Subject adaptation network for EEG data analysis

Biosignals tend to display manifest intra- and cross-subject variance, which generates numerous challenges for electroencephalograph (EEG) data analysis. For instance, in the context of classification, the discrepancy between EEG data can make the trained model generalising poorly for new test subje...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 84; p. 105689
Main Authors Ming, Yurui, Ding, Weiping, Pelusi, Danilo, Wu, Dongrui, Wang, Yu-Kai, Prasad, Mukesh, Lin, Chin-Teng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2019
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2019.105689

Cover

Abstract Biosignals tend to display manifest intra- and cross-subject variance, which generates numerous challenges for electroencephalograph (EEG) data analysis. For instance, in the context of classification, the discrepancy between EEG data can make the trained model generalising poorly for new test subjects. In this paper, a subject adaptation network (SAN) inspired by the generative adversarial network (GAN) to mitigate different variances is proposed for analysing EEG data. First the challenges faced by traditional approaches employed for EEG signal processing are emphasised. Then the problem is formulated from mathematical perspective to highlight the key points in resolving such discrepancies. Third, the motivation behind and design principle of the SAN are described in an intuitive manner to reflect its suitability for analysing EEG data. Then after depicting the overall architecture of the SAN, several experiments are used to justify the practicality and efficiency of using the proposed model from different perspectives. For instance, an EEG dataset captured during a stereotypical neurophysiological experiment called the VEP oddball task is utilised to demonstrate the performance improvement achieved by running the SAN. •A theoretical basis is formalised to guide the model design.•A subject adversarial network is proposed to mitigate EEG data variance.•Various experiments are provided to show the model’s effectiveness.•Tricks from the implementation perspective are discussed.
AbstractList Biosignals tend to display manifest intra- and cross-subject variance, which generates numerous challenges for electroencephalograph (EEG) data analysis. For instance, in the context of classification, the discrepancy between EEG data can make the trained model generalising poorly for new test subjects. In this paper, a subject adaptation network (SAN) inspired by the generative adversarial network (GAN) to mitigate different variances is proposed for analysing EEG data. First the challenges faced by traditional approaches employed for EEG signal processing are emphasised. Then the problem is formulated from mathematical perspective to highlight the key points in resolving such discrepancies. Third, the motivation behind and design principle of the SAN are described in an intuitive manner to reflect its suitability for analysing EEG data. Then after depicting the overall architecture of the SAN, several experiments are used to justify the practicality and efficiency of using the proposed model from different perspectives. For instance, an EEG dataset captured during a stereotypical neurophysiological experiment called the VEP oddball task is utilised to demonstrate the performance improvement achieved by running the SAN. •A theoretical basis is formalised to guide the model design.•A subject adversarial network is proposed to mitigate EEG data variance.•Various experiments are provided to show the model’s effectiveness.•Tricks from the implementation perspective are discussed.
ArticleNumber 105689
Author Wu, Dongrui
Ding, Weiping
Prasad, Mukesh
Ming, Yurui
Pelusi, Danilo
Wang, Yu-Kai
Lin, Chin-Teng
Author_xml – sequence: 1
  givenname: Yurui
  orcidid: 0000-0003-3837-5580
  surname: Ming
  fullname: Ming, Yurui
  email: yrming@gmial.com
  organization: Centre for Artificial Intelligence, School of Computer Science, FEIT, University of Technology Sydney, NSW 2007, Australia
– sequence: 2
  givenname: Weiping
  surname: Ding
  fullname: Ding, Weiping
  email: ding.wp@ntu.edu.cn
  organization: School of Computer Science and Technology, Nantong University, Jiangsu 226019, China
– sequence: 3
  givenname: Danilo
  orcidid: 0000-0003-0889-278X
  surname: Pelusi
  fullname: Pelusi, Danilo
  email: dpelusi@unite.it
  organization: Faculty of Communication Sciences, University of Teramo, I-64100 Teramo, Italy
– sequence: 4
  givenname: Dongrui
  orcidid: 0000-0002-7153-9703
  surname: Wu
  fullname: Wu, Dongrui
  email: drwu@hust.edu.cn
  organization: School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Hubei 430074, China
– sequence: 5
  givenname: Yu-Kai
  surname: Wang
  fullname: Wang, Yu-Kai
  email: Yukai.Wang@uts.edu.au
  organization: Centre for Artificial Intelligence, School of Computer Science, FEIT, University of Technology Sydney, NSW 2007, Australia
– sequence: 6
  givenname: Mukesh
  surname: Prasad
  fullname: Prasad, Mukesh
  email: Mukesh.Prasad@uts.edu.au
  organization: Centre for Artificial Intelligence, School of Computer Science, FEIT, University of Technology Sydney, NSW 2007, Australia
– sequence: 7
  givenname: Chin-Teng
  surname: Lin
  fullname: Lin, Chin-Teng
  email: Chin-Teng.Lin@uts.edu.au
  organization: Centre for Artificial Intelligence, School of Computer Science, FEIT, University of Technology Sydney, NSW 2007, Australia
BookMark eNp9kM9KAzEQh4NUsK2-gKd9ga35t9kEvEipVSh4UM9hNslC1ropSVT69qasJw-FgRl-8A3zzQLNxjA6hG4JXhFMxN2wghTMimKiStAIqS7QnMiW1kpIMitzyWquuLhCi5QGXCBF5Rzh169ucCZXYOGQIfswVqPLPyF-VH2I1WazrSxkqGCE_TH5dI0ue9gnd_PXl-j9cfO2fqp3L9vn9cOuNgzjXDfAZMeAEttY04pSreF9w7vOsIYQJZRkjLWC8la6TnFqKfTOEFau6rglbInotNfEkFJ0vT5E_wnxqAnWJ2c96JOzPjnryblA8h9k_CSVI_j9efR-Ql2R-vYu6mS8G42zPpb_aBv8OfwXfDFzEA
CitedBy_id crossref_primary_10_1088_1741_2552_abda0b
crossref_primary_10_1109_TNSRE_2020_3023761
crossref_primary_10_3389_frsip_2022_1019253
crossref_primary_10_1186_s12984_023_01169_w
crossref_primary_10_1016_j_dsp_2024_104856
crossref_primary_10_1109_TNSRE_2022_3184725
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_1088_1741_2552_ac7ba8
crossref_primary_10_1145_3654664
crossref_primary_10_1109_TCDS_2021_3079712
crossref_primary_10_1109_TIM_2024_3451593
crossref_primary_10_3390_app11041798
crossref_primary_10_1007_s00521_021_06457_x
crossref_primary_10_1016_j_bspc_2022_104453
crossref_primary_10_1088_1741_2552_ad3eb3
crossref_primary_10_1016_j_asoc_2022_108471
crossref_primary_10_1016_j_bspc_2022_103555
crossref_primary_10_1016_j_neucom_2024_129239
crossref_primary_10_1007_s11042_023_15900_1
crossref_primary_10_1088_1741_2552_abf2e4
crossref_primary_10_1016_j_engappai_2023_106022
crossref_primary_10_1016_j_neucom_2021_11_039
crossref_primary_10_1109_TCYB_2020_3010805
crossref_primary_10_1016_j_medengphy_2021_08_006
Cites_doi 10.1007/978-3-642-15561-1_16
10.1007/978-3-030-03243-2_860-1
10.1002/hbm.23730
10.1109/ICCV.2017.301
10.1109/TNSRE.2016.2544108
10.1109/CVPR.2017.316
10.3389/fnins.2012.00039
10.1007/s10463-008-0197-x
10.1145/1321440.1321498
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.105689
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2019_105689
S1568494619304703
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-5a38b3a21d5dc76c767c4f54bbc35119698333762478eb942d2afec13928b4d13
IEDL.DBID AIKHN
ISSN 1568-4946
IngestDate Thu Apr 24 22:56:40 EDT 2025
Tue Jul 01 01:50:04 EDT 2025
Fri Feb 23 02:24:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Sample selection
Domain adaptation (DA)
Electroencephalograph (EEG)
Subject adaptation network (SAN)
Clustering
Brain–computer interface (BCI)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-5a38b3a21d5dc76c767c4f54bbc35119698333762478eb942d2afec13928b4d13
ORCID 0000-0003-0889-278X
0000-0003-3837-5580
0000-0002-7153-9703
ParticipantIDs crossref_primary_10_1016_j_asoc_2019_105689
crossref_citationtrail_10_1016_j_asoc_2019_105689
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105689
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Saeid (b24) 2007
Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida, Spectral Normalization for Generative Adversarial Networks
Graves, Mohamed, Hinton (b11) 2013
Lin, Chuang, Huang, Chen, Ko (b4) 2013
Alex, Ilya, Hinton Geoffrey (b10) 2012
Ang, Chin, Wang, Guan, Zhang (b26) 2012; 6
Eliza Strickland, Facebook Announces Typing-by-Brain Project, Spectrum IEEE
(2008).
Bashivan, Rish, Yeasin, Codella (b14) 2016
J. Jiang, A literature survey on domain adaptation of statistical classifiers.
Zhang, Scholkopf, Muandet, Wang (b8) 2013
Goodfellow, Pouget-Abadie, Mirza (b12) 2014
Ganin, Lempitsky (b16) 2015
2017.
Wu, Chuang, Lin (b3) 2015
Eric Tzeng, Judy Hoffman, Kate Saenko, Trevor Darrell, Adversarial Discriminative Domain Adaptation
[cs.CV] (2018).
Sugiyama, Suzuki (b6) 2008; 60
Philip Haeusser, Thomas Frerix, Alexander Mordvintsev, Daniel Cremers, Associative Domain Adaptation
[cs.CV] (2017).
Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
NEUROLINK.
Wu, Lawhern, David Hairston, Lance (b20) 2016; 24
(2018).
(2017).
Vernon J. Lawhern, Amelia J. Solon, et al. EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces
Ming, Wang, Prasad, Wu, Lin (b23) 2018
Zhang, Zheng, Liu, Lu (b13) 2016
Zadrozny (b7) 2004
Martin Arjovsky, Soumith Chintala, Léon Bottou, G.A.N. Wasserstein
Schirrmeister, Tibor (b25) 2017; 38
2018.
Kate Saenko, Brian Kulis, Mario Fritz, Trevor Darrell, Transferring Visual Category Models to New Domains, Technical Report No. UCB/EECS-2010-54 (2010).
Sugiyama (10.1016/j.asoc.2019.105689_b6) 2008; 60
10.1016/j.asoc.2019.105689_b9
10.1016/j.asoc.2019.105689_b5
Ang (10.1016/j.asoc.2019.105689_b26) 2012; 6
10.1016/j.asoc.2019.105689_b19
10.1016/j.asoc.2019.105689_b15
10.1016/j.asoc.2019.105689_b17
10.1016/j.asoc.2019.105689_b18
Goodfellow (10.1016/j.asoc.2019.105689_b12) 2014
Bashivan (10.1016/j.asoc.2019.105689_b14) 2016
Ganin (10.1016/j.asoc.2019.105689_b16) 2015
10.1016/j.asoc.2019.105689_b2
Ming (10.1016/j.asoc.2019.105689_b23) 2018
10.1016/j.asoc.2019.105689_b1
Zhang (10.1016/j.asoc.2019.105689_b13) 2016
Zadrozny (10.1016/j.asoc.2019.105689_b7) 2004
10.1016/j.asoc.2019.105689_b22
Graves (10.1016/j.asoc.2019.105689_b11) 2013
Schirrmeister (10.1016/j.asoc.2019.105689_b25) 2017; 38
10.1016/j.asoc.2019.105689_b21
Wu (10.1016/j.asoc.2019.105689_b20) 2016; 24
Alex (10.1016/j.asoc.2019.105689_b10) 2012
Saeid (10.1016/j.asoc.2019.105689_b24) 2007
Wu (10.1016/j.asoc.2019.105689_b3) 2015
Lin (10.1016/j.asoc.2019.105689_b4) 2013
Zhang (10.1016/j.asoc.2019.105689_b8) 2013
References_xml – start-page: 114
  year: 2004
  end-page: 121
  ident: b7
  article-title: Learning and evaluating classifiers under sample selection bias
  publication-title: Proc. ICML
– reference: [cs.CV] (2017).
– reference: , (2008).
– reference: Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida, Spectral Normalization for Generative Adversarial Networks,
– year: 2018
  ident: b23
  article-title: Sustained attention driving task analysis based on recurrent residual neural network using EEG data
  publication-title: IEEE International Conference on Fuzzy Systems
– start-page: 819
  year: 2013
  end-page: 827
  ident: b8
  article-title: Domain adaptation under target and conditional shift
  publication-title: International Conference on Machine Learning
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b10
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: , 2017.
– volume: 24
  start-page: 1125
  year: 2016
  end-page: 1137
  ident: b20
  article-title: Switching EEG headsets made easy: Reducing offline calibration effort using active weighted adaptation regularization
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: NEUROLINK.
– start-page: 6645
  year: 2013
  end-page: 6649
  ident: b11
  article-title: Speech recognition with deep recurrent neural networks
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: b25
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
– year: 2007
  ident: b24
  article-title: EEG Signal Processing
– reference: Vernon J. Lawhern, Amelia J. Solon, et al. EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces,
– year: 2016
  ident: b13
  article-title: Continuous vigilance estimation using LSTM neural network
  publication-title: ICONIP
– reference: Eliza Strickland, Facebook Announces Typing-by-Brain Project, Spectrum IEEE
– reference: Eric Tzeng, Judy Hoffman, Kate Saenko, Trevor Darrell, Adversarial Discriminative Domain Adaptation,
– reference: Martin Arjovsky, Soumith Chintala, Léon Bottou, G.A.N. Wasserstein,
– reference: , 2018.
– volume: 6
  start-page: 39
  year: 2012
  ident: b26
  article-title: Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b
  publication-title: Front. Neurosci.
– year: 2015
  ident: b3
  article-title: Online driver’s drowsiness estimation using domain adaptation with model fusion
  publication-title: International Conference on Affective Computing and Intelligent Interaction (ACII)
– volume: 60
  start-page: 699
  year: 2008
  end-page: 746
  ident: b6
  article-title: Direct importance estimation for covariate shift adaptation
  publication-title: Ann. Inst. Statist. Math.
– reference: (2018).
– reference: J. Jiang, A literature survey on domain adaptation of statistical classifiers.
– reference: Philip Haeusser, Thomas Frerix, Alexander Mordvintsev, Daniel Cremers, Associative Domain Adaptation,
– reference: Kate Saenko, Brian Kulis, Mario Fritz, Trevor Darrell, Transferring Visual Category Models to New Domains, Technical Report No. UCB/EECS-2010-54 (2010).
– year: 2016
  ident: b14
  article-title: Learning representations from EEG with deep recurrent-convolutional neural network
  publication-title: ICLR
– reference: [cs.CV] (2018).
– start-page: 1180
  year: 2015
  end-page: 1189
  ident: b16
  article-title: Unsupervised domain adaptation by backpropagation
  publication-title: Proceedings of the 32nd International Conference on Machine Learning
– reference: Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks,
– year: 2013
  ident: b4
  article-title: Real-time assessment of vigilance level using an innovative mindo4 wireless EEG system
  publication-title: IEEE International Symposium on Circuits and Systems (ISCAS)
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: b12
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: (2017).
– ident: 10.1016/j.asoc.2019.105689_b21
– ident: 10.1016/j.asoc.2019.105689_b19
– ident: 10.1016/j.asoc.2019.105689_b15
– ident: 10.1016/j.asoc.2019.105689_b9
  doi: 10.1007/978-3-642-15561-1_16
– start-page: 2672
  year: 2014
  ident: 10.1016/j.asoc.2019.105689_b12
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.asoc.2019.105689_b22
  doi: 10.1007/978-3-030-03243-2_860-1
– ident: 10.1016/j.asoc.2019.105689_b1
– start-page: 1180
  year: 2015
  ident: 10.1016/j.asoc.2019.105689_b16
  article-title: Unsupervised domain adaptation by backpropagation
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 10.1016/j.asoc.2019.105689_b25
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– ident: 10.1016/j.asoc.2019.105689_b17
  doi: 10.1109/ICCV.2017.301
– volume: 24
  start-page: 1125
  issue: 11
  year: 2016
  ident: 10.1016/j.asoc.2019.105689_b20
  article-title: Switching EEG headsets made easy: Reducing offline calibration effort using active weighted adaptation regularization
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2544108
– start-page: 819
  year: 2013
  ident: 10.1016/j.asoc.2019.105689_b8
  article-title: Domain adaptation under target and conditional shift
– start-page: 6645
  year: 2013
  ident: 10.1016/j.asoc.2019.105689_b11
  article-title: Speech recognition with deep recurrent neural networks
– ident: 10.1016/j.asoc.2019.105689_b18
  doi: 10.1109/CVPR.2017.316
– ident: 10.1016/j.asoc.2019.105689_b2
– volume: 6
  start-page: 39
  year: 2012
  ident: 10.1016/j.asoc.2019.105689_b26
  article-title: Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00039
– year: 2018
  ident: 10.1016/j.asoc.2019.105689_b23
  article-title: Sustained attention driving task analysis based on recurrent residual neural network using EEG data
– start-page: 1097
  year: 2012
  ident: 10.1016/j.asoc.2019.105689_b10
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2013
  ident: 10.1016/j.asoc.2019.105689_b4
  article-title: Real-time assessment of vigilance level using an innovative mindo4 wireless EEG system
– volume: 60
  start-page: 699
  year: 2008
  ident: 10.1016/j.asoc.2019.105689_b6
  article-title: Direct importance estimation for covariate shift adaptation
  publication-title: Ann. Inst. Statist. Math.
  doi: 10.1007/s10463-008-0197-x
– year: 2016
  ident: 10.1016/j.asoc.2019.105689_b13
  article-title: Continuous vigilance estimation using LSTM neural network
– year: 2007
  ident: 10.1016/j.asoc.2019.105689_b24
– ident: 10.1016/j.asoc.2019.105689_b5
  doi: 10.1145/1321440.1321498
– year: 2016
  ident: 10.1016/j.asoc.2019.105689_b14
  article-title: Learning representations from EEG with deep recurrent-convolutional neural network
– year: 2015
  ident: 10.1016/j.asoc.2019.105689_b3
  article-title: Online driver’s drowsiness estimation using domain adaptation with model fusion
– start-page: 114
  year: 2004
  ident: 10.1016/j.asoc.2019.105689_b7
  article-title: Learning and evaluating classifiers under sample selection bias
SSID ssj0016928
Score 2.4230087
Snippet Biosignals tend to display manifest intra- and cross-subject variance, which generates numerous challenges for electroencephalograph (EEG) data analysis. For...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105689
SubjectTerms Brain–computer interface (BCI)
Clustering
Deep learning
Domain adaptation (DA)
Electroencephalograph (EEG)
Sample selection
Subject adaptation network (SAN)
Title Subject adaptation network for EEG data analysis
URI https://dx.doi.org/10.1016/j.asoc.2019.105689
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_M7eLFb3F-jBy8SV2bpGl7HGNzfg1RB7uVJE1BkTpkXv3bzWvSoSA7CL205JXwa_LeS9_HD-A8ti6q0aEJIpUghRmPAhWFRZBRLQUvhUg4ViPfT8Vkxm_m8bwFw6YWBtMqve53Or3W1v5J36PZX7y89J_sySO1L7cnAAwdYcfPDmWZiNvQGVzfTqarYILIaopVHI-zEb52xqV5SQsCZnhlNQc9sr3_ZZ9-2JzxDmx5Z5EM3Hx2oWWqPdhuiBiI35f7ENrtj_9TiCzkwsXWSeXyu4l1SslodEUwFZRI34LkAGbj0fNwEngqhECzMFwGsWSpYpJGRVzoRNgr0byMuVK6jgSKLGXM6grKk9SojNOCytJo697RVPEiYofQrt4rcwSE8dBYGyRKKe3RKzXYkk7JpKSJ4anOeBeiBoBc-z7hSFfxljcJYa85gpYjaLkDrQsXK5mF65KxdnTc4Jr_-ta5VeNr5I7_KXcCm3jnKghPob38-DRn1pVYqh5sXH5FPbtgho93Dz2_cL4Bs3XGpw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHvTib3H-zMGb1DVNmrRHGZtTt13cYLeQpClMpA6ZV_9285p0KMgOQk9tUsLX5uUl73vvQ-gmdS6qNbGNiBYgYcZIpElcRHliFGcl54JBNvJ4wocz9jRP5y3Ua3JhgFYZbL-36bW1Dne6Ac3ucrHovridR-Ze7nYAEDqCip9bLKUCCujffa15HoTntcAqtIax8JA540leykEA_K68VqAHrfe_VqcfK85gH-0GVxHf-9EcoJatDtFeI8OAw6w8QrGb_HCaglWhlj6yjivP7sbOJcX9_gMGIihWoQDJMZoN-tPeMApCCJGhcbyKUkUzTVVCirQwgrtLGFamTGtTxwF5nlHqLEXCRGZ1zpIiUaU1zrlLMs0KQk9Qu3qv7CnClMXWrUC8VMptvDILBem0EmUiLMtMzjqINABIE6qEg1jFm2zoYK8SQJMAmvSgddDtus_S18jY2DptcJW_vrR0RnxDv7N_9rtG28PpeCRHj5Pnc7QDT3wu4QVqrz4-7aVzKlb6qv5pvgEiQMXc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject+adaptation+network+for+EEG+data+analysis&rft.jtitle=Applied+soft+computing&rft.au=Ming%2C+Yurui&rft.au=Ding%2C+Weiping&rft.au=Pelusi%2C+Danilo&rft.au=Wu%2C+Dongrui&rft.date=2019-11-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=84&rft_id=info:doi/10.1016%2Fj.asoc.2019.105689&rft.externalDocID=S1568494619304703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon