Neural network classifier optimization using Differential Evolution with Global Information and Back Propagation algorithm for clinical datasets
[Display omitted] •A CAD system for disease diagnosis using Differential Evolution with Global Information (DEGI) based Back Propagation (BP) is proposed.•The CAD system is trained and tested using six benchmark dataset.•DEGI overcomes the premature convergence due to stagnation.•The CAD system can...
        Saved in:
      
    
          | Published in | Applied soft computing Vol. 49; pp. 834 - 844 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.12.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1568-4946 1872-9681  | 
| DOI | 10.1016/j.asoc.2016.08.001 | 
Cover
| Abstract | [Display omitted]
•A CAD system for disease diagnosis using Differential Evolution with Global Information (DEGI) based Back Propagation (BP) is proposed.•The CAD system is trained and tested using six benchmark dataset.•DEGI overcomes the premature convergence due to stagnation.•The CAD system can be used by junior clinicians for medical decision support.
A Computer-Aided Diagnostic (CAD) system that uses Artificial Neural Network (ANN) trained by drawing in the relative advantages of Differential Evolution (DE), Particle Swarm Optimization (PSO) and gradient descent based backpropagation (BP) for classifying clinical datasets is proposed. The DE algorithm with a modified best mutation operation is used to enhance the search exploration of PSO. The ANN is trained using PSO and the global best value obtained is used as a seed by the BP. Local search is performed using BP, in which the weights of the Neural Network (NN) are adjusted to obtain an optimal set of NN weights. Three benchmark clinical datasets namely, Pima Indian Diabetes, Wisconsin Breast Cancer and Cleveland Heart Disease, obtained from the University of California Irvine (UCI) machine learning repository have been used. The performance of the trained neural network classifier proposed in this work is compared with the existing gradient descent backpropagation, differential evolution with backpropagation and particle swarm optimization with gradient descent backpropagation algorithms. The experimental results show that DEGI-BP provides 85.71% accuracy for diabetes, 98.52% for breast cancer and 86.66% for heart disease datasets. This CAD system can be used by junior clinicians as an aid for medical decision support. | 
    
|---|---|
| AbstractList | [Display omitted]
•A CAD system for disease diagnosis using Differential Evolution with Global Information (DEGI) based Back Propagation (BP) is proposed.•The CAD system is trained and tested using six benchmark dataset.•DEGI overcomes the premature convergence due to stagnation.•The CAD system can be used by junior clinicians for medical decision support.
A Computer-Aided Diagnostic (CAD) system that uses Artificial Neural Network (ANN) trained by drawing in the relative advantages of Differential Evolution (DE), Particle Swarm Optimization (PSO) and gradient descent based backpropagation (BP) for classifying clinical datasets is proposed. The DE algorithm with a modified best mutation operation is used to enhance the search exploration of PSO. The ANN is trained using PSO and the global best value obtained is used as a seed by the BP. Local search is performed using BP, in which the weights of the Neural Network (NN) are adjusted to obtain an optimal set of NN weights. Three benchmark clinical datasets namely, Pima Indian Diabetes, Wisconsin Breast Cancer and Cleveland Heart Disease, obtained from the University of California Irvine (UCI) machine learning repository have been used. The performance of the trained neural network classifier proposed in this work is compared with the existing gradient descent backpropagation, differential evolution with backpropagation and particle swarm optimization with gradient descent backpropagation algorithms. The experimental results show that DEGI-BP provides 85.71% accuracy for diabetes, 98.52% for breast cancer and 86.66% for heart disease datasets. This CAD system can be used by junior clinicians as an aid for medical decision support. | 
    
| Author | Leema, N. Kannan, A. Nehemiah, H. Khanna  | 
    
| Author_xml | – sequence: 1 givenname: N. surname: Leema fullname: Leema, N. organization: Ramanujan Computing Centre, College of Engineering Guindy, Anna University, Chennai 600025, Tamilnadu, India – sequence: 2 givenname: H. Khanna surname: Nehemiah fullname: Nehemiah, H. Khanna email: chandrakhanna@cs.annauniv.edu, nehemiah@annauniv.edu organization: Ramanujan Computing Centre, College of Engineering Guindy, Anna University, Chennai 600025, Tamilnadu, India – sequence: 3 givenname: A. surname: Kannan fullname: Kannan, A. organization: Information Science and Technology, College of Engineering Guindy, Anna University, Chennai 600025, Tamilnadu, India  | 
    
| BookMark | eNp9kM1OAyEQgImpiW31BTzxArvC_m_iRWutJkY96Jmw7GyduoUGaBt9Ch9Zanvy0AsMw3zM8I3IQBsNhFxyFnPGi6tFLJ1RcRLimFUxY_yEDHlVJlFdVHwQ4ryooqzOijMycm4RCoo6qYbk5xnWVvZUg98a-0lVL53DDsFSs_K4xG_p0Wi6dqjn9A67DixojwGZbky__rvcov-gs940IfuoO2OXe0jqlt5K9UlfrVnJ-SHZz40NwJKGwtAPNarAtdJLB96dk9NO9g4uDvuYvN9P3yYP0dPL7HFy8xSplDEf5apWkKoamJRlkvOs4E2VshQgz1RZQtk2wMOpzPMsaToZFp7WRcmTNFet6tIxqfbvKmucs9AJhf5vQm8l9oIzsTMrFmJnVuzMClaJIC6gyT90ZXEp7ddx6HoPQfjUJvgVTiFoBS1aUF60Bo_hv3wpmVI | 
    
| CitedBy_id | crossref_primary_10_1088_1361_6560_ac5d74 crossref_primary_10_1007_s11356_025_36177_x crossref_primary_10_1007_s13369_021_05972_2 crossref_primary_10_1155_2021_6662420 crossref_primary_10_1016_j_engappai_2018_08_003 crossref_primary_10_1016_j_eswa_2018_08_038 crossref_primary_10_3233_JIFS_230374 crossref_primary_10_1007_s00354_023_00214_5 crossref_primary_10_1016_j_energy_2020_117087 crossref_primary_10_1016_j_asoc_2017_05_001 crossref_primary_10_1016_j_cogsys_2020_08_003 crossref_primary_10_1088_1361_6560_acf5c5 crossref_primary_10_3233_JIFS_222348 crossref_primary_10_1016_j_asoc_2021_107711 crossref_primary_10_1007_s13369_019_04200_2 crossref_primary_10_1016_j_eswa_2021_115534 crossref_primary_10_1016_j_eswa_2022_116873 crossref_primary_10_1007_s11263_022_01619_3 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1007_s00521_020_05507_0 crossref_primary_10_7717_peerj_cs_2197 crossref_primary_10_3390_electronics13173358 crossref_primary_10_1007_s00542_023_05572_0 crossref_primary_10_1007_s10489_023_05143_w crossref_primary_10_1155_2019_7398307 crossref_primary_10_1016_j_health_2022_100102 crossref_primary_10_1007_s00521_016_2707_8 crossref_primary_10_1016_j_asoc_2019_105652 crossref_primary_10_1016_j_infrared_2019_103054 crossref_primary_10_1007_s10772_018_9523_8 crossref_primary_10_3389_fphys_2023_1177351 crossref_primary_10_1016_j_patcog_2023_109925 crossref_primary_10_1080_03772063_2021_2007798 crossref_primary_10_3390_ma12091544 crossref_primary_10_1016_j_ygeno_2020_09_047 crossref_primary_10_1007_s41939_023_00219_z crossref_primary_10_1016_j_enganabound_2023_03_033 crossref_primary_10_1016_j_bspc_2023_105337 crossref_primary_10_1007_s12205_024_1647_6 crossref_primary_10_1016_j_conbuildmat_2021_124081 crossref_primary_10_1002_ima_22867 crossref_primary_10_3390_math8010069 crossref_primary_10_1007_s41939_023_00150_3 crossref_primary_10_2478_amns_2024_0396 crossref_primary_10_1016_j_asoc_2017_10_012 crossref_primary_10_1109_ACCESS_2021_3072648 crossref_primary_10_1007_s11036_020_01550_2 crossref_primary_10_1007_s11600_023_01146_w crossref_primary_10_1080_0954898X_2022_2061062 crossref_primary_10_1016_j_cscm_2023_e02294 crossref_primary_10_1080_03772063_2019_1702903 crossref_primary_10_1177_09544062211053169 crossref_primary_10_3390_fractalfract8110616 crossref_primary_10_1016_j_patcog_2022_108890 crossref_primary_10_1007_s10278_023_00783_3 crossref_primary_10_1080_03772063_2021_1948923 crossref_primary_10_1016_j_asej_2020_01_007 crossref_primary_10_1016_j_ecoinf_2018_08_008 crossref_primary_10_1007_s41939_024_00587_0 crossref_primary_10_1002_suco_202300508 crossref_primary_10_1016_j_neucom_2018_10_090 crossref_primary_10_3390_app10155242 crossref_primary_10_1186_s44147_023_00317_2 crossref_primary_10_1016_j_egyr_2021_10_125 crossref_primary_10_4018_IJORIS_2018040102 crossref_primary_10_1108_EC_03_2017_0105 crossref_primary_10_1109_TITS_2021_3115953 crossref_primary_10_3390_su12030830 crossref_primary_10_26599_TST_2021_9010093 crossref_primary_10_1016_j_jmrt_2023_06_007 crossref_primary_10_1002_suco_202300566 crossref_primary_10_1016_j_asoc_2019_03_051 crossref_primary_10_1109_ACCESS_2017_2788700 crossref_primary_10_1007_s00500_022_07649_w crossref_primary_10_1007_s10916_019_1482_3 crossref_primary_10_1016_j_cmpb_2022_106752 crossref_primary_10_1155_2021_2775278 crossref_primary_10_3389_fonc_2022_878104 crossref_primary_10_3233_JIFS_233428 crossref_primary_10_1007_s10278_023_00839_4 crossref_primary_10_1007_s41870_023_01445_x crossref_primary_10_3390_healthcare10081425 crossref_primary_10_1016_j_asoc_2023_110412 crossref_primary_10_1007_s00366_021_01552_y crossref_primary_10_1080_03772063_2020_1713917 crossref_primary_10_1016_j_cogsys_2020_04_001 crossref_primary_10_1007_s41939_024_00569_2 crossref_primary_10_1007_s41939_024_00577_2 crossref_primary_10_1016_j_renene_2021_06_050 crossref_primary_10_3390_sym17030465 crossref_primary_10_1016_j_neucom_2022_01_001 crossref_primary_10_1016_j_bspc_2021_103033 crossref_primary_10_3390_s18082690 crossref_primary_10_1016_j_rineng_2024_101868 crossref_primary_10_1007_s11277_021_08841_1 crossref_primary_10_1007_s00521_025_11121_9 crossref_primary_10_1007_s11277_021_09033_7 crossref_primary_10_1016_j_asoc_2020_106593 crossref_primary_10_1186_s12911_021_01436_7  | 
    
| Cites_doi | 10.1016/j.asoc.2014.09.032 10.1016/j.eij.2014.08.001 10.1093/comjnl/7.2.149 10.1016/j.amc.2006.07.025 10.1080/02564602.2014.942237 10.1016/j.asoc.2014.03.039 10.1016/j.neucom.2013.03.074 10.1109/TNN.2008.2004370 10.1016/j.neucom.2012.07.010 10.1109/MHS.1995.494215 10.1016/0893-6080(91)90063-B 10.1016/j.eswa.2011.07.028 10.1016/j.eswa.2010.05.033 10.1016/0925-2312(94)00026-3 10.1016/j.neucom.2007.10.013 10.1016/j.neucom.2012.07.023 10.1109/TNN.2009.2034741 10.1109/TEVC.2007.896686 10.1109/3477.678658 10.1016/j.neucom.2006.05.023 10.1029/98WR00006 10.1109/TNN.2004.824424 10.1016/j.artmed.2008.04.004 10.1016/j.neucom.2007.10.011 10.1016/j.asoc.2010.04.014 10.1016/j.asoc.2015.08.002 10.1016/j.asoc.2011.08.037 10.1016/j.amc.2008.05.025 10.1007/s00521-009-0274-y 10.1016/j.biosystems.2004.08.003 10.1016/j.ins.2013.03.021 10.1016/j.cmpb.2013.07.009 10.1016/S0925-2312(99)00123-X 10.1016/j.engappai.2012.01.023 10.1016/j.eswa.2015.01.065 10.1109/TNN.2010.2041468  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2016 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2016 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.asoc.2016.08.001 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-9681 | 
    
| EndPage | 844 | 
    
| ExternalDocumentID | 10_1016_j_asoc_2016_08_001 S1568494616303866  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c300t-5c9ce3c9e0aa7251461b8303ee54c77e7dbe13ee75542bfa42b139671235cdcf3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1568-4946 | 
    
| IngestDate | Wed Oct 01 02:32:07 EDT 2025 Thu Apr 24 23:11:26 EDT 2025 Fri Feb 23 02:24:51 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Back propagation Computer-Aided Diagnostic system Differential evolution with global information Artificial Neural Network Optimization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c300t-5c9ce3c9e0aa7251461b8303ee54c77e7dbe13ee75542bfa42b139671235cdcf3 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2016_08_001 crossref_primary_10_1016_j_asoc_2016_08_001 elsevier_sciencedirect_doi_10_1016_j_asoc_2016_08_001  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2016 2016-12-00  | 
    
| PublicationDateYYYYMMDD | 2016-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2016 text: December 2016  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Applied soft computing | 
    
| PublicationYear | 2016 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Bishop (bib0020) 1995 Han, Ling, Huang (bib0095) 2008; 19 Han, Ling (bib0090) 2008; 205 Mangat, Vig (bib0200) 2014; 31 Leung, Tang, Wong (bib0195) 2012; 39 Qasem, Shamsuddin (bib0190) 2011; 11 Sharma, Venugopalan (bib0240) 2014; 16 Zhang (bib0110) 2007; 185 Eberhart, Kennedy (bib0065) 1995 Kennedy, Eberhart (bib0060) 1995; 4 Joerding, Mcador (bib0025) 1991; 4 Demuth, Beale (bib0230) 2013 Fletcher, Reeves (bib0010) 1964; 7 Ang, Tan, Al-Mamun (bib0050) 2008; 71 Abdual-Salam, Abdul-Kader, Abdel-Wahed (bib0120) 2010 Turker (bib0115) 2010; 37 Sharma, Mahta (bib0170) 2013; 7 Zhang, Zhang, Lok, Lyu (bib0245) 2007; 185 Verikas, Gelzinis (bib0055) 2000; 30 Medcal Online Diagnostic Test Evaluation Calculator He, Wu, Wen (bib0075) 2004; 78 Han, Kamber, Mining (bib0165) 2006 Cai, Chen, Zhang (bib0180) 2010; 21 Morshed, Kaluarachchi (bib0235) 1998; 34 Han, Qiao (bib0040) 2013; 99 Jaddi, Abdullah, Hamdan (bib0145) 2015; 37 del Valle, Venayagamoorthy, Mohagheghi (bib0080) 2008; 12 Fernandez Caballero, Martínez, Hervás, Gutiérrez (bib0185) 2010; 21 Huang, Ji-Xiang Du (bib0015) 2008; 19 Ghazavi, Liao (bib0210) 2008; 43 Piotrowski (bib0130) 2014; 21 Rau, Hsu, Lin, Atique, Fuad, Wei, Hsu (bib0225) 2015 Rocha, Cortez, Neves (bib0105) 2007; 70 Ghosh, Biswas, Sarkar, Sarkar (bib0220) 2014; 15 Han, Liu (bib0135) 2014; 137 Yu, Wang, Xi (bib0085) 2008; 71 Looney (bib0045) 1996; 10 Dennis, Muthukrishnan (bib0215) 2014; 25 Beloufa, Chikh (bib0205) 2013; 112 (accessed 15.02.16). Asuncion, Newman (bib0150) 2007 Noel (bib0070) 2012; 12 Bhardwaj, Tiwari (bib0140) 2015; 42 Castellani (bib0100) 2013; 99 Huang (bib0005) 1998; 28 Qasem, Shamsuddin, Hashim, Darus, Al-Shammari (bib0175) 2013; 239 Huang (bib0030) 2004; 15 (bib0035) 1995 Yaghini, Mohammad, Fallahi (bib0125) 2013; 26 Coello, Veldhuizen, Lamont (bib0155) 2002 Demuth (10.1016/j.asoc.2016.08.001_bib0230) 2013 Morshed (10.1016/j.asoc.2016.08.001_bib0235) 1998; 34 Ghosh (10.1016/j.asoc.2016.08.001_bib0220) 2014; 15 Rau (10.1016/j.asoc.2016.08.001_bib0225) 2015 Cai (10.1016/j.asoc.2016.08.001_bib0180) 2010; 21 Fletcher (10.1016/j.asoc.2016.08.001_bib0010) 1964; 7 Han (10.1016/j.asoc.2016.08.001_bib0135) 2014; 137 Bhardwaj (10.1016/j.asoc.2016.08.001_bib0140) 2015; 42 Eberhart (10.1016/j.asoc.2016.08.001_bib0065) 1995 Huang (10.1016/j.asoc.2016.08.001_bib0015) 2008; 19 Kennedy (10.1016/j.asoc.2016.08.001_bib0060) 1995; 4 Castellani (10.1016/j.asoc.2016.08.001_bib0100) 2013; 99 Coello (10.1016/j.asoc.2016.08.001_bib0155) 2002 Qasem (10.1016/j.asoc.2016.08.001_bib0190) 2011; 11 Mangat (10.1016/j.asoc.2016.08.001_bib0200) 2014; 31 del Valle (10.1016/j.asoc.2016.08.001_bib0080) 2008; 12 Ang (10.1016/j.asoc.2016.08.001_bib0050) 2008; 71 Han (10.1016/j.asoc.2016.08.001_bib0165) 2006 Beloufa (10.1016/j.asoc.2016.08.001_bib0205) 2013; 112 Zhang (10.1016/j.asoc.2016.08.001_bib0245) 2007; 185 Yu (10.1016/j.asoc.2016.08.001_bib0085) 2008; 71 Noel (10.1016/j.asoc.2016.08.001_bib0070) 2012; 12 Han (10.1016/j.asoc.2016.08.001_bib0090) 2008; 205 Ghazavi (10.1016/j.asoc.2016.08.001_bib0210) 2008; 43 Han (10.1016/j.asoc.2016.08.001_bib0095) 2008; 19 Sharma (10.1016/j.asoc.2016.08.001_bib0170) 2013; 7 Turker (10.1016/j.asoc.2016.08.001_bib0115) 2010; 37 Yaghini (10.1016/j.asoc.2016.08.001_bib0125) 2013; 26 Dennis (10.1016/j.asoc.2016.08.001_bib0215) 2014; 25 Verikas (10.1016/j.asoc.2016.08.001_bib0055) 2000; 30 Qasem (10.1016/j.asoc.2016.08.001_bib0175) 2013; 239 Han (10.1016/j.asoc.2016.08.001_bib0040) 2013; 99 Fernandez Caballero (10.1016/j.asoc.2016.08.001_bib0185) 2010; 21 Bishop (10.1016/j.asoc.2016.08.001_bib0020) 1995 Looney (10.1016/j.asoc.2016.08.001_bib0045) 1996; 10 Jaddi (10.1016/j.asoc.2016.08.001_bib0145) 2015; 37 Leung (10.1016/j.asoc.2016.08.001_bib0195) 2012; 39 Sharma (10.1016/j.asoc.2016.08.001_bib0240) 2014; 16 10.1016/j.asoc.2016.08.001_bib0160 Zhang (10.1016/j.asoc.2016.08.001_bib0110) 2007; 185 Piotrowski (10.1016/j.asoc.2016.08.001_bib0130) 2014; 21 Asuncion (10.1016/j.asoc.2016.08.001_bib0150) 2007 Rocha (10.1016/j.asoc.2016.08.001_bib0105) 2007; 70 Huang (10.1016/j.asoc.2016.08.001_bib0030) 2004; 15 (10.1016/j.asoc.2016.08.001_bib0035) 1995 Huang (10.1016/j.asoc.2016.08.001_bib0005) 1998; 28 Joerding (10.1016/j.asoc.2016.08.001_bib0025) 1991; 4 Abdual-Salam (10.1016/j.asoc.2016.08.001_bib0120) 2010 He (10.1016/j.asoc.2016.08.001_bib0075) 2004; 78  | 
    
| References_xml | – volume: 78 start-page: 135 year: 2004 end-page: 147 ident: bib0075 article-title: A particle swarm optimizer with passive congregation publication-title: Biosystems – volume: 7 start-page: 149 year: 1964 end-page: 154 ident: bib0010 article-title: Function minimization by conjugate gradients publication-title: Comput. J. – volume: 99 start-page: 214 year: 2013 end-page: 229 ident: bib0100 article-title: Evolutionary generation of neural network classifiers—An empirical comparison publication-title: Neurocomputing – volume: 37 start-page: 71 year: 2015 end-page: 86 ident: bib0145 article-title: Optimization of neural network model using modified bat-inspired algorithm publication-title: Appl. Soft Comput. – volume: 37 start-page: 8450 year: 2010 end-page: 8461 ident: bib0115 article-title: Evaluation of global and local training techniques over feed-forward neural network architecture spaces for computer-aided medical diagnosis publication-title: Expert Syst. Appl. – volume: 26 start-page: 293 year: 2013 end-page: 301 ident: bib0125 article-title: A hybrid algorithm for artificial neural network training publication-title: Eng. Appl. Artif. Intell. – volume: 10 start-page: 7 year: 1996 end-page: 31 ident: bib0045 article-title: Stabilization and speedup of convergence in training feedforward neural networks publication-title: Neurocomputing – volume: 28 start-page: 477 year: 1998 end-page: 480 ident: bib0005 article-title: The local minima free condition of feed forward neural networks for outer- supervised learning publication-title: IEEE Trans. Syst Man Cybern. – volume: 71 start-page: 3493 year: 2008 end-page: 3508 ident: bib0050 article-title: Training neural networks for classification using growth probability-based evolution publication-title: Neurocomputing – volume: 12 start-page: 171 year: 2008 end-page: 195 ident: bib0080 article-title: Particle swarm optimization: basic concepts,variants and applications in power systems publication-title: IEEE Trans. Evol. Comput. – year: 2006 ident: bib0165 article-title: Southeast Asia Edition: Concepts and Techniques – volume: 21 start-page: 750 year: 2010 end-page: 770 ident: bib0185 article-title: Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks publication-title: Neural Netw. IEEE Trans. – year: 2002 ident: bib0155 article-title: Evolutionary Algorithms for Multi-Objective Problems – volume: 70 start-page: 2809 year: 2007 end-page: 2816 ident: bib0105 article-title: Evolution of neural networks for classification and regression publication-title: Neurocomputing – volume: 239 start-page: 165 year: 2013 end-page: 190 ident: bib0175 article-title: Memetic multiobjective particle swarm optimization-based radial basis function network for classification problems publication-title: Inf. Sci. – volume: 112 start-page: 92 year: 2013 end-page: 103 ident: bib0205 article-title: Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm publication-title: Comput. Methods Progr. Biomed. – volume: 15 start-page: 129 year: 2014 end-page: 147 ident: bib0220 article-title: A novel Neuro-fuzzy classification technique for data mining publication-title: Egypt. Inf. J. – year: 2015 ident: bib0225 article-title: Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network publication-title: Comput. Methods Progr. Biomed. – volume: 16 start-page: 31 year: 2014 end-page: 35 ident: bib0240 article-title: Comparison of neural network training functions for Hematoma classification in brain CT images publication-title: Int. J. Comput. Sci. Eng. – volume: 71 start-page: 1054 year: 2008 end-page: 1060 ident: bib0085 article-title: Evolving artificial neural networks using an improved PSO and DPSO publication-title: Neurocomputing – reference: Medcal Online Diagnostic Test Evaluation Calculator, – volume: 43 start-page: 195 year: 2008 end-page: 206 ident: bib0210 article-title: Medical data mining by fuzzy modeling with selected features publication-title: Artif. Intell. Med. – volume: 30 start-page: 153 year: 2000 end-page: 172 ident: bib0055 article-title: Training neural networks by stochastic optimization publication-title: Neurocomputing – volume: 185 start-page: 1026 year: 2007 end-page: 1037 ident: bib0110 article-title: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training publication-title: Appl. Math. Comput. – volume: 34 start-page: 1101 year: 1998 end-page: 1113 ident: bib0235 article-title: Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery publication-title: Water Resour. Res. – volume: 137 start-page: 234 year: 2014 end-page: 240 ident: bib0135 article-title: A diversity-guided hybrid particle swarm optimization based on gradient search publication-title: Neurocomputing – volume: 185 start-page: 1026 year: 2007 end-page: 1037 ident: bib0245 article-title: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training publication-title: Appl. Math. Comput. – year: 2013 ident: bib0230 article-title: Neural Network Toolbox for Use with MATLAB. Users Guide – volume: 21 start-page: 185 year: 2010 end-page: 200 ident: bib0180 article-title: A multiobjective simultaneous learning framework for clustering and classification publication-title: Neural Netw. IEEE Trans. – volume: 11 start-page: 1427 year: 2011 end-page: 1438 ident: bib0190 article-title: Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis publication-title: Appl. Soft Comput. – reference: , (accessed 15.02.16). – volume: 4 start-page: 847 year: 1991 end-page: 856 ident: bib0025 article-title: Encoding a prior information in feed forward networks publication-title: Neural Netw. – volume: 19 start-page: 2099 year: 2008 end-page: 2115 ident: bib0015 article-title: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks publication-title: IEEE Trans. Neural Netw. – volume: 15 start-page: 477 year: 2004 end-page: 491 ident: bib0030 article-title: A constructive approach for finding arbitrary roots of polynomials by neural networks publication-title: IEEE Trans. Neural Netw. – volume: 7 start-page: 1 year: 2013 end-page: 10 ident: bib0170 article-title: Training of radial basis function using particle swarm optimization publication-title: Int. J. Eng. Res. Dev. – volume: 21 start-page: 382 year: 2014 end-page: 406 ident: bib0130 article-title: Differential Evolution algorithms applied to Neural Network training suffer from stagnation publication-title: Appl. Soft Comput. – volume: 205 start-page: 792 year: 2008 end-page: 798 ident: bib0090 article-title: A new approach for function approximation incorporating adaptive particle swarm optimization and a priori information publication-title: Appl. Math. Comput. – volume: 42 start-page: 4611 year: 2015 end-page: 4620 ident: bib0140 article-title: Breast cancer diagnosis using genetically optimized neural network model publication-title: Expert Syst. Appl. – volume: 31 start-page: 258 year: 2014 end-page: 265 ident: bib0200 article-title: Dynamic PSO-Based associative classifier for medical datasets publication-title: IETE Tech. Rev. – start-page: 39 year: 1995 end-page: 43 ident: bib0065 article-title: A new optimizer using particle swarm theory publication-title: Proceedings of the Sixth International Symposium on Micro Machines and Human Science – volume: 99 start-page: 347 year: 2013 end-page: 357 ident: bib0040 article-title: A structure ptimization algorithm for feedforward neural network construction publication-title: Neurocomputing – volume: 39 start-page: 395 year: 2012 end-page: 405 ident: bib0195 article-title: A hybrid particle swarm optimization and its application in neural networks publication-title: Expert Syst. Appl. – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: bib0060 article-title: Particle swarm optimization publication-title: IEEE Int. Conf. Neural Netw. – volume: 12 start-page: 353 year: 2012 end-page: 359 ident: bib0070 article-title: A new gradient based particle swarm optimization algorithm for accurate computation of global minimum publication-title: Appl. Soft Comput. – year: 1995 ident: bib0035 publication-title: Backpropagation: Theory, Architectures, and Applications – year: 2010 ident: bib0120 article-title: Comparative study between Differential Evolution and Particle Swarm Optimization algorithms in training of feed-forward neural network for stock price prediction, Informatics and Systems (INFOS) publication-title: The 7th International Conference on IEEE – volume: 19 start-page: 255 year: 2008 end-page: 261 ident: bib0095 article-title: An improved approximation approach incorporating particle swarm optimization into neural networks publication-title: Neural Comput Appl. – year: 2007 ident: bib0150 article-title: UCI Machine Learning Repository – volume: 25 start-page: 242 year: 2014 end-page: 252 ident: bib0215 article-title: AGFS: adaptive genetic fuzzy system for medical data classification publication-title: Appl. Soft Comput. – year: 1995 ident: bib0020 article-title: Neural Networks for Pattern Recognition – volume: 25 start-page: 242 year: 2014 ident: 10.1016/j.asoc.2016.08.001_bib0215 article-title: AGFS: adaptive genetic fuzzy system for medical data classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.09.032 – volume: 15 start-page: 129 issue: 3 year: 2014 ident: 10.1016/j.asoc.2016.08.001_bib0220 article-title: A novel Neuro-fuzzy classification technique for data mining publication-title: Egypt. Inf. J. doi: 10.1016/j.eij.2014.08.001 – year: 2015 ident: 10.1016/j.asoc.2016.08.001_bib0225 article-title: Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network publication-title: Comput. Methods Progr. Biomed. – volume: 7 start-page: 149 year: 1964 ident: 10.1016/j.asoc.2016.08.001_bib0010 article-title: Function minimization by conjugate gradients publication-title: Comput. J. doi: 10.1093/comjnl/7.2.149 – volume: 185 start-page: 1026 issue: 2 year: 2007 ident: 10.1016/j.asoc.2016.08.001_bib0110 article-title: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.07.025 – volume: 31 start-page: 258 year: 2014 ident: 10.1016/j.asoc.2016.08.001_bib0200 article-title: Dynamic PSO-Based associative classifier for medical datasets publication-title: IETE Tech. Rev. doi: 10.1080/02564602.2014.942237 – volume: 21 start-page: 382 year: 2014 ident: 10.1016/j.asoc.2016.08.001_bib0130 article-title: Differential Evolution algorithms applied to Neural Network training suffer from stagnation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.03.039 – volume: 137 start-page: 234 year: 2014 ident: 10.1016/j.asoc.2016.08.001_bib0135 article-title: A diversity-guided hybrid particle swarm optimization based on gradient search publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.074 – volume: 19 start-page: 2099 issue: 12 year: 2008 ident: 10.1016/j.asoc.2016.08.001_bib0015 article-title: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2004370 – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2016.08.001_bib0060 article-title: Particle swarm optimization publication-title: IEEE Int. Conf. Neural Netw. – volume: 99 start-page: 214 year: 2013 ident: 10.1016/j.asoc.2016.08.001_bib0100 article-title: Evolutionary generation of neural network classifiers—An empirical comparison publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.07.010 – start-page: 39 year: 1995 ident: 10.1016/j.asoc.2016.08.001_bib0065 article-title: A new optimizer using particle swarm theory publication-title: Proceedings of the Sixth International Symposium on Micro Machines and Human Science doi: 10.1109/MHS.1995.494215 – volume: 4 start-page: 847 year: 1991 ident: 10.1016/j.asoc.2016.08.001_bib0025 article-title: Encoding a prior information in feed forward networks publication-title: Neural Netw. doi: 10.1016/0893-6080(91)90063-B – volume: 39 start-page: 395 year: 2012 ident: 10.1016/j.asoc.2016.08.001_bib0195 article-title: A hybrid particle swarm optimization and its application in neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.028 – volume: 37 start-page: 8450 issue: 12 year: 2010 ident: 10.1016/j.asoc.2016.08.001_bib0115 article-title: Evaluation of global and local training techniques over feed-forward neural network architecture spaces for computer-aided medical diagnosis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.05.033 – volume: 10 start-page: 7 issue: 1 year: 1996 ident: 10.1016/j.asoc.2016.08.001_bib0045 article-title: Stabilization and speedup of convergence in training feedforward neural networks publication-title: Neurocomputing doi: 10.1016/0925-2312(94)00026-3 – volume: 71 start-page: 1054 issue: 4 year: 2008 ident: 10.1016/j.asoc.2016.08.001_bib0085 article-title: Evolving artificial neural networks using an improved PSO and DPSO publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.10.013 – year: 2010 ident: 10.1016/j.asoc.2016.08.001_bib0120 article-title: Comparative study between Differential Evolution and Particle Swarm Optimization algorithms in training of feed-forward neural network for stock price prediction, Informatics and Systems (INFOS) publication-title: The 7th International Conference on IEEE – year: 2013 ident: 10.1016/j.asoc.2016.08.001_bib0230 – volume: 99 start-page: 347 year: 2013 ident: 10.1016/j.asoc.2016.08.001_bib0040 article-title: A structure ptimization algorithm for feedforward neural network construction publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.07.023 – volume: 21 start-page: 185 year: 2010 ident: 10.1016/j.asoc.2016.08.001_bib0180 article-title: A multiobjective simultaneous learning framework for clustering and classification publication-title: Neural Netw. IEEE Trans. doi: 10.1109/TNN.2009.2034741 – volume: 12 start-page: 171 year: 2008 ident: 10.1016/j.asoc.2016.08.001_bib0080 article-title: Particle swarm optimization: basic concepts,variants and applications in power systems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.896686 – year: 1995 ident: 10.1016/j.asoc.2016.08.001_bib0020 – volume: 28 start-page: 477 issue: 3 year: 1998 ident: 10.1016/j.asoc.2016.08.001_bib0005 article-title: The local minima free condition of feed forward neural networks for outer- supervised learning publication-title: IEEE Trans. Syst Man Cybern. doi: 10.1109/3477.678658 – volume: 185 start-page: 1026 issue: 2 year: 2007 ident: 10.1016/j.asoc.2016.08.001_bib0245 article-title: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.07.025 – volume: 70 start-page: 2809 issue: 16 year: 2007 ident: 10.1016/j.asoc.2016.08.001_bib0105 article-title: Evolution of neural networks for classification and regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.05.023 – volume: 34 start-page: 1101 issue: 5 year: 1998 ident: 10.1016/j.asoc.2016.08.001_bib0235 article-title: Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery publication-title: Water Resour. Res. doi: 10.1029/98WR00006 – volume: 15 start-page: 477 year: 2004 ident: 10.1016/j.asoc.2016.08.001_bib0030 article-title: A constructive approach for finding arbitrary roots of polynomials by neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2004.824424 – volume: 16 start-page: 31 issue: 1 year: 2014 ident: 10.1016/j.asoc.2016.08.001_bib0240 article-title: Comparison of neural network training functions for Hematoma classification in brain CT images publication-title: Int. J. Comput. Sci. Eng. – volume: 7 start-page: 1 year: 2013 ident: 10.1016/j.asoc.2016.08.001_bib0170 article-title: Training of radial basis function using particle swarm optimization publication-title: Int. J. Eng. Res. Dev. – volume: 43 start-page: 195 issue: 3 year: 2008 ident: 10.1016/j.asoc.2016.08.001_bib0210 article-title: Medical data mining by fuzzy modeling with selected features publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2008.04.004 – volume: 71 start-page: 3493 issue: 16 year: 2008 ident: 10.1016/j.asoc.2016.08.001_bib0050 article-title: Training neural networks for classification using growth probability-based evolution publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.10.011 – volume: 11 start-page: 1427 year: 2011 ident: 10.1016/j.asoc.2016.08.001_bib0190 article-title: Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.04.014 – volume: 37 start-page: 71 year: 2015 ident: 10.1016/j.asoc.2016.08.001_bib0145 article-title: Optimization of neural network model using modified bat-inspired algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.08.002 – volume: 12 start-page: 353 issue: 1 year: 2012 ident: 10.1016/j.asoc.2016.08.001_bib0070 article-title: A new gradient based particle swarm optimization algorithm for accurate computation of global minimum publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.08.037 – volume: 205 start-page: 792 year: 2008 ident: 10.1016/j.asoc.2016.08.001_bib0090 article-title: A new approach for function approximation incorporating adaptive particle swarm optimization and a priori information publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2008.05.025 – year: 2006 ident: 10.1016/j.asoc.2016.08.001_bib0165 – volume: 19 start-page: 255 issue: 2 year: 2008 ident: 10.1016/j.asoc.2016.08.001_bib0095 article-title: An improved approximation approach incorporating particle swarm optimization into neural networks publication-title: Neural Comput Appl. doi: 10.1007/s00521-009-0274-y – year: 1995 ident: 10.1016/j.asoc.2016.08.001_bib0035 – year: 2007 ident: 10.1016/j.asoc.2016.08.001_bib0150 – volume: 78 start-page: 135 year: 2004 ident: 10.1016/j.asoc.2016.08.001_bib0075 article-title: A particle swarm optimizer with passive congregation publication-title: Biosystems doi: 10.1016/j.biosystems.2004.08.003 – ident: 10.1016/j.asoc.2016.08.001_bib0160 – volume: 239 start-page: 165 year: 2013 ident: 10.1016/j.asoc.2016.08.001_bib0175 article-title: Memetic multiobjective particle swarm optimization-based radial basis function network for classification problems publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.03.021 – volume: 112 start-page: 92 issue: 1 year: 2013 ident: 10.1016/j.asoc.2016.08.001_bib0205 article-title: Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2013.07.009 – year: 2002 ident: 10.1016/j.asoc.2016.08.001_bib0155 – volume: 30 start-page: 153 issue: 1 year: 2000 ident: 10.1016/j.asoc.2016.08.001_bib0055 article-title: Training neural networks by stochastic optimization publication-title: Neurocomputing doi: 10.1016/S0925-2312(99)00123-X – volume: 26 start-page: 293 issue: 1 year: 2013 ident: 10.1016/j.asoc.2016.08.001_bib0125 article-title: A hybrid algorithm for artificial neural network training publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.01.023 – volume: 42 start-page: 4611 year: 2015 ident: 10.1016/j.asoc.2016.08.001_bib0140 article-title: Breast cancer diagnosis using genetically optimized neural network model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.01.065 – volume: 21 start-page: 750 year: 2010 ident: 10.1016/j.asoc.2016.08.001_bib0185 article-title: Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks publication-title: Neural Netw. IEEE Trans. doi: 10.1109/TNN.2010.2041468  | 
    
| SSID | ssj0016928 | 
    
| Score | 2.5150115 | 
    
| Snippet | [Display omitted]
•A CAD system for disease diagnosis using Differential Evolution with Global Information (DEGI) based Back Propagation (BP) is proposed.•The... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 834 | 
    
| SubjectTerms | Artificial Neural Network Back propagation Computer-Aided Diagnostic system Differential evolution with global information Optimization  | 
    
| Title | Neural network classifier optimization using Differential Evolution with Global Information and Back Propagation algorithm for clinical datasets | 
    
| URI | https://dx.doi.org/10.1016/j.asoc.2016.08.001 | 
    
| Volume | 49 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw7cUFlL06Y9jrFpvKYJmLRblaTpNNi6aSsc-Q38ZOw2nUBIO3Bp1ciuKjt27OqzTci5F2MPwgDSEteTFuNCWQICAUu6PFYJWJ_wsDj5sed3B-xu6A0rpFXWwiCs0vj-wqfn3tqsNIw0G_PxuPEMmUfAQuZDRGG7gY9ttxnjOMXg8nMF83D8MJ-visQWUpvCmQLjJUACCO_y8zaeZjDMn8Ppx4HT2SFbJlKkzeJjdklFp3tku5zCQI1R7pMv7K8BhGkB6KYK4-FxAm-kM_AHU1NoSRHhPqI3ZiAKGPaEtj_MxqP4O5YW_f-pqVDK10Ua02uh3mh_Adn1yCxORrMFMEwpENKytpIi2HSps-UBGXTaL62uZeYsWMq17czyVKi0q0JtC8Eh3gGRygBkqrXHFOeax1I78MQh9LiSiYALxI0-xzJbBRp1D0k1naX6iFDbUYJJJwlD6TBIZSRLwGf44FYCtHVZI04p4EiZJuQ4C2MSlWiz1wiVEqFSIhyQaTs1crHimRctONZSe6Xeol8bKYIzYg3f8T_5TsgmPhUIl1NSzRbv-gzilEzW841YJxvN1tNDH--3993eN9aN6-I | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOMCFN2I8c-CGyto1bdojjE0DtgmJTdqtSrJ0GmzdtBWO_AZ-MnabTiAkDlwqNbWryo4du_psE3LpDbEHYQBpietJi3GhLAGBgCVdPlQxWJ_wsDi50_VbffYw8AYlUi9qYRBWaXx_7tMzb21Wqkaa1fl4XH2GzCNgIfMhorDdwPfXyDrzahwzsOuPFc7D8cNswCpSW0huKmdykJcAESC-y8_6eJrJML9Op28nTnOHbJlQkd7kX7NLSjrZI9vFGAZqrHKffGKDDSBMckQ3VRgQj2N4I52BQ5iaSkuKEPcRvTMTUcCyJ7TxbnYexf-xNB8AQE2JUrYukiG9FeqVPi0gvR6ZxclotgCGKQVCWhRXUkSbLnW6PCD9ZqNXb1lm0IKlXNtOLU-FSrsq1LYQHAIekKkMQKhae0xxrvlQagfuOMQeNRkLuEDg6HOss1WgUveQlJNZoo8ItR0lmHTiMJQOg1xGshichg9-JUBjlxXiFAKOlOlCjsMwJlEBN3uJUCkRKiXCCZm2UyFXK5553oPjT2qv0Fv0YydFcEj8wXf8T74LstHqddpR-777eEI28UkOdzkl5XTxps8gaEnlebYpvwD1x-vi | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+classifier+optimization+using+Differential+Evolution+with+Global+Information+and+Back+Propagation+algorithm+for+clinical+datasets&rft.jtitle=Applied+soft+computing&rft.au=Leema%2C+N.&rft.au=Nehemiah%2C+H.+Khanna&rft.au=Kannan%2C+A.&rft.date=2016-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=49&rft.spage=834&rft.epage=844&rft_id=info:doi/10.1016%2Fj.asoc.2016.08.001&rft.externalDocID=S1568494616303866 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |