ress.2022.109068_b24 article-title: A knowledge graph system for the maintenance of coal mine equipment publication-title: Math Probl Eng – start-page: 593 year: 2018 ident: 10.1016/j.ress.2022.109068_b41 article-title: Modeling relational data with graph convolutional networks – ident: 10.1016/j.ress.2022.109068_b55 doi: 10.1109/CVPR.2016.90 – volume: 15 start-page: 1810 issue: 5 year: 2022 ident: 10.1016/j.ress.2022.109068_b26 article-title: PF2RM: A power fault retrieval and recommendation model based on knowledge graph publication-title: Energies doi: 10.3390/en15051810 – start-page: 553 year: 2019 ident: 10.1016/j.ress.2022.109068_b40 article-title: Hypernetwork knowledge graph embeddings – volume: 5 start-page: 135 year: 2017 ident: 10.1016/j.ress.2022.109068_b57 article-title: Enriching word vectors with subword information publication-title: Trans Assoc Comput Linguist doi: 10.1162/tacl_a_00051 – year: 2014 ident: 10.1016/j.ress.2022.109068_b56 – volume: 207 year: 2021 ident: 10.1016/j.ress.2022.109068_b14 article-title: A graph-based method for vulnerability analysis of renewable energy integrated power systems to cascading failures publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107354 – volume: 10 start-page: 2166 issue: 6 year: 2020 ident: 10.1016/j.ress.2022.109068_b25 article-title: A causality mining and knowledge graph based method of root cause diagnosis for performance anomaly in cloud applications publication-title: Appl Sci doi: 10.3390/app10062166 – volume: 159 start-page: 630 year: 2019 ident: 10.1016/j.ress.2022.109068_b11 article-title: An ontology-based approach for failure classification in predictive maintenance using fuzzy C-means and SWRL rules publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2019.09.218 – volume: 34 start-page: 50 issue: 1 year: 2020 ident: 10.1016/j.ress.2022.109068_b43 article-title: A survey on deep learning for named entity recognition publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2020.2981314 – year: 2022 ident: 10.1016/j.ress.2022.109068_b4 article-title: Residual-hypergraph convolution network: a model-based and data-driven integrated approach for fault diagnosis in complex equipment publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 215 year: 2021 ident: 10.1016/j.ress.2022.109068_b52 article-title: A context-aware diversity-oriented knowledge recommendation approach for smart engineering solution design publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.106739 – start-page: 1 year: 2021 ident: 10.1016/j.ress.2022.109068_b20 article-title: A novel hypergraph convolution network-based approach for predicting the material removal rate in chemical mechanical planarization publication-title: J Intell Manuf – volume: 52 year: 2022 ident: 10.1016/j.ress.2022.109068_b21 article-title: Industrial internet of things-driven storage location assignment and order picking in a resource synchronization and sharing-based robotic mobile fulfillment system publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101540 – volume: 18 start-page: 471 issue: 2 year: 2018 ident: 10.1016/j.ress.2022.109068_b28 article-title: Knowledge reasoning with semantic data for real-time data processing in smart factory publication-title: Sensors doi: 10.3390/s18020471 – volume: 220 year: 2022 ident: 10.1016/j.ress.2022.109068_b33 article-title: Hybrid ontology for safety, security, and dependability risk assessments and security threat analysis (STA) method for industrial control systems publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.108270 – volume: 130 start-page: 30 year: 2017 ident: 10.1016/j.ress.2022.109068_b36 article-title: Sematch: Semantic similarity framework for knowledge graphs publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.05.021 – volume: 64 start-page: 107 year: 2022 ident: 10.1016/j.ress.2022.109068_b13 article-title: Toward cognitive predictive maintenance: A survey of graph-based approaches publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2022.06.002 – volume: 109 start-page: 56 year: 2020 ident: 10.1016/j.ress.2022.109068_b45 article-title: A knowledge-based deep learning method for ECG signal delineation publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2020.02.068 – volume: 8 start-page: 89318 year: 2020 ident: 10.1016/j.ress.2022.109068_b10 article-title: Cloud-based cyber-physical robotic mobile fulfillment systems: A case study of collision avoidance publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992475 – year: 2021 ident: 10.1016/j.ress.2022.109068_b53 – volume: 2020 year: 2020 ident: 10.1016/j.ress.2022.109068_b29 article-title: Knowledge graph construction and application of power grid equipment publication-title: Math Probl Eng doi: 10.1155/2020/8269082 – volume: 61 start-page: 16 year: 2021 ident: 10.1016/j.ress.2022.109068_b12 article-title: Towards self-x cognitive manufacturing network: An industrial knowledge graph-based multi-agent reinforcement learning approach publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.08.002 – volume: 85 start-page: 265 issue: 2 year: 2021 ident: 10.1016/j.ress.2022.109068_b31 article-title: Ontology for maintenance of onshore wind turbines publication-title: Forschung Ing doi: 10.1007/s10010-021-00466-x – volume: 1050 start-page: 20 year: 2017 ident: 10.1016/j.ress.2022.109068_b54 article-title: Graph attention networks publication-title: Stat – volume: 215 year: 2021 ident: 10.1016/j.ress.2022.109068_b37 article-title: Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107878 – volume: 13 start-page: 485 issue: 3 year: 2021 ident: 10.1016/j.ress.2022.109068_b18 article-title: A survey on knowledge graph embeddings for link prediction publication-title: Symmetry doi: 10.3390/sym13030485 – volume: 51 start-page: 101518 year: 2022 ident: 10.1016/j.ress.2022.109068_b7 article-title: Promoting employee health in smart office: a survey publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2021.101518 – volume: 52 start-page: 101530 year: 2022 ident: 10.1016/j.ress.2022.109068_b8 article-title: Edge intelligence and agnostic robotic paradigm in resource synchronisation and sharing in flexible robotic and facility control system publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2022.101530 – volume: 186 start-page: 64 year: 2019 ident: 10.1016/j.ress.2022.109068_b15 article-title: A method for systematically developing the knowledge base of reactor operators in nuclear power plants to support cognitive modeling of operator performance publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2019.02.014 – volume: 50 year: 2021 ident: 10.1016/j.ress.2022.109068_b22 article-title: Data-driven order correlation pattern and storage location assignment in robotic mobile fulfillment and process automation system publication-title: Adv Eng Inform doi: 10.1016/j.aei.2021.101369 – start-page: 1 year: 2021 ident: 10.1016/j.ress.2022.109068_b30 article-title: An ontology model for maintenance strategy selection and assessment publication-title: J Intell Manuf – volume: 97 year: 2020 ident: 10.1016/j.ress.2022.109068_b58 article-title: Dynamic graph convolutional networks publication-title: Pattern Recognit doi: 10.1016/j.patcog.2019.107000 – year: 2022 ident: 10.1016/j.ress.2022.109068_b9 article-title: Privacy-preserving gradient boosting tree: Vertical federated learning for collaborative bearing fault diagnosis publication-title: IET Collab Intell Manuf doi: 10.1049/cim2.12057 – volume: 40 start-page: 75 year: 2023 ident: 10.1016/j.ress.2022.109068_b23 article-title: Deep reinforcement learning in smart manufacturing: a review and prospects publication-title: CIRP Journal of Manufacturing Science and Technology doi: 10.1016/j.cirpj.2022.11.003 – volume: 223 issue: C year: 2022 ident: 10.1016/j.ress.2022.109068_b3 article-title: Dynamic risk assessment for CBM-based adaptation of maintenance planning publication-title: Reliab Eng Syst Saf – volume: 218 issue: A year: 2022 ident: 10.1016/j.ress.2022.109068_b1 article-title: Prognostics and health management (PHM): Where are we and where do we (need to) go in theory and practice publication-title: Reliab Eng Syst Saf – year: 2017 ident: 10.1016/j.ress.2022.109068_b39 – year: 2016 ident: 10.1016/j.ress.2022.109068_b51 – ident: 10.1016/j.ress.2022.109068_b38 doi: 10.1609/aaai.v32i1.11573 |
| SSID | ssj0004957 |
| Score | 2.6200254 |
| Snippet | Maintenance planning is a significant part of predictive maintenance, which involves task planning, resource scheduling, and prevention. With large-scale... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109068 |
| SubjectTerms | Graph neural network Knowledge graph Link prediction Maintenance management Predictive maintenance |
| Title | Maintenance planning recommendation of complex industrial equipment based on knowledge graph and graph neural network |
| URI | https://dx.doi.org/10.1016/j.ress.2022.109068 |
| Volume | 232 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AKRWK dateStart: 19880101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvehB_MT6UfbgTdJms5vs9liKpSrtRQu9hc1-QMSmVVrw5G93J9nUCtKDtxB2QpiEmXnJ2_cQuuVhYjQVNuA9EQeMsjAQQrlimMVcSWYiZQEojifJaMoeZ_GsgQb1XhigVfraX9X0slr7M12fze4yz7vPMBwIsP8GVCwoaIIyxsHFoPP1Q_NwAIDXdvKw2m-cqThegGg7cAVQVQpBbvWv5rTVcIZH6NBPirhf3cwxapjiBB1s6QeeovVYgtwDaGYYvPT2Qxgw7nxuvFsSXlhc8sbNJ843Ph3YvK_zkiqEoY9p7BZuPq_hUsUay0L7IxC9dDFFRRk_Q9Ph_ctgFHgfhUDRMFwFnFmitAMubhpgyhquI0OFUVxGQkXUKsKkTkD2RUeR7fUYkZElRpHEYT340XuOmsWiMBcI08QKwzSRhGSMWC21iZXiSWw1tUkmW4jUCUyVFxkHr4u3tGaTvaaQ9BSSnlZJb6G7TcyyktjYuTqun0v660VJXQ_YEXf5z7grtA8O8xVZ5xo1Vx9rc-PmkFXWLl-0NtrrPzyNJt-2ed8u |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1qPagH8RPr5x68Sdpsssluj1IsVdtebKG3sNkPiNi0Sgue_O3uJJtaQXrwFsJOCJMwMy95-x5Ct8yPtQq58VibRx4Nqe9xLm0xTCMmBdWBNAAUB8O4N6ZPk2hSQ51qLwzQKl3tL2t6Ua3dmZbLZmueZa0XGA442H8DKuYh3ULbNAoYILDm1w_PwyIAVvnJw3K3c6YkeQGkbcIlQFbJB73Vv7rTWsfpHqB9Nyri-_JuDlFN50dob01A8BgtBwL0HkA0Q-O58x_CAHKnU-3skvDM4II4rj9xtjLqwPp9mRVcIQyNTGG7cPV9DRcy1ljkyh2B6qWNyUvO-Akadx9GnZ7njBQ8Gfr-wmPUEKkscrHjAJVGMxXokGvJRMBlEBpJqFAx6L6oIDDtNiUiMERLEluwB396T1E9n-X6DOEwNlxTRQQhKSVGCaUjKVkcGRWaOBUNRKoEJtKpjIPZxVtS0cleE0h6AklPyqQ30N0qZl5qbGxcHVXPJfn1piS2CWyIO_9n3A3a6Y0G_aT_OHy-QLtgN18ydy5RffGx1Fd2KFmk18VL9w36QuDD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maintenance+planning+recommendation+of+complex+industrial+equipment+based+on+knowledge+graph+and+graph+neural+network&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Xia%2C+Liqiao&rft.au=Liang%2C+Yongshi&rft.au=Leng%2C+Jiewu&rft.au=Zheng%2C+Pai&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=232&rft_id=info:doi/10.1016%2Fj.ress.2022.109068&rft.externalDocID=S0951832022006834 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |