Maintenance planning recommendation of complex industrial equipment based on knowledge graph and graph neural network

Maintenance planning is a significant part of predictive maintenance, which involves task planning, resource scheduling, and prevention. With large-scale sensor systems in modern factories, much data will be captured during monitoring and maintenance of complex industrial equipment. Accumulated data...

Full description

Saved in:
Bibliographic Details
Published inReliability engineering & system safety Vol. 232; p. 109068
Main Authors Xia, Liqiao, Liang, Yongshi, Leng, Jiewu, Zheng, Pai
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2023
Subjects
Online AccessGet full text
ISSN0951-8320
1879-0836
DOI10.1016/j.ress.2022.109068

Cover

Abstract Maintenance planning is a significant part of predictive maintenance, which involves task planning, resource scheduling, and prevention. With large-scale sensor systems in modern factories, much data will be captured during monitoring and maintenance of complex industrial equipment. Accumulated data facilitates maintenance planning becomes more thorough and timely. Recently, a knowledge graph (KG) was offered to handle large-scale, unorganized maintenance data semantically, resulting in better data usage. Some prior studies have utilized KG for maintenance planning with semantic searching or graph structure-based algorithms, nevertheless neglecting the prediction of potential linkage. To fill this gap, a maintenance-oriented KG is established firstly based on a well-defined domain-specific ontology schema and accumulated maintenance data. Then, an Attention-Based Compressed Relational Graph Convolutional Network is proposed to predict potential solutions and explain fault in maintenance tasks. Lastly, a maintenance case of oil drilling equipment is carried out, where the proposed model is compared with other cutting-edge models to demonstrate its effectiveness in link prediction. This research is anticipated to shed light on future adoption of KG in maintenance planning recommendations. •A Manufacturing Knowledge Graph’s schema is proposed in light of the low efficiency of knowledge use and the absence of uniform standards in maintenance scenarios.•A link prediction model, ACRGCN, is proposed, which is tailored for the sparsity and imbalance node types characteristics of Manufacturing Knowledge Graph.•A question-and-answer system is provided to reduce the operational difficulty of knowledge graph search reasoning, satisfying convenient and user-friendly purposes.
AbstractList Maintenance planning is a significant part of predictive maintenance, which involves task planning, resource scheduling, and prevention. With large-scale sensor systems in modern factories, much data will be captured during monitoring and maintenance of complex industrial equipment. Accumulated data facilitates maintenance planning becomes more thorough and timely. Recently, a knowledge graph (KG) was offered to handle large-scale, unorganized maintenance data semantically, resulting in better data usage. Some prior studies have utilized KG for maintenance planning with semantic searching or graph structure-based algorithms, nevertheless neglecting the prediction of potential linkage. To fill this gap, a maintenance-oriented KG is established firstly based on a well-defined domain-specific ontology schema and accumulated maintenance data. Then, an Attention-Based Compressed Relational Graph Convolutional Network is proposed to predict potential solutions and explain fault in maintenance tasks. Lastly, a maintenance case of oil drilling equipment is carried out, where the proposed model is compared with other cutting-edge models to demonstrate its effectiveness in link prediction. This research is anticipated to shed light on future adoption of KG in maintenance planning recommendations. •A Manufacturing Knowledge Graph’s schema is proposed in light of the low efficiency of knowledge use and the absence of uniform standards in maintenance scenarios.•A link prediction model, ACRGCN, is proposed, which is tailored for the sparsity and imbalance node types characteristics of Manufacturing Knowledge Graph.•A question-and-answer system is provided to reduce the operational difficulty of knowledge graph search reasoning, satisfying convenient and user-friendly purposes.
ArticleNumber 109068
Author Xia, Liqiao
Zheng, Pai
Liang, Yongshi
Leng, Jiewu
Author_xml – sequence: 1
  givenname: Liqiao
  surname: Xia
  fullname: Xia, Liqiao
  organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
– sequence: 2
  givenname: Yongshi
  orcidid: 0000-0003-0241-0495
  surname: Liang
  fullname: Liang, Yongshi
  organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
– sequence: 3
  givenname: Jiewu
  surname: Leng
  fullname: Leng, Jiewu
  organization: State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, China
– sequence: 4
  givenname: Pai
  orcidid: 0000-0002-2329-8634
  surname: Zheng
  fullname: Zheng, Pai
  email: pai.zheng@polyu.edu.hk
  organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
BookMark eNp9kMtOAyEUhompiW31BVzxAlOBmQKTuDGNt6TGja4JwplKO2VGYKy-vdS6ctHVueT_TnK-CRr5zgNCl5TMKKH8aj0LEOOMEcbyoiZcnqAxlaIuiCz5CI1JPaeFLBk5Q5MY14SQqp6LMRqetPMJvPYGcN9q751f4QCm227BW51c53HX4Dz3LXxh5-0QU3C6xfAxuD6HEn7TESzOwY3vdi3YFeBV0P071t7-dR6GkBkPadeFzTk6bXQb4eKvTtHr3e3L4qFYPt8_Lm6WhSkJSYWoGmos40RIVpkGhGVQSjBCM2lY2RhaacsZl5VlrKnrimrWUDCUCypIycspYoe7JnQxBmhUH9xWh29FidqLU2u1F6f24tRBXIbkP8i49CsiBe3a4-j1AYX81KeDoKJxkNVal5UmZTt3DP8BC2COgA
CitedBy_id crossref_primary_10_1016_j_rcim_2025_103013
crossref_primary_10_1016_j_cie_2024_110475
crossref_primary_10_1016_j_ress_2024_110684
crossref_primary_10_1016_j_aei_2024_103098
crossref_primary_10_3390_electronics13050845
crossref_primary_10_1016_j_rcim_2024_102728
crossref_primary_10_1016_j_aei_2023_102115
crossref_primary_10_7717_peerj_cs_1876
crossref_primary_10_1016_j_jmsy_2023_08_023
crossref_primary_10_1016_j_ress_2024_110126
crossref_primary_10_1109_ACCESS_2023_3280798
crossref_primary_10_1016_j_ress_2024_110328
crossref_primary_10_1016_j_cie_2025_110955
crossref_primary_10_1109_TIM_2025_3545526
crossref_primary_10_1016_j_jmsy_2024_07_009
crossref_primary_10_1145_3686802
crossref_primary_10_3390_machines12100723
crossref_primary_10_1016_j_ress_2024_110254
crossref_primary_10_1080_09544828_2025_2450762
crossref_primary_10_1016_j_autcon_2024_105634
crossref_primary_10_1080_00207543_2025_2472298
crossref_primary_10_3390_app14031220
crossref_primary_10_32604_cmc_2023_040693
crossref_primary_10_1016_j_ress_2023_109418
crossref_primary_10_1080_09544828_2024_2332121
crossref_primary_10_1016_j_ress_2023_109656
crossref_primary_10_3390_app14020898
crossref_primary_10_1007_s41019_024_00268_5
crossref_primary_10_1080_00207543_2023_2274335
crossref_primary_10_1016_j_mfglet_2023_08_045
crossref_primary_10_1016_j_rcim_2024_102736
crossref_primary_10_1007_s10845_024_02325_2
crossref_primary_10_1016_j_ress_2024_110464
crossref_primary_10_1016_j_aei_2025_103235
crossref_primary_10_1038_s41598_023_42751_5
crossref_primary_10_3390_math11234833
crossref_primary_10_1016_j_aei_2023_102333
crossref_primary_10_1016_j_neucom_2024_128721
crossref_primary_10_1007_s10845_024_02441_z
crossref_primary_10_1016_j_ymssp_2025_112449
crossref_primary_10_1016_j_eswa_2023_121136
crossref_primary_10_1049_cim2_70003
crossref_primary_10_1109_ACCESS_2024_3391130
crossref_primary_10_1016_j_ress_2025_111021
crossref_primary_10_1080_09544828_2024_2340392
crossref_primary_10_1002_eng2_12952
crossref_primary_10_1016_j_jmsy_2023_08_005
crossref_primary_10_1016_j_aei_2024_102868
crossref_primary_10_1016_j_eswa_2023_122713
crossref_primary_10_1016_j_rcim_2023_102578
crossref_primary_10_1109_ACCESS_2024_3420877
crossref_primary_10_1016_j_aap_2025_108009
crossref_primary_10_1016_j_jii_2025_100824
crossref_primary_10_1016_j_ress_2023_109232
crossref_primary_10_1088_1361_6501_ad950a
crossref_primary_10_1631_FITEE_2400220
Cites_doi 10.1016/j.jmsy.2021.12.008
10.1016/j.websem.2019.100546
10.1145/3267305.3267528
10.1109/ICCV.2019.00929
10.3390/app10186325
10.3390/info10050172
10.18653/v1/P19-2044
10.1109/ACCESS.2022.3150409
10.1609/aaai.v31i1.10805
10.1016/j.aei.2022.101781
10.1109/TNNLS.2018.2876865
10.1016/j.mfglet.2019.06.004
10.1145/3366423.3380027
10.1016/j.ress.2020.107352
10.1016/j.rcim.2022.102510
10.1109/CVPR.2016.90
10.3390/en15051810
10.1162/tacl_a_00051
10.1016/j.ress.2020.107354
10.3390/app10062166
10.1016/j.procs.2019.09.218
10.1109/TKDE.2020.2981314
10.1016/j.knosys.2021.106739
10.1016/j.aei.2022.101540
10.3390/s18020471
10.1016/j.ress.2021.108270
10.1016/j.knosys.2017.05.021
10.1016/j.jmsy.2022.06.002
10.1016/j.future.2020.02.068
10.1109/ACCESS.2020.2992475
10.1155/2020/8269082
10.1016/j.jmsy.2021.08.002
10.1007/s10010-021-00466-x
10.1016/j.ress.2021.107878
10.3390/sym13030485
10.1016/j.aei.2021.101518
10.1016/j.aei.2022.101530
10.1016/j.ress.2019.02.014
10.1016/j.aei.2021.101369
10.1016/j.patcog.2019.107000
10.1049/cim2.12057
10.1016/j.cirpj.2022.11.003
10.1609/aaai.v32i1.11573
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ress.2022.109068
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2022_109068
S0951832022006834
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-74f1cd2607824cfe7d2e38ec7a28c23fc14ad62684d22f9941a2f1ec167170363
IEDL.DBID .~1
ISSN 0951-8320
IngestDate Sat Oct 25 05:14:13 EDT 2025
Thu Apr 24 23:04:16 EDT 2025
Fri Feb 23 02:38:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Link prediction
Graph neural network
Knowledge graph
Maintenance management
Predictive maintenance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-74f1cd2607824cfe7d2e38ec7a28c23fc14ad62684d22f9941a2f1ec167170363
ORCID 0000-0002-2329-8634
0000-0003-0241-0495
ParticipantIDs crossref_primary_10_1016_j_ress_2022_109068
crossref_citationtrail_10_1016_j_ress_2022_109068
elsevier_sciencedirect_doi_10_1016_j_ress_2022_109068
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Reliability engineering & system safety
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zheng, Xia, Li, Li, Liu (b12) 2021; 61
Zhang, Cao, Zhang (b24) 2021; 2021
Montero Jiménez, Vingerhoeds, Grabot, Schwartz (b30) 2021
Wang, Li, Li, Fu (b45) 2020; 109
Schlichtkrull, Kipf, Bloem, Berg, Titov, Welling (b41) 2018
Velickovic, Cucurull, Casanova, Romero, Lio, Bengio (b54) 2017; 1050
Li, Sun, Han, Li (b43) 2020; 34
Keung, Chan, Ng, Mak, Li, Qin, Yu (b8) 2022; 52
Li, Zheng, Yin, Wang, Wang (b23) 2023; 40
Strack, Lenart, Frank, Kramer (b31) 2021; 85
Cao, Samet, Zanni-Merk, de Beuvron, Reich (b11) 2019; 159
Yang, Yih, He, Gao, Deng (b56) 2014
Sevgili Özge, Panchenko Alexander, Biemann Chris. Improving neural entity disambiguation with graph embeddings. In: Proceedings of the 57th annual meeting of the association for computational linguistics: student research workshop. 2019, p. 315–22.
Wang Hao, Shi Xingjian, Yeung Dit-Yan. Relational deep learning: A deep latent variable model for link prediction. In: Thirty-first AAAI conference on artificial intelligence. 2017.
Deng, Wang, Wang, Zhou, Cheng (b27) 2022; 10
Manessi, Rozza, Manzo (b58) 2020; 97
Jing, Tian, Hu, Ma (b2) 2021
Li, Zhao, Sun, Yan, Chen (b37) 2021; 215
Xia, Liang, Zheng, Huang (b4) 2022
Zhu, Iglesias (b36) 2017; 130
Liu, Sun, Zheng, Lu, Bao (b6) 2022; 62
Kipf, Welling (b51) 2016
Liang, Zhou, Zhang, Li, Zhang, Zhang (b26) 2022; 15
Xia, Zheng, Li, Tang, Zhang (b9) 2022
Dettmers Tim, Minervini Pasquale, Stenetorp Pontus, Riedel Sebastian. Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI conference on artificial intelligence, Vol. 32. 2018.
Zhang, Zheng, Peng, He, Lee, Tang (b7) 2022; 51
Hu Ziniu, Dong Yuxiao, Wang Kuansan, Sun Yizhou. Heterogeneous graph transformer. In: Proceedings of the web conference 2020. 2020, p. 2704–10.
Huang, Hong, Zhou, Wu, Jin (b29) 2020; 2020
Liu, Schmid, Li, Zheng (b16) 2021; 207
Yang, Chen, Zhang, Yang (b14) 2021; 207
Xia, Zheng, Li, Gao, Wang (b13) 2022; 64
Wang, Qiu, Wang (b18) 2021; 13
Zhou, Shen, Lu, Li, Hua, Liu, Bao (b19) 2022
Hossayni, Khan, Aazam, Taleghani-Isfahani, Crespi (b34) 2020; 10
Sun, Hu, Zhang, Qu (b50) 2018
Alanen, Linnosmaa, Malm, Papakonstantinou, Ahonen, Heikkilä, Tiusanen (b33) 2022; 220
Jing, Zheng, Xia, Liu (b5) 2022; 54
Bojanowski, Grave, Joulin, Mikolov (b57) 2017; 5
Li, Chen, Zheng, Jiang, Wang (b52) 2021; 215
Martínez-Galán Fernández, Guillén López, Márquez, Gomez Fernández, Marcos (b3) 2022; 223
Wang, Wu, Huang, Wang, Zhu (b59) 2019; 10
Wang Kaixin, Liew Jun Hao, Zou Yingtian, Zhou Daquan, Feng Jiashi. Panet: Few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF international conference on computer vision. 2019, p. 9197–206.
Akbari Ali, Wu Jian, Grimsley Reese, Jafari Roozbeh. Hierarchical signal segmentation and classification for accurate activity recognition. In: Proceedings of the 2018 ACM international joint conference and 2018 international symposium on pervasive and ubiquitous computing and wearable computers. 2018, p. 1596–605.
Zhao, Zheng, Xu, Wu (b48) 2019; 30
Yepez, Alsayyed, Ahmad (b32) 2019; 21
Thanapalasingam, van Berkel, Bloem, Groth (b53) 2021
Zhao, Smidts (b15) 2019; 186
Li, Zheng, Liu, Wang, Wang, Wang (b17) 2023; 81
Wang, Wan, Li, Liu (b28) 2018; 18
Ristoski, Gentile, Alba, Gruhl, Welch (b44) 2020; 60
Keung, Lee, Ji, Ng (b10) 2020; 8
Keung, Lee, Ji (b22) 2021; 50
Nguyen, Nguyen, Nguyen, Phung (b39) 2017
Keung, Lee, Ji (b21) 2022; 52
Zio (b1) 2022; 218
Qiu, Du, Yin, Zhang, Qian (b25) 2020; 10
Bordes, Usunier, Garcia-Duran, Weston, Yakhnenko (b35) 2013; 26
He Kaiming, Zhang Xiangyu, Ren Shaoqing, Sun Jian. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8.
Balažević, Allen, Hospedales (b40) 2019
Xia, Zheng, Huang, Liu (b20) 2021
Xia (10.1016/j.ress.2022.109068_b9) 2022
Wang (10.1016/j.ress.2022.109068_b18) 2021; 13
Keung (10.1016/j.ress.2022.109068_b10) 2020; 8
Martínez-Galán Fernández (10.1016/j.ress.2022.109068_b3) 2022; 223
Li (10.1016/j.ress.2022.109068_b23) 2023; 40
Xia (10.1016/j.ress.2022.109068_b20) 2021
Yang (10.1016/j.ress.2022.109068_b14) 2021; 207
Huang (10.1016/j.ress.2022.109068_b29) 2020; 2020
Thanapalasingam (10.1016/j.ress.2022.109068_b53) 2021
10.1016/j.ress.2022.109068_b38
Li (10.1016/j.ress.2022.109068_b43) 2020; 34
Keung (10.1016/j.ress.2022.109068_b22) 2021; 50
Qiu (10.1016/j.ress.2022.109068_b25) 2020; 10
Wang (10.1016/j.ress.2022.109068_b28) 2018; 18
Jing (10.1016/j.ress.2022.109068_b5) 2022; 54
Wang (10.1016/j.ress.2022.109068_b45) 2020; 109
Manessi (10.1016/j.ress.2022.109068_b58) 2020; 97
Strack (10.1016/j.ress.2022.109068_b31) 2021; 85
Zhang (10.1016/j.ress.2022.109068_b7) 2022; 51
Kipf (10.1016/j.ress.2022.109068_b51) 2016
Li (10.1016/j.ress.2022.109068_b37) 2021; 215
Zio (10.1016/j.ress.2022.109068_b1) 2022; 218
Bojanowski (10.1016/j.ress.2022.109068_b57) 2017; 5
10.1016/j.ress.2022.109068_b60
Jing (10.1016/j.ress.2022.109068_b2) 2021
Zhao (10.1016/j.ress.2022.109068_b48) 2019; 30
Schlichtkrull (10.1016/j.ress.2022.109068_b41) 2018
Zhang (10.1016/j.ress.2022.109068_b24) 2021; 2021
Zheng (10.1016/j.ress.2022.109068_b12) 2021; 61
Nguyen (10.1016/j.ress.2022.109068_b39) 2017
Wang (10.1016/j.ress.2022.109068_b59) 2019; 10
Li (10.1016/j.ress.2022.109068_b52) 2021; 215
Xia (10.1016/j.ress.2022.109068_b4) 2022
Xia (10.1016/j.ress.2022.109068_b13) 2022; 64
Keung (10.1016/j.ress.2022.109068_b8) 2022; 52
Li (10.1016/j.ress.2022.109068_b17) 2023; 81
Liang (10.1016/j.ress.2022.109068_b26) 2022; 15
Hossayni (10.1016/j.ress.2022.109068_b34) 2020; 10
Alanen (10.1016/j.ress.2022.109068_b33) 2022; 220
Velickovic (10.1016/j.ress.2022.109068_b54) 2017; 1050
Balažević (10.1016/j.ress.2022.109068_b40) 2019
Sun (10.1016/j.ress.2022.109068_b50) 2018
10.1016/j.ress.2022.109068_b55
Yang (10.1016/j.ress.2022.109068_b56) 2014
Ristoski (10.1016/j.ress.2022.109068_b44) 2020; 60
Cao (10.1016/j.ress.2022.109068_b11) 2019; 159
Zhao (10.1016/j.ress.2022.109068_b15) 2019; 186
Zhou (10.1016/j.ress.2022.109068_b19) 2022
Yepez (10.1016/j.ress.2022.109068_b32) 2019; 21
10.1016/j.ress.2022.109068_b42
Bordes (10.1016/j.ress.2022.109068_b35) 2013; 26
Deng (10.1016/j.ress.2022.109068_b27) 2022; 10
Liu (10.1016/j.ress.2022.109068_b6) 2022; 62
10.1016/j.ress.2022.109068_b49
10.1016/j.ress.2022.109068_b46
10.1016/j.ress.2022.109068_b47
Liu (10.1016/j.ress.2022.109068_b16) 2021; 207
Montero Jiménez (10.1016/j.ress.2022.109068_b30) 2021
Zhu (10.1016/j.ress.2022.109068_b36) 2017; 130
Keung (10.1016/j.ress.2022.109068_b21) 2022; 52
References_xml – year: 2021
  ident: b2
  article-title: Cloud-edge collaboration framework with deep learning-based for remaining useful life prediction of machinery
  publication-title: IEEE Trans Ind Inf
– volume: 109
  start-page: 56
  year: 2020
  end-page: 66
  ident: b45
  article-title: A knowledge-based deep learning method for ECG signal delineation
  publication-title: Future Gener Comput Syst
– volume: 10
  start-page: 6325
  year: 2020
  ident: b34
  article-title: SemKoRe: improving machine maintenance in industrial iot with semantic knowledge graphs
  publication-title: Appl Sci
– volume: 51
  start-page: 101518
  year: 2022
  ident: b7
  article-title: Promoting employee health in smart office: a survey
  publication-title: Advanced Engineering Informatics
– volume: 223
  year: 2022
  ident: b3
  article-title: Dynamic risk assessment for CBM-based adaptation of maintenance planning
  publication-title: Reliab Eng Syst Saf
– volume: 10
  start-page: 172
  year: 2019
  ident: b59
  article-title: Link prediction based on deep convolutional neural network
  publication-title: Information
– volume: 215
  year: 2021
  ident: b52
  article-title: A context-aware diversity-oriented knowledge recommendation approach for smart engineering solution design
  publication-title: Knowl-Based Syst
– year: 2017
  ident: b39
  article-title: A novel embedding model for knowledge base completion based on convolutional neural network
– volume: 13
  start-page: 485
  year: 2021
  ident: b18
  article-title: A survey on knowledge graph embeddings for link prediction
  publication-title: Symmetry
– volume: 34
  start-page: 50
  year: 2020
  end-page: 70
  ident: b43
  article-title: A survey on deep learning for named entity recognition
  publication-title: IEEE Trans Knowl Data Eng
– start-page: 1
  year: 2021
  end-page: 19
  ident: b30
  article-title: An ontology model for maintenance strategy selection and assessment
  publication-title: J Intell Manuf
– volume: 21
  start-page: 7
  year: 2019
  end-page: 11
  ident: b32
  article-title: Intelligent assisted maintenance plan generation for corrective maintenance
  publication-title: Manuf Lett
– volume: 52
  year: 2022
  ident: b21
  article-title: Industrial internet of things-driven storage location assignment and order picking in a resource synchronization and sharing-based robotic mobile fulfillment system
  publication-title: Adv Eng Inform
– volume: 10
  start-page: 17656
  year: 2022
  end-page: 17673
  ident: b27
  article-title: Research on event logic knowledge graph construction method of robot transmission system fault diagnosis
  publication-title: IEEE Access
– volume: 15
  start-page: 1810
  year: 2022
  ident: b26
  article-title: PF2RM: A power fault retrieval and recommendation model based on knowledge graph
  publication-title: Energies
– volume: 220
  year: 2022
  ident: b33
  article-title: Hybrid ontology for safety, security, and dependability risk assessments and security threat analysis (STA) method for industrial control systems
  publication-title: Reliab Eng Syst Saf
– reference: Hu Ziniu, Dong Yuxiao, Wang Kuansan, Sun Yizhou. Heterogeneous graph transformer. In: Proceedings of the web conference 2020. 2020, p. 2704–10.
– volume: 30
  start-page: 3212
  year: 2019
  end-page: 3232
  ident: b48
  article-title: Object detection with deep learning: A review
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 553
  year: 2019
  end-page: 565
  ident: b40
  article-title: Hypernetwork knowledge graph embeddings
  publication-title: International conference on artificial neural networks
– volume: 40
  start-page: 75
  year: 2023
  end-page: 101
  ident: b23
  article-title: Deep reinforcement learning in smart manufacturing: a review and prospects
  publication-title: CIRP Journal of Manufacturing Science and Technology
– volume: 8
  start-page: 89318
  year: 2020
  end-page: 89336
  ident: b10
  article-title: Cloud-based cyber-physical robotic mobile fulfillment systems: A case study of collision avoidance
  publication-title: IEEE Access
– volume: 130
  start-page: 30
  year: 2017
  end-page: 32
  ident: b36
  article-title: Sematch: Semantic similarity framework for knowledge graphs
  publication-title: Knowl-Based Syst
– volume: 159
  start-page: 630
  year: 2019
  end-page: 639
  ident: b11
  article-title: An ontology-based approach for failure classification in predictive maintenance using fuzzy C-means and SWRL rules
  publication-title: Procedia Comput Sci
– start-page: 4396
  year: 2018
  end-page: 4402
  ident: b50
  article-title: Bootstrapping entity alignment with knowledge graph embedding
  publication-title: IJCAI, Vol. 18
– volume: 218
  year: 2022
  ident: b1
  article-title: Prognostics and health management (PHM): Where are we and where do we (need to) go in theory and practice
  publication-title: Reliab Eng Syst Saf
– reference: Wang Hao, Shi Xingjian, Yeung Dit-Yan. Relational deep learning: A deep latent variable model for link prediction. In: Thirty-first AAAI conference on artificial intelligence. 2017.
– volume: 52
  start-page: 101530
  year: 2022
  ident: b8
  article-title: Edge intelligence and agnostic robotic paradigm in resource synchronisation and sharing in flexible robotic and facility control system
  publication-title: Advanced Engineering Informatics
– year: 2022
  ident: b9
  article-title: Privacy-preserving gradient boosting tree: Vertical federated learning for collaborative bearing fault diagnosis
  publication-title: IET Collab Intell Manuf
– volume: 18
  start-page: 471
  year: 2018
  ident: b28
  article-title: Knowledge reasoning with semantic data for real-time data processing in smart factory
  publication-title: Sensors
– start-page: 1
  year: 2022
  end-page: 18
  ident: b19
  article-title: Semantic-aware event link reasoning over industrial knowledge graph embedding time series data
  publication-title: Int J Prod Res
– volume: 2020
  year: 2020
  ident: b29
  article-title: Knowledge graph construction and application of power grid equipment
  publication-title: Math Probl Eng
– volume: 10
  start-page: 2166
  year: 2020
  ident: b25
  article-title: A causality mining and knowledge graph based method of root cause diagnosis for performance anomaly in cloud applications
  publication-title: Appl Sci
– reference: Dettmers Tim, Minervini Pasquale, Stenetorp Pontus, Riedel Sebastian. Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI conference on artificial intelligence, Vol. 32. 2018.
– year: 2022
  ident: b4
  article-title: Residual-hypergraph convolution network: a model-based and data-driven integrated approach for fault diagnosis in complex equipment
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 62
  start-page: 390
  year: 2022
  end-page: 401
  ident: b6
  article-title: Establishing a reliable mechanism model of the digital twin machining system: an adaptive evaluation network approach
  publication-title: Journal of Manufacturing Systems
– volume: 186
  start-page: 64
  year: 2019
  end-page: 77
  ident: b15
  article-title: A method for systematically developing the knowledge base of reactor operators in nuclear power plants to support cognitive modeling of operator performance
  publication-title: Reliab Eng Syst Saf
– volume: 207
  year: 2021
  ident: b16
  article-title: A knowledge graph-based approach for exploring railway operational accidents
  publication-title: Reliab Eng Syst Saf
– volume: 60
  year: 2020
  ident: b44
  article-title: Large-scale relation extraction from web documents and knowledge graphs with human-in-the-loop
  publication-title: J Web Semant
– volume: 85
  start-page: 265
  year: 2021
  end-page: 272
  ident: b31
  article-title: Ontology for maintenance of onshore wind turbines
  publication-title: Forschung Ing
– year: 2016
  ident: b51
  article-title: Semi-supervised classification with graph convolutional networks
– reference: Sevgili Özge, Panchenko Alexander, Biemann Chris. Improving neural entity disambiguation with graph embeddings. In: Proceedings of the 57th annual meeting of the association for computational linguistics: student research workshop. 2019, p. 315–22.
– volume: 64
  start-page: 107
  year: 2022
  end-page: 120
  ident: b13
  article-title: Toward cognitive predictive maintenance: A survey of graph-based approaches
  publication-title: J Manuf Syst
– reference: Akbari Ali, Wu Jian, Grimsley Reese, Jafari Roozbeh. Hierarchical signal segmentation and classification for accurate activity recognition. In: Proceedings of the 2018 ACM international joint conference and 2018 international symposium on pervasive and ubiquitous computing and wearable computers. 2018, p. 1596–605.
– volume: 5
  start-page: 135
  year: 2017
  end-page: 146
  ident: b57
  article-title: Enriching word vectors with subword information
  publication-title: Trans Assoc Comput Linguist
– volume: 50
  year: 2021
  ident: b22
  article-title: Data-driven order correlation pattern and storage location assignment in robotic mobile fulfillment and process automation system
  publication-title: Adv Eng Inform
– volume: 54
  start-page: 101781
  year: 2022
  ident: b5
  article-title: Transformer-based hierarchical latent space vae for interpretable remaining useful life prediction
  publication-title: Advanced Engineering Informatics
– volume: 1050
  start-page: 20
  year: 2017
  ident: b54
  article-title: Graph attention networks
  publication-title: Stat
– volume: 215
  year: 2021
  ident: b37
  article-title: Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction
  publication-title: Reliab Eng Syst Saf
– volume: 61
  start-page: 16
  year: 2021
  end-page: 26
  ident: b12
  article-title: Towards self-x cognitive manufacturing network: An industrial knowledge graph-based multi-agent reinforcement learning approach
  publication-title: J Manuf Syst
– volume: 81
  start-page: 102510
  year: 2023
  ident: b17
  article-title: Proactive human–robot collaboration: mutual-cognitive, predictable, and self-organising perspectives
  publication-title: Robotics and Computer-Integrated Manufacturing
– reference: Wang Kaixin, Liew Jun Hao, Zou Yingtian, Zhou Daquan, Feng Jiashi. Panet: Few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF international conference on computer vision. 2019, p. 9197–206.
– volume: 97
  year: 2020
  ident: b58
  article-title: Dynamic graph convolutional networks
  publication-title: Pattern Recognit
– start-page: 1
  year: 2021
  end-page: 12
  ident: b20
  article-title: A novel hypergraph convolution network-based approach for predicting the material removal rate in chemical mechanical planarization
  publication-title: J Intell Manuf
– start-page: 593
  year: 2018
  end-page: 607
  ident: b41
  article-title: Modeling relational data with graph convolutional networks
  publication-title: European semantic web conference
– reference: He Kaiming, Zhang Xiangyu, Ren Shaoqing, Sun Jian. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8.
– year: 2014
  ident: b56
  article-title: Embedding entities and relations for learning and inference in knowledge bases
– volume: 207
  year: 2021
  ident: b14
  article-title: A graph-based method for vulnerability analysis of renewable energy integrated power systems to cascading failures
  publication-title: Reliab Eng Syst Saf
– volume: 2021
  year: 2021
  ident: b24
  article-title: A knowledge graph system for the maintenance of coal mine equipment
  publication-title: Math Probl Eng
– volume: 26
  year: 2013
  ident: b35
  article-title: Translating embeddings for modeling multi-relational data
  publication-title: Adv Neural Inf Process Syst
– year: 2021
  ident: b53
  article-title: Relational graph convolutional networks: A closer look
– volume: 62
  start-page: 390
  year: 2022
  ident: 10.1016/j.ress.2022.109068_b6
  article-title: Establishing a reliable mechanism model of the digital twin machining system: an adaptive evaluation network approach
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2021.12.008
– volume: 60
  year: 2020
  ident: 10.1016/j.ress.2022.109068_b44
  article-title: Large-scale relation extraction from web documents and knowledge graphs with human-in-the-loop
  publication-title: J Web Semant
  doi: 10.1016/j.websem.2019.100546
– ident: 10.1016/j.ress.2022.109068_b46
  doi: 10.1145/3267305.3267528
– volume: 26
  year: 2013
  ident: 10.1016/j.ress.2022.109068_b35
  article-title: Translating embeddings for modeling multi-relational data
  publication-title: Adv Neural Inf Process Syst
– ident: 10.1016/j.ress.2022.109068_b47
  doi: 10.1109/ICCV.2019.00929
– volume: 10
  start-page: 6325
  issue: 18
  year: 2020
  ident: 10.1016/j.ress.2022.109068_b34
  article-title: SemKoRe: improving machine maintenance in industrial iot with semantic knowledge graphs
  publication-title: Appl Sci
  doi: 10.3390/app10186325
– start-page: 4396
  year: 2018
  ident: 10.1016/j.ress.2022.109068_b50
  article-title: Bootstrapping entity alignment with knowledge graph embedding
– volume: 10
  start-page: 172
  issue: 5
  year: 2019
  ident: 10.1016/j.ress.2022.109068_b59
  article-title: Link prediction based on deep convolutional neural network
  publication-title: Information
  doi: 10.3390/info10050172
– ident: 10.1016/j.ress.2022.109068_b49
  doi: 10.18653/v1/P19-2044
– volume: 10
  start-page: 17656
  year: 2022
  ident: 10.1016/j.ress.2022.109068_b27
  article-title: Research on event logic knowledge graph construction method of robot transmission system fault diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3150409
– ident: 10.1016/j.ress.2022.109068_b60
  doi: 10.1609/aaai.v31i1.10805
– volume: 54
  start-page: 101781
  year: 2022
  ident: 10.1016/j.ress.2022.109068_b5
  article-title: Transformer-based hierarchical latent space vae for interpretable remaining useful life prediction
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2022.101781
– volume: 30
  start-page: 3212
  issue: 11
  year: 2019
  ident: 10.1016/j.ress.2022.109068_b48
  article-title: Object detection with deep learning: A review
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2876865
– year: 2021
  ident: 10.1016/j.ress.2022.109068_b2
  article-title: Cloud-edge collaboration framework with deep learning-based for remaining useful life prediction of machinery
  publication-title: IEEE Trans Ind Inf
– volume: 21
  start-page: 7
  year: 2019
  ident: 10.1016/j.ress.2022.109068_b32
  article-title: Intelligent assisted maintenance plan generation for corrective maintenance
  publication-title: Manuf Lett
  doi: 10.1016/j.mfglet.2019.06.004
– start-page: 1
  year: 2022
  ident: 10.1016/j.ress.2022.109068_b19
  article-title: Semantic-aware event link reasoning over industrial knowledge graph embedding time series data
  publication-title: Int J Prod Res
– ident: 10.1016/j.ress.2022.109068_b42
  doi: 10.1145/3366423.3380027
– volume: 207
  year: 2021
  ident: 10.1016/j.ress.2022.109068_b16
  article-title: A knowledge graph-based approach for exploring railway operational accidents
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107352
– volume: 81
  start-page: 102510
  year: 2023
  ident: 10.1016/j.ress.2022.109068_b17
  article-title: Proactive human–robot collaboration: mutual-cognitive, predictable, and self-organising perspectives
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2022.102510
– volume: 2021
  year: 2021
  ident: 10.1016/j.ress.2022.109068_b24
  article-title: A knowledge graph system for the maintenance of coal mine equipment
  publication-title: Math Probl Eng
– start-page: 593
  year: 2018
  ident: 10.1016/j.ress.2022.109068_b41
  article-title: Modeling relational data with graph convolutional networks
– ident: 10.1016/j.ress.2022.109068_b55
  doi: 10.1109/CVPR.2016.90
– volume: 15
  start-page: 1810
  issue: 5
  year: 2022
  ident: 10.1016/j.ress.2022.109068_b26
  article-title: PF2RM: A power fault retrieval and recommendation model based on knowledge graph
  publication-title: Energies
  doi: 10.3390/en15051810
– start-page: 553
  year: 2019
  ident: 10.1016/j.ress.2022.109068_b40
  article-title: Hypernetwork knowledge graph embeddings
– volume: 5
  start-page: 135
  year: 2017
  ident: 10.1016/j.ress.2022.109068_b57
  article-title: Enriching word vectors with subword information
  publication-title: Trans Assoc Comput Linguist
  doi: 10.1162/tacl_a_00051
– year: 2014
  ident: 10.1016/j.ress.2022.109068_b56
– volume: 207
  year: 2021
  ident: 10.1016/j.ress.2022.109068_b14
  article-title: A graph-based method for vulnerability analysis of renewable energy integrated power systems to cascading failures
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107354
– volume: 10
  start-page: 2166
  issue: 6
  year: 2020
  ident: 10.1016/j.ress.2022.109068_b25
  article-title: A causality mining and knowledge graph based method of root cause diagnosis for performance anomaly in cloud applications
  publication-title: Appl Sci
  doi: 10.3390/app10062166
– volume: 159
  start-page: 630
  year: 2019
  ident: 10.1016/j.ress.2022.109068_b11
  article-title: An ontology-based approach for failure classification in predictive maintenance using fuzzy C-means and SWRL rules
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2019.09.218
– volume: 34
  start-page: 50
  issue: 1
  year: 2020
  ident: 10.1016/j.ress.2022.109068_b43
  article-title: A survey on deep learning for named entity recognition
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2020.2981314
– year: 2022
  ident: 10.1016/j.ress.2022.109068_b4
  article-title: Residual-hypergraph convolution network: a model-based and data-driven integrated approach for fault diagnosis in complex equipment
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 215
  year: 2021
  ident: 10.1016/j.ress.2022.109068_b52
  article-title: A context-aware diversity-oriented knowledge recommendation approach for smart engineering solution design
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.106739
– start-page: 1
  year: 2021
  ident: 10.1016/j.ress.2022.109068_b20
  article-title: A novel hypergraph convolution network-based approach for predicting the material removal rate in chemical mechanical planarization
  publication-title: J Intell Manuf
– volume: 52
  year: 2022
  ident: 10.1016/j.ress.2022.109068_b21
  article-title: Industrial internet of things-driven storage location assignment and order picking in a resource synchronization and sharing-based robotic mobile fulfillment system
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101540
– volume: 18
  start-page: 471
  issue: 2
  year: 2018
  ident: 10.1016/j.ress.2022.109068_b28
  article-title: Knowledge reasoning with semantic data for real-time data processing in smart factory
  publication-title: Sensors
  doi: 10.3390/s18020471
– volume: 220
  year: 2022
  ident: 10.1016/j.ress.2022.109068_b33
  article-title: Hybrid ontology for safety, security, and dependability risk assessments and security threat analysis (STA) method for industrial control systems
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108270
– volume: 130
  start-page: 30
  year: 2017
  ident: 10.1016/j.ress.2022.109068_b36
  article-title: Sematch: Semantic similarity framework for knowledge graphs
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.05.021
– volume: 64
  start-page: 107
  year: 2022
  ident: 10.1016/j.ress.2022.109068_b13
  article-title: Toward cognitive predictive maintenance: A survey of graph-based approaches
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2022.06.002
– volume: 109
  start-page: 56
  year: 2020
  ident: 10.1016/j.ress.2022.109068_b45
  article-title: A knowledge-based deep learning method for ECG signal delineation
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2020.02.068
– volume: 8
  start-page: 89318
  year: 2020
  ident: 10.1016/j.ress.2022.109068_b10
  article-title: Cloud-based cyber-physical robotic mobile fulfillment systems: A case study of collision avoidance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992475
– year: 2021
  ident: 10.1016/j.ress.2022.109068_b53
– volume: 2020
  year: 2020
  ident: 10.1016/j.ress.2022.109068_b29
  article-title: Knowledge graph construction and application of power grid equipment
  publication-title: Math Probl Eng
  doi: 10.1155/2020/8269082
– volume: 61
  start-page: 16
  year: 2021
  ident: 10.1016/j.ress.2022.109068_b12
  article-title: Towards self-x cognitive manufacturing network: An industrial knowledge graph-based multi-agent reinforcement learning approach
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.08.002
– volume: 85
  start-page: 265
  issue: 2
  year: 2021
  ident: 10.1016/j.ress.2022.109068_b31
  article-title: Ontology for maintenance of onshore wind turbines
  publication-title: Forschung Ing
  doi: 10.1007/s10010-021-00466-x
– volume: 1050
  start-page: 20
  year: 2017
  ident: 10.1016/j.ress.2022.109068_b54
  article-title: Graph attention networks
  publication-title: Stat
– volume: 215
  year: 2021
  ident: 10.1016/j.ress.2022.109068_b37
  article-title: Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107878
– volume: 13
  start-page: 485
  issue: 3
  year: 2021
  ident: 10.1016/j.ress.2022.109068_b18
  article-title: A survey on knowledge graph embeddings for link prediction
  publication-title: Symmetry
  doi: 10.3390/sym13030485
– volume: 51
  start-page: 101518
  year: 2022
  ident: 10.1016/j.ress.2022.109068_b7
  article-title: Promoting employee health in smart office: a survey
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2021.101518
– volume: 52
  start-page: 101530
  year: 2022
  ident: 10.1016/j.ress.2022.109068_b8
  article-title: Edge intelligence and agnostic robotic paradigm in resource synchronisation and sharing in flexible robotic and facility control system
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2022.101530
– volume: 186
  start-page: 64
  year: 2019
  ident: 10.1016/j.ress.2022.109068_b15
  article-title: A method for systematically developing the knowledge base of reactor operators in nuclear power plants to support cognitive modeling of operator performance
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.02.014
– volume: 50
  year: 2021
  ident: 10.1016/j.ress.2022.109068_b22
  article-title: Data-driven order correlation pattern and storage location assignment in robotic mobile fulfillment and process automation system
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2021.101369
– start-page: 1
  year: 2021
  ident: 10.1016/j.ress.2022.109068_b30
  article-title: An ontology model for maintenance strategy selection and assessment
  publication-title: J Intell Manuf
– volume: 97
  year: 2020
  ident: 10.1016/j.ress.2022.109068_b58
  article-title: Dynamic graph convolutional networks
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2019.107000
– year: 2022
  ident: 10.1016/j.ress.2022.109068_b9
  article-title: Privacy-preserving gradient boosting tree: Vertical federated learning for collaborative bearing fault diagnosis
  publication-title: IET Collab Intell Manuf
  doi: 10.1049/cim2.12057
– volume: 40
  start-page: 75
  year: 2023
  ident: 10.1016/j.ress.2022.109068_b23
  article-title: Deep reinforcement learning in smart manufacturing: a review and prospects
  publication-title: CIRP Journal of Manufacturing Science and Technology
  doi: 10.1016/j.cirpj.2022.11.003
– volume: 223
  issue: C
  year: 2022
  ident: 10.1016/j.ress.2022.109068_b3
  article-title: Dynamic risk assessment for CBM-based adaptation of maintenance planning
  publication-title: Reliab Eng Syst Saf
– volume: 218
  issue: A
  year: 2022
  ident: 10.1016/j.ress.2022.109068_b1
  article-title: Prognostics and health management (PHM): Where are we and where do we (need to) go in theory and practice
  publication-title: Reliab Eng Syst Saf
– year: 2017
  ident: 10.1016/j.ress.2022.109068_b39
– year: 2016
  ident: 10.1016/j.ress.2022.109068_b51
– ident: 10.1016/j.ress.2022.109068_b38
  doi: 10.1609/aaai.v32i1.11573
SSID ssj0004957
Score 2.6200254
Snippet Maintenance planning is a significant part of predictive maintenance, which involves task planning, resource scheduling, and prevention. With large-scale...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109068
SubjectTerms Graph neural network
Knowledge graph
Link prediction
Maintenance management
Predictive maintenance
Title Maintenance planning recommendation of complex industrial equipment based on knowledge graph and graph neural network
URI https://dx.doi.org/10.1016/j.ress.2022.109068
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AKRWK
  dateStart: 19880101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvehB_MT6UfbgTdJms5vs9liKpSrtRQu9hc1-QMSmVVrw5G93J9nUCtKDtxB2QpiEmXnJ2_cQuuVhYjQVNuA9EQeMsjAQQrlimMVcSWYiZQEojifJaMoeZ_GsgQb1XhigVfraX9X0slr7M12fze4yz7vPMBwIsP8GVCwoaIIyxsHFoPP1Q_NwAIDXdvKw2m-cqThegGg7cAVQVQpBbvWv5rTVcIZH6NBPirhf3cwxapjiBB1s6QeeovVYgtwDaGYYvPT2Qxgw7nxuvFsSXlhc8sbNJ843Ph3YvK_zkiqEoY9p7BZuPq_hUsUay0L7IxC9dDFFRRk_Q9Ph_ctgFHgfhUDRMFwFnFmitAMubhpgyhquI0OFUVxGQkXUKsKkTkD2RUeR7fUYkZElRpHEYT340XuOmsWiMBcI08QKwzSRhGSMWC21iZXiSWw1tUkmW4jUCUyVFxkHr4u3tGaTvaaQ9BSSnlZJb6G7TcyyktjYuTqun0v660VJXQ_YEXf5z7grtA8O8xVZ5xo1Vx9rc-PmkFXWLl-0NtrrPzyNJt-2ed8u
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1qPagH8RPr5x68Sdpsssluj1IsVdtebKG3sNkPiNi0Sgue_O3uJJtaQXrwFsJOCJMwMy95-x5Ct8yPtQq58VibRx4Nqe9xLm0xTCMmBdWBNAAUB8O4N6ZPk2hSQ51qLwzQKl3tL2t6Ua3dmZbLZmueZa0XGA442H8DKuYh3ULbNAoYILDm1w_PwyIAVvnJw3K3c6YkeQGkbcIlQFbJB73Vv7rTWsfpHqB9Nyri-_JuDlFN50dob01A8BgtBwL0HkA0Q-O58x_CAHKnU-3skvDM4II4rj9xtjLqwPp9mRVcIQyNTGG7cPV9DRcy1ljkyh2B6qWNyUvO-Akadx9GnZ7njBQ8Gfr-wmPUEKkscrHjAJVGMxXokGvJRMBlEBpJqFAx6L6oIDDtNiUiMERLEluwB396T1E9n-X6DOEwNlxTRQQhKSVGCaUjKVkcGRWaOBUNRKoEJtKpjIPZxVtS0cleE0h6AklPyqQ30N0qZl5qbGxcHVXPJfn1piS2CWyIO_9n3A3a6Y0G_aT_OHy-QLtgN18ydy5RffGx1Fd2KFmk18VL9w36QuDD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maintenance+planning+recommendation+of+complex+industrial+equipment+based+on+knowledge+graph+and+graph+neural+network&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Xia%2C+Liqiao&rft.au=Liang%2C+Yongshi&rft.au=Leng%2C+Jiewu&rft.au=Zheng%2C+Pai&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=232&rft_id=info:doi/10.1016%2Fj.ress.2022.109068&rft.externalDocID=S0951832022006834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon