UTF: Upgrade transfer function for binary meta-heuristic algorithms

In the real world, many optimization problems are discrete and very complex to solve. Some of them are in the class of NP-hard problems and their search spaces grow exponentially with the problem size. As a result, an exhaustive search will be impractical using exact algorithms. In the last decades,...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 106; p. 107346
Main Author Beheshti, Zahra
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2021
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2021.107346

Cover

Abstract In the real world, many optimization problems are discrete and very complex to solve. Some of them are in the class of NP-hard problems and their search spaces grow exponentially with the problem size. As a result, an exhaustive search will be impractical using exact algorithms. In the last decades, meta-heuristic algorithms as approximate algorithms have shown superior performance in solving these problems. The majority of these algorithms have been designed for continuous search spaces and are not able to solve binary optimization problems. Therefore, a transfer function is applied to convert the continuous search space to the binary one. The performance of such binary algorithms depends on their ability of exploration, exploitation and transfer function. Several transfer functions have been introduced so far but they have shown poor exploration and exploitation in solving some problems. In this study, a novel adaptive transfer function, based on two linear functions, is proposed to overcome the shortcomings of existing transfer functions. The proposed method called upgrade transfer function (UTF) adapts itself during running the algorithm to switch from exploration to exploitation. This capability also covers disadvantages of metaheuristic algorithms in terms of poor exploration and exploitation. The performance of UTF has been evaluated by three discrete optimization problems: function optimization, feature selection and the 0–1 multi-knapsack problem (MKP). The results of binary particle swarm optimization (BPSO), binary artificial bee colony (BABC) and several improved BPSO and BABC have been compared with those of UTF–BPSO and UTF–BABC using function optimization problems. Also, the efficiency of UTF–BPSO and UTF–BABC and some binary meta-heuristic algorithms such as binary salp swarm algorithm (BSSA) and binary gray wolf optimization (bGWO), binary dragon algorithm (BDA), binary multi-neighborhood artificial bee colony (BMNABC), binary hybrid topology particle swarm optimization quadratic interpolation (BHTPSO-QI), binary ant lion optimizer (bALO) and binary gravitational search algorithm (BGSA) have been evaluated by feature selection problems. Moreover, UTF and seventeen transfer functions have been applied in original PSO, ABC, SSA and GWO algorithms to solve low and high dimensions 0–1 MKP benchmark instances. The results showed that the new transfer function significantly enhances the performance of algorithms to achieve the best solution in the binary search space. •A novel adaptive transfer function, based on two linear functions, is proposed called upgrade transfer function (UTF).•UTF adapts itself during running the algorithm to switch from exploration to exploitation.•The efficiency of UTF has been compared with some well-known transfer functions on three problems: function optimization, feature selection and the 0–1 multi-knapsack problem (MKP).•The results show that UTF significantly improves the performance of binary meta-heuristic algorithms to achieve the best solution.
AbstractList In the real world, many optimization problems are discrete and very complex to solve. Some of them are in the class of NP-hard problems and their search spaces grow exponentially with the problem size. As a result, an exhaustive search will be impractical using exact algorithms. In the last decades, meta-heuristic algorithms as approximate algorithms have shown superior performance in solving these problems. The majority of these algorithms have been designed for continuous search spaces and are not able to solve binary optimization problems. Therefore, a transfer function is applied to convert the continuous search space to the binary one. The performance of such binary algorithms depends on their ability of exploration, exploitation and transfer function. Several transfer functions have been introduced so far but they have shown poor exploration and exploitation in solving some problems. In this study, a novel adaptive transfer function, based on two linear functions, is proposed to overcome the shortcomings of existing transfer functions. The proposed method called upgrade transfer function (UTF) adapts itself during running the algorithm to switch from exploration to exploitation. This capability also covers disadvantages of metaheuristic algorithms in terms of poor exploration and exploitation. The performance of UTF has been evaluated by three discrete optimization problems: function optimization, feature selection and the 0–1 multi-knapsack problem (MKP). The results of binary particle swarm optimization (BPSO), binary artificial bee colony (BABC) and several improved BPSO and BABC have been compared with those of UTF–BPSO and UTF–BABC using function optimization problems. Also, the efficiency of UTF–BPSO and UTF–BABC and some binary meta-heuristic algorithms such as binary salp swarm algorithm (BSSA) and binary gray wolf optimization (bGWO), binary dragon algorithm (BDA), binary multi-neighborhood artificial bee colony (BMNABC), binary hybrid topology particle swarm optimization quadratic interpolation (BHTPSO-QI), binary ant lion optimizer (bALO) and binary gravitational search algorithm (BGSA) have been evaluated by feature selection problems. Moreover, UTF and seventeen transfer functions have been applied in original PSO, ABC, SSA and GWO algorithms to solve low and high dimensions 0–1 MKP benchmark instances. The results showed that the new transfer function significantly enhances the performance of algorithms to achieve the best solution in the binary search space. •A novel adaptive transfer function, based on two linear functions, is proposed called upgrade transfer function (UTF).•UTF adapts itself during running the algorithm to switch from exploration to exploitation.•The efficiency of UTF has been compared with some well-known transfer functions on three problems: function optimization, feature selection and the 0–1 multi-knapsack problem (MKP).•The results show that UTF significantly improves the performance of binary meta-heuristic algorithms to achieve the best solution.
ArticleNumber 107346
Author Beheshti, Zahra
Author_xml – sequence: 1
  givenname: Zahra
  surname: Beheshti
  fullname: Beheshti, Zahra
  email: z-beheshti@iaun.ac.ir
  organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
BookMark eNp9kM1KAzEURoNUsK2-gKu8wNRkJskk4kaKVaHgpl2HND9tSpuUJBV8ezPUlYuu7uXCuXzfmYBRiMEC8IjRDCPMnvYzlaOetajF9dB3hN2AMeZ92wjG8ajulPGGCMLuwCTnPaqQaPkYzNerxTNcn7ZJGQtLUiE7m6A7B118DNDFBDc-qPQDj7aoZmfPyefiNVSHbUy-7I75Htw6dcj24W9OwXrxtpp_NMuv98_567LRHUKloQa3tmdIYYoM7zrhNkJpxRjVwhlCHUWkY0pQjRzSlBJuDOtxr40ThHLcTQG__NUp5pysk9oXNcSsuf1BYiQHGXIvBxlykCEvMira_kNPyR9rq-vQywWytdS3t0lm7W3Q1vhkdZEm-mv4L30heo8
CitedBy_id crossref_primary_10_1038_s41545_024_00407_5
crossref_primary_10_1016_j_knosys_2022_109446
crossref_primary_10_3390_biomimetics9030187
crossref_primary_10_1016_j_compbiolchem_2022_107767
crossref_primary_10_1016_j_engappai_2023_106554
crossref_primary_10_1007_s41870_024_01758_5
crossref_primary_10_3390_math11010129
crossref_primary_10_1007_s00521_021_06775_0
crossref_primary_10_1007_s00521_022_07780_7
crossref_primary_10_1016_j_cosrev_2023_100559
crossref_primary_10_3390_biomimetics9020089
crossref_primary_10_1007_s10586_025_05102_9
crossref_primary_10_1016_j_asoc_2023_110583
crossref_primary_10_1016_j_eswa_2023_120404
crossref_primary_10_3390_computers12120249
crossref_primary_10_1007_s11227_022_04507_2
crossref_primary_10_1016_j_knosys_2023_111191
crossref_primary_10_3390_biomimetics8020266
crossref_primary_10_1016_j_ins_2024_121417
Cites_doi 10.1016/j.swevo.2011.02.002
10.1016/j.asoc.2017.03.002
10.1080/01969722.2018.1541597
10.1016/j.asoc.2017.04.050
10.3390/math8081355
10.1016/S0377-2217(03)00274-1
10.1007/s00521-016-2818-2
10.1023/A:1009642405419
10.1016/j.asoc.2019.105645
10.1016/S0304-3975(97)00115-1
10.1016/j.ins.2013.08.015
10.1016/j.patrec.2018.04.007
10.1016/j.asoc.2018.10.036
10.1016/j.ygeno.2018.04.004
10.1016/j.asoc.2015.04.007
10.1016/j.asoc.2018.01.001
10.1016/j.engappai.2017.10.024
10.1007/s11047-009-9175-3
10.1057/jors.1990.166
10.1016/j.energy.2018.12.165
10.1016/j.asoc.2020.106260
10.1016/j.cie.2014.08.016
10.1016/j.knosys.2018.08.003
10.1007/s10898-012-0006-1
10.1016/j.knosys.2018.05.009
10.1016/j.swevo.2020.100663
10.1016/j.cam.2012.01.013
10.1086/294081
10.1016/j.ins.2017.09.028
10.1016/j.asoc.2019.105576
10.1016/j.asoc.2020.107077
10.1016/j.asoc.2020.106498
10.3390/electronics8101130
10.4304/jsw.3.9.28-35
10.1109/TKDE.2005.66
10.1016/j.eswa.2020.113310
10.3390/math7010017
10.1016/j.eswa.2019.01.016
10.1016/j.asoc.2020.106402
10.1016/j.ins.2019.10.029
10.1007/s00521-015-1920-1
10.1007/s00521-017-2988-6
10.1016/j.ins.2019.08.040
10.1016/j.patcog.2009.06.009
10.1016/j.knosys.2020.105746
10.1016/j.swevo.2012.09.002
10.1093/bioinformatics/bti033
10.1016/j.ins.2014.12.016
10.1016/j.future.2020.05.020
10.1016/j.swevo.2012.12.004
10.1016/j.engappai.2019.103283
10.1016/j.neucom.2016.03.101
10.1016/j.asoc.2016.02.027
10.1155/2020/6502807
10.1016/j.neucom.2015.06.083
10.1016/j.cie.2017.12.009
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107346
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107346
S1568494621002696
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-5d12e760a150d8339fb9aca665c9fd45f50436a95c0f0c5548dd6717cdf945813
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Wed Oct 29 21:22:09 EDT 2025
Thu Apr 24 22:55:23 EDT 2025
Fri Feb 23 02:41:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 0–1 multi-knapsack problem (MKP)
Transfer function, Upgrade transfer function (UTF)
Discrete optimization problem
Feature selection
Function optimization
Binary meta-heuristic algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-5d12e760a150d8339fb9aca665c9fd45f50436a95c0f0c5548dd6717cdf945813
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2021_107346
crossref_primary_10_1016_j_asoc_2021_107346
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107346
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bansal, Deep (b42) 2012; 218
Kiran (b14) 2015; 33
Pashaei, Pashaei, Aydin (b19) 2019; 111
Duda, Hart, Stork (b70) 2012
Sevkli, Guner (b15) 2006
Gholami, Pourpanah, Wang (b21) 2020; 93
Han, Liu, Wang, Li (b49) 2020; 87
Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li, Mirjalili (b27) 2018; 161
Lai, Hao, Fu, Yue (b63) 2020; 149
Long, Jiao, Liang, Tang (b33) 2018; 68
Sayed, Hassanien, Azar (b54) 2019; 31
Rao, Shi, Rodrigue, Feng, Xia, Elhoseny, Yuan, Gu (b53) 2019; 74
Mirjalili, Zhang, Mirjalili, Chalup, Noman (b10) 2020
Wang, Wang, Fu, Zhen (b12) 2008; 3
Beheshti, Shamsuddin (b16) 2014; 258
Gao, Liu, Huang (b31) 2012; 236
Beheshti, Shamsuddin, Yuhaniz (b40) 2013; 57
Cilia, De Stefano, Fontanella, Scotto di Freca (b48) 2019; 121
Korkmaz, Kiran (b6) 2018; 64
Aslan, Gunduz, Kiran (b3) 2019; 82
Feng, An, Gao (b66) 2018; 7
Rashedi, Nezamabadi-pour (b24) 2014; 26
Dua, Graff (b68) 2017
Statnikov, Aliferis, Tsamardinos, Hardin, Levy (b69) 2005; 21
Rashedi, Nezamabadi-Pour, Saryazdi (b34) 2010; 9
Nezamabadi-pour, Hossein, Maghfoori-Farsangi (b9) 2008; 6
Beheshti, Shamsuddin, Hasan (b38) 2015; 299
Beasley (b72) 1990; 41
Hildreth (b73) 2003
Wang, Wang, Zhou, Zhao, Wang, Xiao, Xu (b32) 2020
Abdel-Basset, Mohamed, Mirjalili (b60) 2020
Kennedy, Eberhart (b7) 1997
Yang, Li, Guo, Feng, Niu, Xue, Foley (b20) 2019; 170
Yu, Gao, Wang, Meng (b29) 2020; 8
Pampara, Franken, Engelbrecht (b44) 2005
Gheyas, Smith (b50) 2010; 43
Beheshti (b25) 2018; 49
Chu, Beasley (b65) 1998; 4
Cinar, Kiran (b5) 2018; 115
Jia, Duan, Khan (b4) 2014; 76
Pashaei, Aydin (b57) 2017; 56
Pampara, Engelbrecht, Franken (b43) 2006
Amaldi, Kann (b51) 1998; 209
Liu, Yu (b56) 2005; 17
Liu, Luo, Guo, Tan (b1) 2020; 95
Emary, Zawbaa, Hassanien (b37) 2016; 213
Mafarja, Heidari, Habib, Faris, Thaher, Aljarah (b71) 2020; 112
Fréville (b58) 2004; 155
Arani, Mirzabeygi, Panahi (b30) 2013; 11
Too, Abdullah, Mohd Saad (b41) 2019; 8
Beheshti (b13) 2020
Lorie, Savage (b64) 1955; 28
Mirjalili, Lewis (b8) 2013; 9
Eberhart, Kennedy (b39) 1995
Luo, Zhao (b62) 2019; 83
Beheshti, Shamsuddin, Hasan, Wong (b17) 2016; 8
Islam, Li, Mei (b26) 2017; 59
Hancer, Xue, Zhang, Karaboga, Akay (b55) 2018; 422
Zhang, Wu, Li, Wang, Yang, Lee, Jung (b59) 2016; 43
Anita (b2) 2020; 92
Zhang, Gong, Gao, Tian, Sun (b18) 2020; 507
Emary, Zawbaa, Hassanien, Ella (b35) 2016; 172
Pampara, Engelbrecht (b45) 2011
Nguyen, Xue, Zhang (b46) 2020; 54
Manbari, AkhlaghianTab, Salavati (b47) 2019; 124
García, Maureira (b61) 2021; 102
Mirjalili (b36) 2016; 27
Faris, Hassonah, A.-Z. Ala, Mirjalili, Aljarah (b52) 2018; 30
Beheshti (b23) 2020; 512
Guo, Wang, Guo (b11) 2020; 2020
Faris, Mafarja, Heidari, Aljarah, Al-Zoubi, Mirjalili, Fujita (b28) 2018; 154
Hu, Pan, Chu (b22) 2020; 195
Derrac, Garcia, Molina, Herrera (b67) 2011; 1
Rashedi (10.1016/j.asoc.2021.107346_b34) 2010; 9
Lorie (10.1016/j.asoc.2021.107346_b64) 1955; 28
Mafarja (10.1016/j.asoc.2021.107346_b71) 2020; 112
Sayed (10.1016/j.asoc.2021.107346_b54) 2019; 31
Nguyen (10.1016/j.asoc.2021.107346_b46) 2020; 54
Liu (10.1016/j.asoc.2021.107346_b1) 2020; 95
Rashedi (10.1016/j.asoc.2021.107346_b24) 2014; 26
Mirjalili (10.1016/j.asoc.2021.107346_b36) 2016; 27
Han (10.1016/j.asoc.2021.107346_b49) 2020; 87
Beheshti (10.1016/j.asoc.2021.107346_b17) 2016; 8
Korkmaz (10.1016/j.asoc.2021.107346_b6) 2018; 64
Abdel-Basset (10.1016/j.asoc.2021.107346_b60) 2020
Fréville (10.1016/j.asoc.2021.107346_b58) 2004; 155
Cinar (10.1016/j.asoc.2021.107346_b5) 2018; 115
Mirjalili (10.1016/j.asoc.2021.107346_b10) 2020
Derrac (10.1016/j.asoc.2021.107346_b67) 2011; 1
Hildreth (10.1016/j.asoc.2021.107346_b73) 2003
Zhang (10.1016/j.asoc.2021.107346_b59) 2016; 43
Lai (10.1016/j.asoc.2021.107346_b63) 2020; 149
Manbari (10.1016/j.asoc.2021.107346_b47) 2019; 124
Kennedy (10.1016/j.asoc.2021.107346_b7) 1997
Luo (10.1016/j.asoc.2021.107346_b62) 2019; 83
Gholami (10.1016/j.asoc.2021.107346_b21) 2020; 93
García (10.1016/j.asoc.2021.107346_b61) 2021; 102
Cilia (10.1016/j.asoc.2021.107346_b48) 2019; 121
Chu (10.1016/j.asoc.2021.107346_b65) 1998; 4
Pashaei (10.1016/j.asoc.2021.107346_b57) 2017; 56
Faris (10.1016/j.asoc.2021.107346_b28) 2018; 154
Emary (10.1016/j.asoc.2021.107346_b35) 2016; 172
Amaldi (10.1016/j.asoc.2021.107346_b51) 1998; 209
Sevkli (10.1016/j.asoc.2021.107346_b15) 2006
Yang (10.1016/j.asoc.2021.107346_b20) 2019; 170
Yu (10.1016/j.asoc.2021.107346_b29) 2020; 8
Mirjalili (10.1016/j.asoc.2021.107346_b8) 2013; 9
Mafarja (10.1016/j.asoc.2021.107346_b27) 2018; 161
Arani (10.1016/j.asoc.2021.107346_b30) 2013; 11
Beheshti (10.1016/j.asoc.2021.107346_b40) 2013; 57
Duda (10.1016/j.asoc.2021.107346_b70) 2012
Faris (10.1016/j.asoc.2021.107346_b52) 2018; 30
Guo (10.1016/j.asoc.2021.107346_b11) 2020; 2020
Zhang (10.1016/j.asoc.2021.107346_b18) 2020; 507
Beasley (10.1016/j.asoc.2021.107346_b72) 1990; 41
Nezamabadi-pour (10.1016/j.asoc.2021.107346_b9) 2008; 6
Beheshti (10.1016/j.asoc.2021.107346_b25) 2018; 49
Wang (10.1016/j.asoc.2021.107346_b32) 2020
Aslan (10.1016/j.asoc.2021.107346_b3) 2019; 82
Hancer (10.1016/j.asoc.2021.107346_b55) 2018; 422
Anita (10.1016/j.asoc.2021.107346_b2) 2020; 92
Hu (10.1016/j.asoc.2021.107346_b22) 2020; 195
Liu (10.1016/j.asoc.2021.107346_b56) 2005; 17
Pashaei (10.1016/j.asoc.2021.107346_b19) 2019; 111
Wang (10.1016/j.asoc.2021.107346_b12) 2008; 3
Long (10.1016/j.asoc.2021.107346_b33) 2018; 68
Jia (10.1016/j.asoc.2021.107346_b4) 2014; 76
Gao (10.1016/j.asoc.2021.107346_b31) 2012; 236
Pampara (10.1016/j.asoc.2021.107346_b45) 2011
Pampara (10.1016/j.asoc.2021.107346_b44) 2005
Rao (10.1016/j.asoc.2021.107346_b53) 2019; 74
Beheshti (10.1016/j.asoc.2021.107346_b16) 2014; 258
Beheshti (10.1016/j.asoc.2021.107346_b13) 2020
Beheshti (10.1016/j.asoc.2021.107346_b38) 2015; 299
Bansal (10.1016/j.asoc.2021.107346_b42) 2012; 218
Statnikov (10.1016/j.asoc.2021.107346_b69) 2005; 21
Eberhart (10.1016/j.asoc.2021.107346_b39) 1995
Dua (10.1016/j.asoc.2021.107346_b68) 2017
Kiran (10.1016/j.asoc.2021.107346_b14) 2015; 33
Islam (10.1016/j.asoc.2021.107346_b26) 2017; 59
Gheyas (10.1016/j.asoc.2021.107346_b50) 2010; 43
Too (10.1016/j.asoc.2021.107346_b41) 2019; 8
Pampara (10.1016/j.asoc.2021.107346_b43) 2006
Emary (10.1016/j.asoc.2021.107346_b37) 2016; 213
Beheshti (10.1016/j.asoc.2021.107346_b23) 2020; 512
Feng (10.1016/j.asoc.2021.107346_b66) 2018; 7
References_xml – volume: 17
  start-page: 491
  year: 2005
  end-page: 502
  ident: b56
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 92
  year: 2020
  ident: b2
  article-title: Discrete artificial electric field algorithm for high-order graph matching
  publication-title: Appl. Soft Comput.
– year: 2012
  ident: b70
  article-title: Pattern Classification
– year: 2020
  ident: b13
  article-title: A novel x-shaped binary particle swarm optimization
  publication-title: Soft Comput.
– volume: 95
  year: 2020
  ident: b1
  article-title: Multi-point shortest path planning based on an Improved Discrete Bat Algorithm
  publication-title: Appl. Soft Comput.
– volume: 154
  start-page: 43
  year: 2018
  end-page: 67
  ident: b28
  article-title: An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems
  publication-title: Knowl.-Based Syst.
– year: 2003
  ident: b73
  article-title: Case Studies in Public Budgeting and Financial Management, Revised and Expanded
– volume: 124
  start-page: 97
  year: 2019
  end-page: 118
  ident: b47
  article-title: Hybrid fast unsupervised feature selection for high-dimensional data
  publication-title: Expert Syst. Appl.
– start-page: 89
  year: 2005
  end-page: 96
  ident: b44
  article-title: Combining particle swarm optimisation with angle modulation to solve binary problems
  publication-title: 2005 IEEE Congr. Evol. Comput., Vol. 1
– volume: 8
  start-page: 1130
  year: 2019
  ident: b41
  article-title: A new quadratic binary harris hawk optimization for feature selection
  publication-title: Electronics
– volume: 7
  year: 2018
  ident: b66
  article-title: The importance of transfer function in solving set-union knapsack problem based on discrete moth search algorithm
  publication-title: Mathematics
– volume: 21
  start-page: 631
  year: 2005
  end-page: 643
  ident: b69
  article-title: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis.
  publication-title: Bioinformatics
– volume: 507
  start-page: 67
  year: 2020
  end-page: 85
  ident: b18
  article-title: Binary differential evolution with self-learning for multi-objective feature selection
  publication-title: Inf. Sci. (Ny).
– volume: 115
  start-page: 631
  year: 2018
  end-page: 646
  ident: b5
  article-title: Similarity and logic gate-based tree-seed algorithms for binary optimization
  publication-title: Comput. Ind. Eng.
– start-page: 316
  year: 2006
  end-page: 323
  ident: b15
  article-title: A continuous particle swarm optimization algorithm for uncapacitated facility location problem
  publication-title: Ant Colony Optim. Swarm Intell.
– year: 2020
  ident: b32
  article-title: Artificial bee colony algorithm based on knowledge fusion
  publication-title: Complex Intell. Syst.
– volume: 93
  year: 2020
  ident: b21
  article-title: Feature selection based on improved binary global harmony search for data classification
  publication-title: Appl. Soft Comput.
– volume: 112
  start-page: 18
  year: 2020
  end-page: 40
  ident: b71
  article-title: Augmented whale feature selection for IoT attacks: Structure, analysis and applications
  publication-title: Futur. Gener. Comput. Syst.
– start-page: 1
  year: 2011
  end-page: 8
  ident: b45
  article-title: Binary artificial bee colony optimization
  publication-title: 2011 IEEE Symp. Swarm Intell
– volume: 258
  start-page: 54
  year: 2014
  end-page: 79
  ident: b16
  article-title: CAPSO: Centripetal accelerated particle swarm optimization
  publication-title: Inf. Sci. (Ny).
– volume: 213
  start-page: 54
  year: 2016
  end-page: 65
  ident: b37
  article-title: Binary ant lion approaches for feature selection
  publication-title: Neurocomputing
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: b8
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol. Comput.
– volume: 68
  start-page: 63
  year: 2018
  end-page: 80
  ident: b33
  article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 422
  start-page: 462
  year: 2018
  end-page: 479
  ident: b55
  article-title: Pareto front feature selection based on artificial bee colony optimization
  publication-title: Inf. Sci. (Ny).
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: b35
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– volume: 57
  start-page: 549
  year: 2013
  end-page: 573
  ident: b40
  article-title: Binary Accelerated Particle Swarm Algorithm (BAPSA) for discrete optimization problems
  publication-title: J. Global Optim.
– volume: 26
  start-page: 1211
  year: 2014
  end-page: 1221
  ident: b24
  article-title: Feature subset selection using improved binary gravitational search algorithm
  publication-title: J. Intell. Fuzzy Syst.
– volume: 49
  start-page: 452
  year: 2018
  end-page: 474
  ident: b25
  article-title: BMNABC: Binary multi-neighborhood artificial bee colony for high-dimensional discrete optimization problems
  publication-title: Cybern. Syst.
– start-page: 4104
  year: 1997
  end-page: 4108
  ident: b7
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: Proc. IEEE Int. Conf. Syst. Man, Cybern
– volume: 170
  start-page: 889
  year: 2019
  end-page: 905
  ident: b20
  article-title: A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles
  publication-title: Energy
– volume: 111
  start-page: 669
  year: 2019
  end-page: 686
  ident: b19
  article-title: Gene selection using hybrid binary black hole algorithm and modified binary particle swarm optimization
  publication-title: Genomics
– volume: 11
  start-page: 1
  year: 2013
  end-page: 15
  ident: b30
  article-title: An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance
  publication-title: Swarm Evol. Comput.
– volume: 31
  start-page: 171
  year: 2019
  end-page: 188
  ident: b54
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Comput. Appl.
– volume: 30
  start-page: 2355
  year: 2018
  end-page: 2369
  ident: b52
  article-title: A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture
  publication-title: Neural Comput. Appl.
– volume: 59
  start-page: 182
  year: 2017
  end-page: 196
  ident: b26
  article-title: A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO
  publication-title: Appl. Soft Comput.
– volume: 83
  year: 2019
  ident: b62
  article-title: A binary grey wolf optimizer for the multidimensional knapsack problem
  publication-title: Appl. Soft Comput.
– volume: 82
  year: 2019
  ident: b3
  article-title: JayaX: Jaya algorithm with xor operator for binary optimization
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b67
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 33
  start-page: 15
  year: 2015
  end-page: 23
  ident: b14
  article-title: The continuous artificial bee colony algorithm for binary optimization
  publication-title: Appl. Soft Comput.
– volume: 8
  start-page: 1355
  year: 2020
  ident: b29
  article-title: A hybrid particle swarm optimization algorithm enhanced with nonlinear inertial weight and Gaussian mutation for job shop scheduling problems
  publication-title: Mathematics
– volume: 87
  year: 2020
  ident: b49
  article-title: Unsupervised feature selection via graph matrix learning and the low-dimensional space learning for classification
  publication-title: Eng. Appl. Artif. Intell.
– volume: 9
  start-page: 727
  year: 2010
  end-page: 745
  ident: b34
  article-title: BGSA: binary gravitational search algorithm
  publication-title: Nat. Comput.
– volume: 6
  start-page: 21
  year: 2008
  end-page: 32
  ident: b9
  article-title: Binary particle swarm optimization: challenges and new solutions
  publication-title: J. Comput. Soc. Iran Comput. Sci. Eng.
– volume: 43
  start-page: 5
  year: 2010
  end-page: 13
  ident: b50
  article-title: Feature subset selection in large dimensionality domains
  publication-title: Pattern Recognit.
– start-page: 1873
  year: 2006
  end-page: 1879
  ident: b43
  article-title: Binary differential evolution
  publication-title: 2006 IEEE Int. Conf. Evol. Comput.
– volume: 28
  start-page: 229
  year: 1955
  end-page: 239
  ident: b64
  article-title: Three problems in rationing capital
  publication-title: J. Bus.
– volume: 236
  start-page: 2741
  year: 2012
  end-page: 2753
  ident: b31
  article-title: A global best artificial bee colony algorithm for global optimization
  publication-title: J. Comput. Appl. Math.
– volume: 121
  start-page: 77
  year: 2019
  end-page: 86
  ident: b48
  article-title: A ranking-based feature selection approach for handwritten character recognition
  publication-title: Pattern Recognit. Lett.
– volume: 155
  start-page: 1
  year: 2004
  end-page: 21
  ident: b58
  article-title: The multidimensional 0–1 knapsack problem: An overview
  publication-title: European J. Oper. Res.
– volume: 64
  start-page: 627
  year: 2018
  end-page: 640
  ident: b6
  article-title: An artificial algae algorithm with stigmergic behavior for binary optimization
  publication-title: Appl. Soft Comput.
– volume: 54
  year: 2020
  ident: b46
  article-title: A survey on swarm intelligence approaches to feature selection in data mining
  publication-title: Swarm Evol. Comput.
– volume: 2020
  year: 2020
  ident: b11
  article-title: Z-shaped transfer functions for binary particle swarm optimization algorithm
  publication-title: Comput. Intell. Neurosci.
– year: 2020
  ident: b60
  article-title: A binary equilibrium optimization algorithm for 0–1 knapsack problems
  publication-title: Comput. Ind. Eng.
– volume: 209
  start-page: 237
  year: 1998
  end-page: 260
  ident: b51
  article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
  publication-title: Theoret. Comput. Sci.
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: b36
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
– volume: 4
  start-page: 63
  year: 1998
  end-page: 86
  ident: b65
  article-title: A genetic algorithm for the multidimensional knapsack problem
  publication-title: J. Heuristics.
– start-page: 241
  year: 2020
  end-page: 259
  ident: b10
  article-title: A novel U-shaped transfer function for binary particle swarm optimisation
  publication-title: Soft Comput. Probl. Solving 2019
– volume: 8
  start-page: 1
  year: 2016
  end-page: 26
  ident: b17
  article-title: Improved centripetal accelerated particle swarm optimization
  publication-title: Int. J. Adv. Soft Comput. Appl.
– volume: 41
  start-page: 1069
  year: 1990
  end-page: 1072
  ident: b72
  article-title: OR-library: Distributing test problems by electronic mail
  publication-title: J. Oper. Res. Soc.
– volume: 195
  year: 2020
  ident: b22
  article-title: Improved binary grey wolf optimizer and its application for feature selection
  publication-title: Knowl.-Based Syst.
– volume: 512
  start-page: 1503
  year: 2020
  end-page: 1542
  ident: b23
  article-title: A time-varying mirrored S-shaped transfer function for binary particle swarm optimization
  publication-title: Inf. Sci. (Ny).
– volume: 76
  start-page: 360
  year: 2014
  end-page: 365
  ident: b4
  article-title: Binary Artificial Bee Colony optimization using bitwise operation
  publication-title: Comput. Ind. Eng.
– volume: 56
  start-page: 94
  year: 2017
  end-page: 106
  ident: b57
  article-title: Binary black hole algorithm for feature selection and classification on biological data
  publication-title: Appl. Soft Comput.
– volume: 161
  start-page: 185
  year: 2018
  end-page: 204
  ident: b27
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowl.-Based Syst.
– year: 2017
  ident: b68
  article-title: UCI machine learning repository
– start-page: 39
  year: 1995
  end-page: 43
  ident: b39
  article-title: A new optimizer using particle swarm theory
  publication-title: Proc. Sixth Int. Symp
– volume: 149
  year: 2020
  ident: b63
  article-title: Diversity-preserving quantum particle swarm optimization for the multidimensional knapsack problem
  publication-title: Expert Syst. Appl.
– volume: 299
  start-page: 58
  year: 2015
  end-page: 84
  ident: b38
  article-title: Memetic binary particle swarm optimization for discrete optimization problems
  publication-title: Inf. Sci. (Ny)
– volume: 74
  start-page: 634
  year: 2019
  end-page: 642
  ident: b53
  article-title: Feature selection based on artificial bee colony and gradient boosting decision tree
  publication-title: Appl. Soft Comput.
– volume: 218
  start-page: 11042
  year: 2012
  end-page: 11061
  ident: b42
  article-title: A modified binary particle swarm optimization for knapsack problems
  publication-title: Appl. Math. Comput.
– volume: 3
  start-page: 28
  year: 2008
  end-page: 35
  ident: b12
  article-title: A novel probability binary particle swarm optimization algorithm and its application
  publication-title: J. Softw.
– volume: 43
  start-page: 583
  year: 2016
  end-page: 595
  ident: b59
  article-title: Binary artificial algae algorithm for multidimensional knapsack problems
  publication-title: Appl. Soft Comput.
– volume: 102
  year: 2021
  ident: b61
  article-title: A KNN quantum cuckoo search algorithm applied to the multidimensional knapsack problem
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.asoc.2021.107346_b67
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 56
  start-page: 94
  year: 2017
  ident: 10.1016/j.asoc.2021.107346_b57
  article-title: Binary black hole algorithm for feature selection and classification on biological data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.03.002
– volume: 49
  start-page: 452
  year: 2018
  ident: 10.1016/j.asoc.2021.107346_b25
  article-title: BMNABC: Binary multi-neighborhood artificial bee colony for high-dimensional discrete optimization problems
  publication-title: Cybern. Syst.
  doi: 10.1080/01969722.2018.1541597
– volume: 59
  start-page: 182
  year: 2017
  ident: 10.1016/j.asoc.2021.107346_b26
  article-title: A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.04.050
– volume: 8
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2021.107346_b17
  article-title: Improved centripetal accelerated particle swarm optimization
  publication-title: Int. J. Adv. Soft Comput. Appl.
– volume: 8
  start-page: 1355
  year: 2020
  ident: 10.1016/j.asoc.2021.107346_b29
  article-title: A hybrid particle swarm optimization algorithm enhanced with nonlinear inertial weight and Gaussian mutation for job shop scheduling problems
  publication-title: Mathematics
  doi: 10.3390/math8081355
– volume: 155
  start-page: 1
  year: 2004
  ident: 10.1016/j.asoc.2021.107346_b58
  article-title: The multidimensional 0–1 knapsack problem: An overview
  publication-title: European J. Oper. Res.
  doi: 10.1016/S0377-2217(03)00274-1
– volume: 30
  start-page: 2355
  year: 2018
  ident: 10.1016/j.asoc.2021.107346_b52
  article-title: A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2818-2
– year: 2020
  ident: 10.1016/j.asoc.2021.107346_b13
  article-title: A novel x-shaped binary particle swarm optimization
  publication-title: Soft Comput.
– volume: 4
  start-page: 63
  year: 1998
  ident: 10.1016/j.asoc.2021.107346_b65
  article-title: A genetic algorithm for the multidimensional knapsack problem
  publication-title: J. Heuristics.
  doi: 10.1023/A:1009642405419
– volume: 83
  year: 2019
  ident: 10.1016/j.asoc.2021.107346_b62
  article-title: A binary grey wolf optimizer for the multidimensional knapsack problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105645
– volume: 209
  start-page: 237
  year: 1998
  ident: 10.1016/j.asoc.2021.107346_b51
  article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(97)00115-1
– volume: 258
  start-page: 54
  year: 2014
  ident: 10.1016/j.asoc.2021.107346_b16
  article-title: CAPSO: Centripetal accelerated particle swarm optimization
  publication-title: Inf. Sci. (Ny).
  doi: 10.1016/j.ins.2013.08.015
– year: 2003
  ident: 10.1016/j.asoc.2021.107346_b73
– volume: 121
  start-page: 77
  year: 2019
  ident: 10.1016/j.asoc.2021.107346_b48
  article-title: A ranking-based feature selection approach for handwritten character recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.04.007
– volume: 74
  start-page: 634
  year: 2019
  ident: 10.1016/j.asoc.2021.107346_b53
  article-title: Feature selection based on artificial bee colony and gradient boosting decision tree
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.036
– year: 2020
  ident: 10.1016/j.asoc.2021.107346_b60
  article-title: A binary equilibrium optimization algorithm for 0–1 knapsack problems
  publication-title: Comput. Ind. Eng.
– volume: 111
  start-page: 669
  year: 2019
  ident: 10.1016/j.asoc.2021.107346_b19
  article-title: Gene selection using hybrid binary black hole algorithm and modified binary particle swarm optimization
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2018.04.004
– volume: 6
  start-page: 21
  year: 2008
  ident: 10.1016/j.asoc.2021.107346_b9
  article-title: Binary particle swarm optimization: challenges and new solutions
  publication-title: J. Comput. Soc. Iran Comput. Sci. Eng.
– volume: 33
  start-page: 15
  year: 2015
  ident: 10.1016/j.asoc.2021.107346_b14
  article-title: The continuous artificial bee colony algorithm for binary optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.04.007
– volume: 64
  start-page: 627
  year: 2018
  ident: 10.1016/j.asoc.2021.107346_b6
  article-title: An artificial algae algorithm with stigmergic behavior for binary optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.01.001
– volume: 68
  start-page: 63
  year: 2018
  ident: 10.1016/j.asoc.2021.107346_b33
  article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.10.024
– volume: 9
  start-page: 727
  year: 2010
  ident: 10.1016/j.asoc.2021.107346_b34
  article-title: BGSA: binary gravitational search algorithm
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-009-9175-3
– volume: 41
  start-page: 1069
  year: 1990
  ident: 10.1016/j.asoc.2021.107346_b72
  article-title: OR-library: Distributing test problems by electronic mail
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1990.166
– volume: 170
  start-page: 889
  year: 2019
  ident: 10.1016/j.asoc.2021.107346_b20
  article-title: A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.165
– volume: 92
  year: 2020
  ident: 10.1016/j.asoc.2021.107346_b2
  article-title: Discrete artificial electric field algorithm for high-order graph matching
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106260
– volume: 76
  start-page: 360
  year: 2014
  ident: 10.1016/j.asoc.2021.107346_b4
  article-title: Binary Artificial Bee Colony optimization using bitwise operation
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2014.08.016
– volume: 161
  start-page: 185
  year: 2018
  ident: 10.1016/j.asoc.2021.107346_b27
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.08.003
– year: 2020
  ident: 10.1016/j.asoc.2021.107346_b32
  article-title: Artificial bee colony algorithm based on knowledge fusion
  publication-title: Complex Intell. Syst.
– year: 2012
  ident: 10.1016/j.asoc.2021.107346_b70
– volume: 26
  start-page: 1211
  year: 2014
  ident: 10.1016/j.asoc.2021.107346_b24
  article-title: Feature subset selection using improved binary gravitational search algorithm
  publication-title: J. Intell. Fuzzy Syst.
– volume: 57
  start-page: 549
  year: 2013
  ident: 10.1016/j.asoc.2021.107346_b40
  article-title: Binary Accelerated Particle Swarm Algorithm (BAPSA) for discrete optimization problems
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-012-0006-1
– volume: 154
  start-page: 43
  year: 2018
  ident: 10.1016/j.asoc.2021.107346_b28
  article-title: An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.05.009
– volume: 54
  year: 2020
  ident: 10.1016/j.asoc.2021.107346_b46
  article-title: A survey on swarm intelligence approaches to feature selection in data mining
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100663
– start-page: 4104
  year: 1997
  ident: 10.1016/j.asoc.2021.107346_b7
  article-title: A discrete binary version of the particle swarm algorithm
– volume: 236
  start-page: 2741
  year: 2012
  ident: 10.1016/j.asoc.2021.107346_b31
  article-title: A global best artificial bee colony algorithm for global optimization
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.01.013
– start-page: 1873
  year: 2006
  ident: 10.1016/j.asoc.2021.107346_b43
  article-title: Binary differential evolution
– volume: 28
  start-page: 229
  year: 1955
  ident: 10.1016/j.asoc.2021.107346_b64
  article-title: Three problems in rationing capital
  publication-title: J. Bus.
  doi: 10.1086/294081
– volume: 218
  start-page: 11042
  year: 2012
  ident: 10.1016/j.asoc.2021.107346_b42
  article-title: A modified binary particle swarm optimization for knapsack problems
  publication-title: Appl. Math. Comput.
– volume: 422
  start-page: 462
  year: 2018
  ident: 10.1016/j.asoc.2021.107346_b55
  article-title: Pareto front feature selection based on artificial bee colony optimization
  publication-title: Inf. Sci. (Ny).
  doi: 10.1016/j.ins.2017.09.028
– volume: 82
  year: 2019
  ident: 10.1016/j.asoc.2021.107346_b3
  article-title: JayaX: Jaya algorithm with xor operator for binary optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105576
– volume: 102
  year: 2021
  ident: 10.1016/j.asoc.2021.107346_b61
  article-title: A KNN quantum cuckoo search algorithm applied to the multidimensional knapsack problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.107077
– volume: 95
  year: 2020
  ident: 10.1016/j.asoc.2021.107346_b1
  article-title: Multi-point shortest path planning based on an Improved Discrete Bat Algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106498
– start-page: 1
  year: 2011
  ident: 10.1016/j.asoc.2021.107346_b45
  article-title: Binary artificial bee colony optimization
– volume: 8
  start-page: 1130
  year: 2019
  ident: 10.1016/j.asoc.2021.107346_b41
  article-title: A new quadratic binary harris hawk optimization for feature selection
  publication-title: Electronics
  doi: 10.3390/electronics8101130
– volume: 3
  start-page: 28
  year: 2008
  ident: 10.1016/j.asoc.2021.107346_b12
  article-title: A novel probability binary particle swarm optimization algorithm and its application
  publication-title: J. Softw.
  doi: 10.4304/jsw.3.9.28-35
– volume: 17
  start-page: 491
  year: 2005
  ident: 10.1016/j.asoc.2021.107346_b56
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.66
– volume: 149
  year: 2020
  ident: 10.1016/j.asoc.2021.107346_b63
  article-title: Diversity-preserving quantum particle swarm optimization for the multidimensional knapsack problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113310
– volume: 7
  year: 2018
  ident: 10.1016/j.asoc.2021.107346_b66
  article-title: The importance of transfer function in solving set-union knapsack problem based on discrete moth search algorithm
  publication-title: Mathematics
  doi: 10.3390/math7010017
– start-page: 241
  year: 2020
  ident: 10.1016/j.asoc.2021.107346_b10
  article-title: A novel U-shaped transfer function for binary particle swarm optimisation
– volume: 124
  start-page: 97
  year: 2019
  ident: 10.1016/j.asoc.2021.107346_b47
  article-title: Hybrid fast unsupervised feature selection for high-dimensional data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.01.016
– year: 2017
  ident: 10.1016/j.asoc.2021.107346_b68
– start-page: 39
  year: 1995
  ident: 10.1016/j.asoc.2021.107346_b39
  article-title: A new optimizer using particle swarm theory
– volume: 93
  year: 2020
  ident: 10.1016/j.asoc.2021.107346_b21
  article-title: Feature selection based on improved binary global harmony search for data classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106402
– volume: 512
  start-page: 1503
  year: 2020
  ident: 10.1016/j.asoc.2021.107346_b23
  article-title: A time-varying mirrored S-shaped transfer function for binary particle swarm optimization
  publication-title: Inf. Sci. (Ny).
  doi: 10.1016/j.ins.2019.10.029
– volume: 27
  start-page: 1053
  year: 2016
  ident: 10.1016/j.asoc.2021.107346_b36
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– volume: 31
  start-page: 171
  year: 2019
  ident: 10.1016/j.asoc.2021.107346_b54
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2988-6
– volume: 507
  start-page: 67
  year: 2020
  ident: 10.1016/j.asoc.2021.107346_b18
  article-title: Binary differential evolution with self-learning for multi-objective feature selection
  publication-title: Inf. Sci. (Ny).
  doi: 10.1016/j.ins.2019.08.040
– volume: 43
  start-page: 5
  year: 2010
  ident: 10.1016/j.asoc.2021.107346_b50
  article-title: Feature subset selection in large dimensionality domains
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.06.009
– volume: 195
  year: 2020
  ident: 10.1016/j.asoc.2021.107346_b22
  article-title: Improved binary grey wolf optimizer and its application for feature selection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105746
– start-page: 89
  year: 2005
  ident: 10.1016/j.asoc.2021.107346_b44
  article-title: Combining particle swarm optimisation with angle modulation to solve binary problems
– volume: 9
  start-page: 1
  year: 2013
  ident: 10.1016/j.asoc.2021.107346_b8
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.09.002
– start-page: 316
  year: 2006
  ident: 10.1016/j.asoc.2021.107346_b15
  article-title: A continuous particle swarm optimization algorithm for uncapacitated facility location problem
– volume: 21
  start-page: 631
  year: 2005
  ident: 10.1016/j.asoc.2021.107346_b69
  article-title: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti033
– volume: 299
  start-page: 58
  year: 2015
  ident: 10.1016/j.asoc.2021.107346_b38
  article-title: Memetic binary particle swarm optimization for discrete optimization problems
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.12.016
– volume: 112
  start-page: 18
  year: 2020
  ident: 10.1016/j.asoc.2021.107346_b71
  article-title: Augmented whale feature selection for IoT attacks: Structure, analysis and applications
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.05.020
– volume: 11
  start-page: 1
  year: 2013
  ident: 10.1016/j.asoc.2021.107346_b30
  article-title: An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.12.004
– volume: 87
  year: 2020
  ident: 10.1016/j.asoc.2021.107346_b49
  article-title: Unsupervised feature selection via graph matrix learning and the low-dimensional space learning for classification
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103283
– volume: 213
  start-page: 54
  year: 2016
  ident: 10.1016/j.asoc.2021.107346_b37
  article-title: Binary ant lion approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.101
– volume: 43
  start-page: 583
  year: 2016
  ident: 10.1016/j.asoc.2021.107346_b59
  article-title: Binary artificial algae algorithm for multidimensional knapsack problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.02.027
– volume: 2020
  year: 2020
  ident: 10.1016/j.asoc.2021.107346_b11
  article-title: Z-shaped transfer functions for binary particle swarm optimization algorithm
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2020/6502807
– volume: 172
  start-page: 371
  year: 2016
  ident: 10.1016/j.asoc.2021.107346_b35
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 115
  start-page: 631
  year: 2018
  ident: 10.1016/j.asoc.2021.107346_b5
  article-title: Similarity and logic gate-based tree-seed algorithms for binary optimization
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.12.009
SSID ssj0016928
Score 2.428284
Snippet In the real world, many optimization problems are discrete and very complex to solve. Some of them are in the class of NP-hard problems and their search spaces...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107346
SubjectTerms 0–1 multi-knapsack problem (MKP)
Binary meta-heuristic algorithm
Discrete optimization problem
Feature selection
Function optimization
Transfer function, Upgrade transfer function (UTF)
Title UTF: Upgrade transfer function for binary meta-heuristic algorithms
URI https://dx.doi.org/10.1016/j.asoc.2021.107346
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3ic1mH8l6K8VSX0XUQm9hs4-20hc1vfrb3U02oiA9eArZzEL4spn5Bma-AeCSC6RiJXQQGRQFxIQ4yIjNebSgUWIIz1DmupGf-qw3IPdDOqyBTtUL48oqve8vfXrhrf1Ky6PZWk4mrVebeSSEExY5FVHGnew2IbGbYnD9-V3mgRgv5qs648BZ-8aZssZLWARsjhghuxBjR4L_Ck4_Ak53D-x4pgjb5cvsg5qeH4DdagoD9D_lIejYE3YDB8vRSigN84KI2ucuYDnQoWWlMCu6buFM5yIY63WpzgzFdLRYTfLx7OMIDLq3b51e4EcjBBKHYR5QhSIds1BYPqcSjLnJuJCCMSq5UYQaJ0zGBKcyNKG0lCFRitnMTSrDCU0QPgb1-WKuTwCMkbGsSmJksLaRCguUURvYBdY61phmDYAqTFLpdcPd-IppWhWIvacOx9ThmJY4NsDV955lqZqx0ZpWUKe_vn1q3fqGfaf_3HcGtt1dWXR7Dur5aq0vLLXIs2Zxdppgq915eXx217uHXv8LX4rN8g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2woNI4fidlQRVWgZaGVullObLdFfamkK78dO3EQSIiB1b6TrM_23XfSPQC45hKpWEkdRAZFATEhDlJiYx4taZQYwlOUumrk3gvrDMjTkA5roFXVwri0Sm_7S5teWGu_0vRoNpeTSfPVRh4J4YRFroso42wDbBIaxS4Cu_34yvNAjBcDVp104MR95UyZ5CUtBDZIjJBdiLFjwb95p28ep70HdjxVhPflafZBTc8PwG41hgH6X3kIWvaJ3cHBcrSSSsO8YKJ233kshzq0tBSmRdktnOlcBmO9LtszQzkdLVaTfDx7PwKD9kO_1Qn8bIQgw2GYB1ShSMcslJbQqQRjblIuM8kYzbhRhBrXmYxJTrPQhJnlDIlSzIZumTKc0AThY1CfL-b6BMAYGUurMowM1tZVYYlSaj27xFrHGtO0AVCFich843A3v2IqqgyxN-FwFA5HUeLYADdfOsuybcaf0rSCWvy4fGHt-h96p__UuwJbnX6vK7qPL89nYNvtlBm456Cer9b6wvKMPL0s3tEn5eHN8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UTF%3A+Upgrade+transfer+function+for+binary+meta-heuristic+algorithms&rft.jtitle=Applied+soft+computing&rft.au=Beheshti%2C+Zahra&rft.date=2021-07-01&rft.issn=1568-4946&rft.volume=106&rft.spage=107346&rft_id=info:doi/10.1016%2Fj.asoc.2021.107346&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon