Neural network classifier optimization using Differential Evolution with Global Information and Back Propagation algorithm for clinical datasets

[Display omitted] •A CAD system for disease diagnosis using Differential Evolution with Global Information (DEGI) based Back Propagation (BP) is proposed.•The CAD system is trained and tested using six benchmark dataset.•DEGI overcomes the premature convergence due to stagnation.•The CAD system can...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 49; pp. 834 - 844
Main Authors Leema, N., Nehemiah, H. Khanna, Kannan, A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2016
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2016.08.001

Cover

Abstract [Display omitted] •A CAD system for disease diagnosis using Differential Evolution with Global Information (DEGI) based Back Propagation (BP) is proposed.•The CAD system is trained and tested using six benchmark dataset.•DEGI overcomes the premature convergence due to stagnation.•The CAD system can be used by junior clinicians for medical decision support. A Computer-Aided Diagnostic (CAD) system that uses Artificial Neural Network (ANN) trained by drawing in the relative advantages of Differential Evolution (DE), Particle Swarm Optimization (PSO) and gradient descent based backpropagation (BP) for classifying clinical datasets is proposed. The DE algorithm with a modified best mutation operation is used to enhance the search exploration of PSO. The ANN is trained using PSO and the global best value obtained is used as a seed by the BP. Local search is performed using BP, in which the weights of the Neural Network (NN) are adjusted to obtain an optimal set of NN weights. Three benchmark clinical datasets namely, Pima Indian Diabetes, Wisconsin Breast Cancer and Cleveland Heart Disease, obtained from the University of California Irvine (UCI) machine learning repository have been used. The performance of the trained neural network classifier proposed in this work is compared with the existing gradient descent backpropagation, differential evolution with backpropagation and particle swarm optimization with gradient descent backpropagation algorithms. The experimental results show that DEGI-BP provides 85.71% accuracy for diabetes, 98.52% for breast cancer and 86.66% for heart disease datasets. This CAD system can be used by junior clinicians as an aid for medical decision support.
AbstractList [Display omitted] •A CAD system for disease diagnosis using Differential Evolution with Global Information (DEGI) based Back Propagation (BP) is proposed.•The CAD system is trained and tested using six benchmark dataset.•DEGI overcomes the premature convergence due to stagnation.•The CAD system can be used by junior clinicians for medical decision support. A Computer-Aided Diagnostic (CAD) system that uses Artificial Neural Network (ANN) trained by drawing in the relative advantages of Differential Evolution (DE), Particle Swarm Optimization (PSO) and gradient descent based backpropagation (BP) for classifying clinical datasets is proposed. The DE algorithm with a modified best mutation operation is used to enhance the search exploration of PSO. The ANN is trained using PSO and the global best value obtained is used as a seed by the BP. Local search is performed using BP, in which the weights of the Neural Network (NN) are adjusted to obtain an optimal set of NN weights. Three benchmark clinical datasets namely, Pima Indian Diabetes, Wisconsin Breast Cancer and Cleveland Heart Disease, obtained from the University of California Irvine (UCI) machine learning repository have been used. The performance of the trained neural network classifier proposed in this work is compared with the existing gradient descent backpropagation, differential evolution with backpropagation and particle swarm optimization with gradient descent backpropagation algorithms. The experimental results show that DEGI-BP provides 85.71% accuracy for diabetes, 98.52% for breast cancer and 86.66% for heart disease datasets. This CAD system can be used by junior clinicians as an aid for medical decision support.
Author Leema, N.
Kannan, A.
Nehemiah, H. Khanna
Author_xml – sequence: 1
  givenname: N.
  surname: Leema
  fullname: Leema, N.
  organization: Ramanujan Computing Centre, College of Engineering Guindy, Anna University, Chennai 600025, Tamilnadu, India
– sequence: 2
  givenname: H. Khanna
  surname: Nehemiah
  fullname: Nehemiah, H. Khanna
  email: chandrakhanna@cs.annauniv.edu, nehemiah@annauniv.edu
  organization: Ramanujan Computing Centre, College of Engineering Guindy, Anna University, Chennai 600025, Tamilnadu, India
– sequence: 3
  givenname: A.
  surname: Kannan
  fullname: Kannan, A.
  organization: Information Science and Technology, College of Engineering Guindy, Anna University, Chennai 600025, Tamilnadu, India
BookMark eNp9kM1OAyEQgImpiW31BTzxArvC_m_iRWutJkY96Jmw7GyduoUGaBt9Ch9Zanvy0AsMw3zM8I3IQBsNhFxyFnPGi6tFLJ1RcRLimFUxY_yEDHlVJlFdVHwQ4ryooqzOijMycm4RCoo6qYbk5xnWVvZUg98a-0lVL53DDsFSs_K4xG_p0Wi6dqjn9A67DixojwGZbky__rvcov-gs940IfuoO2OXe0jqlt5K9UlfrVnJ-SHZz40NwJKGwtAPNarAtdJLB96dk9NO9g4uDvuYvN9P3yYP0dPL7HFy8xSplDEf5apWkKoamJRlkvOs4E2VshQgz1RZQtk2wMOpzPMsaToZFp7WRcmTNFet6tIxqfbvKmucs9AJhf5vQm8l9oIzsTMrFmJnVuzMClaJIC6gyT90ZXEp7ddx6HoPQfjUJvgVTiFoBS1aUF60Bo_hv3wpmVI
CitedBy_id crossref_primary_10_1088_1361_6560_ac5d74
crossref_primary_10_1007_s11356_025_36177_x
crossref_primary_10_1007_s13369_021_05972_2
crossref_primary_10_1155_2021_6662420
crossref_primary_10_1016_j_engappai_2018_08_003
crossref_primary_10_1016_j_eswa_2018_08_038
crossref_primary_10_3233_JIFS_230374
crossref_primary_10_1007_s00354_023_00214_5
crossref_primary_10_1016_j_energy_2020_117087
crossref_primary_10_1016_j_asoc_2017_05_001
crossref_primary_10_1016_j_cogsys_2020_08_003
crossref_primary_10_1088_1361_6560_acf5c5
crossref_primary_10_3233_JIFS_222348
crossref_primary_10_1016_j_asoc_2021_107711
crossref_primary_10_1007_s13369_019_04200_2
crossref_primary_10_1016_j_eswa_2021_115534
crossref_primary_10_1016_j_eswa_2022_116873
crossref_primary_10_1007_s11263_022_01619_3
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1007_s00521_020_05507_0
crossref_primary_10_7717_peerj_cs_2197
crossref_primary_10_3390_electronics13173358
crossref_primary_10_1007_s00542_023_05572_0
crossref_primary_10_1007_s10489_023_05143_w
crossref_primary_10_1155_2019_7398307
crossref_primary_10_1016_j_health_2022_100102
crossref_primary_10_1007_s00521_016_2707_8
crossref_primary_10_1016_j_asoc_2019_105652
crossref_primary_10_1016_j_infrared_2019_103054
crossref_primary_10_1007_s10772_018_9523_8
crossref_primary_10_3389_fphys_2023_1177351
crossref_primary_10_1016_j_patcog_2023_109925
crossref_primary_10_1080_03772063_2021_2007798
crossref_primary_10_3390_ma12091544
crossref_primary_10_1016_j_ygeno_2020_09_047
crossref_primary_10_1007_s41939_023_00219_z
crossref_primary_10_1016_j_enganabound_2023_03_033
crossref_primary_10_1016_j_bspc_2023_105337
crossref_primary_10_1007_s12205_024_1647_6
crossref_primary_10_1016_j_conbuildmat_2021_124081
crossref_primary_10_1002_ima_22867
crossref_primary_10_3390_math8010069
crossref_primary_10_1007_s41939_023_00150_3
crossref_primary_10_2478_amns_2024_0396
crossref_primary_10_1016_j_asoc_2017_10_012
crossref_primary_10_1109_ACCESS_2021_3072648
crossref_primary_10_1007_s11036_020_01550_2
crossref_primary_10_1007_s11600_023_01146_w
crossref_primary_10_1080_0954898X_2022_2061062
crossref_primary_10_1016_j_cscm_2023_e02294
crossref_primary_10_1080_03772063_2019_1702903
crossref_primary_10_1177_09544062211053169
crossref_primary_10_3390_fractalfract8110616
crossref_primary_10_1016_j_patcog_2022_108890
crossref_primary_10_1007_s10278_023_00783_3
crossref_primary_10_1080_03772063_2021_1948923
crossref_primary_10_1016_j_asej_2020_01_007
crossref_primary_10_1016_j_ecoinf_2018_08_008
crossref_primary_10_1007_s41939_024_00587_0
crossref_primary_10_1002_suco_202300508
crossref_primary_10_1016_j_neucom_2018_10_090
crossref_primary_10_3390_app10155242
crossref_primary_10_1186_s44147_023_00317_2
crossref_primary_10_1016_j_egyr_2021_10_125
crossref_primary_10_4018_IJORIS_2018040102
crossref_primary_10_1108_EC_03_2017_0105
crossref_primary_10_1109_TITS_2021_3115953
crossref_primary_10_3390_su12030830
crossref_primary_10_26599_TST_2021_9010093
crossref_primary_10_1016_j_jmrt_2023_06_007
crossref_primary_10_1002_suco_202300566
crossref_primary_10_1016_j_asoc_2019_03_051
crossref_primary_10_1109_ACCESS_2017_2788700
crossref_primary_10_1007_s00500_022_07649_w
crossref_primary_10_1007_s10916_019_1482_3
crossref_primary_10_1016_j_cmpb_2022_106752
crossref_primary_10_1155_2021_2775278
crossref_primary_10_3389_fonc_2022_878104
crossref_primary_10_3233_JIFS_233428
crossref_primary_10_1007_s10278_023_00839_4
crossref_primary_10_1007_s41870_023_01445_x
crossref_primary_10_3390_healthcare10081425
crossref_primary_10_1016_j_asoc_2023_110412
crossref_primary_10_1007_s00366_021_01552_y
crossref_primary_10_1080_03772063_2020_1713917
crossref_primary_10_1016_j_cogsys_2020_04_001
crossref_primary_10_1007_s41939_024_00569_2
crossref_primary_10_1007_s41939_024_00577_2
crossref_primary_10_1016_j_renene_2021_06_050
crossref_primary_10_3390_sym17030465
crossref_primary_10_1016_j_neucom_2022_01_001
crossref_primary_10_1016_j_bspc_2021_103033
crossref_primary_10_3390_s18082690
crossref_primary_10_1016_j_rineng_2024_101868
crossref_primary_10_1007_s11277_021_08841_1
crossref_primary_10_1007_s00521_025_11121_9
crossref_primary_10_1007_s11277_021_09033_7
crossref_primary_10_1016_j_asoc_2020_106593
crossref_primary_10_1186_s12911_021_01436_7
Cites_doi 10.1016/j.asoc.2014.09.032
10.1016/j.eij.2014.08.001
10.1093/comjnl/7.2.149
10.1016/j.amc.2006.07.025
10.1080/02564602.2014.942237
10.1016/j.asoc.2014.03.039
10.1016/j.neucom.2013.03.074
10.1109/TNN.2008.2004370
10.1016/j.neucom.2012.07.010
10.1109/MHS.1995.494215
10.1016/0893-6080(91)90063-B
10.1016/j.eswa.2011.07.028
10.1016/j.eswa.2010.05.033
10.1016/0925-2312(94)00026-3
10.1016/j.neucom.2007.10.013
10.1016/j.neucom.2012.07.023
10.1109/TNN.2009.2034741
10.1109/TEVC.2007.896686
10.1109/3477.678658
10.1016/j.neucom.2006.05.023
10.1029/98WR00006
10.1109/TNN.2004.824424
10.1016/j.artmed.2008.04.004
10.1016/j.neucom.2007.10.011
10.1016/j.asoc.2010.04.014
10.1016/j.asoc.2015.08.002
10.1016/j.asoc.2011.08.037
10.1016/j.amc.2008.05.025
10.1007/s00521-009-0274-y
10.1016/j.biosystems.2004.08.003
10.1016/j.ins.2013.03.021
10.1016/j.cmpb.2013.07.009
10.1016/S0925-2312(99)00123-X
10.1016/j.engappai.2012.01.023
10.1016/j.eswa.2015.01.065
10.1109/TNN.2010.2041468
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2016.08.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 844
ExternalDocumentID 10_1016_j_asoc_2016_08_001
S1568494616303866
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-5c9ce3c9e0aa7251461b8303ee54c77e7dbe13ee75542bfa42b139671235cdcf3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Wed Oct 01 02:32:07 EDT 2025
Thu Apr 24 23:11:26 EDT 2025
Fri Feb 23 02:24:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Back propagation
Computer-Aided Diagnostic system
Differential evolution with global information
Artificial Neural Network
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-5c9ce3c9e0aa7251461b8303ee54c77e7dbe13ee75542bfa42b139671235cdcf3
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2016_08_001
crossref_primary_10_1016_j_asoc_2016_08_001
elsevier_sciencedirect_doi_10_1016_j_asoc_2016_08_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2016
2016-12-00
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bishop (bib0020) 1995
Han, Ling, Huang (bib0095) 2008; 19
Han, Ling (bib0090) 2008; 205
Mangat, Vig (bib0200) 2014; 31
Leung, Tang, Wong (bib0195) 2012; 39
Qasem, Shamsuddin (bib0190) 2011; 11
Sharma, Venugopalan (bib0240) 2014; 16
Zhang (bib0110) 2007; 185
Eberhart, Kennedy (bib0065) 1995
Kennedy, Eberhart (bib0060) 1995; 4
Joerding, Mcador (bib0025) 1991; 4
Demuth, Beale (bib0230) 2013
Fletcher, Reeves (bib0010) 1964; 7
Ang, Tan, Al-Mamun (bib0050) 2008; 71
Abdual-Salam, Abdul-Kader, Abdel-Wahed (bib0120) 2010
Turker (bib0115) 2010; 37
Sharma, Mahta (bib0170) 2013; 7
Zhang, Zhang, Lok, Lyu (bib0245) 2007; 185
Verikas, Gelzinis (bib0055) 2000; 30
Medcal Online Diagnostic Test Evaluation Calculator
He, Wu, Wen (bib0075) 2004; 78
Han, Kamber, Mining (bib0165) 2006
Cai, Chen, Zhang (bib0180) 2010; 21
Morshed, Kaluarachchi (bib0235) 1998; 34
Han, Qiao (bib0040) 2013; 99
Jaddi, Abdullah, Hamdan (bib0145) 2015; 37
del Valle, Venayagamoorthy, Mohagheghi (bib0080) 2008; 12
Fernandez Caballero, Martínez, Hervás, Gutiérrez (bib0185) 2010; 21
Huang, Ji-Xiang Du (bib0015) 2008; 19
Ghazavi, Liao (bib0210) 2008; 43
Piotrowski (bib0130) 2014; 21
Rau, Hsu, Lin, Atique, Fuad, Wei, Hsu (bib0225) 2015
Rocha, Cortez, Neves (bib0105) 2007; 70
Ghosh, Biswas, Sarkar, Sarkar (bib0220) 2014; 15
Han, Liu (bib0135) 2014; 137
Yu, Wang, Xi (bib0085) 2008; 71
Looney (bib0045) 1996; 10
Dennis, Muthukrishnan (bib0215) 2014; 25
Beloufa, Chikh (bib0205) 2013; 112
(accessed 15.02.16).
Asuncion, Newman (bib0150) 2007
Noel (bib0070) 2012; 12
Bhardwaj, Tiwari (bib0140) 2015; 42
Castellani (bib0100) 2013; 99
Huang (bib0005) 1998; 28
Qasem, Shamsuddin, Hashim, Darus, Al-Shammari (bib0175) 2013; 239
Huang (bib0030) 2004; 15
(bib0035) 1995
Yaghini, Mohammad, Fallahi (bib0125) 2013; 26
Coello, Veldhuizen, Lamont (bib0155) 2002
Demuth (10.1016/j.asoc.2016.08.001_bib0230) 2013
Morshed (10.1016/j.asoc.2016.08.001_bib0235) 1998; 34
Ghosh (10.1016/j.asoc.2016.08.001_bib0220) 2014; 15
Rau (10.1016/j.asoc.2016.08.001_bib0225) 2015
Cai (10.1016/j.asoc.2016.08.001_bib0180) 2010; 21
Fletcher (10.1016/j.asoc.2016.08.001_bib0010) 1964; 7
Han (10.1016/j.asoc.2016.08.001_bib0135) 2014; 137
Bhardwaj (10.1016/j.asoc.2016.08.001_bib0140) 2015; 42
Eberhart (10.1016/j.asoc.2016.08.001_bib0065) 1995
Huang (10.1016/j.asoc.2016.08.001_bib0015) 2008; 19
Kennedy (10.1016/j.asoc.2016.08.001_bib0060) 1995; 4
Castellani (10.1016/j.asoc.2016.08.001_bib0100) 2013; 99
Coello (10.1016/j.asoc.2016.08.001_bib0155) 2002
Qasem (10.1016/j.asoc.2016.08.001_bib0190) 2011; 11
Mangat (10.1016/j.asoc.2016.08.001_bib0200) 2014; 31
del Valle (10.1016/j.asoc.2016.08.001_bib0080) 2008; 12
Ang (10.1016/j.asoc.2016.08.001_bib0050) 2008; 71
Han (10.1016/j.asoc.2016.08.001_bib0165) 2006
Beloufa (10.1016/j.asoc.2016.08.001_bib0205) 2013; 112
Zhang (10.1016/j.asoc.2016.08.001_bib0245) 2007; 185
Yu (10.1016/j.asoc.2016.08.001_bib0085) 2008; 71
Noel (10.1016/j.asoc.2016.08.001_bib0070) 2012; 12
Han (10.1016/j.asoc.2016.08.001_bib0090) 2008; 205
Ghazavi (10.1016/j.asoc.2016.08.001_bib0210) 2008; 43
Han (10.1016/j.asoc.2016.08.001_bib0095) 2008; 19
Sharma (10.1016/j.asoc.2016.08.001_bib0170) 2013; 7
Turker (10.1016/j.asoc.2016.08.001_bib0115) 2010; 37
Yaghini (10.1016/j.asoc.2016.08.001_bib0125) 2013; 26
Dennis (10.1016/j.asoc.2016.08.001_bib0215) 2014; 25
Verikas (10.1016/j.asoc.2016.08.001_bib0055) 2000; 30
Qasem (10.1016/j.asoc.2016.08.001_bib0175) 2013; 239
Han (10.1016/j.asoc.2016.08.001_bib0040) 2013; 99
Fernandez Caballero (10.1016/j.asoc.2016.08.001_bib0185) 2010; 21
Bishop (10.1016/j.asoc.2016.08.001_bib0020) 1995
Looney (10.1016/j.asoc.2016.08.001_bib0045) 1996; 10
Jaddi (10.1016/j.asoc.2016.08.001_bib0145) 2015; 37
Leung (10.1016/j.asoc.2016.08.001_bib0195) 2012; 39
Sharma (10.1016/j.asoc.2016.08.001_bib0240) 2014; 16
10.1016/j.asoc.2016.08.001_bib0160
Zhang (10.1016/j.asoc.2016.08.001_bib0110) 2007; 185
Piotrowski (10.1016/j.asoc.2016.08.001_bib0130) 2014; 21
Asuncion (10.1016/j.asoc.2016.08.001_bib0150) 2007
Rocha (10.1016/j.asoc.2016.08.001_bib0105) 2007; 70
Huang (10.1016/j.asoc.2016.08.001_bib0030) 2004; 15
(10.1016/j.asoc.2016.08.001_bib0035) 1995
Huang (10.1016/j.asoc.2016.08.001_bib0005) 1998; 28
Joerding (10.1016/j.asoc.2016.08.001_bib0025) 1991; 4
Abdual-Salam (10.1016/j.asoc.2016.08.001_bib0120) 2010
He (10.1016/j.asoc.2016.08.001_bib0075) 2004; 78
References_xml – volume: 78
  start-page: 135
  year: 2004
  end-page: 147
  ident: bib0075
  article-title: A particle swarm optimizer with passive congregation
  publication-title: Biosystems
– volume: 7
  start-page: 149
  year: 1964
  end-page: 154
  ident: bib0010
  article-title: Function minimization by conjugate gradients
  publication-title: Comput. J.
– volume: 99
  start-page: 214
  year: 2013
  end-page: 229
  ident: bib0100
  article-title: Evolutionary generation of neural network classifiers—An empirical comparison
  publication-title: Neurocomputing
– volume: 37
  start-page: 71
  year: 2015
  end-page: 86
  ident: bib0145
  article-title: Optimization of neural network model using modified bat-inspired algorithm
  publication-title: Appl. Soft Comput.
– volume: 37
  start-page: 8450
  year: 2010
  end-page: 8461
  ident: bib0115
  article-title: Evaluation of global and local training techniques over feed-forward neural network architecture spaces for computer-aided medical diagnosis
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 293
  year: 2013
  end-page: 301
  ident: bib0125
  article-title: A hybrid algorithm for artificial neural network training
  publication-title: Eng. Appl. Artif. Intell.
– volume: 10
  start-page: 7
  year: 1996
  end-page: 31
  ident: bib0045
  article-title: Stabilization and speedup of convergence in training feedforward neural networks
  publication-title: Neurocomputing
– volume: 28
  start-page: 477
  year: 1998
  end-page: 480
  ident: bib0005
  article-title: The local minima free condition of feed forward neural networks for outer- supervised learning
  publication-title: IEEE Trans. Syst Man Cybern.
– volume: 71
  start-page: 3493
  year: 2008
  end-page: 3508
  ident: bib0050
  article-title: Training neural networks for classification using growth probability-based evolution
  publication-title: Neurocomputing
– volume: 12
  start-page: 171
  year: 2008
  end-page: 195
  ident: bib0080
  article-title: Particle swarm optimization: basic concepts,variants and applications in power systems
  publication-title: IEEE Trans. Evol. Comput.
– year: 2006
  ident: bib0165
  article-title: Southeast Asia Edition: Concepts and Techniques
– volume: 21
  start-page: 750
  year: 2010
  end-page: 770
  ident: bib0185
  article-title: Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks
  publication-title: Neural Netw. IEEE Trans.
– year: 2002
  ident: bib0155
  article-title: Evolutionary Algorithms for Multi-Objective Problems
– volume: 70
  start-page: 2809
  year: 2007
  end-page: 2816
  ident: bib0105
  article-title: Evolution of neural networks for classification and regression
  publication-title: Neurocomputing
– volume: 239
  start-page: 165
  year: 2013
  end-page: 190
  ident: bib0175
  article-title: Memetic multiobjective particle swarm optimization-based radial basis function network for classification problems
  publication-title: Inf. Sci.
– volume: 112
  start-page: 92
  year: 2013
  end-page: 103
  ident: bib0205
  article-title: Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm
  publication-title: Comput. Methods Progr. Biomed.
– volume: 15
  start-page: 129
  year: 2014
  end-page: 147
  ident: bib0220
  article-title: A novel Neuro-fuzzy classification technique for data mining
  publication-title: Egypt. Inf. J.
– year: 2015
  ident: bib0225
  article-title: Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network
  publication-title: Comput. Methods Progr. Biomed.
– volume: 16
  start-page: 31
  year: 2014
  end-page: 35
  ident: bib0240
  article-title: Comparison of neural network training functions for Hematoma classification in brain CT images
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 71
  start-page: 1054
  year: 2008
  end-page: 1060
  ident: bib0085
  article-title: Evolving artificial neural networks using an improved PSO and DPSO
  publication-title: Neurocomputing
– reference: Medcal Online Diagnostic Test Evaluation Calculator,
– volume: 43
  start-page: 195
  year: 2008
  end-page: 206
  ident: bib0210
  article-title: Medical data mining by fuzzy modeling with selected features
  publication-title: Artif. Intell. Med.
– volume: 30
  start-page: 153
  year: 2000
  end-page: 172
  ident: bib0055
  article-title: Training neural networks by stochastic optimization
  publication-title: Neurocomputing
– volume: 185
  start-page: 1026
  year: 2007
  end-page: 1037
  ident: bib0110
  article-title: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training
  publication-title: Appl. Math. Comput.
– volume: 34
  start-page: 1101
  year: 1998
  end-page: 1113
  ident: bib0235
  article-title: Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery
  publication-title: Water Resour. Res.
– volume: 137
  start-page: 234
  year: 2014
  end-page: 240
  ident: bib0135
  article-title: A diversity-guided hybrid particle swarm optimization based on gradient search
  publication-title: Neurocomputing
– volume: 185
  start-page: 1026
  year: 2007
  end-page: 1037
  ident: bib0245
  article-title: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training
  publication-title: Appl. Math. Comput.
– year: 2013
  ident: bib0230
  article-title: Neural Network Toolbox for Use with MATLAB. Users Guide
– volume: 21
  start-page: 185
  year: 2010
  end-page: 200
  ident: bib0180
  article-title: A multiobjective simultaneous learning framework for clustering and classification
  publication-title: Neural Netw. IEEE Trans.
– volume: 11
  start-page: 1427
  year: 2011
  end-page: 1438
  ident: bib0190
  article-title: Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis
  publication-title: Appl. Soft Comput.
– reference: , (accessed 15.02.16).
– volume: 4
  start-page: 847
  year: 1991
  end-page: 856
  ident: bib0025
  article-title: Encoding a prior information in feed forward networks
  publication-title: Neural Netw.
– volume: 19
  start-page: 2099
  year: 2008
  end-page: 2115
  ident: bib0015
  article-title: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 15
  start-page: 477
  year: 2004
  end-page: 491
  ident: bib0030
  article-title: A constructive approach for finding arbitrary roots of polynomials by neural networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 7
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib0170
  article-title: Training of radial basis function using particle swarm optimization
  publication-title: Int. J. Eng. Res. Dev.
– volume: 21
  start-page: 382
  year: 2014
  end-page: 406
  ident: bib0130
  article-title: Differential Evolution algorithms applied to Neural Network training suffer from stagnation
  publication-title: Appl. Soft Comput.
– volume: 205
  start-page: 792
  year: 2008
  end-page: 798
  ident: bib0090
  article-title: A new approach for function approximation incorporating adaptive particle swarm optimization and a priori information
  publication-title: Appl. Math. Comput.
– volume: 42
  start-page: 4611
  year: 2015
  end-page: 4620
  ident: bib0140
  article-title: Breast cancer diagnosis using genetically optimized neural network model
  publication-title: Expert Syst. Appl.
– volume: 31
  start-page: 258
  year: 2014
  end-page: 265
  ident: bib0200
  article-title: Dynamic PSO-Based associative classifier for medical datasets
  publication-title: IETE Tech. Rev.
– start-page: 39
  year: 1995
  end-page: 43
  ident: bib0065
  article-title: A new optimizer using particle swarm theory
  publication-title: Proceedings of the Sixth International Symposium on Micro Machines and Human Science
– volume: 99
  start-page: 347
  year: 2013
  end-page: 357
  ident: bib0040
  article-title: A structure ptimization algorithm for feedforward neural network construction
  publication-title: Neurocomputing
– volume: 39
  start-page: 395
  year: 2012
  end-page: 405
  ident: bib0195
  article-title: A hybrid particle swarm optimization and its application in neural networks
  publication-title: Expert Syst. Appl.
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0060
  article-title: Particle swarm optimization
  publication-title: IEEE Int. Conf. Neural Netw.
– volume: 12
  start-page: 353
  year: 2012
  end-page: 359
  ident: bib0070
  article-title: A new gradient based particle swarm optimization algorithm for accurate computation of global minimum
  publication-title: Appl. Soft Comput.
– year: 1995
  ident: bib0035
  publication-title: Backpropagation: Theory, Architectures, and Applications
– year: 2010
  ident: bib0120
  article-title: Comparative study between Differential Evolution and Particle Swarm Optimization algorithms in training of feed-forward neural network for stock price prediction, Informatics and Systems (INFOS)
  publication-title: The 7th International Conference on IEEE
– volume: 19
  start-page: 255
  year: 2008
  end-page: 261
  ident: bib0095
  article-title: An improved approximation approach incorporating particle swarm optimization into neural networks
  publication-title: Neural Comput Appl.
– year: 2007
  ident: bib0150
  article-title: UCI Machine Learning Repository
– volume: 25
  start-page: 242
  year: 2014
  end-page: 252
  ident: bib0215
  article-title: AGFS: adaptive genetic fuzzy system for medical data classification
  publication-title: Appl. Soft Comput.
– year: 1995
  ident: bib0020
  article-title: Neural Networks for Pattern Recognition
– volume: 25
  start-page: 242
  year: 2014
  ident: 10.1016/j.asoc.2016.08.001_bib0215
  article-title: AGFS: adaptive genetic fuzzy system for medical data classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.09.032
– volume: 15
  start-page: 129
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2016.08.001_bib0220
  article-title: A novel Neuro-fuzzy classification technique for data mining
  publication-title: Egypt. Inf. J.
  doi: 10.1016/j.eij.2014.08.001
– year: 2015
  ident: 10.1016/j.asoc.2016.08.001_bib0225
  article-title: Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network
  publication-title: Comput. Methods Progr. Biomed.
– volume: 7
  start-page: 149
  year: 1964
  ident: 10.1016/j.asoc.2016.08.001_bib0010
  article-title: Function minimization by conjugate gradients
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.2.149
– volume: 185
  start-page: 1026
  issue: 2
  year: 2007
  ident: 10.1016/j.asoc.2016.08.001_bib0110
  article-title: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.07.025
– volume: 31
  start-page: 258
  year: 2014
  ident: 10.1016/j.asoc.2016.08.001_bib0200
  article-title: Dynamic PSO-Based associative classifier for medical datasets
  publication-title: IETE Tech. Rev.
  doi: 10.1080/02564602.2014.942237
– volume: 21
  start-page: 382
  year: 2014
  ident: 10.1016/j.asoc.2016.08.001_bib0130
  article-title: Differential Evolution algorithms applied to Neural Network training suffer from stagnation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.03.039
– volume: 137
  start-page: 234
  year: 2014
  ident: 10.1016/j.asoc.2016.08.001_bib0135
  article-title: A diversity-guided hybrid particle swarm optimization based on gradient search
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.074
– volume: 19
  start-page: 2099
  issue: 12
  year: 2008
  ident: 10.1016/j.asoc.2016.08.001_bib0015
  article-title: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2004370
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2016.08.001_bib0060
  article-title: Particle swarm optimization
  publication-title: IEEE Int. Conf. Neural Netw.
– volume: 99
  start-page: 214
  year: 2013
  ident: 10.1016/j.asoc.2016.08.001_bib0100
  article-title: Evolutionary generation of neural network classifiers—An empirical comparison
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.07.010
– start-page: 39
  year: 1995
  ident: 10.1016/j.asoc.2016.08.001_bib0065
  article-title: A new optimizer using particle swarm theory
  publication-title: Proceedings of the Sixth International Symposium on Micro Machines and Human Science
  doi: 10.1109/MHS.1995.494215
– volume: 4
  start-page: 847
  year: 1991
  ident: 10.1016/j.asoc.2016.08.001_bib0025
  article-title: Encoding a prior information in feed forward networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(91)90063-B
– volume: 39
  start-page: 395
  year: 2012
  ident: 10.1016/j.asoc.2016.08.001_bib0195
  article-title: A hybrid particle swarm optimization and its application in neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.028
– volume: 37
  start-page: 8450
  issue: 12
  year: 2010
  ident: 10.1016/j.asoc.2016.08.001_bib0115
  article-title: Evaluation of global and local training techniques over feed-forward neural network architecture spaces for computer-aided medical diagnosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.05.033
– volume: 10
  start-page: 7
  issue: 1
  year: 1996
  ident: 10.1016/j.asoc.2016.08.001_bib0045
  article-title: Stabilization and speedup of convergence in training feedforward neural networks
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(94)00026-3
– volume: 71
  start-page: 1054
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2016.08.001_bib0085
  article-title: Evolving artificial neural networks using an improved PSO and DPSO
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.10.013
– year: 2010
  ident: 10.1016/j.asoc.2016.08.001_bib0120
  article-title: Comparative study between Differential Evolution and Particle Swarm Optimization algorithms in training of feed-forward neural network for stock price prediction, Informatics and Systems (INFOS)
  publication-title: The 7th International Conference on IEEE
– year: 2013
  ident: 10.1016/j.asoc.2016.08.001_bib0230
– volume: 99
  start-page: 347
  year: 2013
  ident: 10.1016/j.asoc.2016.08.001_bib0040
  article-title: A structure ptimization algorithm for feedforward neural network construction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.07.023
– volume: 21
  start-page: 185
  year: 2010
  ident: 10.1016/j.asoc.2016.08.001_bib0180
  article-title: A multiobjective simultaneous learning framework for clustering and classification
  publication-title: Neural Netw. IEEE Trans.
  doi: 10.1109/TNN.2009.2034741
– volume: 12
  start-page: 171
  year: 2008
  ident: 10.1016/j.asoc.2016.08.001_bib0080
  article-title: Particle swarm optimization: basic concepts,variants and applications in power systems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.896686
– year: 1995
  ident: 10.1016/j.asoc.2016.08.001_bib0020
– volume: 28
  start-page: 477
  issue: 3
  year: 1998
  ident: 10.1016/j.asoc.2016.08.001_bib0005
  article-title: The local minima free condition of feed forward neural networks for outer- supervised learning
  publication-title: IEEE Trans. Syst Man Cybern.
  doi: 10.1109/3477.678658
– volume: 185
  start-page: 1026
  issue: 2
  year: 2007
  ident: 10.1016/j.asoc.2016.08.001_bib0245
  article-title: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.07.025
– volume: 70
  start-page: 2809
  issue: 16
  year: 2007
  ident: 10.1016/j.asoc.2016.08.001_bib0105
  article-title: Evolution of neural networks for classification and regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.05.023
– volume: 34
  start-page: 1101
  issue: 5
  year: 1998
  ident: 10.1016/j.asoc.2016.08.001_bib0235
  article-title: Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery
  publication-title: Water Resour. Res.
  doi: 10.1029/98WR00006
– volume: 15
  start-page: 477
  year: 2004
  ident: 10.1016/j.asoc.2016.08.001_bib0030
  article-title: A constructive approach for finding arbitrary roots of polynomials by neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2004.824424
– volume: 16
  start-page: 31
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2016.08.001_bib0240
  article-title: Comparison of neural network training functions for Hematoma classification in brain CT images
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 7
  start-page: 1
  year: 2013
  ident: 10.1016/j.asoc.2016.08.001_bib0170
  article-title: Training of radial basis function using particle swarm optimization
  publication-title: Int. J. Eng. Res. Dev.
– volume: 43
  start-page: 195
  issue: 3
  year: 2008
  ident: 10.1016/j.asoc.2016.08.001_bib0210
  article-title: Medical data mining by fuzzy modeling with selected features
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2008.04.004
– volume: 71
  start-page: 3493
  issue: 16
  year: 2008
  ident: 10.1016/j.asoc.2016.08.001_bib0050
  article-title: Training neural networks for classification using growth probability-based evolution
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.10.011
– volume: 11
  start-page: 1427
  year: 2011
  ident: 10.1016/j.asoc.2016.08.001_bib0190
  article-title: Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.04.014
– volume: 37
  start-page: 71
  year: 2015
  ident: 10.1016/j.asoc.2016.08.001_bib0145
  article-title: Optimization of neural network model using modified bat-inspired algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.08.002
– volume: 12
  start-page: 353
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2016.08.001_bib0070
  article-title: A new gradient based particle swarm optimization algorithm for accurate computation of global minimum
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.08.037
– volume: 205
  start-page: 792
  year: 2008
  ident: 10.1016/j.asoc.2016.08.001_bib0090
  article-title: A new approach for function approximation incorporating adaptive particle swarm optimization and a priori information
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2008.05.025
– year: 2006
  ident: 10.1016/j.asoc.2016.08.001_bib0165
– volume: 19
  start-page: 255
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2016.08.001_bib0095
  article-title: An improved approximation approach incorporating particle swarm optimization into neural networks
  publication-title: Neural Comput Appl.
  doi: 10.1007/s00521-009-0274-y
– year: 1995
  ident: 10.1016/j.asoc.2016.08.001_bib0035
– year: 2007
  ident: 10.1016/j.asoc.2016.08.001_bib0150
– volume: 78
  start-page: 135
  year: 2004
  ident: 10.1016/j.asoc.2016.08.001_bib0075
  article-title: A particle swarm optimizer with passive congregation
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2004.08.003
– ident: 10.1016/j.asoc.2016.08.001_bib0160
– volume: 239
  start-page: 165
  year: 2013
  ident: 10.1016/j.asoc.2016.08.001_bib0175
  article-title: Memetic multiobjective particle swarm optimization-based radial basis function network for classification problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.03.021
– volume: 112
  start-page: 92
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2016.08.001_bib0205
  article-title: Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2013.07.009
– year: 2002
  ident: 10.1016/j.asoc.2016.08.001_bib0155
– volume: 30
  start-page: 153
  issue: 1
  year: 2000
  ident: 10.1016/j.asoc.2016.08.001_bib0055
  article-title: Training neural networks by stochastic optimization
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(99)00123-X
– volume: 26
  start-page: 293
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2016.08.001_bib0125
  article-title: A hybrid algorithm for artificial neural network training
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.01.023
– volume: 42
  start-page: 4611
  year: 2015
  ident: 10.1016/j.asoc.2016.08.001_bib0140
  article-title: Breast cancer diagnosis using genetically optimized neural network model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.01.065
– volume: 21
  start-page: 750
  year: 2010
  ident: 10.1016/j.asoc.2016.08.001_bib0185
  article-title: Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks
  publication-title: Neural Netw. IEEE Trans.
  doi: 10.1109/TNN.2010.2041468
SSID ssj0016928
Score 2.5150115
Snippet [Display omitted] •A CAD system for disease diagnosis using Differential Evolution with Global Information (DEGI) based Back Propagation (BP) is proposed.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 834
SubjectTerms Artificial Neural Network
Back propagation
Computer-Aided Diagnostic system
Differential evolution with global information
Optimization
Title Neural network classifier optimization using Differential Evolution with Global Information and Back Propagation algorithm for clinical datasets
URI https://dx.doi.org/10.1016/j.asoc.2016.08.001
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw7cUFlL06Y9jrFpvKYJmLRblaTpNNi6aSsc-Q38ZOw2nUBIO3Bp1ciuKjt27OqzTci5F2MPwgDSEteTFuNCWQICAUu6PFYJWJ_wsDj5sed3B-xu6A0rpFXWwiCs0vj-wqfn3tqsNIw0G_PxuPEMmUfAQuZDRGG7gY9ttxnjOMXg8nMF83D8MJ-visQWUpvCmQLjJUACCO_y8zaeZjDMn8Ppx4HT2SFbJlKkzeJjdklFp3tku5zCQI1R7pMv7K8BhGkB6KYK4-FxAm-kM_AHU1NoSRHhPqI3ZiAKGPaEtj_MxqP4O5YW_f-pqVDK10Ua02uh3mh_Adn1yCxORrMFMEwpENKytpIi2HSps-UBGXTaL62uZeYsWMq17czyVKi0q0JtC8Eh3gGRygBkqrXHFOeax1I78MQh9LiSiYALxI0-xzJbBRp1D0k1naX6iFDbUYJJJwlD6TBIZSRLwGf44FYCtHVZI04p4EiZJuQ4C2MSlWiz1wiVEqFSIhyQaTs1crHimRctONZSe6Xeol8bKYIzYg3f8T_5TsgmPhUIl1NSzRbv-gzilEzW841YJxvN1tNDH--3993eN9aN6-I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOMCFN2I8c-CGyto1bdojjE0DtgmJTdqtSrJ0GmzdtBWO_AZ-MnabTiAkDlwqNbWryo4du_psE3LpDbEHYQBpietJi3GhLAGBgCVdPlQxWJ_wsDi50_VbffYw8AYlUi9qYRBWaXx_7tMzb21Wqkaa1fl4XH2GzCNgIfMhorDdwPfXyDrzahwzsOuPFc7D8cNswCpSW0huKmdykJcAESC-y8_6eJrJML9Op28nTnOHbJlQkd7kX7NLSjrZI9vFGAZqrHKffGKDDSBMckQ3VRgQj2N4I52BQ5iaSkuKEPcRvTMTUcCyJ7TxbnYexf-xNB8AQE2JUrYukiG9FeqVPi0gvR6ZxclotgCGKQVCWhRXUkSbLnW6PCD9ZqNXb1lm0IKlXNtOLU-FSrsq1LYQHAIekKkMQKhae0xxrvlQagfuOMQeNRkLuEDg6HOss1WgUveQlJNZoo8ItR0lmHTiMJQOg1xGshichg9-JUBjlxXiFAKOlOlCjsMwJlEBN3uJUCkRKiXCCZm2UyFXK5553oPjT2qv0Fv0YydFcEj8wXf8T74LstHqddpR-777eEI28UkOdzkl5XTxps8gaEnlebYpvwD1x-vi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+classifier+optimization+using+Differential+Evolution+with+Global+Information+and+Back+Propagation+algorithm+for+clinical+datasets&rft.jtitle=Applied+soft+computing&rft.au=Leema%2C+N.&rft.au=Nehemiah%2C+H.+Khanna&rft.au=Kannan%2C+A.&rft.date=2016-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=49&rft.spage=834&rft.epage=844&rft_id=info:doi/10.1016%2Fj.asoc.2016.08.001&rft.externalDocID=S1568494616303866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon