An area-efficient bit-serial sequential polynomial basis finite field GF(2m) multiplier
Many cryptographic and error control coding algorithms rely on finite field arithmetic. Hardware implementation of these algorithms requires an efficient realization of finite field GF(2m) arithmetic operations. Finite field multiplication is complex among the basic arithmetic operations, and it is...
Saved in:
| Published in | International journal of electronics and communications Vol. 114; p. 153017 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier GmbH
01.02.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1434-8411 1618-0399 |
| DOI | 10.1016/j.aeue.2019.153017 |
Cover
| Abstract | Many cryptographic and error control coding algorithms rely on finite field arithmetic. Hardware implementation of these algorithms requires an efficient realization of finite field GF(2m) arithmetic operations. Finite field multiplication is complex among the basic arithmetic operations, and it is employed in field exponentiation and inversion operations. Various algorithms and architectures are proposed in the literature for hardware implementation of finite field multiplication to achieve a reduction in area and delay. In this paper, a modified interleaved modular reduction multiplication algorithm and its bit-serial sequential architecture are proposed. It is observed from the comparison of analytical results that the proposed architecture achieves the reduction in area and area-delay product compared to the existing multipliers. The proposed multiplier achieves an improvement of 39% in area and 17% in area-delay product estimations for field order of 409 when compared with the best sequential multiplier available in the literature. Application specific integrated circuit (ASIC) implementation of the proposed multiplier together with the two most comparable multipliers confirms that the proposed multiplier outperforms in terms of area and area-delay product. The proposed multiplier is suitable for implementation of security in Internet of Things (IoT) gateways and edge-devices. |
|---|---|
| AbstractList | Many cryptographic and error control coding algorithms rely on finite field arithmetic. Hardware implementation of these algorithms requires an efficient realization of finite field GF(2m) arithmetic operations. Finite field multiplication is complex among the basic arithmetic operations, and it is employed in field exponentiation and inversion operations. Various algorithms and architectures are proposed in the literature for hardware implementation of finite field multiplication to achieve a reduction in area and delay. In this paper, a modified interleaved modular reduction multiplication algorithm and its bit-serial sequential architecture are proposed. It is observed from the comparison of analytical results that the proposed architecture achieves the reduction in area and area-delay product compared to the existing multipliers. The proposed multiplier achieves an improvement of 39% in area and 17% in area-delay product estimations for field order of 409 when compared with the best sequential multiplier available in the literature. Application specific integrated circuit (ASIC) implementation of the proposed multiplier together with the two most comparable multipliers confirms that the proposed multiplier outperforms in terms of area and area-delay product. The proposed multiplier is suitable for implementation of security in Internet of Things (IoT) gateways and edge-devices. |
| ArticleNumber | 153017 |
| Author | Pillutla, Siva Ramakrishna Boppana, Lakshmi |
| Author_xml | – sequence: 1 givenname: Siva Ramakrishna surname: Pillutla fullname: Pillutla, Siva Ramakrishna email: srk100p@student.nitw.ac.in – sequence: 2 givenname: Lakshmi surname: Boppana fullname: Boppana, Lakshmi |
| BookMark | eNp9kEtLw0AUhQepYFv9A66y1EXivDJJwE0ptgoFN4rL4WZyB6bkUWemQv-9CXXloqtzuPBdON-CzPqhR0LuGc0YZeppnwEeMeOUVRnLBWXFFZkzxcqUiqqajV0KmZaSsRuyCGFPKacFV3PyteoT8AgpWuuMwz4mtYtpQO-gTQJ-H8fTVA9De-qHbqo1BBcS63oXcQxsm2S7eeDdY9Id2-gOrUN_S64ttAHv_nJJPjcvH-vXdPe-fVuvdqkRlMa0kKbgpla5lcBlxaHGHHKhLPBa0UpKk1uwBmRhuOG5EcqUlglbgzKNsFwsSXn-a_wQgkerjYsQ3dBHD67VjOpJkN7rSZCeBOmzoBHl_9CDdx3402Xo-QzhOOpnHKrDZM1g4zyaqJvBXcJ_ARsxgmo |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3051282 crossref_primary_10_1016_j_micpro_2021_104053 crossref_primary_10_3390_app12094312 crossref_primary_10_1080_00207217_2021_2001862 crossref_primary_10_1109_ACCESS_2024_3354269 crossref_primary_10_3390_s22062090 crossref_primary_10_1145_3639820 crossref_primary_10_1007_s10462_021_10113_0 |
| Cites_doi | 10.1016/j.aeue.2014.10.014 10.1007/s11265-013-0791-x 10.3390/s150921478 10.1016/j.aeue.2018.11.031 10.1109/12.859542 10.1016/j.vlsi.2012.03.001 10.1109/ARITH.2015.11 10.1109/TVLSI.2014.2359113 10.1109/TVLSI.2008.2006080 10.1109/ASAP.1996.542803 10.1007/BF00203817 10.1080/03772063.2014.914699 10.1109/49.17708 10.1109/TVLSI.2016.2646479 10.1109/12.2212 10.1109/TC.2008.67 10.1049/iet-cdt.2010.0021 10.1109/ISCAS.2001.922163 10.1109/TVLSI.2012.2185257 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier GmbH |
| Copyright_xml | – notice: 2019 Elsevier GmbH |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.aeue.2019.153017 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1618-0399 |
| ExternalDocumentID | 10_1016_j_aeue_2019_153017 S1434841119318485 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 3V. 4.4 457 4G. 5GY 5VS 7-5 71M 8FE 8FG 8FW 8P~ 8R4 8R5 AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABFNM ABLJU ABMAC ABUWG ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKRA AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARAPS ARUGR ASPBG AVWKF AXJTR AZFZN BENPR BGLVJ BJAXD BKOJK BLXMC BPHCQ CAG CCPQU COF CS3 DWQXO EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HCIFZ HVGLF HZ~ IHE J1W JJJVA KOM M1Q M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P62 PC. PQQKQ PROAC Q2X Q38 R2- RIG ROL RPZ S0X SDF SDG SES SEW SPC SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFFHD AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS PHGZM PHGZT PQGLB ~HD |
| ID | FETCH-LOGICAL-c300t-74c72cb65f4a2492abe5a536fa2b60944c5fafca47c2c25c36c8f13fba6cd3f23 |
| IEDL.DBID | .~1 |
| ISSN | 1434-8411 |
| IngestDate | Thu Apr 24 23:05:34 EDT 2025 Wed Oct 29 21:08:20 EDT 2025 Fri Feb 23 02:49:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Elliptic curve cryptography Internet of Things (IoT) Bit-serial multiplier Finite field arithmetic Polynomial basis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-74c72cb65f4a2492abe5a536fa2b60944c5fafca47c2c25c36c8f13fba6cd3f23 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_aeue_2019_153017 crossref_primary_10_1016_j_aeue_2019_153017 elsevier_sciencedirect_doi_10_1016_j_aeue_2019_153017 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of electronics and communications |
| PublicationYear | 2020 |
| Publisher | Elsevier GmbH |
| Publisher_xml | – name: Elsevier GmbH |
| References | Meher (b0135) 2009; 17 Zakerolhosseini, Nikooghadam (b0105) 2013; 46 Mathe, Boppana (b0125) 2017; 11 ISCAS 2001. In: The 2001 IEEE International Symposium on Circuits and Systems (Cat. No. 01CH37196); 2001, vol. 4, p. 37–40. Lidl, Niederreiter (b0015) 1994 Lin, Sha, Wang (b0020) 2010; 57 Bhoyar, Sahare, Dhok, Deshmukh (b0005) 2018; 99 Ho (b0115) 2014; 75 Reyhani-Masoleh (b0095) 2008 Kim, Jeon (b0110) 2014; 60 El-Razouk H, Reyhani-Masoleh A. New bit-level serial GF(2m) multiplication using polynomial basis. In: Proceedings of the IEEE 22nd Symposium on Computer Arithmetic Conference. Lyon (France); 2015. p. 129–36. Halbutogullari, Ko (b0065) 2000; 49 Beth, Gollmann (b0075) 1989; 7 Xie, jun, Meher (b0140) 2012; 21 Hsu, Truong, Deutsch (b0035) 1988; 37 Wu (b0070) 2008; 57 Kim, Yoo (b0085) 2001 Garcia-Martinez, Posada-Gómez, Morales-Luna (b0090) 2005 Gebali, Ibrahim (b0060) 2015; 23 Imaña (b0100) 2011; 58 STMICROELECTRONICS. 65 nm STMicroelectronics CMOS Technology, Standard Cell Library for 65 Nanometer CMOS065LP VLSI Digital Design Platform. [Online] Available at Namin, Muscedere, Ahmadi (b0040) 2017; 25 Deschamps, Imaña, Sutter (b0045) 2009 . Song L, Parhi KK. Efficient finite field serial/parallel multiplication. In: Proceedings of the IEEE 1996 International Conference on Application-Specific Systems, Architectures, and Processors. Chicago (USA); 1996. p. 72–82. Grossschadl J. A low-power bit-serial multiplier for finite fields GF(2 Marin, Pawlowski, Jara (b0010) 2015; 15 Dummit, Foote (b0030) 2004 Menezes, Vanstone (b0050) 1993; 6 Shams, Declercq, Heinrich (b0025) 2015; 69 Morales-Sandoval, Feregrino-Uribe, Kitsos (b0055) 2011; 5 Lin (10.1016/j.aeue.2019.153017_b0020) 2010; 57 Dummit (10.1016/j.aeue.2019.153017_b0030) 2004 Hsu (10.1016/j.aeue.2019.153017_b0035) 1988; 37 Garcia-Martinez (10.1016/j.aeue.2019.153017_b0090) 2005 Shams (10.1016/j.aeue.2019.153017_b0025) 2015; 69 Marin (10.1016/j.aeue.2019.153017_b0010) 2015; 15 Menezes (10.1016/j.aeue.2019.153017_b0050) 1993; 6 Imaña (10.1016/j.aeue.2019.153017_b0100) 2011; 58 10.1016/j.aeue.2019.153017_b0130 Ho (10.1016/j.aeue.2019.153017_b0115) 2014; 75 Meher (10.1016/j.aeue.2019.153017_b0135) 2009; 17 Lidl (10.1016/j.aeue.2019.153017_b0015) 1994 Namin (10.1016/j.aeue.2019.153017_b0040) 2017; 25 Kim (10.1016/j.aeue.2019.153017_b0085) 2001 Halbutogullari (10.1016/j.aeue.2019.153017_b0065) 2000; 49 Mathe (10.1016/j.aeue.2019.153017_b0125) 2017; 11 Bhoyar (10.1016/j.aeue.2019.153017_b0005) 2018; 99 Wu (10.1016/j.aeue.2019.153017_b0070) 2008; 57 Reyhani-Masoleh (10.1016/j.aeue.2019.153017_b0095) 2008 Morales-Sandoval (10.1016/j.aeue.2019.153017_b0055) 2011; 5 Deschamps (10.1016/j.aeue.2019.153017_b0045) 2009 Kim (10.1016/j.aeue.2019.153017_b0110) 2014; 60 10.1016/j.aeue.2019.153017_b0080 10.1016/j.aeue.2019.153017_b0120 Gebali (10.1016/j.aeue.2019.153017_b0060) 2015; 23 Xie (10.1016/j.aeue.2019.153017_b0140) 2012; 21 10.1016/j.aeue.2019.153017_b0145 Zakerolhosseini (10.1016/j.aeue.2019.153017_b0105) 2013; 46 Beth (10.1016/j.aeue.2019.153017_b0075) 1989; 7 |
| References_xml | – volume: 5 start-page: 86 year: 2011 end-page: 94 ident: b0055 article-title: Bit-serial and digit-serial GF(2 publication-title: IET Comput Digital Tech – volume: 11 start-page: 2680 year: 2017 end-page: 2700 ident: b0125 article-title: Design and implementation of a sequential polynomial basis multiplier over GF(2 publication-title: KSII Trans Internet Inform Syst – reference: ). ISCAS 2001. In: The 2001 IEEE International Symposium on Circuits and Systems (Cat. No. 01CH37196); 2001, vol. 4, p. 37–40. – volume: 99 start-page: 81 year: 2018 end-page: 99 ident: b0005 article-title: Communication technologies and security challenges for Internet of Things: a comprehensive review publication-title: AEU-Int J Electron Commun – year: 2009 ident: b0045 article-title: Hardware implementation of finite-field arithmetic – reference: Grossschadl J. A low-power bit-serial multiplier for finite fields GF(2 – volume: 58 start-page: 935 year: 2011 end-page: 946 ident: b0100 article-title: Low latency GF (2 publication-title: IEEE Trans Circ Syst I: Regul Pap – volume: 49 start-page: 503 year: 2000 end-page: 518 ident: b0065 article-title: Mastrovito multiplier for general irreducible polynomials publication-title: IEEE Trans Comput – volume: 57 start-page: 51 year: 2010 end-page: 55 ident: b0020 article-title: An efficient VLSI architecture for nonbinary LDPC decoders publication-title: IEEE Trans Circ Syst II: Exp Briefs – reference: STMICROELECTRONICS. 65 nm STMicroelectronics CMOS Technology, Standard Cell Library for 65 Nanometer CMOS065LP VLSI Digital Design Platform. [Online] Available at: – volume: 7 start-page: 458 year: 1989 end-page: 466 ident: b0075 article-title: Algorithm engineering for public key algorithms publication-title: IEEE J Select Areas Commun – volume: 75 start-page: 203 year: 2014 end-page: 208 ident: b0115 article-title: Design and implementation of a polynomial basis multiplier architecture over GF(2 publication-title: J Signal Process Syst – volume: 21 start-page: 385 year: 2012 end-page: 389 ident: b0140 article-title: Low latency systolic Montgomery multiplier for finite field GF(2 publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst – volume: 46 start-page: 211 year: 2013 end-page: 217 ident: b0105 article-title: Low-power and high-speed design of a versatile bit-serial multiplier in finite fields GF(2 publication-title: Integr, VLSI J – year: 1994 ident: b0015 article-title: Introduction to finite fields and their applications – reference: Song L, Parhi KK. Efficient finite field serial/parallel multiplication. In: Proceedings of the IEEE 1996 International Conference on Application-Specific Systems, Architectures, and Processors. Chicago (USA); 1996. p. 72–82. – volume: 25 start-page: 1632 year: 2017 end-page: 1643 ident: b0040 article-title: Digit-level serial-in parallel-out multiplier using redundant representation for a class of finite fields publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst – volume: 15 start-page: 21478 year: 2015 end-page: 21499 ident: b0010 article-title: Optimized ECC implementation for secure communication between heterogeneous IoT devices publication-title: Sensors – volume: 37 start-page: 735 year: 1988 end-page: 739 ident: b0035 article-title: A comparison of VLSI architecture of finite field multipliers using dual, normal, or standard bases publication-title: IEEE Trans Comput – year: 2004 ident: b0030 article-title: Abstract algebra – volume: 17 start-page: 747 year: 2009 end-page: 757 ident: b0135 article-title: Systolic and non-systolic scalable modular designs of finite field multipliers for Reed-Solomon codec publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst – reference: . – volume: 23 start-page: 2322 year: 2015 end-page: 2326 ident: b0060 article-title: Efficient scalable serial multiplier over GF(2 publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst – start-page: 262 year: 2001 end-page: 267 ident: b0085 article-title: Area efficient exponentiation using modular multiplier/squarer in GF(2<Superscript>m</Superscript>) publication-title: Proceedings of the international computing and combinatorics conference. Guilin (China) – volume: 57 start-page: 1023 year: 2008 end-page: 1031 ident: b0070 article-title: Bit-parallel polynomial basis multiplier for new classes of finite fields publication-title: IEEE Trans Comput – volume: 6 start-page: 209 year: 1993 end-page: 224 ident: b0050 article-title: Elliptic curve cryptosystems and their implementation publication-title: J Cryptol – volume: 60 start-page: 194 year: 2014 end-page: 199 ident: b0110 article-title: Polynomial basis multiplier using cellular systolic architecture publication-title: IETE J Res – start-page: 5 year: 2005 end-page: 10 ident: b0090 article-title: FPGA implementation of an efficient multiplier over finite fields GF(2<Superscript>m</Superscript>) publication-title: Proceedings of the IEEE 2005 International Conference on Reconfigurable Computing and FPGAs. Puebla City (Mexico) – reference: El-Razouk H, Reyhani-Masoleh A. New bit-level serial GF(2m) multiplication using polynomial basis. In: Proceedings of the IEEE 22nd Symposium on Computer Arithmetic Conference. Lyon (France); 2015. p. 129–36. – volume: 69 start-page: 492 year: 2015 end-page: 499 ident: b0025 article-title: Diversity of non-binary cluster-LDPC codes using the EMS algorithm publication-title: AEU-Int J Electron Commun – start-page: 300 year: 2008 end-page: 314 ident: b0095 article-title: A new bit-serial architecture for field multiplication using polynomial bases publication-title: Proceedings of the International Workshop on Cryptographic Hardware and Embedded Systems Conference. Washington DC (USA) – volume: 69 start-page: 492 issue: 2 year: 2015 ident: 10.1016/j.aeue.2019.153017_b0025 article-title: Diversity of non-binary cluster-LDPC codes using the EMS algorithm publication-title: AEU-Int J Electron Commun doi: 10.1016/j.aeue.2014.10.014 – volume: 75 start-page: 203 issue: 3 year: 2014 ident: 10.1016/j.aeue.2019.153017_b0115 article-title: Design and implementation of a polynomial basis multiplier architecture over GF(2m) publication-title: J Signal Process Syst doi: 10.1007/s11265-013-0791-x – volume: 15 start-page: 21478 issue: 9 year: 2015 ident: 10.1016/j.aeue.2019.153017_b0010 article-title: Optimized ECC implementation for secure communication between heterogeneous IoT devices publication-title: Sensors doi: 10.3390/s150921478 – year: 1994 ident: 10.1016/j.aeue.2019.153017_b0015 – year: 2004 ident: 10.1016/j.aeue.2019.153017_b0030 – volume: 99 start-page: 81 year: 2018 ident: 10.1016/j.aeue.2019.153017_b0005 article-title: Communication technologies and security challenges for Internet of Things: a comprehensive review publication-title: AEU-Int J Electron Commun doi: 10.1016/j.aeue.2018.11.031 – volume: 49 start-page: 503 issue: 5 year: 2000 ident: 10.1016/j.aeue.2019.153017_b0065 article-title: Mastrovito multiplier for general irreducible polynomials publication-title: IEEE Trans Comput doi: 10.1109/12.859542 – volume: 46 start-page: 211 issue: 2 year: 2013 ident: 10.1016/j.aeue.2019.153017_b0105 article-title: Low-power and high-speed design of a versatile bit-serial multiplier in finite fields GF(2m) publication-title: Integr, VLSI J doi: 10.1016/j.vlsi.2012.03.001 – ident: 10.1016/j.aeue.2019.153017_b0120 doi: 10.1109/ARITH.2015.11 – volume: 23 start-page: 2322 issue: 10 year: 2015 ident: 10.1016/j.aeue.2019.153017_b0060 article-title: Efficient scalable serial multiplier over GF(2m) based on trinomial publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst doi: 10.1109/TVLSI.2014.2359113 – volume: 11 start-page: 2680 issue: 5 year: 2017 ident: 10.1016/j.aeue.2019.153017_b0125 article-title: Design and implementation of a sequential polynomial basis multiplier over GF(2m) publication-title: KSII Trans Internet Inform Syst – volume: 17 start-page: 747 year: 2009 ident: 10.1016/j.aeue.2019.153017_b0135 article-title: Systolic and non-systolic scalable modular designs of finite field multipliers for Reed-Solomon codec publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst doi: 10.1109/TVLSI.2008.2006080 – ident: 10.1016/j.aeue.2019.153017_b0080 doi: 10.1109/ASAP.1996.542803 – volume: 6 start-page: 209 issue: 4 year: 1993 ident: 10.1016/j.aeue.2019.153017_b0050 article-title: Elliptic curve cryptosystems and their implementation publication-title: J Cryptol doi: 10.1007/BF00203817 – ident: 10.1016/j.aeue.2019.153017_b0145 – volume: 60 start-page: 194 issue: 2 year: 2014 ident: 10.1016/j.aeue.2019.153017_b0110 article-title: Polynomial basis multiplier using cellular systolic architecture publication-title: IETE J Res doi: 10.1080/03772063.2014.914699 – volume: 7 start-page: 458 issue: 4 year: 1989 ident: 10.1016/j.aeue.2019.153017_b0075 article-title: Algorithm engineering for public key algorithms publication-title: IEEE J Select Areas Commun doi: 10.1109/49.17708 – start-page: 300 year: 2008 ident: 10.1016/j.aeue.2019.153017_b0095 article-title: A new bit-serial architecture for field multiplication using polynomial bases – volume: 25 start-page: 1632 issue: 5 year: 2017 ident: 10.1016/j.aeue.2019.153017_b0040 article-title: Digit-level serial-in parallel-out multiplier using redundant representation for a class of finite fields publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst doi: 10.1109/TVLSI.2016.2646479 – volume: 37 start-page: 735 issue: 6 year: 1988 ident: 10.1016/j.aeue.2019.153017_b0035 article-title: A comparison of VLSI architecture of finite field multipliers using dual, normal, or standard bases publication-title: IEEE Trans Comput doi: 10.1109/12.2212 – volume: 57 start-page: 1023 issue: 8 year: 2008 ident: 10.1016/j.aeue.2019.153017_b0070 article-title: Bit-parallel polynomial basis multiplier for new classes of finite fields publication-title: IEEE Trans Comput doi: 10.1109/TC.2008.67 – year: 2009 ident: 10.1016/j.aeue.2019.153017_b0045 – volume: 58 start-page: 935 issue: 5 year: 2011 ident: 10.1016/j.aeue.2019.153017_b0100 article-title: Low latency GF (2m)polynomial basis multiplier publication-title: IEEE Trans Circ Syst I: Regul Pap – volume: 57 start-page: 51 issue: 1 year: 2010 ident: 10.1016/j.aeue.2019.153017_b0020 article-title: An efficient VLSI architecture for nonbinary LDPC decoders publication-title: IEEE Trans Circ Syst II: Exp Briefs – volume: 5 start-page: 86 issue: 2 year: 2011 ident: 10.1016/j.aeue.2019.153017_b0055 article-title: Bit-serial and digit-serial GF(2m) montgomery multipliers using linear feedback shift registers publication-title: IET Comput Digital Tech doi: 10.1049/iet-cdt.2010.0021 – ident: 10.1016/j.aeue.2019.153017_b0130 doi: 10.1109/ISCAS.2001.922163 – start-page: 262 year: 2001 ident: 10.1016/j.aeue.2019.153017_b0085 article-title: Area efficient exponentiation using modular multiplier/squarer in GF(2m) – volume: 21 start-page: 385 year: 2012 ident: 10.1016/j.aeue.2019.153017_b0140 article-title: Low latency systolic Montgomery multiplier for finite field GF(2m) based on pentanomials publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst doi: 10.1109/TVLSI.2012.2185257 – start-page: 5 year: 2005 ident: 10.1016/j.aeue.2019.153017_b0090 article-title: FPGA implementation of an efficient multiplier over finite fields GF(2m) |
| SSID | ssj0020726 |
| Score | 2.2531 |
| Snippet | Many cryptographic and error control coding algorithms rely on finite field arithmetic. Hardware implementation of these algorithms requires an efficient... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 153017 |
| SubjectTerms | Bit-serial multiplier Elliptic curve cryptography Finite field arithmetic Internet of Things (IoT) Polynomial basis |
| Title | An area-efficient bit-serial sequential polynomial basis finite field GF(2m) multiplier |
| URI | https://dx.doi.org/10.1016/j.aeue.2019.153017 |
| Volume | 114 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1618-0399 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020726 issn: 1434-8411 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1618-0399 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020726 issn: 1434-8411 databaseCode: ACRLP dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1618-0399 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020726 issn: 1434-8411 databaseCode: AIKHN dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1618-0399 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020726 issn: 1434-8411 databaseCode: .~1 dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1618-0399 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020726 issn: 1434-8411 databaseCode: AKRWK dateStart: 20010101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14UGTbdB9JcyzFWhV70WJvYTLNQqS2RdODF3-7s0laKkgP3pYwA8swOw_yzTeMXUrAELQxwo1xUoMCgQBQnhgD9R8SLej8j-7TwO8P9cPIjCqsu5yFcbDKMvYXMT2P1uWXZmnN5jxNm8-U6XVb01sNyS912w2aax24LQaN7xXMQ3qBLCaMlBZOuhycKTBekCwcVWYrbNDD9_KlZX8kp7WE09tju2WlyDvFZfZZJZkesJ01_sBD9tqZcqCqTyQ5EQTlDx6nmSi8ihco6cwd57PJl5s_piOlrfST29TVmjzHr_G73pV8v-YltpCucsSGvduXbl-UmxIEKs_LRKAxkBj7xmpwFIAQJwaM8i3I2KcGTqOxYBF0gBKlQeVj27aUjcHHsbJSHbPqdDZNThhXfmyBeogQIaHWDULPklxbogkVovVrrLU0UYQljbjbZjGJlnixt8iZNXJmjQqz1tjNSmdekGhslDZLy0e_XCGiKL9B7_SfemdsW7omOodin7Nq9rFILqjSyOJ67kp1ttW5f-wPfgBl9dKC |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADD4VGIAB8RTleQMDCB1N75E0I0KUAm0XWtEtckxOCiptBWFg4bfjS9KqSKgD2ymypZPls_0pn23GziRgCNoY4do4CaBAIACUJ16A8IdECzr_o9vp-q2-fhiYQYXdTHthHK2yjP1FTM-jdfmlVlqzNknT2hNlet3Q9FZD8kvdMEtsRRsZOAR29T3jeUgvkEWLkdLCiZedMwXJC5JPNyuzHl7Ry_fyrWV_ZKe5jNPcZBtlqcivi9tssUoy2mbrcwMEd9jz9YgDlX0iySdBUALhcZqJwq14QZPO3HEyHn65BmQ6Ut5KP7hNXbHJcwIbv2uey7cLXpIL6Sq7rN-87d20RLkqQaDyvEwEGgOJsW-sBjcDEOLEgFG-BRn7hOA0GgsWQQcoURpUPjZsXdkYfHxRVqo9tjwaj5J9xpUfWyAQESIkhN0g9CzJNSSaUCFav8rqUxNFWM4Rd-sshtGUMPYaObNGzqxRYdYqu5zpTIopGgulzdTy0S9fiCjML9A7-KfeKVtt9TrtqH3ffTxka9Ih6pyXfcSWs_fP5JjKjiw-yd3qB3Cf1Bc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+area-efficient+bit-serial+sequential+polynomial+basis+finite+field+GF%282m%29+multiplier&rft.jtitle=International+journal+of+electronics+and+communications&rft.au=Pillutla%2C+Siva+Ramakrishna&rft.au=Boppana%2C+Lakshmi&rft.date=2020-02-01&rft.pub=Elsevier+GmbH&rft.issn=1434-8411&rft.eissn=1618-0399&rft.volume=114&rft_id=info:doi/10.1016%2Fj.aeue.2019.153017&rft.externalDocID=S1434841119318485 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-8411&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-8411&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-8411&client=summon |