A tree–seed algorithm based on intelligent search mechanisms for continuous optimization
One of the recently proposed metaheuristic algorithms is tree–seed algorithm, TSA for short. TSA is developed by inspiring the relation between trees and their seeds in order to solve continuous optimization problems, and it has a simple but effective algorithmic structure. The algorithm uses two di...
        Saved in:
      
    
          | Published in | Applied soft computing Vol. 98; p. 106938 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.01.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1568-4946 1872-9681  | 
| DOI | 10.1016/j.asoc.2020.106938 | 
Cover
| Abstract | One of the recently proposed metaheuristic algorithms is tree–seed algorithm, TSA for short. TSA is developed by inspiring the relation between trees and their seeds in order to solve continuous optimization problems, and it has a simple but effective algorithmic structure. The algorithm uses two different solution generating mechanisms in order to improve balance local and global search abilities. However, when the algorithm is analyzed in detail, it is seen that there are some issues in the basic algorithm. These are (i) when trees in the stand approaches to each other, the diversification in the stand is lost, (ii) there is no mechanism to get rid of local minima for a tree, (iii) some of the fitness calculation goes to waste due to seed generation mechanism of basic TSA. In order to address these issues, four different approaches (withering process, sequential seed generation, best-based solution update rule and dimensional selection for the solution update rule) have been proposed for the basic TSA, and all these approaches have been also integrated within algorithmic framework of TSA, named new tree–seed algorithm briefly NTSA, and each of them has been used to solve 28 CEC2013 benchmark functions. In the experimental comparisons, the variants of TSA have been compared with each other, and the better algorithm, NTSA, has been compared with 17 state-of-art algorithms such as artificial bee colony, particle swarm optimization, differential evolution, genetic algorithm, covariance matrix adaptation evolutionary strategy etc. The experimental analysis and comparisons show that the NTSA shows better or similar performance than/with the compared algorithms in terms of solution quality and robustness.
•This study proposes a novel version tree–seed algorithm, called NTSA.•The novel algorithm is based on four different algorithmic approaches.•The NTSA is applied to solve CEC2013 benchmark problems.•The results of TSA are compared with the results of state-of-art algorithms. | 
    
|---|---|
| AbstractList | One of the recently proposed metaheuristic algorithms is tree–seed algorithm, TSA for short. TSA is developed by inspiring the relation between trees and their seeds in order to solve continuous optimization problems, and it has a simple but effective algorithmic structure. The algorithm uses two different solution generating mechanisms in order to improve balance local and global search abilities. However, when the algorithm is analyzed in detail, it is seen that there are some issues in the basic algorithm. These are (i) when trees in the stand approaches to each other, the diversification in the stand is lost, (ii) there is no mechanism to get rid of local minima for a tree, (iii) some of the fitness calculation goes to waste due to seed generation mechanism of basic TSA. In order to address these issues, four different approaches (withering process, sequential seed generation, best-based solution update rule and dimensional selection for the solution update rule) have been proposed for the basic TSA, and all these approaches have been also integrated within algorithmic framework of TSA, named new tree–seed algorithm briefly NTSA, and each of them has been used to solve 28 CEC2013 benchmark functions. In the experimental comparisons, the variants of TSA have been compared with each other, and the better algorithm, NTSA, has been compared with 17 state-of-art algorithms such as artificial bee colony, particle swarm optimization, differential evolution, genetic algorithm, covariance matrix adaptation evolutionary strategy etc. The experimental analysis and comparisons show that the NTSA shows better or similar performance than/with the compared algorithms in terms of solution quality and robustness.
•This study proposes a novel version tree–seed algorithm, called NTSA.•The novel algorithm is based on four different algorithmic approaches.•The NTSA is applied to solve CEC2013 benchmark problems.•The results of TSA are compared with the results of state-of-art algorithms. | 
    
| ArticleNumber | 106938 | 
    
| Author | Kiran, Mustafa Servet Hakli, Huseyin  | 
    
| Author_xml | – sequence: 1 givenname: Mustafa Servet surname: Kiran fullname: Kiran, Mustafa Servet email: mskiran@ktun.edu.tr organization: Department of Computer Engineering, Konya Technical University, Konya, Turkey – sequence: 2 givenname: Huseyin surname: Hakli fullname: Hakli, Huseyin organization: Department of Computer Engineering, Necmettin Erbakan University, Konya, Turkey  | 
    
| BookMark | eNp9kMtKAzEUhoNUsK2-gKu8wNRcZtIMuCnFGwhudOMmpJkzbcpMUpJU0JXv4Bv6JGasKxeFH84FvsN__gkaOe8AoUtKZpRQcbWd6ejNjBE2LETN5QkaUzlnRS0kHeW-ErIo61KcoUmMW5Khmskxel3gFAC-P78iQIN1t_bBpk2PVzrm2TtsXYKus2twCUfQwWxwD2ajnY19xK0P2HiXrNv7fcR-l2xvP3Sy3p2j01Z3ES7-6hS93N48L--Lx6e7h-XisTCckFQInk3ztqpKKbSuGKyoYVmk5ZVo5mVpNK3mjJel4FlUct7OOW2F4SD4quZTJA93TfAxBmiVsenXQQradooSNWSktmrISA0ZqUNGGWX_0F2wvQ7vx6HrAwT5qTcLQUVjwRlobACTVOPtMfwHCeyDng | 
    
| CitedBy_id | crossref_primary_10_1016_j_rico_2024_100410 crossref_primary_10_1177_21582440221094586 crossref_primary_10_1016_j_knosys_2023_110940 crossref_primary_10_1007_s00521_024_10228_9 crossref_primary_10_1109_JSEN_2023_3275145 crossref_primary_10_1109_TIM_2024_3470957 crossref_primary_10_1007_s11831_021_09698_0 crossref_primary_10_3390_math10224383 crossref_primary_10_1016_j_egyr_2022_10_386 crossref_primary_10_1016_j_eswa_2022_118311 crossref_primary_10_1016_j_asoc_2024_112285 crossref_primary_10_1016_j_asoc_2024_112220 crossref_primary_10_1007_s10586_022_03953_0 crossref_primary_10_3390_biomimetics8070540 crossref_primary_10_1007_s13042_024_02197_1 crossref_primary_10_1038_s41598_022_16498_4 crossref_primary_10_1016_j_eswa_2023_121312 crossref_primary_10_1049_cit2_12345 crossref_primary_10_1371_journal_pone_0269808 crossref_primary_10_1016_j_asoc_2022_108634 crossref_primary_10_1038_s41598_023_37958_5  | 
    
| Cites_doi | 10.1016/j.physa.2019.122323 10.1016/j.ins.2014.12.015 10.1016/j.asoc.2019.105602 10.1016/j.swevo.2019.02.005 10.1016/j.neucom.2016.05.007 10.1016/j.procs.2017.06.008 10.1016/j.asoc.2020.106705 10.1016/j.asoc.2015.03.003 10.1016/j.asoc.2017.10.013 10.1016/j.advengsoft.2016.01.008 10.18201/ijisae.2019253192 10.3390/app8112153 10.1080/17415977.2017.1310855 10.1016/j.advengsoft.2013.12.007 10.1016/j.cie.2017.12.009 10.1016/j.physa.2019.122802 10.1016/j.eswa.2015.04.055 10.1007/s13042-019-00970-1  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2020 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.asoc.2020.106938 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-9681 | 
    
| ExternalDocumentID | 10_1016_j_asoc_2020_106938 S1568494620308760  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD  | 
    
| ID | FETCH-LOGICAL-c300t-630203f55486aa52eb1c21c20f356d744ca1572344634631833f731f6c3e63b93 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1568-4946 | 
    
| IngestDate | Thu Apr 24 23:02:43 EDT 2025 Wed Oct 29 21:25:48 EDT 2025 Tue Jul 16 04:30:46 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Dimensional selection Sequential seed generation Tree–seed algorithm Best-based update rule Withering process  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c300t-630203f55486aa52eb1c21c20f356d744ca1572344634631833f731f6c3e63b93 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106938 crossref_primary_10_1016_j_asoc_2020_106938 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106938  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2021 2021-01-00  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Applied soft computing | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Gungor, Emiroglu, Cinar, Kiran (b24) 2020; 11 Holl (b3) 1975 Mirjalili, Mirjalili, Lewis (b10) 2014; 69 Zheng, Zhou, Zhu, Zhang, Li, Fu (b34) 2016; 207 Sahman, Cinar (b19) 2019; 7 Eberhart, Kennedy (b5) 1995 El-Fergany, Hasanien (b32) 2017 Muneeswaran, Rajasekaran (b33) 2017 Karaboga (b8) 2005 Price, Storn (b7) 1995 Cinar, Kiran (b18) 2018; 115 Uymaz, Tezel, Yel (b9) 2015; 31 Jiang, Meng, Chen, Qiu, Liu, Li (b25) 2020 Jiang, Han, Meng, Li (b41) 2020 Das, Suganthan (b2) 2018 Muneeswaran, Rajasekaran (b35) 2016 Chen, Tan, Cai (b30) 2017 Durmuş (b13) 2019; 23 Cinar, Iscan, Kiran (b17) 2018 Phung, Ha (b40) 2020 Barshandeh, Haghzadeh (b44) 2020 Babalik, Cinar, Kiran (b21) 2018; 63 Beşkirli, Özdemir, Temurtaş (b26) 2019 V. Karthik, K. Susmitha, S. Saha, R. Kar, Design of optimal IIR Band pass and Band stop filters using TSA technique and their FPGA implementation. Cinar, Kiran (b15) 2018; 33 Oliva, Abd Elaziz, Hinojosa (b37) 2019 Liang, Qu, Suganthan, Hernández-Díaz (b45) 2013 A. Cinar, M. Kiran, The performance of penalty methods on tree-seed algorithm for numerical constrained optimization problems. Kiran (b23) 2017; 111 Dorigo, Maniezzo, Colorni (b4) 1991 Jiang, Xu, Meng, Li (b29) 2020; 537 Ding, Yao, Li, Lu (b31) 2018; 26 Cinar, Korkmaz, Kiran (b20) 2020; 23 Ding, Zhao, Lu (b27) 2019; 83 Kiran (b1) 2015; 42 Sahman, Cinar, Saritas, Yasar (b38) 2019 Jiang, Jiang, Meng, Qiu (b28) 2019; 534 Mirjalili, Lewis (b11) 2016; 95 Çınar, Kıran (b16) 2017 Banitalebi, Aziz, Bahar, Aziz (b46) 2015; 298 Zhao, Wang, Liu (b42) 2019 Kennedy, Eberhart (b6) 1995 Ding, Li, Hao, Lu (b12) 2019; 46 Horng, Lin (b36) 2018; 8 Ding, Li, Hao (b14) 2019 E. Kaya, O. Uymaz, S. Korkmaz, E. Siramkaya, M. Kiran, Performance analysis of Galactic Swarm optimization with tree seed algorithm. Mirjalili (10.1016/j.asoc.2020.106938_b10) 2014; 69 Jiang (10.1016/j.asoc.2020.106938_b41) 2020 Muneeswaran (10.1016/j.asoc.2020.106938_b35) 2016 Das (10.1016/j.asoc.2020.106938_b2) 2018 Horng (10.1016/j.asoc.2020.106938_b36) 2018; 8 Gungor (10.1016/j.asoc.2020.106938_b24) 2020; 11 Babalik (10.1016/j.asoc.2020.106938_b21) 2018; 63 Sahman (10.1016/j.asoc.2020.106938_b19) 2019; 7 Chen (10.1016/j.asoc.2020.106938_b30) 2017 Sahman (10.1016/j.asoc.2020.106938_b38) 2019 Phung (10.1016/j.asoc.2020.106938_b40) 2020 Muneeswaran (10.1016/j.asoc.2020.106938_b33) 2017 Cinar (10.1016/j.asoc.2020.106938_b20) 2020; 23 Holl (10.1016/j.asoc.2020.106938_b3) 1975 Barshandeh (10.1016/j.asoc.2020.106938_b44) 2020 Eberhart (10.1016/j.asoc.2020.106938_b5) 1995 Price (10.1016/j.asoc.2020.106938_b7) 1995 Jiang (10.1016/j.asoc.2020.106938_b29) 2020; 537 Karaboga (10.1016/j.asoc.2020.106938_b8) 2005 10.1016/j.asoc.2020.106938_b22 Beşkirli (10.1016/j.asoc.2020.106938_b26) 2019 Liang (10.1016/j.asoc.2020.106938_b45) 2013 Jiang (10.1016/j.asoc.2020.106938_b25) 2020 10.1016/j.asoc.2020.106938_b43 Ding (10.1016/j.asoc.2020.106938_b14) 2019 Oliva (10.1016/j.asoc.2020.106938_b37) 2019 Ding (10.1016/j.asoc.2020.106938_b27) 2019; 83 Kennedy (10.1016/j.asoc.2020.106938_b6) 1995 Mirjalili (10.1016/j.asoc.2020.106938_b11) 2016; 95 Çınar (10.1016/j.asoc.2020.106938_b16) 2017 Jiang (10.1016/j.asoc.2020.106938_b28) 2019; 534 Ding (10.1016/j.asoc.2020.106938_b12) 2019; 46 Zhao (10.1016/j.asoc.2020.106938_b42) 2019 Durmuş (10.1016/j.asoc.2020.106938_b13) 2019; 23 Kiran (10.1016/j.asoc.2020.106938_b23) 2017; 111 Zheng (10.1016/j.asoc.2020.106938_b34) 2016; 207 Banitalebi (10.1016/j.asoc.2020.106938_b46) 2015; 298 Cinar (10.1016/j.asoc.2020.106938_b17) 2018 Cinar (10.1016/j.asoc.2020.106938_b15) 2018; 33 Dorigo (10.1016/j.asoc.2020.106938_b4) 1991 El-Fergany (10.1016/j.asoc.2020.106938_b32) 2017 Ding (10.1016/j.asoc.2020.106938_b31) 2018; 26 Uymaz (10.1016/j.asoc.2020.106938_b9) 2015; 31 10.1016/j.asoc.2020.106938_b39 Cinar (10.1016/j.asoc.2020.106938_b18) 2018; 115 Kiran (10.1016/j.asoc.2020.106938_b1) 2015; 42  | 
    
| References_xml | – volume: 42 start-page: 6686 year: 2015 end-page: 6698 ident: b1 article-title: TSA: Tree-seed algorithm for continuous optimization publication-title: Expert Syst. Appl. – year: 2017 ident: b30 article-title: Parameter identification of equivalent circuit models for Li-ion batteries based on tree seeds algorithm publication-title: IOP Conference Series: Earth and Environmental Science, Vol. 1 – year: 1995 ident: b7 article-title: Differential Evolution-A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Space – start-page: 48 year: 2018 end-page: 64 ident: b17 article-title: Tree-Seed algorithm for large-scale binary optimization publication-title: KnE Soc. Sci. – volume: 11 start-page: 249 year: 2020 end-page: 267 ident: b24 article-title: Integration search strategies in tree seed algorithm for high dimensional function optimization publication-title: Int. J. Mach. Learn. Cybern. – year: 2020 ident: b25 article-title: Enhancing tree-seed algorithm via feed-back mechanism for optimizing continuous problems publication-title: Appl. Soft Comput. – year: 2005 ident: b8 article-title: An Idea Based on Honey Bee Swarm for Numerical Optimization – start-page: 1942 year: 1995 end-page: 1948 ident: b6 article-title: Particle swarm optimization publication-title: 1995 IEEE International Conference on Neural Networks Proceedings, Vols. 1–6 – volume: 8 start-page: 2153 year: 2018 ident: b36 article-title: Embedding ordinal optimization into tree–seed algorithm for solving the probabilistic constrained simulation optimization problems publication-title: Appl. Sci. – start-page: 1 year: 2020 end-page: 20 ident: b41 article-title: TSASC: tree–seed algorithm with sine–cosine enhancement for continuous optimization problems publication-title: Soft Comput. – volume: 23 start-page: 879 year: 2020 end-page: 890 ident: b20 article-title: A discrete tree-seed algorithm for solving symmetric traveling salesman problem publication-title: Eng. Sci. Technol. Int. J. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b11 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 537 year: 2020 ident: b29 article-title: STSA: A sine Tree-Seed Algorithm for complex continuous optimization problems publication-title: Physica A – volume: 46 start-page: 69 year: 2019 end-page: 83 ident: b12 article-title: Nonlinear hysteretic parameter identification using an improved tree-seed algorithm publication-title: Swarm Evol. Comput. – start-page: 751 year: 2019 end-page: 760 ident: b14 article-title: Structural damage detection with uncertainties using a modified tree seeds algorithm publication-title: International Conference on Computational & Experimental Engineering and Sciences – volume: 207 start-page: 287 year: 2016 end-page: 299 ident: b34 article-title: Design of a multi-mode intelligent model predictive control strategy for hydroelectric generating unit publication-title: Neurocomputing – reference: E. Kaya, O. Uymaz, S. Korkmaz, E. Siramkaya, M. Kiran, Performance analysis of Galactic Swarm optimization with tree seed algorithm. – start-page: 1 year: 2020 end-page: 44 ident: b44 article-title: A new hybrid chaotic atom search optimization based on tree-seed algorithm and Levy flight for solving optimization problems publication-title: Eng. Comput. – volume: 31 start-page: 153 year: 2015 end-page: 171 ident: b9 article-title: Artificial algae algorithm (AAA) for nonlinear global optimization publication-title: Appl. Soft Comput. – reference: V. Karthik, K. Susmitha, S. Saha, R. Kar, Design of optimal IIR Band pass and Band stop filters using TSA technique and their FPGA implementation. – year: 2018 ident: b2 article-title: Journal’s introduction – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b10 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – start-page: 1 year: 2019 end-page: 35 ident: b26 article-title: A comparison of modified tree–seed algorithm for high-dimensional numerical functions publication-title: Neural Comput. Appl. – year: 2017 ident: b32 article-title: Tree-seed algorithm for solving optimal power flow problem in large-scale power systems incorporating validations and comparisons publication-title: Appl. Soft Comput. – start-page: 439 year: 1975 end-page: 444 ident: b3 article-title: Adaptation in natural and artificial systems publication-title: An Introductory Analysis with Application to Biology, Control, and Artificial Intelligence – start-page: 39 year: 1995 end-page: 43 ident: b5 article-title: A new optimizer using particle swarm theory publication-title: Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on – volume: 26 start-page: 422 year: 2018 end-page: 442 ident: b31 article-title: Structural damage identification based on modified Artificial Bee Colony algorithm using modal data publication-title: Inverse Probl. Sci. Eng. – start-page: 1 year: 2016 end-page: 4 ident: b35 article-title: Performance evaluation of radial basis function networks based on tree seed algorithm publication-title: Circuit, Power and Computing Technologies (ICCPCT), 2016 International Conference on – volume: 7 start-page: 111 year: 2019 end-page: 117 ident: b19 article-title: Binary tree-seed algorithms with S-shaped and V-shaped transfer functions publication-title: Int. J. Intell. Syst. Appl. Eng. – year: 2020 ident: b40 article-title: Motion-encoded particle swarm optimization for moving target search using UAVs publication-title: Appl. Soft Comput. – volume: 83 year: 2019 ident: b27 article-title: Simultaneous identification of structural stiffness and mass parameters based on Bare-bones Gaussian Tree Seeds Algorithm using time-domain data publication-title: Appl. Soft Comput. – volume: 23 year: 2019 ident: b13 article-title: Kaotik Harita Temelli Ağaç Tohum Algoritması publication-title: J. Nat. Appl. Sci. – volume: 63 start-page: 289 year: 2018 end-page: 305 ident: b21 article-title: A modification of tree-seed algorithm using Deb’s rules for constrained optimization publication-title: Appl. Soft Comput. – volume: 534 year: 2019 ident: b28 article-title: EST-TSA: An effective search tendency based to tree seed algorithm publication-title: Physica A – start-page: 571 year: 2017 end-page: 576 ident: b16 article-title: Boundary conditions in Tree-Seed Algorithm: Analysis of the success of search space limitation techniques in Tree-Seed Algorithm publication-title: Computer Science and Engineering (UBMK), 2017 International Conference on – volume: 115 start-page: 631 year: 2018 end-page: 646 ident: b18 article-title: Similarity and logic gate-based tree-seed algorithms for binary optimization publication-title: Comput. Ind. Eng. – volume: 298 start-page: 491 year: 2015 end-page: 511 ident: b46 article-title: Enhanced compact artificial bee colony publication-title: Inform. Sci. – volume: 111 start-page: 46 year: 2017 end-page: 51 ident: b23 article-title: Withering process for tree-seed algorithm publication-title: Procedia Comput. Sci. – reference: A. Cinar, M. Kiran, The performance of penalty methods on tree-seed algorithm for numerical constrained optimization problems. – start-page: 4702 year: 2019 end-page: 4707 ident: b42 article-title: Artificial bee colony algorithm with tree-seed searching for modeling multivariable systems using GRNN publication-title: 2019 Chinese Control and Decision Conference – start-page: 3 year: 2013 end-page: 18 ident: b45 article-title: Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization – start-page: 71 year: 2019 end-page: 83 ident: b37 article-title: Otsu’s between class variance and the tree seed algorithm publication-title: Metaheuristic Algorithms for Image Segmentation: Theory and Applications – year: 1991 ident: b4 article-title: Positive feedback as a search strategy – year: 2019 ident: b38 article-title: Tree-seed algorithm in solving real-life optimization problems publication-title: IOP Conference Series: Materials Science and Engineering, Vol. 1 – volume: 33 start-page: 1397 year: 2018 end-page: 1409 ident: b15 article-title: A parallel implementation of Tree-Seed Algorithm on CUDA-supported graphical processing unit publication-title: J. Facul. Eng. Archit. Gazi Univ. – start-page: 449 year: 2017 end-page: 457 ident: b33 article-title: Beltrami-regularized denoising filter based on tree seed optimization algorithm: an ultrasound image application publication-title: International Conference on Information and Communication Technology for Intelligent Systems – year: 2018 ident: 10.1016/j.asoc.2020.106938_b2 – volume: 33 start-page: 1397 issue: 4 year: 2018 ident: 10.1016/j.asoc.2020.106938_b15 article-title: A parallel implementation of Tree-Seed Algorithm on CUDA-supported graphical processing unit publication-title: J. Facul. Eng. Archit. Gazi Univ. – volume: 534 year: 2019 ident: 10.1016/j.asoc.2020.106938_b28 article-title: EST-TSA: An effective search tendency based to tree seed algorithm publication-title: Physica A doi: 10.1016/j.physa.2019.122323 – volume: 298 start-page: 491 year: 2015 ident: 10.1016/j.asoc.2020.106938_b46 article-title: Enhanced compact artificial bee colony publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.12.015 – year: 2020 ident: 10.1016/j.asoc.2020.106938_b25 article-title: Enhancing tree-seed algorithm via feed-back mechanism for optimizing continuous problems publication-title: Appl. Soft Comput. – start-page: 39 year: 1995 ident: 10.1016/j.asoc.2020.106938_b5 article-title: A new optimizer using particle swarm theory – start-page: 449 year: 2017 ident: 10.1016/j.asoc.2020.106938_b33 article-title: Beltrami-regularized denoising filter based on tree seed optimization algorithm: an ultrasound image application – year: 1991 ident: 10.1016/j.asoc.2020.106938_b4 – volume: 83 year: 2019 ident: 10.1016/j.asoc.2020.106938_b27 article-title: Simultaneous identification of structural stiffness and mass parameters based on Bare-bones Gaussian Tree Seeds Algorithm using time-domain data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105602 – ident: 10.1016/j.asoc.2020.106938_b43 – volume: 46 start-page: 69 year: 2019 ident: 10.1016/j.asoc.2020.106938_b12 article-title: Nonlinear hysteretic parameter identification using an improved tree-seed algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.02.005 – start-page: 751 year: 2019 ident: 10.1016/j.asoc.2020.106938_b14 article-title: Structural damage detection with uncertainties using a modified tree seeds algorithm – ident: 10.1016/j.asoc.2020.106938_b22 – year: 2005 ident: 10.1016/j.asoc.2020.106938_b8 – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2020.106938_b41 article-title: TSASC: tree–seed algorithm with sine–cosine enhancement for continuous optimization problems publication-title: Soft Comput. – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2020.106938_b44 article-title: A new hybrid chaotic atom search optimization based on tree-seed algorithm and Levy flight for solving optimization problems publication-title: Eng. Comput. – start-page: 571 year: 2017 ident: 10.1016/j.asoc.2020.106938_b16 article-title: Boundary conditions in Tree-Seed Algorithm: Analysis of the success of search space limitation techniques in Tree-Seed Algorithm – start-page: 1 year: 2019 ident: 10.1016/j.asoc.2020.106938_b26 article-title: A comparison of modified tree–seed algorithm for high-dimensional numerical functions publication-title: Neural Comput. Appl. – start-page: 71 year: 2019 ident: 10.1016/j.asoc.2020.106938_b37 article-title: Otsu’s between class variance and the tree seed algorithm – ident: 10.1016/j.asoc.2020.106938_b39 – volume: 207 start-page: 287 year: 2016 ident: 10.1016/j.asoc.2020.106938_b34 article-title: Design of a multi-mode intelligent model predictive control strategy for hydroelectric generating unit publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.05.007 – volume: 23 start-page: 879 issue: 4 year: 2020 ident: 10.1016/j.asoc.2020.106938_b20 article-title: A discrete tree-seed algorithm for solving symmetric traveling salesman problem publication-title: Eng. Sci. Technol. Int. J. – volume: 111 start-page: 46 year: 2017 ident: 10.1016/j.asoc.2020.106938_b23 article-title: Withering process for tree-seed algorithm publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.06.008 – year: 2020 ident: 10.1016/j.asoc.2020.106938_b40 article-title: Motion-encoded particle swarm optimization for moving target search using UAVs publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106705 – volume: 31 start-page: 153 year: 2015 ident: 10.1016/j.asoc.2020.106938_b9 article-title: Artificial algae algorithm (AAA) for nonlinear global optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.03.003 – volume: 63 start-page: 289 year: 2018 ident: 10.1016/j.asoc.2020.106938_b21 article-title: A modification of tree-seed algorithm using Deb’s rules for constrained optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.10.013 – start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2020.106938_b6 article-title: Particle swarm optimization – year: 2017 ident: 10.1016/j.asoc.2020.106938_b30 article-title: Parameter identification of equivalent circuit models for Li-ion batteries based on tree seeds algorithm – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.asoc.2020.106938_b11 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 7 start-page: 111 issue: 2 year: 2019 ident: 10.1016/j.asoc.2020.106938_b19 article-title: Binary tree-seed algorithms with S-shaped and V-shaped transfer functions publication-title: Int. J. Intell. Syst. Appl. Eng. doi: 10.18201/ijisae.2019253192 – volume: 8 start-page: 2153 issue: 11 year: 2018 ident: 10.1016/j.asoc.2020.106938_b36 article-title: Embedding ordinal optimization into tree–seed algorithm for solving the probabilistic constrained simulation optimization problems publication-title: Appl. Sci. doi: 10.3390/app8112153 – volume: 26 start-page: 422 issue: 3 year: 2018 ident: 10.1016/j.asoc.2020.106938_b31 article-title: Structural damage identification based on modified Artificial Bee Colony algorithm using modal data publication-title: Inverse Probl. Sci. Eng. doi: 10.1080/17415977.2017.1310855 – year: 2017 ident: 10.1016/j.asoc.2020.106938_b32 article-title: Tree-seed algorithm for solving optimal power flow problem in large-scale power systems incorporating validations and comparisons publication-title: Appl. Soft Comput. – volume: 23 issue: 2 year: 2019 ident: 10.1016/j.asoc.2020.106938_b13 article-title: Kaotik Harita Temelli Ağaç Tohum Algoritması publication-title: J. Nat. Appl. Sci. – start-page: 4702 year: 2019 ident: 10.1016/j.asoc.2020.106938_b42 article-title: Artificial bee colony algorithm with tree-seed searching for modeling multivariable systems using GRNN – start-page: 1 year: 2016 ident: 10.1016/j.asoc.2020.106938_b35 article-title: Performance evaluation of radial basis function networks based on tree seed algorithm – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.asoc.2020.106938_b10 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 115 start-page: 631 year: 2018 ident: 10.1016/j.asoc.2020.106938_b18 article-title: Similarity and logic gate-based tree-seed algorithms for binary optimization publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.12.009 – start-page: 3 year: 2013 ident: 10.1016/j.asoc.2020.106938_b45 – volume: 537 year: 2020 ident: 10.1016/j.asoc.2020.106938_b29 article-title: STSA: A sine Tree-Seed Algorithm for complex continuous optimization problems publication-title: Physica A doi: 10.1016/j.physa.2019.122802 – year: 2019 ident: 10.1016/j.asoc.2020.106938_b38 article-title: Tree-seed algorithm in solving real-life optimization problems – volume: 42 start-page: 6686 issue: 19 year: 2015 ident: 10.1016/j.asoc.2020.106938_b1 article-title: TSA: Tree-seed algorithm for continuous optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.055 – year: 1995 ident: 10.1016/j.asoc.2020.106938_b7 – start-page: 48 year: 2018 ident: 10.1016/j.asoc.2020.106938_b17 article-title: Tree-Seed algorithm for large-scale binary optimization publication-title: KnE Soc. Sci. – volume: 11 start-page: 249 issue: 2 year: 2020 ident: 10.1016/j.asoc.2020.106938_b24 article-title: Integration search strategies in tree seed algorithm for high dimensional function optimization publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-019-00970-1 – start-page: 439 year: 1975 ident: 10.1016/j.asoc.2020.106938_b3 article-title: Adaptation in natural and artificial systems  | 
    
| SSID | ssj0016928 | 
    
| Score | 2.4332345 | 
    
| Snippet | One of the recently proposed metaheuristic algorithms is tree–seed algorithm, TSA for short. TSA is developed by inspiring the relation between trees and their... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 106938 | 
    
| SubjectTerms | Best-based update rule Dimensional selection Sequential seed generation Tree–seed algorithm Withering process  | 
    
| Title | A tree–seed algorithm based on intelligent search mechanisms for continuous optimization | 
    
| URI | https://dx.doi.org/10.1016/j.asoc.2020.106938 | 
    
| Volume | 98 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsNAcCn14sW3WB9lD94kNtndbJJjKZb6KqIWipewzW400iTFplfxH_xDv8SdZFMUpAdhIbCZgTCZncfOC6FT21HK4VJYklFqsYBIKyC2svxJzImUMpIuFCffDvlgxK7G7riBenUtDKRVGtlfyfRSWpudjqFmZ5YknQftefgsYJyUXe04-O2MeTDF4Px9mebh8KCcrwrAFkCbwpkqx0toCmgfkcAGD6BG5S_l9EPh9LfQhrEUcbf6mG3UUNkO2qynMGBzKHfRUxdDZPnr43OuNREW0-dcO_wvKQYFJXGe4WTZdrPAFWfjVEHFbzJP51hbrRgS1pNskS_mONcyJDXFmXto1L947A0sMzHBiqhtFxanEFiMtYngcyFcogVxRPSyY-py6TEWCcf1CNU-INVLH2cae9SJeUQVp5OA7qNmlmfqAGEiYv1STWQMUWCPC1dSGlHuKEYFi_0WcmpShZFpJw5TLaZhnTf2GgJ5QyBvWJG3hc6WOLOqmcZKaLf-A-Evlgi1tF-Bd_hPvCO0TiBhpbxfOUbN4m2hTrTFUUzaJUu10Vq3d39zB8_L68HwG7YC16o | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDLDwRpSnBzYUmtiO04yooiqvLrRSxRK5sQNBJEGkXRH_gX_IL-EucSqQEAOSJ-dOir6c7xHfg5AT1zPGk1o5WnDuiJBpJ2SucTqTRDKtdax9LE6-Hcj-SFyN_fEC6Ta1MJhWaXV_rdMrbW132hbN9kuatu8g8uiIUEhWdbWTELcvCZ8FGIGdvc3zPDwZVgNWkdpBcls5Uyd5KYAAgkSGGzLEIpXfrNM3i9NbJ6vWVaTn9dtskAWTb5K1ZgwDtadyi9yfU7xa_nz_KMEUUfX8UEDE_5hRtFCaFjlN5303p7QWbZoZLPlNy6yk4LZSzFhP81kxK2kBSiSz1ZnbZNS7GHb7jh2Z4MTcdaeO5HizmICP0JFK-Qw0ccxguQn3pQ6EiJXnB4xDEMhhwXnmScC9RMbcSD4J-Q5ZzIvc7BLKVAIPzUQneA0cSOVrzmMuPSO4EkmnRbwGqii2_cRxrMVz1CSOPUUIb4TwRjW8LXI653mpu2n8Se03XyD6IRMRqPs_-Pb-yXdMlvvD25vo5nJwvU9WGGavVD9bDsji9HVmDsH9mE6OKvH6Ahsp16o | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+tree%E2%80%93seed+algorithm+based+on+intelligent+search+mechanisms+for+continuous+optimization&rft.jtitle=Applied+soft+computing&rft.au=Kiran%2C+Mustafa+Servet&rft.au=Hakli%2C+Huseyin&rft.date=2021-01-01&rft.issn=1568-4946&rft.volume=98&rft.spage=106938&rft_id=info:doi/10.1016%2Fj.asoc.2020.106938&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106938 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |