UTF: Upgrade transfer function for binary meta-heuristic algorithms
In the real world, many optimization problems are discrete and very complex to solve. Some of them are in the class of NP-hard problems and their search spaces grow exponentially with the problem size. As a result, an exhaustive search will be impractical using exact algorithms. In the last decades,...
        Saved in:
      
    
          | Published in | Applied soft computing Vol. 106; p. 107346 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.07.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1568-4946 1872-9681  | 
| DOI | 10.1016/j.asoc.2021.107346 | 
Cover
| Abstract | In the real world, many optimization problems are discrete and very complex to solve. Some of them are in the class of NP-hard problems and their search spaces grow exponentially with the problem size. As a result, an exhaustive search will be impractical using exact algorithms. In the last decades, meta-heuristic algorithms as approximate algorithms have shown superior performance in solving these problems. The majority of these algorithms have been designed for continuous search spaces and are not able to solve binary optimization problems. Therefore, a transfer function is applied to convert the continuous search space to the binary one. The performance of such binary algorithms depends on their ability of exploration, exploitation and transfer function. Several transfer functions have been introduced so far but they have shown poor exploration and exploitation in solving some problems. In this study, a novel adaptive transfer function, based on two linear functions, is proposed to overcome the shortcomings of existing transfer functions. The proposed method called upgrade transfer function (UTF) adapts itself during running the algorithm to switch from exploration to exploitation. This capability also covers disadvantages of metaheuristic algorithms in terms of poor exploration and exploitation. The performance of UTF has been evaluated by three discrete optimization problems: function optimization, feature selection and the 0–1 multi-knapsack problem (MKP). The results of binary particle swarm optimization (BPSO), binary artificial bee colony (BABC) and several improved BPSO and BABC have been compared with those of UTF–BPSO and UTF–BABC using function optimization problems. Also, the efficiency of UTF–BPSO and UTF–BABC and some binary meta-heuristic algorithms such as binary salp swarm algorithm (BSSA) and binary gray wolf optimization (bGWO), binary dragon algorithm (BDA), binary multi-neighborhood artificial bee colony (BMNABC), binary hybrid topology particle swarm optimization quadratic interpolation (BHTPSO-QI), binary ant lion optimizer (bALO) and binary gravitational search algorithm (BGSA) have been evaluated by feature selection problems. Moreover, UTF and seventeen transfer functions have been applied in original PSO, ABC, SSA and GWO algorithms to solve low and high dimensions 0–1 MKP benchmark instances. The results showed that the new transfer function significantly enhances the performance of algorithms to achieve the best solution in the binary search space.
•A novel adaptive transfer function, based on two linear functions, is proposed called upgrade transfer function (UTF).•UTF adapts itself during running the algorithm to switch from exploration to exploitation.•The efficiency of UTF has been compared with some well-known transfer functions on three problems: function optimization, feature selection and the 0–1 multi-knapsack problem (MKP).•The results show that UTF significantly improves the performance of binary meta-heuristic algorithms to achieve the best solution. | 
    
|---|---|
| AbstractList | In the real world, many optimization problems are discrete and very complex to solve. Some of them are in the class of NP-hard problems and their search spaces grow exponentially with the problem size. As a result, an exhaustive search will be impractical using exact algorithms. In the last decades, meta-heuristic algorithms as approximate algorithms have shown superior performance in solving these problems. The majority of these algorithms have been designed for continuous search spaces and are not able to solve binary optimization problems. Therefore, a transfer function is applied to convert the continuous search space to the binary one. The performance of such binary algorithms depends on their ability of exploration, exploitation and transfer function. Several transfer functions have been introduced so far but they have shown poor exploration and exploitation in solving some problems. In this study, a novel adaptive transfer function, based on two linear functions, is proposed to overcome the shortcomings of existing transfer functions. The proposed method called upgrade transfer function (UTF) adapts itself during running the algorithm to switch from exploration to exploitation. This capability also covers disadvantages of metaheuristic algorithms in terms of poor exploration and exploitation. The performance of UTF has been evaluated by three discrete optimization problems: function optimization, feature selection and the 0–1 multi-knapsack problem (MKP). The results of binary particle swarm optimization (BPSO), binary artificial bee colony (BABC) and several improved BPSO and BABC have been compared with those of UTF–BPSO and UTF–BABC using function optimization problems. Also, the efficiency of UTF–BPSO and UTF–BABC and some binary meta-heuristic algorithms such as binary salp swarm algorithm (BSSA) and binary gray wolf optimization (bGWO), binary dragon algorithm (BDA), binary multi-neighborhood artificial bee colony (BMNABC), binary hybrid topology particle swarm optimization quadratic interpolation (BHTPSO-QI), binary ant lion optimizer (bALO) and binary gravitational search algorithm (BGSA) have been evaluated by feature selection problems. Moreover, UTF and seventeen transfer functions have been applied in original PSO, ABC, SSA and GWO algorithms to solve low and high dimensions 0–1 MKP benchmark instances. The results showed that the new transfer function significantly enhances the performance of algorithms to achieve the best solution in the binary search space.
•A novel adaptive transfer function, based on two linear functions, is proposed called upgrade transfer function (UTF).•UTF adapts itself during running the algorithm to switch from exploration to exploitation.•The efficiency of UTF has been compared with some well-known transfer functions on three problems: function optimization, feature selection and the 0–1 multi-knapsack problem (MKP).•The results show that UTF significantly improves the performance of binary meta-heuristic algorithms to achieve the best solution. | 
    
| ArticleNumber | 107346 | 
    
| Author | Beheshti, Zahra | 
    
| Author_xml | – sequence: 1 givenname: Zahra surname: Beheshti fullname: Beheshti, Zahra email: z-beheshti@iaun.ac.ir organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran  | 
    
| BookMark | eNp9kM1KAzEURoNUsK2-gKu8wNRkJskk4kaKVaHgpl2HND9tSpuUJBV8ezPUlYuu7uXCuXzfmYBRiMEC8IjRDCPMnvYzlaOetajF9dB3hN2AMeZ92wjG8ajulPGGCMLuwCTnPaqQaPkYzNerxTNcn7ZJGQtLUiE7m6A7B118DNDFBDc-qPQDj7aoZmfPyefiNVSHbUy-7I75Htw6dcj24W9OwXrxtpp_NMuv98_567LRHUKloQa3tmdIYYoM7zrhNkJpxRjVwhlCHUWkY0pQjRzSlBJuDOtxr40ThHLcTQG__NUp5pysk9oXNcSsuf1BYiQHGXIvBxlykCEvMira_kNPyR9rq-vQywWytdS3t0lm7W3Q1vhkdZEm-mv4L30heo8 | 
    
| CitedBy_id | crossref_primary_10_1038_s41545_024_00407_5 crossref_primary_10_1016_j_knosys_2022_109446 crossref_primary_10_3390_biomimetics9030187 crossref_primary_10_1016_j_compbiolchem_2022_107767 crossref_primary_10_1016_j_engappai_2023_106554 crossref_primary_10_1007_s41870_024_01758_5 crossref_primary_10_3390_math11010129 crossref_primary_10_1007_s00521_021_06775_0 crossref_primary_10_1007_s00521_022_07780_7 crossref_primary_10_1016_j_cosrev_2023_100559 crossref_primary_10_3390_biomimetics9020089 crossref_primary_10_1007_s10586_025_05102_9 crossref_primary_10_1016_j_asoc_2023_110583 crossref_primary_10_1016_j_eswa_2023_120404 crossref_primary_10_3390_computers12120249 crossref_primary_10_1007_s11227_022_04507_2 crossref_primary_10_1016_j_knosys_2023_111191 crossref_primary_10_3390_biomimetics8020266 crossref_primary_10_1016_j_ins_2024_121417  | 
    
| Cites_doi | 10.1016/j.swevo.2011.02.002 10.1016/j.asoc.2017.03.002 10.1080/01969722.2018.1541597 10.1016/j.asoc.2017.04.050 10.3390/math8081355 10.1016/S0377-2217(03)00274-1 10.1007/s00521-016-2818-2 10.1023/A:1009642405419 10.1016/j.asoc.2019.105645 10.1016/S0304-3975(97)00115-1 10.1016/j.ins.2013.08.015 10.1016/j.patrec.2018.04.007 10.1016/j.asoc.2018.10.036 10.1016/j.ygeno.2018.04.004 10.1016/j.asoc.2015.04.007 10.1016/j.asoc.2018.01.001 10.1016/j.engappai.2017.10.024 10.1007/s11047-009-9175-3 10.1057/jors.1990.166 10.1016/j.energy.2018.12.165 10.1016/j.asoc.2020.106260 10.1016/j.cie.2014.08.016 10.1016/j.knosys.2018.08.003 10.1007/s10898-012-0006-1 10.1016/j.knosys.2018.05.009 10.1016/j.swevo.2020.100663 10.1016/j.cam.2012.01.013 10.1086/294081 10.1016/j.ins.2017.09.028 10.1016/j.asoc.2019.105576 10.1016/j.asoc.2020.107077 10.1016/j.asoc.2020.106498 10.3390/electronics8101130 10.4304/jsw.3.9.28-35 10.1109/TKDE.2005.66 10.1016/j.eswa.2020.113310 10.3390/math7010017 10.1016/j.eswa.2019.01.016 10.1016/j.asoc.2020.106402 10.1016/j.ins.2019.10.029 10.1007/s00521-015-1920-1 10.1007/s00521-017-2988-6 10.1016/j.ins.2019.08.040 10.1016/j.patcog.2009.06.009 10.1016/j.knosys.2020.105746 10.1016/j.swevo.2012.09.002 10.1093/bioinformatics/bti033 10.1016/j.ins.2014.12.016 10.1016/j.future.2020.05.020 10.1016/j.swevo.2012.12.004 10.1016/j.engappai.2019.103283 10.1016/j.neucom.2016.03.101 10.1016/j.asoc.2016.02.027 10.1155/2020/6502807 10.1016/j.neucom.2015.06.083 10.1016/j.cie.2017.12.009  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 | 
    
| Copyright_xml | – notice: 2021 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.asoc.2021.107346 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-9681 | 
    
| ExternalDocumentID | 10_1016_j_asoc_2021_107346 S1568494621002696  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c300t-5d12e760a150d8339fb9aca665c9fd45f50436a95c0f0c5548dd6717cdf945813 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1568-4946 | 
    
| IngestDate | Wed Oct 29 21:22:09 EDT 2025 Thu Apr 24 22:55:23 EDT 2025 Fri Feb 23 02:41:49 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | 0–1 multi-knapsack problem (MKP) Transfer function, Upgrade transfer function (UTF) Discrete optimization problem Feature selection Function optimization Binary meta-heuristic algorithm  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c300t-5d12e760a150d8339fb9aca665c9fd45f50436a95c0f0c5548dd6717cdf945813 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2021_107346 crossref_primary_10_1016_j_asoc_2021_107346 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107346  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | July 2021 2021-07-00  | 
    
| PublicationDateYYYYMMDD | 2021-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2021 text: July 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Applied soft computing | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Bansal, Deep (b42) 2012; 218 Kiran (b14) 2015; 33 Pashaei, Pashaei, Aydin (b19) 2019; 111 Duda, Hart, Stork (b70) 2012 Sevkli, Guner (b15) 2006 Gholami, Pourpanah, Wang (b21) 2020; 93 Han, Liu, Wang, Li (b49) 2020; 87 Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li, Mirjalili (b27) 2018; 161 Lai, Hao, Fu, Yue (b63) 2020; 149 Long, Jiao, Liang, Tang (b33) 2018; 68 Sayed, Hassanien, Azar (b54) 2019; 31 Rao, Shi, Rodrigue, Feng, Xia, Elhoseny, Yuan, Gu (b53) 2019; 74 Mirjalili, Zhang, Mirjalili, Chalup, Noman (b10) 2020 Wang, Wang, Fu, Zhen (b12) 2008; 3 Beheshti, Shamsuddin (b16) 2014; 258 Gao, Liu, Huang (b31) 2012; 236 Beheshti, Shamsuddin, Yuhaniz (b40) 2013; 57 Cilia, De Stefano, Fontanella, Scotto di Freca (b48) 2019; 121 Korkmaz, Kiran (b6) 2018; 64 Aslan, Gunduz, Kiran (b3) 2019; 82 Feng, An, Gao (b66) 2018; 7 Rashedi, Nezamabadi-pour (b24) 2014; 26 Dua, Graff (b68) 2017 Statnikov, Aliferis, Tsamardinos, Hardin, Levy (b69) 2005; 21 Rashedi, Nezamabadi-Pour, Saryazdi (b34) 2010; 9 Nezamabadi-pour, Hossein, Maghfoori-Farsangi (b9) 2008; 6 Beheshti, Shamsuddin, Hasan (b38) 2015; 299 Beasley (b72) 1990; 41 Hildreth (b73) 2003 Wang, Wang, Zhou, Zhao, Wang, Xiao, Xu (b32) 2020 Abdel-Basset, Mohamed, Mirjalili (b60) 2020 Kennedy, Eberhart (b7) 1997 Yang, Li, Guo, Feng, Niu, Xue, Foley (b20) 2019; 170 Yu, Gao, Wang, Meng (b29) 2020; 8 Pampara, Franken, Engelbrecht (b44) 2005 Gheyas, Smith (b50) 2010; 43 Beheshti (b25) 2018; 49 Chu, Beasley (b65) 1998; 4 Cinar, Kiran (b5) 2018; 115 Jia, Duan, Khan (b4) 2014; 76 Pashaei, Aydin (b57) 2017; 56 Pampara, Engelbrecht, Franken (b43) 2006 Amaldi, Kann (b51) 1998; 209 Liu, Yu (b56) 2005; 17 Liu, Luo, Guo, Tan (b1) 2020; 95 Emary, Zawbaa, Hassanien (b37) 2016; 213 Mafarja, Heidari, Habib, Faris, Thaher, Aljarah (b71) 2020; 112 Fréville (b58) 2004; 155 Arani, Mirzabeygi, Panahi (b30) 2013; 11 Too, Abdullah, Mohd Saad (b41) 2019; 8 Beheshti (b13) 2020 Lorie, Savage (b64) 1955; 28 Mirjalili, Lewis (b8) 2013; 9 Eberhart, Kennedy (b39) 1995 Luo, Zhao (b62) 2019; 83 Beheshti, Shamsuddin, Hasan, Wong (b17) 2016; 8 Islam, Li, Mei (b26) 2017; 59 Hancer, Xue, Zhang, Karaboga, Akay (b55) 2018; 422 Zhang, Wu, Li, Wang, Yang, Lee, Jung (b59) 2016; 43 Anita (b2) 2020; 92 Zhang, Gong, Gao, Tian, Sun (b18) 2020; 507 Emary, Zawbaa, Hassanien, Ella (b35) 2016; 172 Pampara, Engelbrecht (b45) 2011 Nguyen, Xue, Zhang (b46) 2020; 54 Manbari, AkhlaghianTab, Salavati (b47) 2019; 124 García, Maureira (b61) 2021; 102 Mirjalili (b36) 2016; 27 Faris, Hassonah, A.-Z. Ala, Mirjalili, Aljarah (b52) 2018; 30 Beheshti (b23) 2020; 512 Guo, Wang, Guo (b11) 2020; 2020 Faris, Mafarja, Heidari, Aljarah, Al-Zoubi, Mirjalili, Fujita (b28) 2018; 154 Hu, Pan, Chu (b22) 2020; 195 Derrac, Garcia, Molina, Herrera (b67) 2011; 1 Rashedi (10.1016/j.asoc.2021.107346_b34) 2010; 9 Lorie (10.1016/j.asoc.2021.107346_b64) 1955; 28 Mafarja (10.1016/j.asoc.2021.107346_b71) 2020; 112 Sayed (10.1016/j.asoc.2021.107346_b54) 2019; 31 Nguyen (10.1016/j.asoc.2021.107346_b46) 2020; 54 Liu (10.1016/j.asoc.2021.107346_b1) 2020; 95 Rashedi (10.1016/j.asoc.2021.107346_b24) 2014; 26 Mirjalili (10.1016/j.asoc.2021.107346_b36) 2016; 27 Han (10.1016/j.asoc.2021.107346_b49) 2020; 87 Beheshti (10.1016/j.asoc.2021.107346_b17) 2016; 8 Korkmaz (10.1016/j.asoc.2021.107346_b6) 2018; 64 Abdel-Basset (10.1016/j.asoc.2021.107346_b60) 2020 Fréville (10.1016/j.asoc.2021.107346_b58) 2004; 155 Cinar (10.1016/j.asoc.2021.107346_b5) 2018; 115 Mirjalili (10.1016/j.asoc.2021.107346_b10) 2020 Derrac (10.1016/j.asoc.2021.107346_b67) 2011; 1 Hildreth (10.1016/j.asoc.2021.107346_b73) 2003 Zhang (10.1016/j.asoc.2021.107346_b59) 2016; 43 Lai (10.1016/j.asoc.2021.107346_b63) 2020; 149 Manbari (10.1016/j.asoc.2021.107346_b47) 2019; 124 Kennedy (10.1016/j.asoc.2021.107346_b7) 1997 Luo (10.1016/j.asoc.2021.107346_b62) 2019; 83 Gholami (10.1016/j.asoc.2021.107346_b21) 2020; 93 García (10.1016/j.asoc.2021.107346_b61) 2021; 102 Cilia (10.1016/j.asoc.2021.107346_b48) 2019; 121 Chu (10.1016/j.asoc.2021.107346_b65) 1998; 4 Pashaei (10.1016/j.asoc.2021.107346_b57) 2017; 56 Faris (10.1016/j.asoc.2021.107346_b28) 2018; 154 Emary (10.1016/j.asoc.2021.107346_b35) 2016; 172 Amaldi (10.1016/j.asoc.2021.107346_b51) 1998; 209 Sevkli (10.1016/j.asoc.2021.107346_b15) 2006 Yang (10.1016/j.asoc.2021.107346_b20) 2019; 170 Yu (10.1016/j.asoc.2021.107346_b29) 2020; 8 Mirjalili (10.1016/j.asoc.2021.107346_b8) 2013; 9 Mafarja (10.1016/j.asoc.2021.107346_b27) 2018; 161 Arani (10.1016/j.asoc.2021.107346_b30) 2013; 11 Beheshti (10.1016/j.asoc.2021.107346_b40) 2013; 57 Duda (10.1016/j.asoc.2021.107346_b70) 2012 Faris (10.1016/j.asoc.2021.107346_b52) 2018; 30 Guo (10.1016/j.asoc.2021.107346_b11) 2020; 2020 Zhang (10.1016/j.asoc.2021.107346_b18) 2020; 507 Beasley (10.1016/j.asoc.2021.107346_b72) 1990; 41 Nezamabadi-pour (10.1016/j.asoc.2021.107346_b9) 2008; 6 Beheshti (10.1016/j.asoc.2021.107346_b25) 2018; 49 Wang (10.1016/j.asoc.2021.107346_b32) 2020 Aslan (10.1016/j.asoc.2021.107346_b3) 2019; 82 Hancer (10.1016/j.asoc.2021.107346_b55) 2018; 422 Anita (10.1016/j.asoc.2021.107346_b2) 2020; 92 Hu (10.1016/j.asoc.2021.107346_b22) 2020; 195 Liu (10.1016/j.asoc.2021.107346_b56) 2005; 17 Pashaei (10.1016/j.asoc.2021.107346_b19) 2019; 111 Wang (10.1016/j.asoc.2021.107346_b12) 2008; 3 Long (10.1016/j.asoc.2021.107346_b33) 2018; 68 Jia (10.1016/j.asoc.2021.107346_b4) 2014; 76 Gao (10.1016/j.asoc.2021.107346_b31) 2012; 236 Pampara (10.1016/j.asoc.2021.107346_b45) 2011 Pampara (10.1016/j.asoc.2021.107346_b44) 2005 Rao (10.1016/j.asoc.2021.107346_b53) 2019; 74 Beheshti (10.1016/j.asoc.2021.107346_b16) 2014; 258 Beheshti (10.1016/j.asoc.2021.107346_b13) 2020 Beheshti (10.1016/j.asoc.2021.107346_b38) 2015; 299 Bansal (10.1016/j.asoc.2021.107346_b42) 2012; 218 Statnikov (10.1016/j.asoc.2021.107346_b69) 2005; 21 Eberhart (10.1016/j.asoc.2021.107346_b39) 1995 Dua (10.1016/j.asoc.2021.107346_b68) 2017 Kiran (10.1016/j.asoc.2021.107346_b14) 2015; 33 Islam (10.1016/j.asoc.2021.107346_b26) 2017; 59 Gheyas (10.1016/j.asoc.2021.107346_b50) 2010; 43 Too (10.1016/j.asoc.2021.107346_b41) 2019; 8 Pampara (10.1016/j.asoc.2021.107346_b43) 2006 Emary (10.1016/j.asoc.2021.107346_b37) 2016; 213 Beheshti (10.1016/j.asoc.2021.107346_b23) 2020; 512 Feng (10.1016/j.asoc.2021.107346_b66) 2018; 7  | 
    
| References_xml | – volume: 17 start-page: 491 year: 2005 end-page: 502 ident: b56 article-title: Toward integrating feature selection algorithms for classification and clustering publication-title: IEEE Trans. Knowl. Data Eng. – volume: 92 year: 2020 ident: b2 article-title: Discrete artificial electric field algorithm for high-order graph matching publication-title: Appl. Soft Comput. – year: 2012 ident: b70 article-title: Pattern Classification – year: 2020 ident: b13 article-title: A novel x-shaped binary particle swarm optimization publication-title: Soft Comput. – volume: 95 year: 2020 ident: b1 article-title: Multi-point shortest path planning based on an Improved Discrete Bat Algorithm publication-title: Appl. Soft Comput. – volume: 154 start-page: 43 year: 2018 end-page: 67 ident: b28 article-title: An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems publication-title: Knowl.-Based Syst. – year: 2003 ident: b73 article-title: Case Studies in Public Budgeting and Financial Management, Revised and Expanded – volume: 124 start-page: 97 year: 2019 end-page: 118 ident: b47 article-title: Hybrid fast unsupervised feature selection for high-dimensional data publication-title: Expert Syst. Appl. – start-page: 89 year: 2005 end-page: 96 ident: b44 article-title: Combining particle swarm optimisation with angle modulation to solve binary problems publication-title: 2005 IEEE Congr. Evol. Comput., Vol. 1 – volume: 8 start-page: 1130 year: 2019 ident: b41 article-title: A new quadratic binary harris hawk optimization for feature selection publication-title: Electronics – volume: 7 year: 2018 ident: b66 article-title: The importance of transfer function in solving set-union knapsack problem based on discrete moth search algorithm publication-title: Mathematics – volume: 21 start-page: 631 year: 2005 end-page: 643 ident: b69 article-title: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. publication-title: Bioinformatics – volume: 507 start-page: 67 year: 2020 end-page: 85 ident: b18 article-title: Binary differential evolution with self-learning for multi-objective feature selection publication-title: Inf. Sci. (Ny). – volume: 115 start-page: 631 year: 2018 end-page: 646 ident: b5 article-title: Similarity and logic gate-based tree-seed algorithms for binary optimization publication-title: Comput. Ind. Eng. – start-page: 316 year: 2006 end-page: 323 ident: b15 article-title: A continuous particle swarm optimization algorithm for uncapacitated facility location problem publication-title: Ant Colony Optim. Swarm Intell. – year: 2020 ident: b32 article-title: Artificial bee colony algorithm based on knowledge fusion publication-title: Complex Intell. Syst. – volume: 93 year: 2020 ident: b21 article-title: Feature selection based on improved binary global harmony search for data classification publication-title: Appl. Soft Comput. – volume: 112 start-page: 18 year: 2020 end-page: 40 ident: b71 article-title: Augmented whale feature selection for IoT attacks: Structure, analysis and applications publication-title: Futur. Gener. Comput. Syst. – start-page: 1 year: 2011 end-page: 8 ident: b45 article-title: Binary artificial bee colony optimization publication-title: 2011 IEEE Symp. Swarm Intell – volume: 258 start-page: 54 year: 2014 end-page: 79 ident: b16 article-title: CAPSO: Centripetal accelerated particle swarm optimization publication-title: Inf. Sci. (Ny). – volume: 213 start-page: 54 year: 2016 end-page: 65 ident: b37 article-title: Binary ant lion approaches for feature selection publication-title: Neurocomputing – volume: 9 start-page: 1 year: 2013 end-page: 14 ident: b8 article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization publication-title: Swarm Evol. Comput. – volume: 68 start-page: 63 year: 2018 end-page: 80 ident: b33 article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization publication-title: Eng. Appl. Artif. Intell. – volume: 422 start-page: 462 year: 2018 end-page: 479 ident: b55 article-title: Pareto front feature selection based on artificial bee colony optimization publication-title: Inf. Sci. (Ny). – volume: 172 start-page: 371 year: 2016 end-page: 381 ident: b35 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing – volume: 57 start-page: 549 year: 2013 end-page: 573 ident: b40 article-title: Binary Accelerated Particle Swarm Algorithm (BAPSA) for discrete optimization problems publication-title: J. Global Optim. – volume: 26 start-page: 1211 year: 2014 end-page: 1221 ident: b24 article-title: Feature subset selection using improved binary gravitational search algorithm publication-title: J. Intell. Fuzzy Syst. – volume: 49 start-page: 452 year: 2018 end-page: 474 ident: b25 article-title: BMNABC: Binary multi-neighborhood artificial bee colony for high-dimensional discrete optimization problems publication-title: Cybern. Syst. – start-page: 4104 year: 1997 end-page: 4108 ident: b7 article-title: A discrete binary version of the particle swarm algorithm publication-title: Proc. IEEE Int. Conf. Syst. Man, Cybern – volume: 170 start-page: 889 year: 2019 end-page: 905 ident: b20 article-title: A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles publication-title: Energy – volume: 111 start-page: 669 year: 2019 end-page: 686 ident: b19 article-title: Gene selection using hybrid binary black hole algorithm and modified binary particle swarm optimization publication-title: Genomics – volume: 11 start-page: 1 year: 2013 end-page: 15 ident: b30 article-title: An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance publication-title: Swarm Evol. Comput. – volume: 31 start-page: 171 year: 2019 end-page: 188 ident: b54 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Neural Comput. Appl. – volume: 30 start-page: 2355 year: 2018 end-page: 2369 ident: b52 article-title: A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture publication-title: Neural Comput. Appl. – volume: 59 start-page: 182 year: 2017 end-page: 196 ident: b26 article-title: A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO publication-title: Appl. Soft Comput. – volume: 83 year: 2019 ident: b62 article-title: A binary grey wolf optimizer for the multidimensional knapsack problem publication-title: Appl. Soft Comput. – volume: 82 year: 2019 ident: b3 article-title: JayaX: Jaya algorithm with xor operator for binary optimization publication-title: Appl. Soft Comput. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b67 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 33 start-page: 15 year: 2015 end-page: 23 ident: b14 article-title: The continuous artificial bee colony algorithm for binary optimization publication-title: Appl. Soft Comput. – volume: 8 start-page: 1355 year: 2020 ident: b29 article-title: A hybrid particle swarm optimization algorithm enhanced with nonlinear inertial weight and Gaussian mutation for job shop scheduling problems publication-title: Mathematics – volume: 87 year: 2020 ident: b49 article-title: Unsupervised feature selection via graph matrix learning and the low-dimensional space learning for classification publication-title: Eng. Appl. Artif. Intell. – volume: 9 start-page: 727 year: 2010 end-page: 745 ident: b34 article-title: BGSA: binary gravitational search algorithm publication-title: Nat. Comput. – volume: 6 start-page: 21 year: 2008 end-page: 32 ident: b9 article-title: Binary particle swarm optimization: challenges and new solutions publication-title: J. Comput. Soc. Iran Comput. Sci. Eng. – volume: 43 start-page: 5 year: 2010 end-page: 13 ident: b50 article-title: Feature subset selection in large dimensionality domains publication-title: Pattern Recognit. – start-page: 1873 year: 2006 end-page: 1879 ident: b43 article-title: Binary differential evolution publication-title: 2006 IEEE Int. Conf. Evol. Comput. – volume: 28 start-page: 229 year: 1955 end-page: 239 ident: b64 article-title: Three problems in rationing capital publication-title: J. Bus. – volume: 236 start-page: 2741 year: 2012 end-page: 2753 ident: b31 article-title: A global best artificial bee colony algorithm for global optimization publication-title: J. Comput. Appl. Math. – volume: 121 start-page: 77 year: 2019 end-page: 86 ident: b48 article-title: A ranking-based feature selection approach for handwritten character recognition publication-title: Pattern Recognit. Lett. – volume: 155 start-page: 1 year: 2004 end-page: 21 ident: b58 article-title: The multidimensional 0–1 knapsack problem: An overview publication-title: European J. Oper. Res. – volume: 64 start-page: 627 year: 2018 end-page: 640 ident: b6 article-title: An artificial algae algorithm with stigmergic behavior for binary optimization publication-title: Appl. Soft Comput. – volume: 54 year: 2020 ident: b46 article-title: A survey on swarm intelligence approaches to feature selection in data mining publication-title: Swarm Evol. Comput. – volume: 2020 year: 2020 ident: b11 article-title: Z-shaped transfer functions for binary particle swarm optimization algorithm publication-title: Comput. Intell. Neurosci. – year: 2020 ident: b60 article-title: A binary equilibrium optimization algorithm for 0–1 knapsack problems publication-title: Comput. Ind. Eng. – volume: 209 start-page: 237 year: 1998 end-page: 260 ident: b51 article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems publication-title: Theoret. Comput. Sci. – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: b36 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. – volume: 4 start-page: 63 year: 1998 end-page: 86 ident: b65 article-title: A genetic algorithm for the multidimensional knapsack problem publication-title: J. Heuristics. – start-page: 241 year: 2020 end-page: 259 ident: b10 article-title: A novel U-shaped transfer function for binary particle swarm optimisation publication-title: Soft Comput. Probl. Solving 2019 – volume: 8 start-page: 1 year: 2016 end-page: 26 ident: b17 article-title: Improved centripetal accelerated particle swarm optimization publication-title: Int. J. Adv. Soft Comput. Appl. – volume: 41 start-page: 1069 year: 1990 end-page: 1072 ident: b72 article-title: OR-library: Distributing test problems by electronic mail publication-title: J. Oper. Res. Soc. – volume: 195 year: 2020 ident: b22 article-title: Improved binary grey wolf optimizer and its application for feature selection publication-title: Knowl.-Based Syst. – volume: 512 start-page: 1503 year: 2020 end-page: 1542 ident: b23 article-title: A time-varying mirrored S-shaped transfer function for binary particle swarm optimization publication-title: Inf. Sci. (Ny). – volume: 76 start-page: 360 year: 2014 end-page: 365 ident: b4 article-title: Binary Artificial Bee Colony optimization using bitwise operation publication-title: Comput. Ind. Eng. – volume: 56 start-page: 94 year: 2017 end-page: 106 ident: b57 article-title: Binary black hole algorithm for feature selection and classification on biological data publication-title: Appl. Soft Comput. – volume: 161 start-page: 185 year: 2018 end-page: 204 ident: b27 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowl.-Based Syst. – year: 2017 ident: b68 article-title: UCI machine learning repository – start-page: 39 year: 1995 end-page: 43 ident: b39 article-title: A new optimizer using particle swarm theory publication-title: Proc. Sixth Int. Symp – volume: 149 year: 2020 ident: b63 article-title: Diversity-preserving quantum particle swarm optimization for the multidimensional knapsack problem publication-title: Expert Syst. Appl. – volume: 299 start-page: 58 year: 2015 end-page: 84 ident: b38 article-title: Memetic binary particle swarm optimization for discrete optimization problems publication-title: Inf. Sci. (Ny) – volume: 74 start-page: 634 year: 2019 end-page: 642 ident: b53 article-title: Feature selection based on artificial bee colony and gradient boosting decision tree publication-title: Appl. Soft Comput. – volume: 218 start-page: 11042 year: 2012 end-page: 11061 ident: b42 article-title: A modified binary particle swarm optimization for knapsack problems publication-title: Appl. Math. Comput. – volume: 3 start-page: 28 year: 2008 end-page: 35 ident: b12 article-title: A novel probability binary particle swarm optimization algorithm and its application publication-title: J. Softw. – volume: 43 start-page: 583 year: 2016 end-page: 595 ident: b59 article-title: Binary artificial algae algorithm for multidimensional knapsack problems publication-title: Appl. Soft Comput. – volume: 102 year: 2021 ident: b61 article-title: A KNN quantum cuckoo search algorithm applied to the multidimensional knapsack problem publication-title: Appl. Soft Comput. – volume: 1 start-page: 3 year: 2011 ident: 10.1016/j.asoc.2021.107346_b67 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 56 start-page: 94 year: 2017 ident: 10.1016/j.asoc.2021.107346_b57 article-title: Binary black hole algorithm for feature selection and classification on biological data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.03.002 – volume: 49 start-page: 452 year: 2018 ident: 10.1016/j.asoc.2021.107346_b25 article-title: BMNABC: Binary multi-neighborhood artificial bee colony for high-dimensional discrete optimization problems publication-title: Cybern. Syst. doi: 10.1080/01969722.2018.1541597 – volume: 59 start-page: 182 year: 2017 ident: 10.1016/j.asoc.2021.107346_b26 article-title: A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.04.050 – volume: 8 start-page: 1 year: 2016 ident: 10.1016/j.asoc.2021.107346_b17 article-title: Improved centripetal accelerated particle swarm optimization publication-title: Int. J. Adv. Soft Comput. Appl. – volume: 8 start-page: 1355 year: 2020 ident: 10.1016/j.asoc.2021.107346_b29 article-title: A hybrid particle swarm optimization algorithm enhanced with nonlinear inertial weight and Gaussian mutation for job shop scheduling problems publication-title: Mathematics doi: 10.3390/math8081355 – volume: 155 start-page: 1 year: 2004 ident: 10.1016/j.asoc.2021.107346_b58 article-title: The multidimensional 0–1 knapsack problem: An overview publication-title: European J. Oper. Res. doi: 10.1016/S0377-2217(03)00274-1 – volume: 30 start-page: 2355 year: 2018 ident: 10.1016/j.asoc.2021.107346_b52 article-title: A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2818-2 – year: 2020 ident: 10.1016/j.asoc.2021.107346_b13 article-title: A novel x-shaped binary particle swarm optimization publication-title: Soft Comput. – volume: 4 start-page: 63 year: 1998 ident: 10.1016/j.asoc.2021.107346_b65 article-title: A genetic algorithm for the multidimensional knapsack problem publication-title: J. Heuristics. doi: 10.1023/A:1009642405419 – volume: 83 year: 2019 ident: 10.1016/j.asoc.2021.107346_b62 article-title: A binary grey wolf optimizer for the multidimensional knapsack problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105645 – volume: 209 start-page: 237 year: 1998 ident: 10.1016/j.asoc.2021.107346_b51 article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems publication-title: Theoret. Comput. Sci. doi: 10.1016/S0304-3975(97)00115-1 – volume: 258 start-page: 54 year: 2014 ident: 10.1016/j.asoc.2021.107346_b16 article-title: CAPSO: Centripetal accelerated particle swarm optimization publication-title: Inf. Sci. (Ny). doi: 10.1016/j.ins.2013.08.015 – year: 2003 ident: 10.1016/j.asoc.2021.107346_b73 – volume: 121 start-page: 77 year: 2019 ident: 10.1016/j.asoc.2021.107346_b48 article-title: A ranking-based feature selection approach for handwritten character recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.04.007 – volume: 74 start-page: 634 year: 2019 ident: 10.1016/j.asoc.2021.107346_b53 article-title: Feature selection based on artificial bee colony and gradient boosting decision tree publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.10.036 – year: 2020 ident: 10.1016/j.asoc.2021.107346_b60 article-title: A binary equilibrium optimization algorithm for 0–1 knapsack problems publication-title: Comput. Ind. Eng. – volume: 111 start-page: 669 year: 2019 ident: 10.1016/j.asoc.2021.107346_b19 article-title: Gene selection using hybrid binary black hole algorithm and modified binary particle swarm optimization publication-title: Genomics doi: 10.1016/j.ygeno.2018.04.004 – volume: 6 start-page: 21 year: 2008 ident: 10.1016/j.asoc.2021.107346_b9 article-title: Binary particle swarm optimization: challenges and new solutions publication-title: J. Comput. Soc. Iran Comput. Sci. Eng. – volume: 33 start-page: 15 year: 2015 ident: 10.1016/j.asoc.2021.107346_b14 article-title: The continuous artificial bee colony algorithm for binary optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.04.007 – volume: 64 start-page: 627 year: 2018 ident: 10.1016/j.asoc.2021.107346_b6 article-title: An artificial algae algorithm with stigmergic behavior for binary optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.01.001 – volume: 68 start-page: 63 year: 2018 ident: 10.1016/j.asoc.2021.107346_b33 article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.10.024 – volume: 9 start-page: 727 year: 2010 ident: 10.1016/j.asoc.2021.107346_b34 article-title: BGSA: binary gravitational search algorithm publication-title: Nat. Comput. doi: 10.1007/s11047-009-9175-3 – volume: 41 start-page: 1069 year: 1990 ident: 10.1016/j.asoc.2021.107346_b72 article-title: OR-library: Distributing test problems by electronic mail publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.1990.166 – volume: 170 start-page: 889 year: 2019 ident: 10.1016/j.asoc.2021.107346_b20 article-title: A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles publication-title: Energy doi: 10.1016/j.energy.2018.12.165 – volume: 92 year: 2020 ident: 10.1016/j.asoc.2021.107346_b2 article-title: Discrete artificial electric field algorithm for high-order graph matching publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106260 – volume: 76 start-page: 360 year: 2014 ident: 10.1016/j.asoc.2021.107346_b4 article-title: Binary Artificial Bee Colony optimization using bitwise operation publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2014.08.016 – volume: 161 start-page: 185 year: 2018 ident: 10.1016/j.asoc.2021.107346_b27 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.08.003 – year: 2020 ident: 10.1016/j.asoc.2021.107346_b32 article-title: Artificial bee colony algorithm based on knowledge fusion publication-title: Complex Intell. Syst. – year: 2012 ident: 10.1016/j.asoc.2021.107346_b70 – volume: 26 start-page: 1211 year: 2014 ident: 10.1016/j.asoc.2021.107346_b24 article-title: Feature subset selection using improved binary gravitational search algorithm publication-title: J. Intell. Fuzzy Syst. – volume: 57 start-page: 549 year: 2013 ident: 10.1016/j.asoc.2021.107346_b40 article-title: Binary Accelerated Particle Swarm Algorithm (BAPSA) for discrete optimization problems publication-title: J. Global Optim. doi: 10.1007/s10898-012-0006-1 – volume: 154 start-page: 43 year: 2018 ident: 10.1016/j.asoc.2021.107346_b28 article-title: An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.05.009 – volume: 54 year: 2020 ident: 10.1016/j.asoc.2021.107346_b46 article-title: A survey on swarm intelligence approaches to feature selection in data mining publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100663 – start-page: 4104 year: 1997 ident: 10.1016/j.asoc.2021.107346_b7 article-title: A discrete binary version of the particle swarm algorithm – volume: 236 start-page: 2741 year: 2012 ident: 10.1016/j.asoc.2021.107346_b31 article-title: A global best artificial bee colony algorithm for global optimization publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.01.013 – start-page: 1873 year: 2006 ident: 10.1016/j.asoc.2021.107346_b43 article-title: Binary differential evolution – volume: 28 start-page: 229 year: 1955 ident: 10.1016/j.asoc.2021.107346_b64 article-title: Three problems in rationing capital publication-title: J. Bus. doi: 10.1086/294081 – volume: 218 start-page: 11042 year: 2012 ident: 10.1016/j.asoc.2021.107346_b42 article-title: A modified binary particle swarm optimization for knapsack problems publication-title: Appl. Math. Comput. – volume: 422 start-page: 462 year: 2018 ident: 10.1016/j.asoc.2021.107346_b55 article-title: Pareto front feature selection based on artificial bee colony optimization publication-title: Inf. Sci. (Ny). doi: 10.1016/j.ins.2017.09.028 – volume: 82 year: 2019 ident: 10.1016/j.asoc.2021.107346_b3 article-title: JayaX: Jaya algorithm with xor operator for binary optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105576 – volume: 102 year: 2021 ident: 10.1016/j.asoc.2021.107346_b61 article-title: A KNN quantum cuckoo search algorithm applied to the multidimensional knapsack problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.107077 – volume: 95 year: 2020 ident: 10.1016/j.asoc.2021.107346_b1 article-title: Multi-point shortest path planning based on an Improved Discrete Bat Algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106498 – start-page: 1 year: 2011 ident: 10.1016/j.asoc.2021.107346_b45 article-title: Binary artificial bee colony optimization – volume: 8 start-page: 1130 year: 2019 ident: 10.1016/j.asoc.2021.107346_b41 article-title: A new quadratic binary harris hawk optimization for feature selection publication-title: Electronics doi: 10.3390/electronics8101130 – volume: 3 start-page: 28 year: 2008 ident: 10.1016/j.asoc.2021.107346_b12 article-title: A novel probability binary particle swarm optimization algorithm and its application publication-title: J. Softw. doi: 10.4304/jsw.3.9.28-35 – volume: 17 start-page: 491 year: 2005 ident: 10.1016/j.asoc.2021.107346_b56 article-title: Toward integrating feature selection algorithms for classification and clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.66 – volume: 149 year: 2020 ident: 10.1016/j.asoc.2021.107346_b63 article-title: Diversity-preserving quantum particle swarm optimization for the multidimensional knapsack problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113310 – volume: 7 year: 2018 ident: 10.1016/j.asoc.2021.107346_b66 article-title: The importance of transfer function in solving set-union knapsack problem based on discrete moth search algorithm publication-title: Mathematics doi: 10.3390/math7010017 – start-page: 241 year: 2020 ident: 10.1016/j.asoc.2021.107346_b10 article-title: A novel U-shaped transfer function for binary particle swarm optimisation – volume: 124 start-page: 97 year: 2019 ident: 10.1016/j.asoc.2021.107346_b47 article-title: Hybrid fast unsupervised feature selection for high-dimensional data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.01.016 – year: 2017 ident: 10.1016/j.asoc.2021.107346_b68 – start-page: 39 year: 1995 ident: 10.1016/j.asoc.2021.107346_b39 article-title: A new optimizer using particle swarm theory – volume: 93 year: 2020 ident: 10.1016/j.asoc.2021.107346_b21 article-title: Feature selection based on improved binary global harmony search for data classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106402 – volume: 512 start-page: 1503 year: 2020 ident: 10.1016/j.asoc.2021.107346_b23 article-title: A time-varying mirrored S-shaped transfer function for binary particle swarm optimization publication-title: Inf. Sci. (Ny). doi: 10.1016/j.ins.2019.10.029 – volume: 27 start-page: 1053 year: 2016 ident: 10.1016/j.asoc.2021.107346_b36 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – volume: 31 start-page: 171 year: 2019 ident: 10.1016/j.asoc.2021.107346_b54 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2988-6 – volume: 507 start-page: 67 year: 2020 ident: 10.1016/j.asoc.2021.107346_b18 article-title: Binary differential evolution with self-learning for multi-objective feature selection publication-title: Inf. Sci. (Ny). doi: 10.1016/j.ins.2019.08.040 – volume: 43 start-page: 5 year: 2010 ident: 10.1016/j.asoc.2021.107346_b50 article-title: Feature subset selection in large dimensionality domains publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.06.009 – volume: 195 year: 2020 ident: 10.1016/j.asoc.2021.107346_b22 article-title: Improved binary grey wolf optimizer and its application for feature selection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105746 – start-page: 89 year: 2005 ident: 10.1016/j.asoc.2021.107346_b44 article-title: Combining particle swarm optimisation with angle modulation to solve binary problems – volume: 9 start-page: 1 year: 2013 ident: 10.1016/j.asoc.2021.107346_b8 article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.09.002 – start-page: 316 year: 2006 ident: 10.1016/j.asoc.2021.107346_b15 article-title: A continuous particle swarm optimization algorithm for uncapacitated facility location problem – volume: 21 start-page: 631 year: 2005 ident: 10.1016/j.asoc.2021.107346_b69 article-title: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti033 – volume: 299 start-page: 58 year: 2015 ident: 10.1016/j.asoc.2021.107346_b38 article-title: Memetic binary particle swarm optimization for discrete optimization problems publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2014.12.016 – volume: 112 start-page: 18 year: 2020 ident: 10.1016/j.asoc.2021.107346_b71 article-title: Augmented whale feature selection for IoT attacks: Structure, analysis and applications publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2020.05.020 – volume: 11 start-page: 1 year: 2013 ident: 10.1016/j.asoc.2021.107346_b30 article-title: An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.12.004 – volume: 87 year: 2020 ident: 10.1016/j.asoc.2021.107346_b49 article-title: Unsupervised feature selection via graph matrix learning and the low-dimensional space learning for classification publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103283 – volume: 213 start-page: 54 year: 2016 ident: 10.1016/j.asoc.2021.107346_b37 article-title: Binary ant lion approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.101 – volume: 43 start-page: 583 year: 2016 ident: 10.1016/j.asoc.2021.107346_b59 article-title: Binary artificial algae algorithm for multidimensional knapsack problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.02.027 – volume: 2020 year: 2020 ident: 10.1016/j.asoc.2021.107346_b11 article-title: Z-shaped transfer functions for binary particle swarm optimization algorithm publication-title: Comput. Intell. Neurosci. doi: 10.1155/2020/6502807 – volume: 172 start-page: 371 year: 2016 ident: 10.1016/j.asoc.2021.107346_b35 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 115 start-page: 631 year: 2018 ident: 10.1016/j.asoc.2021.107346_b5 article-title: Similarity and logic gate-based tree-seed algorithms for binary optimization publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.12.009  | 
    
| SSID | ssj0016928 | 
    
| Score | 2.428284 | 
    
| Snippet | In the real world, many optimization problems are discrete and very complex to solve. Some of them are in the class of NP-hard problems and their search spaces... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 107346 | 
    
| SubjectTerms | 0–1 multi-knapsack problem (MKP) Binary meta-heuristic algorithm Discrete optimization problem Feature selection Function optimization Transfer function, Upgrade transfer function (UTF)  | 
    
| Title | UTF: Upgrade transfer function for binary meta-heuristic algorithms | 
    
| URI | https://dx.doi.org/10.1016/j.asoc.2021.107346 | 
    
| Volume | 106 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3ic1mH8l6K8VSX0XUQm9hs4-20hc1vfrb3U02oiA9eArZzEL4spn5Bma-AeCSC6RiJXQQGRQFxIQ4yIjNebSgUWIIz1DmupGf-qw3IPdDOqyBTtUL48oqve8vfXrhrf1Ky6PZWk4mrVebeSSEExY5FVHGnew2IbGbYnD9-V3mgRgv5qs648BZ-8aZssZLWARsjhghuxBjR4L_Ck4_Ak53D-x4pgjb5cvsg5qeH4DdagoD9D_lIejYE3YDB8vRSigN84KI2ucuYDnQoWWlMCu6buFM5yIY63WpzgzFdLRYTfLx7OMIDLq3b51e4EcjBBKHYR5QhSIds1BYPqcSjLnJuJCCMSq5UYQaJ0zGBKcyNKG0lCFRitnMTSrDCU0QPgb1-WKuTwCMkbGsSmJksLaRCguUURvYBdY61phmDYAqTFLpdcPd-IppWhWIvacOx9ThmJY4NsDV955lqZqx0ZpWUKe_vn1q3fqGfaf_3HcGtt1dWXR7Dur5aq0vLLXIs2Zxdppgq915eXx217uHXv8LX4rN8g | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2woNI4fidlQRVWgZaGVullObLdFfamkK78dO3EQSIiB1b6TrM_23XfSPQC45hKpWEkdRAZFATEhDlJiYx4taZQYwlOUumrk3gvrDMjTkA5roFXVwri0Sm_7S5teWGu_0vRoNpeTSfPVRh4J4YRFroso42wDbBIaxS4Cu_34yvNAjBcDVp104MR95UyZ5CUtBDZIjJBdiLFjwb95p28ep70HdjxVhPflafZBTc8PwG41hgH6X3kIWvaJ3cHBcrSSSsO8YKJ233kshzq0tBSmRdktnOlcBmO9LtszQzkdLVaTfDx7PwKD9kO_1Qn8bIQgw2GYB1ShSMcslJbQqQRjblIuM8kYzbhRhBrXmYxJTrPQhJnlDIlSzIZumTKc0AThY1CfL-b6BMAYGUurMowM1tZVYYlSaj27xFrHGtO0AVCFich843A3v2IqqgyxN-FwFA5HUeLYADdfOsuybcaf0rSCWvy4fGHt-h96p__UuwJbnX6vK7qPL89nYNvtlBm456Cer9b6wvKMPL0s3tEn5eHN8g | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UTF%3A+Upgrade+transfer+function+for+binary+meta-heuristic+algorithms&rft.jtitle=Applied+soft+computing&rft.au=Beheshti%2C+Zahra&rft.date=2021-07-01&rft.issn=1568-4946&rft.volume=106&rft.spage=107346&rft_id=info:doi/10.1016%2Fj.asoc.2021.107346&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107346 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |