Improving the Sierpinski carpet model arithmetic to accurately predict the thermal conductivity of fatty acid/carbon composite phase-change materials

•The GTC solution modifies the expression of the general solution of the dimensionless thermal conductivity.•The new formula called the FSC solution can narrow the gap between the predicted value and the experimental results.•The optimal fractal unit for frequency selection is proposed to reduce the...

Full description

Saved in:
Bibliographic Details
Published inThermal science and engineering progress Vol. 40; p. 101743
Main Authors Xu, Xianghe, Niu, Baolian, Hao, Xubo, Guo, Haotian, Li, Yinglin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2023
Subjects
Online AccessGet full text
ISSN2451-9049
2451-9049
DOI10.1016/j.tsep.2023.101743

Cover

Abstract •The GTC solution modifies the expression of the general solution of the dimensionless thermal conductivity.•The new formula called the FSC solution can narrow the gap between the predicted value and the experimental results.•The optimal fractal unit for frequency selection is proposed to reduce the dependence of predicted value on fractal unit. The effective thermal conductivity is an important physical parameter of composite phase-change materials (PCMs). In this study, a new analytic expression of the dimensionless thermal conductivity is proposed to predict the dimensionless thermal conductivity of fatty acid–carbon materials composite PCMs based on the Sierpinski carpet model and the thermal resistance network model of a fractal geometry combined with the principle of the weighted average. The new analytical expression can be used to overcome the issue of the predicted values deviating considerably from the experimental results when the fractal series n is too small. At the same time, an accurate solution for the dimensionless ratio (t+) of the width of the carbon materials to the side length of the Sierpinski carpet is presented. Compared with the general solution algorithm proposed by Song, the commonly used quadratic parallel (QP) prediction model, and the Maxwell–Eucken model, this algorithm is more reliable. The proposed prediction model can be used to predict the effective thermal conductivity of fatty acid–carbon materials.
AbstractList •The GTC solution modifies the expression of the general solution of the dimensionless thermal conductivity.•The new formula called the FSC solution can narrow the gap between the predicted value and the experimental results.•The optimal fractal unit for frequency selection is proposed to reduce the dependence of predicted value on fractal unit. The effective thermal conductivity is an important physical parameter of composite phase-change materials (PCMs). In this study, a new analytic expression of the dimensionless thermal conductivity is proposed to predict the dimensionless thermal conductivity of fatty acid–carbon materials composite PCMs based on the Sierpinski carpet model and the thermal resistance network model of a fractal geometry combined with the principle of the weighted average. The new analytical expression can be used to overcome the issue of the predicted values deviating considerably from the experimental results when the fractal series n is too small. At the same time, an accurate solution for the dimensionless ratio (t+) of the width of the carbon materials to the side length of the Sierpinski carpet is presented. Compared with the general solution algorithm proposed by Song, the commonly used quadratic parallel (QP) prediction model, and the Maxwell–Eucken model, this algorithm is more reliable. The proposed prediction model can be used to predict the effective thermal conductivity of fatty acid–carbon materials.
ArticleNumber 101743
Author Hao, Xubo
Niu, Baolian
Li, Yinglin
Xu, Xianghe
Guo, Haotian
Author_xml – sequence: 1
  givenname: Xianghe
  surname: Xu
  fullname: Xu, Xianghe
– sequence: 2
  givenname: Baolian
  surname: Niu
  fullname: Niu, Baolian
  email: niubaolian@163.com
– sequence: 3
  givenname: Xubo
  surname: Hao
  fullname: Hao, Xubo
– sequence: 4
  givenname: Haotian
  surname: Guo
  fullname: Guo, Haotian
– sequence: 5
  givenname: Yinglin
  surname: Li
  fullname: Li, Yinglin
BookMark eNp9kM9qHDEMh01IIGmaF8jJLzAbe_55DL2U0DaBQA9tz8bRaLLaztiDrSzsg_R96-32UHrIQUjY-n6g7504DzGgELdabbTS_d1uwxnXTa3q5vhg2uZMXNVtpyurWnv-z3wpbnLeKaXqbmgbO1yJX4_LmuKewovkLcpvhGmlkH-SBJ9WZLnEEWfpE_F2QSaQHKUHeE2ecT7INeFIwH_gUmnxs4QYxldg2hMfZJzk5LkMHmi8K6HPMZSNZY2ZGOW69Rkr2PrwgnIpmYn8nN-Li6k0vPnbr8WPz5--3z9UT1-_PN5_fKqgUYqrfhqmBgaja3w2fVNbsLo15TRlUBswRg-2t13bKt2Vb99qgNE2dhr7qevN0FyL4ZQLKeaccHJA7Jli4ORpdlq5o2G3c0fD7mjYnQwXtP4PXRMtPh3ehj6cICxH7Ytrl4EwQHGYENiNkd7CfwO4hZn4
CitedBy_id crossref_primary_10_1016_j_enbuild_2023_113460
Cites_doi 10.1016/j.ijrefrig.2020.07.025
10.1016/j.ceramint.2016.04.078
10.1016/j.jobe.2022.104894
10.1016/B978-0-12-815732-9.00074-7
10.1016/j.solmat.2017.12.036
10.1115/1.3099022
10.1016/j.ijheatmasstransfer.2015.08.103
10.1063/1.346274
10.1016/0165-1633(89)90054-3
10.1063/1.1728579
10.2514/2.6669
10.1016/j.applthermaleng.2022.118623
10.1016/j.rser.2022.112283
10.1016/S0016-7061(98)00102-5
10.1016/j.molliq.2022.120168
10.1016/j.energy.2018.12.162
10.1016/j.ijheatmasstransfer.2004.12.032
10.1016/j.icheatmasstransfer.2021.105534
10.1016/S0022-1694(96)03096-X
10.1016/j.renene.2006.11.011
10.1016/j.enconman.2013.04.007
10.1016/j.enbuild.2021.111443
10.1016/j.chaos.2008.01.005
10.1016/j.est.2020.101911
10.1115/1.2822515
10.1016/j.ijheatmasstransfer.2021.121782
10.1016/j.icheatmasstransfer.2007.03.008
10.1016/j.applthermaleng.2020.115340
10.1016/B978-0-12-817797-6.00005-1
10.1016/j.micromeso.2022.111722
10.1088/0022-3727/36/17/321
10.1063/1.1702301
10.1016/j.ijheatmasstransfer.2018.05.155
10.1016/j.matpr.2020.07.048
10.1016/j.jclepro.2020.120906
10.1088/1742-6596/1599/1/012008
10.1016/j.pss.2003.08.009
10.1016/j.applthermaleng.2015.04.049
10.1016/j.applthermaleng.2015.07.071
10.1016/j.jcis.2021.10.060
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tsep.2023.101743
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2451-9049
ExternalDocumentID 10_1016_j_tsep_2023_101743
S2451904923000963
GroupedDBID --M
AACTN
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAOAW
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AFKWA
AFTJW
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
FDB
FIRID
FYGXN
KOM
OAUVE
ROL
SPC
SPCBC
SSR
SST
SSZ
T5K
~G-
0R~
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EJD
ID FETCH-LOGICAL-c300t-6f8f3c8712eb76329c914758407e17c7718969544015632a41ccd939fd6f56783
IEDL.DBID AIKHN
ISSN 2451-9049
IngestDate Thu Apr 24 22:54:00 EDT 2025
Wed Oct 01 04:20:36 EDT 2025
Fri Feb 23 02:35:30 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords Porous media
Thermal conductivity
Sierpinski carpet
Fatty acids
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-6f8f3c8712eb76329c914758407e17c7718969544015632a41ccd939fd6f56783
ParticipantIDs crossref_citationtrail_10_1016_j_tsep_2023_101743
crossref_primary_10_1016_j_tsep_2023_101743
elsevier_sciencedirect_doi_10_1016_j_tsep_2023_101743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Thermal science and engineering progress
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sarı, Bicer, Al-Ahmed, Al-Sulaiman, Zahir, Mohamed (b0110) 2018; 179
Karaipekli, Sarı, Kaygusuz (b0115) 2007; 32
Yin, Zhang, Yang, Qiu (b0250) 2008; 37
Hashin, Shtrikman (b0145) 1962; 33
Naveenkumar, Nandha Gopan, Karthikeyan, Santhosh Kumar, Ravichandran (b0040) 2020; 33
NematpourKeshteli, Iasiello, Langella, Bianco (b0120) 2022; 212
Qin, Cai, Xu (b0210) 2021
Song, Zhang, Yuan, Yang, Cao (b0245) 2019; 170
Rozanna, Chuah, Salmiah (b0080) 2005; 1(4):495–513
Jung, Subban, McTigue, Martinez, Copping, Osorio (b0050) 2022; 160
Mahmoud M, Ramadan M, Pullen K, Abdelkareem MA, Wilberforce T, Olabi A-G, et al. Waste Heat Recovery Applications Incorporating Phase Change Materials. In: Encyclopedia of Smart Materials. Olabi A-G (editor). Oxford: Elsevier 2022; pp. 513-521.
A A S, B K K (b0090) 2003; 28(6)
Carson, Lovatt, Tanner, Cleland (b0160) 2005; 48
Shi, Fan (b0205) 2002; 1(1):4
Sonnenrein, Baumhögger, Elsner, Morbach, Neukötter, Paul (b0065) 2020; 119
Maxwell (b0150) 2014; 7(182)
Dinesh, Bhattacharya (b0100) 2020; 28
Feng, Qin (b0105) 2022; 366
Senobar, Aramesh, Shabani (b0125) 2020; 32
Yao, X-L, Fan L-W, Xu X, Yu Z-T (b0170) 2016; 92
Su, Zhu, Tian, Wang, Zhang, Li (b0075) 2020; 174
Adler (b0180) 1996; 187
Chaichi, Bahramian (b0225) 2022; 333
Liu, Tian, Ouyang, Qian, Wang (b0035) 2022; 608
Wei G, Xing L, Du X, et al. Research status and selection of phase change thermal energy storage materials for CSP systems[J]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering 2014;34(3):325-335.
Xiao, Zhang, Li (b0260) 2013; 73
Yu, Cheng (b0200) 2012; 16
Mustafa, Alqaed, Sharifpur (b0060) 2022; 57
Thovert, Wary, Adler (b0175) 1990; 68
Poonia, Singh, Jain (b0045) 2022
Junaid, Rehman, Čekon, Čurpek, Farooq, Cui (b0010) 2021; 252
Tian, Huang, Fan, Weng, Ying, Yu (b0215) 2015; 90
Wang, Mujumdar, Yap (b0140) 2007; 34
Iasiello, Mameli, Filippeschi (b0095) 2020; 1599
Adler, Thovert (b0185) 1998; 51
Ghorbani, Mehrpooya, Ardehali (b0025) 2020; 259
Tian, Fang, Yu (b0255) 2016; 15
Kabir, Gemeda, Preller, Xu (b0055) 2021; 180
Pia (b0230) 2016; 42
Feldman, Shapiro, Banu (b0085) 1989; 18(3–4)
Perrier, Bird, Rieu (b0195) 1999; 88
Li, Duan, Simon (b0015) 2021; 298(12):117203
Huang, Zhai, Gao, Xu, Fang, Zhang (b0240) 2015; 86
Landauer (b0155) 1952; 23
Salvatore, Springer (b0165) 2002; 55(4):B62
Gori, Corasaniti (b0190) 2004; 52
Wan, Wang, Udayraj. (b0070) 2018; 126
Sadati, Rahbar, Kargarsharifabad, KhalesiDoost (b0220) 2021; 127
Hsu C T, Cheng P, Wong K W. A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media[J]. 1995.
Shouju LI, Liu Y, Sun W, Wang YJIJoMPC. ESTIMATION OF THERMAL CONDUCTIVITY OF POROUS MATERIAL WITH FEM AND FRACTAL GEOMETRY. 2009.
Ma, Yu, Zhang (b0235) 2003; 36
Li, Li, Lin, Xie, Zhang, Chen (b0005) 2021; 22
Adler (10.1016/j.tsep.2023.101743_b0185) 1998; 51
Qin (10.1016/j.tsep.2023.101743_b0210) 2021
Liu (10.1016/j.tsep.2023.101743_b0035) 2022; 608
Jung (10.1016/j.tsep.2023.101743_b0050) 2022; 160
Ma (10.1016/j.tsep.2023.101743_b0235) 2003; 36
Thovert (10.1016/j.tsep.2023.101743_b0175) 1990; 68
Su (10.1016/j.tsep.2023.101743_b0075) 2020; 174
Sarı (10.1016/j.tsep.2023.101743_b0110) 2018; 179
A A S, B K K (10.1016/j.tsep.2023.101743_b0090) 2003; 28(6)
10.1016/j.tsep.2023.101743_b0020
Ghorbani (10.1016/j.tsep.2023.101743_b0025) 2020; 259
Maxwell (10.1016/j.tsep.2023.101743_b0150) 2014; 7(182)
Gori (10.1016/j.tsep.2023.101743_b0190) 2004; 52
Xiao (10.1016/j.tsep.2023.101743_b0260) 2013; 73
Sonnenrein (10.1016/j.tsep.2023.101743_b0065) 2020; 119
Yin (10.1016/j.tsep.2023.101743_b0250) 2008; 37
Karaipekli (10.1016/j.tsep.2023.101743_b0115) 2007; 32
10.1016/j.tsep.2023.101743_b0030
NematpourKeshteli (10.1016/j.tsep.2023.101743_b0120) 2022; 212
Feng (10.1016/j.tsep.2023.101743_b0105) 2022; 366
Tian (10.1016/j.tsep.2023.101743_b0255) 2016; 15
Yu (10.1016/j.tsep.2023.101743_b0200) 2012; 16
Pia (10.1016/j.tsep.2023.101743_b0230) 2016; 42
Chaichi (10.1016/j.tsep.2023.101743_b0225) 2022; 333
Wang (10.1016/j.tsep.2023.101743_b0140) 2007; 34
Li (10.1016/j.tsep.2023.101743_b0015) 2021; 298(12):117203
Wan (10.1016/j.tsep.2023.101743_b0070) 2018; 126
Feldman (10.1016/j.tsep.2023.101743_b0085) 1989; 18(3–4)
Senobar (10.1016/j.tsep.2023.101743_b0125) 2020; 32
Adler (10.1016/j.tsep.2023.101743_b0180) 1996; 187
Naveenkumar (10.1016/j.tsep.2023.101743_b0040) 2020; 33
Mustafa (10.1016/j.tsep.2023.101743_b0060) 2022; 57
Perrier (10.1016/j.tsep.2023.101743_b0195) 1999; 88
Song (10.1016/j.tsep.2023.101743_b0245) 2019; 170
Yao (10.1016/j.tsep.2023.101743_b0170) 2016; 92
Tian (10.1016/j.tsep.2023.101743_b0215) 2015; 90
Shi (10.1016/j.tsep.2023.101743_b0205) 2002; 1(1):4
Kabir (10.1016/j.tsep.2023.101743_b0055) 2021; 180
Hashin (10.1016/j.tsep.2023.101743_b0145) 1962; 33
Sadati (10.1016/j.tsep.2023.101743_b0220) 2021; 127
Rozanna (10.1016/j.tsep.2023.101743_b0080) 2005; 1(4):495–513
Junaid (10.1016/j.tsep.2023.101743_b0010) 2021; 252
Li (10.1016/j.tsep.2023.101743_b0005) 2021; 22
Huang (10.1016/j.tsep.2023.101743_b0240) 2015; 86
Carson (10.1016/j.tsep.2023.101743_b0160) 2005; 48
Iasiello (10.1016/j.tsep.2023.101743_b0095) 2020; 1599
10.1016/j.tsep.2023.101743_b0130
Landauer (10.1016/j.tsep.2023.101743_b0155) 1952; 23
Poonia (10.1016/j.tsep.2023.101743_b0045) 2022
Salvatore (10.1016/j.tsep.2023.101743_b0165) 2002; 55(4):B62
Dinesh (10.1016/j.tsep.2023.101743_b0100) 2020; 28
10.1016/j.tsep.2023.101743_b0135
References_xml – volume: 174
  year: 2020
  ident: b0075
  article-title: Intelligent bidirectional thermal regulation of phase change material incorporated in thermal protective clothing
  publication-title: Appl. Therm. Eng.
– volume: 160
  year: 2022
  ident: b0050
  article-title: Extracting energy from ocean thermal and salinity gradients to power unmanned underwater vehicles: State of the art, current limitations, and future outlook
  publication-title: Renew. Sustain. Energy Rev.
– volume: 212
  year: 2022
  ident: b0120
  article-title: Enhancing PCMs thermal conductivity: A comparison among porous metal foams, nanoparticles and finned surfaces in triplex tube heat exchangers
  publication-title: Appl. Therm. Eng.
– volume: 57
  year: 2022
  ident: b0060
  article-title: PCM embedded radiant chilled ceiling as a solution to shift the cooling peak load-focusing on solidification process acceleration
  publication-title: Journal of Building Engineering
– volume: 37
  start-page: 1257
  year: 2008
  end-page: 1266
  ident: b0250
  article-title: Geometric conditions for fractal super carbon nanotubes with strict self-similarities
  publication-title: Chaos Solitons Fractals
– volume: 86
  start-page: 309
  year: 2015
  end-page: 317
  ident: b0240
  article-title: Theoretical study on effective thermal conductivity of salt/expanded graphite composite material by using fractal method
  publication-title: Appl. Therm. Eng.
– volume: 170
  start-page: 752
  year: 2019
  end-page: 762
  ident: b0245
  article-title: Prediction of the solid effective thermal conductivity of fatty acid/carbon material composite phase change materials based on fractal theory
  publication-title: Energy
– volume: 88
  start-page: 137
  year: 1999
  end-page: 164
  ident: b0195
  article-title: Generalizing the fractal model of soil structure: the pore–solid fractal approach
  publication-title: Geoderma
– volume: 42
  start-page: 11674
  year: 2016
  end-page: 11681
  ident: b0230
  article-title: High porous yttria-stabilized zirconia with aligned pore channels: Morphology directionality influence on heat transfer
  publication-title: Ceram. Int.
– volume: 18(3–4)
  start-page: 201
  year: 1989
  end-page: 216
  ident: b0085
  article-title: Fatty acids and their mixtures as phase-change materials for thermal energy storage[J]
  publication-title: Solar Energy Materials
– volume: 15
  start-page: 438
  year: 2016
  end-page: 443
  ident: b0255
  article-title: Fractal model of thermal conductivity of GA-based composite phase change material with hole sub-model
  publication-title: J. Therm. Sci. Technol.
– volume: 32
  year: 2020
  ident: b0125
  article-title: Nanoparticles and metal foams for heat transfer enhancement of phase change materials: A comparative experimental study[J]
  publication-title: The Journal of Energy Storage
– volume: 16
  start-page: 22
  year: 2012
  end-page: 29
  ident: b0200
  article-title: Fractal Models for the Effective Thermal Conductivity of Bidispersed Porous Media[J]
  publication-title: J. Thermophys Heat Transfer
– volume: 28(6)
  start-page: 939
  year: 2003
  end-page: 948
  ident: b0090
  article-title: Some fatty acids used for latent heat storage: thermal stability and corrosion of metals with respect to thermal cycling[J]
  publication-title: Renew. Energy
– volume: 73
  start-page: 86
  year: 2013
  end-page: 94
  ident: b0260
  article-title: Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage
  publication-title: Energ. Conver. Manage.
– volume: 180
  year: 2021
  ident: b0055
  article-title: Design and Development of a PCM-Based Two-Phase Heat Exchanger Manufactured Additively for Spacecraft Thermal Management Systems
  publication-title: Int. J. Heat Mass Transf.
– reference: Shouju LI, Liu Y, Sun W, Wang YJIJoMPC. ESTIMATION OF THERMAL CONDUCTIVITY OF POROUS MATERIAL WITH FEM AND FRACTAL GEOMETRY. 2009.
– volume: 259
  year: 2020
  ident: b0025
  article-title: Energy and exergy analysis of wind farm integrated with compressed air energy storage using multi-stage phase change material[J]
  publication-title: J. Clean. Prod.
– volume: 33
  start-page: 4159
  year: 2020
  end-page: 4162
  ident: b0040
  article-title: A comparative study on role of phase change materials in thermal efficiency enhancement of passive solar still
  publication-title: Mater. Today:. Proc.
– volume: 366
  year: 2022
  ident: b0105
  article-title: Nanoparticles effect on freezing of PCM utilizing finite element approach
  publication-title: J. Mol. Liq.
– volume: 1(4):495–513
  year: 2005
  ident: b0080
  article-title: Fatty Acids as Phase Change Materials (PCMs) for Thermal Energy Storage: A Review[J]
  publication-title: Int. J. Green Energy
– volume: 252
  year: 2021
  ident: b0010
  article-title: Inorganic phase change materials in thermal energy storage: A review on perspectives and technological advances in building applications
  publication-title: Energ. Buildings
– volume: 92
  start-page: 589
  year: 2016
  end-page: 602
  ident: b0170
  article-title: Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: Effects of moisture content
  publication-title: Int. J. Heat Mass Transf.
– volume: 7(182)
  start-page: 478
  year: 2014
  end-page: 480
  ident: b0150
  article-title: A Treatise On Electricity and Magnetism[J]
  publication-title: Nature
– volume: 126
  start-page: 636
  year: 2018
  end-page: 648
  ident: b0070
  article-title: Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans
  publication-title: Int. J. Heat Mass Transf.
– volume: 48
  start-page: 2150
  year: 2005
  end-page: 2158
  ident: b0160
  article-title: Thermal conductivity bounds for isotropic, porous materials
  publication-title: Int. J. Heat Mass Transf.
– reference: Hsu C T, Cheng P, Wong K W. A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media[J]. 1995.
– volume: 52
  start-page: 91
  year: 2004
  end-page: 99
  ident: b0190
  article-title: Theoretical prediction of the thermal conductivity and temperature variation inside mars soil analogues[J]
  publication-title: Planet. Space Sci.
– volume: 179
  start-page: 353
  year: 2018
  end-page: 361
  ident: b0110
  article-title: Silica fume/capric acid-palmitic acid composite phase change material doped with CNTs for thermal energy storage
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 68
  start-page: 3872
  year: 1990
  end-page: 3883
  ident: b0175
  article-title: Thermal conductivity of random media and regular fractals[J]
  publication-title: J. Appl. Phys.
– volume: 298(12):117203
  year: 2021
  ident: b0015
  article-title: Nonuniform metal foam design and pore-scale analysis of a tilted composite phase change material system for photovoltaics thermal management[J]
  publication-title: Appl. Energy
– reference: Wei G, Xing L, Du X, et al. Research status and selection of phase change thermal energy storage materials for CSP systems[J]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering 2014;34(3):325-335.
– volume: 187
  start-page: 195
  year: 1996
  end-page: 213
  ident: b0180
  article-title: Transports in fractal porous media
  publication-title: J. Hydrol.
– volume: 23
  start-page: 779
  year: 1952
  end-page: 784
  ident: b0155
  article-title: The Electrical Resistance of Binary Metallic Mixtures[J]
  publication-title: J.appl.phys
– volume: 55(4):B62
  year: 2002
  ident: b0165
  article-title: Random heterogeneous materials[J]
  publication-title: Interdiscip. Appl. Math.
– volume: 608
  start-page: 1497
  year: 2022
  end-page: 1513
  ident: b0035
  article-title: Morphology-controlled fabrication of magnetic phase-change microcapsules for synchronous efficient recovery of wastewater and waste heat
  publication-title: J. Colloid Interface Sci.
– volume: 90
  start-page: 1007
  year: 2015
  end-page: 1014
  ident: b0215
  article-title: A comprehensive characterization on the structural and thermophysical properties of sintered ore particles toward waste heat recovery applications
  publication-title: Appl. Therm. Eng.
– volume: 51
  start-page: 537
  year: 1998
  end-page: 585
  ident: b0185
  article-title: Real Porous Media: Local Geometry andMacroscopic Properties[J]
  publication-title: Appl. Mech. Rev.
– volume: 34
  start-page: 801
  year: 2007
  end-page: 808
  ident: b0140
  article-title: Effect of orientation for phase change material (PCM)-based heat sinks for transient thermal management of electric components
  publication-title: Int. Commun. Heat Mass Transfer
– start-page: 119
  year: 2021
  end-page: 139
  ident: b0210
  article-title: Fractal analysis on conductive heat transfer in porous media[J]
  publication-title: Modelling of Flow and Transport in Fractal Porous Media
– volume: 127
  year: 2021
  ident: b0220
  article-title: Low thermal conductivity measurement using thermoelectric technology - Mathematical modeling and experimental analysis
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 32
  start-page: 2201
  year: 2007
  end-page: 2210
  ident: b0115
  article-title: Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications
  publication-title: Renew. Energy
– volume: 1599
  year: 2020
  ident: b0095
  article-title: Simulations of paraffine melting inside metal foams at different gravity levels with preliminary experimental validation[J]
  publication-title: J. Phys. Conf. Ser.
– reference: Mahmoud M, Ramadan M, Pullen K, Abdelkareem MA, Wilberforce T, Olabi A-G, et al. Waste Heat Recovery Applications Incorporating Phase Change Materials. In: Encyclopedia of Smart Materials. Olabi A-G (editor). Oxford: Elsevier 2022; pp. 513-521.
– year: 2022
  ident: b0045
  article-title: Performance evaluation of PCM based solar concentrator type desalination device
– volume: 119
  start-page: 448
  year: 2020
  end-page: 456
  ident: b0065
  article-title: Improving the performance of household refrigerating appliances through the integration of phase change materials in the context of the new global refrigerator standard IEC 62552:2015
  publication-title: Int. J. Refrig
– volume: 28
  year: 2020
  ident: b0100
  article-title: Comparison of energy absorption characteristics of PCM-metal foam systems with different pore size distributions
  publication-title: J. Storage Mater.
– volume: 1(1):4
  year: 2002
  ident: b0205
  article-title: A Fractal Model for Evaluating Heat Conduction in Porous Media[J]
  publication-title: Journal of Thermal Science and Technology
– volume: 22
  year: 2021
  ident: b0005
  article-title: Review on tailored phase change behavior of hydrated salt as phase change materials for energy storage
  publication-title: Mater. Today Energy
– volume: 333
  year: 2022
  ident: b0225
  article-title: Theoretical relation of the structure and thermal properties of gradient thermal insulator aerogels using fractal geometry
  publication-title: Microporous Mesoporous Mater.
– volume: 36
  start-page: 2157
  year: 2003
  ident: b0235
  article-title: A self-similarity model for effective thermal conductivity of porous media[J]
  publication-title: J. Phys. D Appl. Phys.
– volume: 33
  start-page: 3125
  year: 1962
  end-page: 3131
  ident: b0145
  article-title: A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials[J]
  publication-title: J. Appl. Phys.
– volume: 119
  start-page: 448
  year: 2020
  ident: 10.1016/j.tsep.2023.101743_b0065
  article-title: Improving the performance of household refrigerating appliances through the integration of phase change materials in the context of the new global refrigerator standard IEC 62552:2015
  publication-title: Int. J. Refrig
  doi: 10.1016/j.ijrefrig.2020.07.025
– volume: 42
  start-page: 11674
  issue: 10
  year: 2016
  ident: 10.1016/j.tsep.2023.101743_b0230
  article-title: High porous yttria-stabilized zirconia with aligned pore channels: Morphology directionality influence on heat transfer
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.04.078
– volume: 57
  year: 2022
  ident: 10.1016/j.tsep.2023.101743_b0060
  article-title: PCM embedded radiant chilled ceiling as a solution to shift the cooling peak load-focusing on solidification process acceleration
  publication-title: Journal of Building Engineering
  doi: 10.1016/j.jobe.2022.104894
– ident: 10.1016/j.tsep.2023.101743_b0030
  doi: 10.1016/B978-0-12-815732-9.00074-7
– volume: 28(6)
  start-page: 939
  year: 2003
  ident: 10.1016/j.tsep.2023.101743_b0090
  article-title: Some fatty acids used for latent heat storage: thermal stability and corrosion of metals with respect to thermal cycling[J]
  publication-title: Renew. Energy
– volume: 179
  start-page: 353
  year: 2018
  ident: 10.1016/j.tsep.2023.101743_b0110
  article-title: Silica fume/capric acid-palmitic acid composite phase change material doped with CNTs for thermal energy storage
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.12.036
– volume: 51
  start-page: 537
  issue: 9
  year: 1998
  ident: 10.1016/j.tsep.2023.101743_b0185
  article-title: Real Porous Media: Local Geometry andMacroscopic Properties[J]
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.3099022
– volume: 92
  start-page: 589
  year: 2016
  ident: 10.1016/j.tsep.2023.101743_b0170
  article-title: Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: Effects of moisture content
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.08.103
– volume: 68
  start-page: 3872
  issue: 8
  year: 1990
  ident: 10.1016/j.tsep.2023.101743_b0175
  article-title: Thermal conductivity of random media and regular fractals[J]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.346274
– volume: 18(3–4)
  start-page: 201
  year: 1989
  ident: 10.1016/j.tsep.2023.101743_b0085
  article-title: Fatty acids and their mixtures as phase-change materials for thermal energy storage[J]
  publication-title: Solar Energy Materials
  doi: 10.1016/0165-1633(89)90054-3
– volume: 33
  start-page: 3125
  issue: 10
  year: 1962
  ident: 10.1016/j.tsep.2023.101743_b0145
  article-title: A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials[J]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1728579
– volume: 298(12):117203
  year: 2021
  ident: 10.1016/j.tsep.2023.101743_b0015
  article-title: Nonuniform metal foam design and pore-scale analysis of a tilted composite phase change material system for photovoltaics thermal management[J]
  publication-title: Appl. Energy
– volume: 22
  year: 2021
  ident: 10.1016/j.tsep.2023.101743_b0005
  article-title: Review on tailored phase change behavior of hydrated salt as phase change materials for energy storage
  publication-title: Mater. Today Energy
– volume: 16
  start-page: 22
  issue: 1
  year: 2012
  ident: 10.1016/j.tsep.2023.101743_b0200
  article-title: Fractal Models for the Effective Thermal Conductivity of Bidispersed Porous Media[J]
  publication-title: J. Thermophys Heat Transfer
  doi: 10.2514/2.6669
– volume: 212
  year: 2022
  ident: 10.1016/j.tsep.2023.101743_b0120
  article-title: Enhancing PCMs thermal conductivity: A comparison among porous metal foams, nanoparticles and finned surfaces in triplex tube heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118623
– volume: 160
  year: 2022
  ident: 10.1016/j.tsep.2023.101743_b0050
  article-title: Extracting energy from ocean thermal and salinity gradients to power unmanned underwater vehicles: State of the art, current limitations, and future outlook
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112283
– volume: 88
  start-page: 137
  issue: 3
  year: 1999
  ident: 10.1016/j.tsep.2023.101743_b0195
  article-title: Generalizing the fractal model of soil structure: the pore–solid fractal approach
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(98)00102-5
– volume: 366
  year: 2022
  ident: 10.1016/j.tsep.2023.101743_b0105
  article-title: Nanoparticles effect on freezing of PCM utilizing finite element approach
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2022.120168
– ident: 10.1016/j.tsep.2023.101743_b0020
– volume: 170
  start-page: 752
  year: 2019
  ident: 10.1016/j.tsep.2023.101743_b0245
  article-title: Prediction of the solid effective thermal conductivity of fatty acid/carbon material composite phase change materials based on fractal theory
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.162
– volume: 48
  start-page: 2150
  issue: 11
  year: 2005
  ident: 10.1016/j.tsep.2023.101743_b0160
  article-title: Thermal conductivity bounds for isotropic, porous materials
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2004.12.032
– volume: 127
  year: 2021
  ident: 10.1016/j.tsep.2023.101743_b0220
  article-title: Low thermal conductivity measurement using thermoelectric technology - Mathematical modeling and experimental analysis
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2021.105534
– volume: 187
  start-page: 195
  issue: 1
  year: 1996
  ident: 10.1016/j.tsep.2023.101743_b0180
  article-title: Transports in fractal porous media
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(96)03096-X
– volume: 32
  start-page: 2201
  issue: 13
  year: 2007
  ident: 10.1016/j.tsep.2023.101743_b0115
  article-title: Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2006.11.011
– volume: 73
  start-page: 86
  year: 2013
  ident: 10.1016/j.tsep.2023.101743_b0260
  article-title: Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2013.04.007
– volume: 252
  year: 2021
  ident: 10.1016/j.tsep.2023.101743_b0010
  article-title: Inorganic phase change materials in thermal energy storage: A review on perspectives and technological advances in building applications
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2021.111443
– volume: 37
  start-page: 1257
  issue: 5
  year: 2008
  ident: 10.1016/j.tsep.2023.101743_b0250
  article-title: Geometric conditions for fractal super carbon nanotubes with strict self-similarities
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2008.01.005
– volume: 32
  year: 2020
  ident: 10.1016/j.tsep.2023.101743_b0125
  article-title: Nanoparticles and metal foams for heat transfer enhancement of phase change materials: A comparative experimental study[J]
  publication-title: The Journal of Energy Storage
  doi: 10.1016/j.est.2020.101911
– ident: 10.1016/j.tsep.2023.101743_b0130
  doi: 10.1115/1.2822515
– volume: 180
  year: 2021
  ident: 10.1016/j.tsep.2023.101743_b0055
  article-title: Design and Development of a PCM-Based Two-Phase Heat Exchanger Manufactured Additively for Spacecraft Thermal Management Systems
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.121782
– volume: 34
  start-page: 801
  issue: 7
  year: 2007
  ident: 10.1016/j.tsep.2023.101743_b0140
  article-title: Effect of orientation for phase change material (PCM)-based heat sinks for transient thermal management of electric components
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2007.03.008
– volume: 174
  year: 2020
  ident: 10.1016/j.tsep.2023.101743_b0075
  article-title: Intelligent bidirectional thermal regulation of phase change material incorporated in thermal protective clothing
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115340
– start-page: 119
  year: 2021
  ident: 10.1016/j.tsep.2023.101743_b0210
  article-title: Fractal analysis on conductive heat transfer in porous media[J]
  publication-title: Modelling of Flow and Transport in Fractal Porous Media
  doi: 10.1016/B978-0-12-817797-6.00005-1
– volume: 333
  year: 2022
  ident: 10.1016/j.tsep.2023.101743_b0225
  article-title: Theoretical relation of the structure and thermal properties of gradient thermal insulator aerogels using fractal geometry
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2022.111722
– volume: 36
  start-page: 2157
  issue: 17
  year: 2003
  ident: 10.1016/j.tsep.2023.101743_b0235
  article-title: A self-similarity model for effective thermal conductivity of porous media[J]
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/36/17/321
– volume: 55(4):B62
  year: 2002
  ident: 10.1016/j.tsep.2023.101743_b0165
  article-title: Random heterogeneous materials[J]
  publication-title: Interdiscip. Appl. Math.
– year: 2022
  ident: 10.1016/j.tsep.2023.101743_b0045
– volume: 23
  start-page: 779
  issue: 7
  year: 1952
  ident: 10.1016/j.tsep.2023.101743_b0155
  article-title: The Electrical Resistance of Binary Metallic Mixtures[J]
  publication-title: J.appl.phys
  doi: 10.1063/1.1702301
– volume: 126
  start-page: 636
  year: 2018
  ident: 10.1016/j.tsep.2023.101743_b0070
  article-title: Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.05.155
– volume: 7(182)
  start-page: 478
  year: 2014
  ident: 10.1016/j.tsep.2023.101743_b0150
  article-title: A Treatise On Electricity and Magnetism[J]
  publication-title: Nature
– volume: 15
  start-page: 438
  year: 2016
  ident: 10.1016/j.tsep.2023.101743_b0255
  article-title: Fractal model of thermal conductivity of GA-based composite phase change material with hole sub-model
  publication-title: J. Therm. Sci. Technol.
– volume: 33
  start-page: 4159
  year: 2020
  ident: 10.1016/j.tsep.2023.101743_b0040
  article-title: A comparative study on role of phase change materials in thermal efficiency enhancement of passive solar still
  publication-title: Mater. Today:. Proc.
  doi: 10.1016/j.matpr.2020.07.048
– volume: 259
  year: 2020
  ident: 10.1016/j.tsep.2023.101743_b0025
  article-title: Energy and exergy analysis of wind farm integrated with compressed air energy storage using multi-stage phase change material[J]
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120906
– volume: 1(4):495–513
  year: 2005
  ident: 10.1016/j.tsep.2023.101743_b0080
  article-title: Fatty Acids as Phase Change Materials (PCMs) for Thermal Energy Storage: A Review[J]
  publication-title: Int. J. Green Energy
– ident: 10.1016/j.tsep.2023.101743_b0135
– volume: 1599
  year: 2020
  ident: 10.1016/j.tsep.2023.101743_b0095
  article-title: Simulations of paraffine melting inside metal foams at different gravity levels with preliminary experimental validation[J]
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1599/1/012008
– volume: 28
  year: 2020
  ident: 10.1016/j.tsep.2023.101743_b0100
  article-title: Comparison of energy absorption characteristics of PCM-metal foam systems with different pore size distributions
  publication-title: J. Storage Mater.
– volume: 52
  start-page: 91
  issue: 1/3
  year: 2004
  ident: 10.1016/j.tsep.2023.101743_b0190
  article-title: Theoretical prediction of the thermal conductivity and temperature variation inside mars soil analogues[J]
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2003.08.009
– volume: 86
  start-page: 309
  year: 2015
  ident: 10.1016/j.tsep.2023.101743_b0240
  article-title: Theoretical study on effective thermal conductivity of salt/expanded graphite composite material by using fractal method
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.04.049
– volume: 90
  start-page: 1007
  year: 2015
  ident: 10.1016/j.tsep.2023.101743_b0215
  article-title: A comprehensive characterization on the structural and thermophysical properties of sintered ore particles toward waste heat recovery applications
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.07.071
– volume: 608
  start-page: 1497
  year: 2022
  ident: 10.1016/j.tsep.2023.101743_b0035
  article-title: Morphology-controlled fabrication of magnetic phase-change microcapsules for synchronous efficient recovery of wastewater and waste heat
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.10.060
– volume: 1(1):4
  year: 2002
  ident: 10.1016/j.tsep.2023.101743_b0205
  article-title: A Fractal Model for Evaluating Heat Conduction in Porous Media[J]
  publication-title: Journal of Thermal Science and Technology
SSID ssj0002584398
Score 2.2487206
Snippet •The GTC solution modifies the expression of the general solution of the dimensionless thermal conductivity.•The new formula called the FSC solution can narrow...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101743
SubjectTerms Fatty acids
Porous media
Sierpinski carpet
Thermal conductivity
Title Improving the Sierpinski carpet model arithmetic to accurately predict the thermal conductivity of fatty acid/carbon composite phase-change materials
URI https://dx.doi.org/10.1016/j.tsep.2023.101743
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2451-9049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002584398
  issn: 2451-9049
  databaseCode: ACRLP
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 2451-9049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002584398
  issn: 2451-9049
  databaseCode: AIKHN
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2451-9049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002584398
  issn: 2451-9049
  databaseCode: AKRWK
  dateStart: 20170301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYoLO1Q9anSlzx0qyKI7RBnRKiItioLRWKLEscWVJAgaob-kP7f3sUBUali6JZEOSfynXzf2XffEfIgExW2w5R5SoYCApQg9SJjhAfQnplMpW0lsVD4bdgZjMXLJJjUSG9TC4NpldXa79b0crWunrSq2WwtZ7PWiCEzShsJxkogzg9IA_yPlHXS6D6_DobbrRYGTpaXXXFRxEOZqnzGZXrZT43MlYyXpEOC_-2idtxO_4QcV3iRdt0vnZKazs_I0Q6L4Dn53m4MUEBzdASjuH7UtDxcsbTsdkMhKLbTBdYsUlvQRKk1skTMv-hyhYc1thRGOLiA70GUjESwZWcJWhhqEgsXiQLThUHTIqeYi44JX5oup-AJPVdBTAEAO5u-IOP-03tv4FXdFjwFE2i9jpGGg8Z8plNYdFikIl9ANAERn_ZDFYITizpRIAQWX3OWCF-pLOKRyTomAJfHL0k9L3J9RWjIsrY2qQx5aESSCckB9zBltOaAH2TUJP5mgmNVUZFjR4x5vMk5-4hRKTEqJXZKaZLHrczSEXHsfTvY6C3-ZU4xeIo9ctf_lLshh3jnMiFvSd2u1voO0IpN7ytr_AGEp-n6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKOwAD4ineeGBDURvbiZOxQqBCH0tBYosSxxagtomKGfgh_F_u4qQCCTGwRUkuiXwX33f23XeEXEapkj2ZMU9FUkCAEmRebIzwANozk6uspyIsFB5PwsGjuH8KnlrkuqmFwbTKeu53c3o1W9dnuvVodsuXl-6UITNKDwnGKiDO10hHBFzC39np3w0Hk9VSCwMny6uuuCjioUxdPuMyveybRuZKxivSIcF_d1Hf3M7tNtmq8SLtu0_aIS292CWb31gE98jnamGAApqjU3iK60dNq80VS6tuNxSCYvs8x5pFaguaKvWOLBGzD1oucbPGVsIIB-fwPoiSkQi26ixBC0NNauEgVWC68NCsWFDMRceEL03LZ_CEnqsgpgCAnU3vk8fbm4frgVd3W_AUDKD1QhMZDhrzmc5g0mGxin0B0QREfNqXSoITi8M4EAKLrzlLha9UHvPY5KEJwOXxA9JeFAt9SKhkeU-bLJJcGpHmIuKAe5gyWnPAD1F8RPxmgBNVU5FjR4xZ0uScvSaolASVkjilHJGrlUzpiDj-vDto9Jb8MKcEPMUfcsf_lLsg64OH8SgZ3U2GJ2QDr7isyFPStst3fQbIxWbntWV-AYVK7Ns
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+Sierpinski+carpet+model+arithmetic+to+accurately+predict+the+thermal+conductivity+of+fatty+acid%2Fcarbon+composite+phase-change+materials&rft.jtitle=Thermal+science+and+engineering+progress&rft.au=Xu%2C+Xianghe&rft.au=Niu%2C+Baolian&rft.au=Hao%2C+Xubo&rft.au=Guo%2C+Haotian&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=2451-9049&rft.eissn=2451-9049&rft.volume=40&rft_id=info:doi/10.1016%2Fj.tsep.2023.101743&rft.externalDocID=S2451904923000963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9049&client=summon