Subject adaptation network for EEG data analysis
Biosignals tend to display manifest intra- and cross-subject variance, which generates numerous challenges for electroencephalograph (EEG) data analysis. For instance, in the context of classification, the discrepancy between EEG data can make the trained model generalising poorly for new test subje...
Saved in:
Published in | Applied soft computing Vol. 84; p. 105689 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2019.105689 |
Cover
Abstract | Biosignals tend to display manifest intra- and cross-subject variance, which generates numerous challenges for electroencephalograph (EEG) data analysis. For instance, in the context of classification, the discrepancy between EEG data can make the trained model generalising poorly for new test subjects. In this paper, a subject adaptation network (SAN) inspired by the generative adversarial network (GAN) to mitigate different variances is proposed for analysing EEG data. First the challenges faced by traditional approaches employed for EEG signal processing are emphasised. Then the problem is formulated from mathematical perspective to highlight the key points in resolving such discrepancies. Third, the motivation behind and design principle of the SAN are described in an intuitive manner to reflect its suitability for analysing EEG data. Then after depicting the overall architecture of the SAN, several experiments are used to justify the practicality and efficiency of using the proposed model from different perspectives. For instance, an EEG dataset captured during a stereotypical neurophysiological experiment called the VEP oddball task is utilised to demonstrate the performance improvement achieved by running the SAN.
•A theoretical basis is formalised to guide the model design.•A subject adversarial network is proposed to mitigate EEG data variance.•Various experiments are provided to show the model’s effectiveness.•Tricks from the implementation perspective are discussed. |
---|---|
AbstractList | Biosignals tend to display manifest intra- and cross-subject variance, which generates numerous challenges for electroencephalograph (EEG) data analysis. For instance, in the context of classification, the discrepancy between EEG data can make the trained model generalising poorly for new test subjects. In this paper, a subject adaptation network (SAN) inspired by the generative adversarial network (GAN) to mitigate different variances is proposed for analysing EEG data. First the challenges faced by traditional approaches employed for EEG signal processing are emphasised. Then the problem is formulated from mathematical perspective to highlight the key points in resolving such discrepancies. Third, the motivation behind and design principle of the SAN are described in an intuitive manner to reflect its suitability for analysing EEG data. Then after depicting the overall architecture of the SAN, several experiments are used to justify the practicality and efficiency of using the proposed model from different perspectives. For instance, an EEG dataset captured during a stereotypical neurophysiological experiment called the VEP oddball task is utilised to demonstrate the performance improvement achieved by running the SAN.
•A theoretical basis is formalised to guide the model design.•A subject adversarial network is proposed to mitigate EEG data variance.•Various experiments are provided to show the model’s effectiveness.•Tricks from the implementation perspective are discussed. |
ArticleNumber | 105689 |
Author | Wu, Dongrui Ding, Weiping Prasad, Mukesh Ming, Yurui Pelusi, Danilo Wang, Yu-Kai Lin, Chin-Teng |
Author_xml | – sequence: 1 givenname: Yurui orcidid: 0000-0003-3837-5580 surname: Ming fullname: Ming, Yurui email: yrming@gmial.com organization: Centre for Artificial Intelligence, School of Computer Science, FEIT, University of Technology Sydney, NSW 2007, Australia – sequence: 2 givenname: Weiping surname: Ding fullname: Ding, Weiping email: ding.wp@ntu.edu.cn organization: School of Computer Science and Technology, Nantong University, Jiangsu 226019, China – sequence: 3 givenname: Danilo orcidid: 0000-0003-0889-278X surname: Pelusi fullname: Pelusi, Danilo email: dpelusi@unite.it organization: Faculty of Communication Sciences, University of Teramo, I-64100 Teramo, Italy – sequence: 4 givenname: Dongrui orcidid: 0000-0002-7153-9703 surname: Wu fullname: Wu, Dongrui email: drwu@hust.edu.cn organization: School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Hubei 430074, China – sequence: 5 givenname: Yu-Kai surname: Wang fullname: Wang, Yu-Kai email: Yukai.Wang@uts.edu.au organization: Centre for Artificial Intelligence, School of Computer Science, FEIT, University of Technology Sydney, NSW 2007, Australia – sequence: 6 givenname: Mukesh surname: Prasad fullname: Prasad, Mukesh email: Mukesh.Prasad@uts.edu.au organization: Centre for Artificial Intelligence, School of Computer Science, FEIT, University of Technology Sydney, NSW 2007, Australia – sequence: 7 givenname: Chin-Teng surname: Lin fullname: Lin, Chin-Teng email: Chin-Teng.Lin@uts.edu.au organization: Centre for Artificial Intelligence, School of Computer Science, FEIT, University of Technology Sydney, NSW 2007, Australia |
BookMark | eNp9kM9KAzEQh4NUsK2-gKd9ga35t9kEvEipVSh4UM9hNslC1ropSVT69qasJw-FgRl-8A3zzQLNxjA6hG4JXhFMxN2wghTMimKiStAIqS7QnMiW1kpIMitzyWquuLhCi5QGXCBF5Rzh169ucCZXYOGQIfswVqPLPyF-VH2I1WazrSxkqGCE_TH5dI0ue9gnd_PXl-j9cfO2fqp3L9vn9cOuNgzjXDfAZMeAEttY04pSreF9w7vOsIYQJZRkjLWC8la6TnFqKfTOEFau6rglbInotNfEkFJ0vT5E_wnxqAnWJ2c96JOzPjnryblA8h9k_CSVI_j9efR-Ql2R-vYu6mS8G42zPpb_aBv8OfwXfDFzEA |
CitedBy_id | crossref_primary_10_1088_1741_2552_abda0b crossref_primary_10_1109_TNSRE_2020_3023761 crossref_primary_10_3389_frsip_2022_1019253 crossref_primary_10_1186_s12984_023_01169_w crossref_primary_10_1016_j_dsp_2024_104856 crossref_primary_10_1109_TNSRE_2022_3184725 crossref_primary_10_1109_TCDS_2020_3007453 crossref_primary_10_1088_1741_2552_ac7ba8 crossref_primary_10_1145_3654664 crossref_primary_10_1109_TCDS_2021_3079712 crossref_primary_10_1109_TIM_2024_3451593 crossref_primary_10_3390_app11041798 crossref_primary_10_1007_s00521_021_06457_x crossref_primary_10_1016_j_bspc_2022_104453 crossref_primary_10_1088_1741_2552_ad3eb3 crossref_primary_10_1016_j_asoc_2022_108471 crossref_primary_10_1016_j_bspc_2022_103555 crossref_primary_10_1016_j_neucom_2024_129239 crossref_primary_10_1007_s11042_023_15900_1 crossref_primary_10_1088_1741_2552_abf2e4 crossref_primary_10_1016_j_engappai_2023_106022 crossref_primary_10_1016_j_neucom_2021_11_039 crossref_primary_10_1109_TCYB_2020_3010805 crossref_primary_10_1016_j_medengphy_2021_08_006 |
Cites_doi | 10.1007/978-3-642-15561-1_16 10.1007/978-3-030-03243-2_860-1 10.1002/hbm.23730 10.1109/ICCV.2017.301 10.1109/TNSRE.2016.2544108 10.1109/CVPR.2017.316 10.3389/fnins.2012.00039 10.1007/s10463-008-0197-x 10.1145/1321440.1321498 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2019.105689 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2019_105689 S1568494619304703 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-5a38b3a21d5dc76c767c4f54bbc35119698333762478eb942d2afec13928b4d13 |
IEDL.DBID | AIKHN |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 22:56:40 EDT 2025 Tue Jul 01 01:50:04 EDT 2025 Fri Feb 23 02:24:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Sample selection Domain adaptation (DA) Electroencephalograph (EEG) Subject adaptation network (SAN) Clustering Brain–computer interface (BCI) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-5a38b3a21d5dc76c767c4f54bbc35119698333762478eb942d2afec13928b4d13 |
ORCID | 0000-0003-0889-278X 0000-0003-3837-5580 0000-0002-7153-9703 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2019_105689 crossref_citationtrail_10_1016_j_asoc_2019_105689 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105689 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2019 2019-11-00 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Saeid (b24) 2007 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida, Spectral Normalization for Generative Adversarial Networks Graves, Mohamed, Hinton (b11) 2013 Lin, Chuang, Huang, Chen, Ko (b4) 2013 Alex, Ilya, Hinton Geoffrey (b10) 2012 Ang, Chin, Wang, Guan, Zhang (b26) 2012; 6 Eliza Strickland, Facebook Announces Typing-by-Brain Project, Spectrum IEEE (2008). Bashivan, Rish, Yeasin, Codella (b14) 2016 J. Jiang, A literature survey on domain adaptation of statistical classifiers. Zhang, Scholkopf, Muandet, Wang (b8) 2013 Goodfellow, Pouget-Abadie, Mirza (b12) 2014 Ganin, Lempitsky (b16) 2015 2017. Wu, Chuang, Lin (b3) 2015 Eric Tzeng, Judy Hoffman, Kate Saenko, Trevor Darrell, Adversarial Discriminative Domain Adaptation [cs.CV] (2018). Sugiyama, Suzuki (b6) 2008; 60 Philip Haeusser, Thomas Frerix, Alexander Mordvintsev, Daniel Cremers, Associative Domain Adaptation [cs.CV] (2017). Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks NEUROLINK. Wu, Lawhern, David Hairston, Lance (b20) 2016; 24 (2018). (2017). Vernon J. Lawhern, Amelia J. Solon, et al. EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces Ming, Wang, Prasad, Wu, Lin (b23) 2018 Zhang, Zheng, Liu, Lu (b13) 2016 Zadrozny (b7) 2004 Martin Arjovsky, Soumith Chintala, Léon Bottou, G.A.N. Wasserstein Schirrmeister, Tibor (b25) 2017; 38 2018. Kate Saenko, Brian Kulis, Mario Fritz, Trevor Darrell, Transferring Visual Category Models to New Domains, Technical Report No. UCB/EECS-2010-54 (2010). Sugiyama (10.1016/j.asoc.2019.105689_b6) 2008; 60 10.1016/j.asoc.2019.105689_b9 10.1016/j.asoc.2019.105689_b5 Ang (10.1016/j.asoc.2019.105689_b26) 2012; 6 10.1016/j.asoc.2019.105689_b19 10.1016/j.asoc.2019.105689_b15 10.1016/j.asoc.2019.105689_b17 10.1016/j.asoc.2019.105689_b18 Goodfellow (10.1016/j.asoc.2019.105689_b12) 2014 Bashivan (10.1016/j.asoc.2019.105689_b14) 2016 Ganin (10.1016/j.asoc.2019.105689_b16) 2015 10.1016/j.asoc.2019.105689_b2 Ming (10.1016/j.asoc.2019.105689_b23) 2018 10.1016/j.asoc.2019.105689_b1 Zhang (10.1016/j.asoc.2019.105689_b13) 2016 Zadrozny (10.1016/j.asoc.2019.105689_b7) 2004 10.1016/j.asoc.2019.105689_b22 Graves (10.1016/j.asoc.2019.105689_b11) 2013 Schirrmeister (10.1016/j.asoc.2019.105689_b25) 2017; 38 10.1016/j.asoc.2019.105689_b21 Wu (10.1016/j.asoc.2019.105689_b20) 2016; 24 Alex (10.1016/j.asoc.2019.105689_b10) 2012 Saeid (10.1016/j.asoc.2019.105689_b24) 2007 Wu (10.1016/j.asoc.2019.105689_b3) 2015 Lin (10.1016/j.asoc.2019.105689_b4) 2013 Zhang (10.1016/j.asoc.2019.105689_b8) 2013 |
References_xml | – start-page: 114 year: 2004 end-page: 121 ident: b7 article-title: Learning and evaluating classifiers under sample selection bias publication-title: Proc. ICML – reference: [cs.CV] (2017). – reference: , (2008). – reference: Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida, Spectral Normalization for Generative Adversarial Networks, – year: 2018 ident: b23 article-title: Sustained attention driving task analysis based on recurrent residual neural network using EEG data publication-title: IEEE International Conference on Fuzzy Systems – start-page: 819 year: 2013 end-page: 827 ident: b8 article-title: Domain adaptation under target and conditional shift publication-title: International Conference on Machine Learning – start-page: 1097 year: 2012 end-page: 1105 ident: b10 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – reference: , 2017. – volume: 24 start-page: 1125 year: 2016 end-page: 1137 ident: b20 article-title: Switching EEG headsets made easy: Reducing offline calibration effort using active weighted adaptation regularization publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – reference: NEUROLINK. – start-page: 6645 year: 2013 end-page: 6649 ident: b11 article-title: Speech recognition with deep recurrent neural networks publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: b25 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. – year: 2007 ident: b24 article-title: EEG Signal Processing – reference: Vernon J. Lawhern, Amelia J. Solon, et al. EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces, – year: 2016 ident: b13 article-title: Continuous vigilance estimation using LSTM neural network publication-title: ICONIP – reference: Eliza Strickland, Facebook Announces Typing-by-Brain Project, Spectrum IEEE – reference: Eric Tzeng, Judy Hoffman, Kate Saenko, Trevor Darrell, Adversarial Discriminative Domain Adaptation, – reference: Martin Arjovsky, Soumith Chintala, Léon Bottou, G.A.N. Wasserstein, – reference: , 2018. – volume: 6 start-page: 39 year: 2012 ident: b26 article-title: Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b publication-title: Front. Neurosci. – year: 2015 ident: b3 article-title: Online driver’s drowsiness estimation using domain adaptation with model fusion publication-title: International Conference on Affective Computing and Intelligent Interaction (ACII) – volume: 60 start-page: 699 year: 2008 end-page: 746 ident: b6 article-title: Direct importance estimation for covariate shift adaptation publication-title: Ann. Inst. Statist. Math. – reference: (2018). – reference: J. Jiang, A literature survey on domain adaptation of statistical classifiers. – reference: Philip Haeusser, Thomas Frerix, Alexander Mordvintsev, Daniel Cremers, Associative Domain Adaptation, – reference: Kate Saenko, Brian Kulis, Mario Fritz, Trevor Darrell, Transferring Visual Category Models to New Domains, Technical Report No. UCB/EECS-2010-54 (2010). – year: 2016 ident: b14 article-title: Learning representations from EEG with deep recurrent-convolutional neural network publication-title: ICLR – reference: [cs.CV] (2018). – start-page: 1180 year: 2015 end-page: 1189 ident: b16 article-title: Unsupervised domain adaptation by backpropagation publication-title: Proceedings of the 32nd International Conference on Machine Learning – reference: Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, – year: 2013 ident: b4 article-title: Real-time assessment of vigilance level using an innovative mindo4 wireless EEG system publication-title: IEEE International Symposium on Circuits and Systems (ISCAS) – start-page: 2672 year: 2014 end-page: 2680 ident: b12 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – reference: (2017). – ident: 10.1016/j.asoc.2019.105689_b21 – ident: 10.1016/j.asoc.2019.105689_b19 – ident: 10.1016/j.asoc.2019.105689_b15 – ident: 10.1016/j.asoc.2019.105689_b9 doi: 10.1007/978-3-642-15561-1_16 – start-page: 2672 year: 2014 ident: 10.1016/j.asoc.2019.105689_b12 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.asoc.2019.105689_b22 doi: 10.1007/978-3-030-03243-2_860-1 – ident: 10.1016/j.asoc.2019.105689_b1 – start-page: 1180 year: 2015 ident: 10.1016/j.asoc.2019.105689_b16 article-title: Unsupervised domain adaptation by backpropagation – volume: 38 start-page: 5391 issue: 11 year: 2017 ident: 10.1016/j.asoc.2019.105689_b25 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – ident: 10.1016/j.asoc.2019.105689_b17 doi: 10.1109/ICCV.2017.301 – volume: 24 start-page: 1125 issue: 11 year: 2016 ident: 10.1016/j.asoc.2019.105689_b20 article-title: Switching EEG headsets made easy: Reducing offline calibration effort using active weighted adaptation regularization publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2544108 – start-page: 819 year: 2013 ident: 10.1016/j.asoc.2019.105689_b8 article-title: Domain adaptation under target and conditional shift – start-page: 6645 year: 2013 ident: 10.1016/j.asoc.2019.105689_b11 article-title: Speech recognition with deep recurrent neural networks – ident: 10.1016/j.asoc.2019.105689_b18 doi: 10.1109/CVPR.2017.316 – ident: 10.1016/j.asoc.2019.105689_b2 – volume: 6 start-page: 39 year: 2012 ident: 10.1016/j.asoc.2019.105689_b26 article-title: Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00039 – year: 2018 ident: 10.1016/j.asoc.2019.105689_b23 article-title: Sustained attention driving task analysis based on recurrent residual neural network using EEG data – start-page: 1097 year: 2012 ident: 10.1016/j.asoc.2019.105689_b10 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2013 ident: 10.1016/j.asoc.2019.105689_b4 article-title: Real-time assessment of vigilance level using an innovative mindo4 wireless EEG system – volume: 60 start-page: 699 year: 2008 ident: 10.1016/j.asoc.2019.105689_b6 article-title: Direct importance estimation for covariate shift adaptation publication-title: Ann. Inst. Statist. Math. doi: 10.1007/s10463-008-0197-x – year: 2016 ident: 10.1016/j.asoc.2019.105689_b13 article-title: Continuous vigilance estimation using LSTM neural network – year: 2007 ident: 10.1016/j.asoc.2019.105689_b24 – ident: 10.1016/j.asoc.2019.105689_b5 doi: 10.1145/1321440.1321498 – year: 2016 ident: 10.1016/j.asoc.2019.105689_b14 article-title: Learning representations from EEG with deep recurrent-convolutional neural network – year: 2015 ident: 10.1016/j.asoc.2019.105689_b3 article-title: Online driver’s drowsiness estimation using domain adaptation with model fusion – start-page: 114 year: 2004 ident: 10.1016/j.asoc.2019.105689_b7 article-title: Learning and evaluating classifiers under sample selection bias |
SSID | ssj0016928 |
Score | 2.4230087 |
Snippet | Biosignals tend to display manifest intra- and cross-subject variance, which generates numerous challenges for electroencephalograph (EEG) data analysis. For... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105689 |
SubjectTerms | Brain–computer interface (BCI) Clustering Deep learning Domain adaptation (DA) Electroencephalograph (EEG) Sample selection Subject adaptation network (SAN) |
Title | Subject adaptation network for EEG data analysis |
URI | https://dx.doi.org/10.1016/j.asoc.2019.105689 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_M7eLFb3F-jBy8SV2bpGl7HGNzfg1RB7uVJE1BkTpkXv3bzWvSoSA7CL205JXwa_LeS9_HD-A8ti6q0aEJIpUghRmPAhWFRZBRLQUvhUg4ViPfT8Vkxm_m8bwFw6YWBtMqve53Or3W1v5J36PZX7y89J_sySO1L7cnAAwdYcfPDmWZiNvQGVzfTqarYILIaopVHI-zEb52xqV5SQsCZnhlNQc9sr3_ZZ9-2JzxDmx5Z5EM3Hx2oWWqPdhuiBiI35f7ENrtj_9TiCzkwsXWSeXyu4l1SslodEUwFZRI34LkAGbj0fNwEngqhECzMFwGsWSpYpJGRVzoRNgr0byMuVK6jgSKLGXM6grKk9SojNOCytJo697RVPEiYofQrt4rcwSE8dBYGyRKKe3RKzXYkk7JpKSJ4anOeBeiBoBc-z7hSFfxljcJYa85gpYjaLkDrQsXK5mF65KxdnTc4Jr_-ta5VeNr5I7_KXcCm3jnKghPob38-DRn1pVYqh5sXH5FPbtgho93Dz2_cL4Bs3XGpw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHvTib3H-zMGb1DVNmrRHGZtTt13cYLeQpClMpA6ZV_9285p0KMgOQk9tUsLX5uUl73vvQ-gmdS6qNbGNiBYgYcZIpElcRHliFGcl54JBNvJ4wocz9jRP5y3Ua3JhgFYZbL-36bW1Dne6Ac3ucrHovridR-Ze7nYAEDqCip9bLKUCCujffa15HoTntcAqtIax8JA540leykEA_K68VqAHrfe_VqcfK85gH-0GVxHf-9EcoJatDtFeI8OAw6w8QrGb_HCaglWhlj6yjivP7sbOJcX9_gMGIihWoQDJMZoN-tPeMApCCJGhcbyKUkUzTVVCirQwgrtLGFamTGtTxwF5nlHqLEXCRGZ1zpIiUaU1zrlLMs0KQk9Qu3qv7CnClMXWrUC8VMptvDILBem0EmUiLMtMzjqINABIE6qEg1jFm2zoYK8SQJMAmvSgddDtus_S18jY2DptcJW_vrR0RnxDv7N_9rtG28PpeCRHj5Pnc7QDT3wu4QVqrz4-7aVzKlb6qv5pvgEiQMXc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject+adaptation+network+for+EEG+data+analysis&rft.jtitle=Applied+soft+computing&rft.au=Ming%2C+Yurui&rft.au=Ding%2C+Weiping&rft.au=Pelusi%2C+Danilo&rft.au=Wu%2C+Dongrui&rft.date=2019-11-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=84&rft_id=info:doi/10.1016%2Fj.asoc.2019.105689&rft.externalDocID=S1568494619304703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |