Guided parallelized stochastic gradient descent for delay compensation
Stochastic gradient descent (SGD) algorithm and its variations have been effectively used to optimize neural network models. However, with the rapid growth of big data and deep learning, SGD is no longer the most suitable choice due to its natural behavior of sequential optimization of the error fun...
Saved in:
Published in | Applied soft computing Vol. 102; p. 107084 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2021.107084 |
Cover
Abstract | Stochastic gradient descent (SGD) algorithm and its variations have been effectively used to optimize neural network models. However, with the rapid growth of big data and deep learning, SGD is no longer the most suitable choice due to its natural behavior of sequential optimization of the error function. This has led to the development of parallel SGD algorithms, such as asynchronous SGD (ASGD) and synchronous SGD (SSGD) to train deep neural networks. However, it introduces a high variance due to the delay in parameter (weight) update. We address this delay in our proposed algorithm and try to minimize its impact. We employed guided SGD (gSGD) that encourages consistent examples to steer the convergence by compensating the unpredictable deviation caused by the delay. Its convergence rate is also similar to A/SSGD, however, some additional (parallel) processing is required to compensate for the delay. The experimental results demonstrate that our proposed approach has been able to mitigate the impact of delay for the quality of classification accuracy. The guided approach with SSGD clearly outperforms sequential SGD and even achieves an accuracy close to sequential SGD for some benchmark datasets.
•Its convergence rate of O1ρT+σ2 shows its applicability for the real-time systems.•The proposed method outperforms synchronous/asynchronous SGD.•The proposed method is compatible with other variations of SGD such as RMSprop.•The delay in parameter updates happens due to several gradients computation in parallel. |
---|---|
AbstractList | Stochastic gradient descent (SGD) algorithm and its variations have been effectively used to optimize neural network models. However, with the rapid growth of big data and deep learning, SGD is no longer the most suitable choice due to its natural behavior of sequential optimization of the error function. This has led to the development of parallel SGD algorithms, such as asynchronous SGD (ASGD) and synchronous SGD (SSGD) to train deep neural networks. However, it introduces a high variance due to the delay in parameter (weight) update. We address this delay in our proposed algorithm and try to minimize its impact. We employed guided SGD (gSGD) that encourages consistent examples to steer the convergence by compensating the unpredictable deviation caused by the delay. Its convergence rate is also similar to A/SSGD, however, some additional (parallel) processing is required to compensate for the delay. The experimental results demonstrate that our proposed approach has been able to mitigate the impact of delay for the quality of classification accuracy. The guided approach with SSGD clearly outperforms sequential SGD and even achieves an accuracy close to sequential SGD for some benchmark datasets.
•Its convergence rate of O1ρT+σ2 shows its applicability for the real-time systems.•The proposed method outperforms synchronous/asynchronous SGD.•The proposed method is compatible with other variations of SGD such as RMSprop.•The delay in parameter updates happens due to several gradients computation in parallel. |
ArticleNumber | 107084 |
Author | Sharma, Anuraganand |
Author_xml | – sequence: 1 givenname: Anuraganand surname: Sharma fullname: Sharma, Anuraganand email: sharma_au@usp.ac.fj organization: School of Computing, Information and Mathematical Sciences, The University of the South Pacific, Fiji |
BookMark | eNp9kMFKAzEQhoNUsK2-gKd9ga1JuptkwYsUW4WCFz2H7GRWU7abkkShPr1Z68lDT_PPwDfMfDMyGfyAhNwyumCUibvdwkQPC045ywNJVXVBpkxJXjZCsUnOtVBl1VTiisxi3NEMNVxNyXrz6Sza4mCC6Xvs3XduYvLwYWJyULwHYx0OqbAYYaydDzn35liA3x9wiCY5P1yTy870EW_-6py8rR9fV0_l9mXzvHrYlrCkNJV1Y1pLWyktis6ICqisFVu2CAhKVCi46UQthUHbGms5MoCKypaKFhTl9XJO-GkvBB9jwE4fgtubcNSM6tGE3unRhB5N6JOJDKl_ELj0e3YKxvXn0fsTivmpL4dBR8g6AK0LCElb787hPwV9fag |
CitedBy_id | crossref_primary_10_3390_pr9020339 crossref_primary_10_1016_j_bspc_2023_105450 crossref_primary_10_1109_JIOT_2024_3403178 crossref_primary_10_1007_s10489_024_05564_1 crossref_primary_10_29132_ijpas_1475183 crossref_primary_10_3390_math10173206 crossref_primary_10_3390_s21206872 crossref_primary_10_1016_j_energy_2024_131901 crossref_primary_10_38155_ksbd_1477120 crossref_primary_10_1016_j_vehcom_2022_100532 crossref_primary_10_1109_ACCESS_2022_3158977 crossref_primary_10_1109_ACCESS_2024_3465793 crossref_primary_10_1109_ACCESS_2023_3275086 crossref_primary_10_1111_tgis_12982 crossref_primary_10_1007_s40747_024_01705_8 crossref_primary_10_1016_j_ndteint_2023_102860 |
Cites_doi | 10.1016/j.asoc.2018.09.038 10.1016/j.csbj.2014.11.005 10.1016/j.inffus.2004.04.004 10.1186/s13634-016-0355-x 10.1038/s41524-019-0221-0 10.1373/clinchem.2005.058339 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2021.107084 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2021_107084 S1568494621000077 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-59abd0b77de6fa64c075813becec864e62af6576aedbadd2e1cc407b06bc80253 |
IEDL.DBID | AIKHN |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:11:26 EDT 2025 Tue Jul 01 01:50:08 EDT 2025 Fri Feb 23 02:40:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Asynchronous/synchronous stochastic gradient descent Stochastic gradient descent Gradient Methods Classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-59abd0b77de6fa64c075813becec864e62af6576aedbadd2e1cc407b06bc80253 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2021_107084 crossref_citationtrail_10_1016_j_asoc_2021_107084 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Moreira, Fiesler (b19) 1995 Kingma, Ba (b30) 2014 Low, Gonzalez, Kyrola, Bickson, Guestrin, Hellerstein (b5) 2010 Bubeck (b24) 2015 Kourou, Exarchos, Exarchos, Karamouzis, Fotiadis (b1) 2015; 13 Zinkevich, Weimer, Li, Smola (b14) 2010 Sharma (b27) 2018; 73 Solberg, Lahti (b34) 2005; 51 Zhang, Xiao (b11) 2015 Qiu, Wu, Ding, Xu, Feng (b2) 2016; 2016 (b4) 2019 Brown, Wyatt, Harris, Yao (b7) 2005; 6 Dheeru, Karra Taniskidou (b31) 2019 Schmidt, Marques, Botti, Marques (b3) 2019; 5 Michalewicz, Fogel (b21) 2004 Zeiler (b28) 2012 Stich, Cordonnier, Jaggi (b16) 2018 Chu, Kim, Lin, Yu, Bradski, Olukotun, Ng (b6) 2007 Duchi, Hazan, Singer (b29) 2011; 12 Dean, Corrado, Monga, Chen, Devin, Le, Mao, Ranzato, Senior, Tucker, Yang, Ng (b8) 2012 Lacoste-Julien, Schmidt, Bach (b23) 2012 Alistarh, De Sa, Konstantinov (b25) 2018 Lei, Hu, Li, Tang (b13) 2019 S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, T.-Y. Liu, Asynchronous stochastic gradient descent with delay compensation, in: International Conference on Machine Learning, 2017, pp. 4120–4129. Bishop (b17) 1995 Agarwal, Duchi (b15) 2011 Frank, Mark A. Hall, Ian H. Witten (b32) 2016 Sridhar (b22) 2015 Wang, Roosta, Xu, Mahoney (b12) 2018 Anton, Bivens, Davis (b18) 2012 J. Laurikkala, M. Juhola, E. Kentala, Informal identification of outliers in medical data, in: Fifth International Workshop on Intelligent Data Analysis in Medicine and Pharmacology, Berlin, Germany, 2000, pp. 20–24. Meka (b26) 2019 Crane, Roosta (b10) 2019 C.-C. Yu, B.-D. Liu, A backpropagation algorithm with adaptive learning rate and momentum coefficient, in: Proceedings of the 2002 International Joint Conference on Neural Networks, 2002. IJCNN ’02, 2002, pp. 1218–1223. Zinkevich (10.1016/j.asoc.2021.107084_b14) 2010 Dheeru (10.1016/j.asoc.2021.107084_b31) 2019 Sridhar (10.1016/j.asoc.2021.107084_b22) 2015 Kingma (10.1016/j.asoc.2021.107084_b30) 2014 Stich (10.1016/j.asoc.2021.107084_b16) 2018 Qiu (10.1016/j.asoc.2021.107084_b2) 2016; 2016 10.1016/j.asoc.2021.107084_b20 Michalewicz (10.1016/j.asoc.2021.107084_b21) 2004 10.1016/j.asoc.2021.107084_b33 Zeiler (10.1016/j.asoc.2021.107084_b28) 2012 Wang (10.1016/j.asoc.2021.107084_b12) 2018 Meka (10.1016/j.asoc.2021.107084_b26) 2019 Low (10.1016/j.asoc.2021.107084_b5) 2010 Crane (10.1016/j.asoc.2021.107084_b10) 2019 Agarwal (10.1016/j.asoc.2021.107084_b15) 2011 Duchi (10.1016/j.asoc.2021.107084_b29) 2011; 12 Bishop (10.1016/j.asoc.2021.107084_b17) 1995 Bubeck (10.1016/j.asoc.2021.107084_b24) 2015 Lacoste-Julien (10.1016/j.asoc.2021.107084_b23) 2012 Zhang (10.1016/j.asoc.2021.107084_b11) 2015 Kourou (10.1016/j.asoc.2021.107084_b1) 2015; 13 Chu (10.1016/j.asoc.2021.107084_b6) 2007 Solberg (10.1016/j.asoc.2021.107084_b34) 2005; 51 Frank (10.1016/j.asoc.2021.107084_b32) 2016 10.1016/j.asoc.2021.107084_b9 (10.1016/j.asoc.2021.107084_b4) 2019 Moreira (10.1016/j.asoc.2021.107084_b19) 1995 Sharma (10.1016/j.asoc.2021.107084_b27) 2018; 73 Schmidt (10.1016/j.asoc.2021.107084_b3) 2019; 5 Dean (10.1016/j.asoc.2021.107084_b8) 2012 Anton (10.1016/j.asoc.2021.107084_b18) 2012 Alistarh (10.1016/j.asoc.2021.107084_b25) 2018 Lei (10.1016/j.asoc.2021.107084_b13) 2019 Brown (10.1016/j.asoc.2021.107084_b7) 2005; 6 |
References_xml | – year: 2019 ident: b4 article-title: Mapreduce - an overview, sciencedirect topics [WWW document] – start-page: 906 year: 2012 end-page: 999 ident: b18 article-title: Partial derivatives publication-title: Calculus, Early Transcendentals – start-page: 1223 year: 2012 end-page: 1231 ident: b8 article-title: Large scale distributed deep networks publication-title: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, NIPS’12 – volume: 5 start-page: 1 year: 2019 end-page: 36 ident: b3 article-title: Recent advances and applications of machine learning in solid-state materials science publication-title: npj Comput. Mater. – year: 2015 ident: b24 article-title: Convex optimization: Algorithms and complexity – year: 2014 ident: b30 article-title: Adam: A method for stochastic optimization – volume: 2016 start-page: 67 year: 2016 ident: b2 article-title: A survey of machine learning for big data processing publication-title: EURASIP J. Adv. Signal Process. – year: 2012 ident: b28 article-title: ADADELTA: An adaptive learning rate method – year: 2016 ident: b32 article-title: The WEKA workbench publication-title: Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques – start-page: 281 year: 2007 end-page: 288 ident: b6 article-title: Map-reduce for machine learning on multicore publication-title: Advances in Neural Information Processing Systems 19 – start-page: 4452 year: 2018 end-page: 4463 ident: b16 article-title: Sparsified SGD with memory publication-title: Proceedings of the 32Nd International Conference on Neural Information Processing Systems, NIPS’18 – year: 2019 ident: b26 article-title: CS289ML: Notes on Convergence of Gradient Descent – year: 1995 ident: b19 article-title: Neural Networks with Adaptive Learning Rate and Momentum Terms – year: 2019 ident: b31 article-title: UCI Machine Learning Repository – reference: J. Laurikkala, M. Juhola, E. Kentala, Informal identification of outliers in medical data, in: Fifth International Workshop on Intelligent Data Analysis in Medicine and Pharmacology, Berlin, Germany, 2000, pp. 20–24. – start-page: 1 year: 2019 end-page: 7 ident: b13 article-title: Stochastic gradient descent for nonconvex learning without bounded gradient assumptions publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 51 start-page: 2326 year: 2005 end-page: 2332 ident: b34 article-title: Detection of outliers in reference distributions: Performance of Horn’s algorithm publication-title: Clin. Chem. – volume: 73 start-page: 1068 year: 2018 end-page: 1080 ident: b27 article-title: Guided stochastic gradient descent algorithm for inconsistent datasets publication-title: Appl. Soft Comput. – start-page: 2332 year: 2018 end-page: 2342 ident: b12 article-title: GIANT: Globally improved approximate Newton method for distributed optimization publication-title: Advances in Neural Information Processing Systems 31 – reference: C.-C. Yu, B.-D. Liu, A backpropagation algorithm with adaptive learning rate and momentum coefficient, in: Proceedings of the 2002 International Joint Conference on Neural Networks, 2002. IJCNN ’02, 2002, pp. 1218–1223. – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: b29 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – reference: S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, T.-Y. Liu, Asynchronous stochastic gradient descent with delay compensation, in: International Conference on Machine Learning, 2017, pp. 4120–4129. – year: 2015 ident: b22 article-title: Parallel Machine Learning with Hogwild! – volume: 13 start-page: 8 year: 2015 end-page: 17 ident: b1 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput. Struct. Biotechnol. J. – year: 2012 ident: b23 article-title: A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method – year: 1995 ident: b17 article-title: Neural Networks for Pattern Recognition – year: 2004 ident: b21 article-title: How to Solve It: Modern Heuristics – start-page: 169 year: 2018 end-page: 178 ident: b25 article-title: The convergence of stochastic gradient descent in asynchronous shared memory publication-title: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC ’18 – start-page: 873 year: 2011 end-page: 881 ident: b15 article-title: Distributed delayed stochastic optimization publication-title: Advances in Neural Information Processing Systems 24 – start-page: 2595 year: 2010 end-page: 2603 ident: b14 article-title: Parallelized stochastic gradient descent publication-title: Advances in Neural Information Processing Systems 23 – volume: 6 start-page: 5 year: 2005 end-page: 20 ident: b7 article-title: Diversity creation methods: A survey and categorisation publication-title: Inf. Fusion – start-page: 9498 year: 2019 end-page: 9508 ident: b10 article-title: DINGO: Distributed Newton-type method for gradient-norm optimization publication-title: Advances in Neural Information Processing Systems 32 – year: 2010 ident: b5 article-title: GraphLab: A new framework for parallel machine learning – start-page: 362 year: 2015 end-page: 370 ident: b11 article-title: DiSCO: Distributed optimization for self-concordant empirical loss publication-title: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15 – start-page: 1 year: 2019 ident: 10.1016/j.asoc.2021.107084_b13 article-title: Stochastic gradient descent for nonconvex learning without bounded gradient assumptions publication-title: IEEE Trans. Neural Netw. Learn. Syst. – ident: 10.1016/j.asoc.2021.107084_b20 – year: 2019 ident: 10.1016/j.asoc.2021.107084_b26 – start-page: 906 year: 2012 ident: 10.1016/j.asoc.2021.107084_b18 article-title: Partial derivatives – volume: 73 start-page: 1068 year: 2018 ident: 10.1016/j.asoc.2021.107084_b27 article-title: Guided stochastic gradient descent algorithm for inconsistent datasets publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.09.038 – volume: 13 start-page: 8 year: 2015 ident: 10.1016/j.asoc.2021.107084_b1 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2014.11.005 – start-page: 9498 year: 2019 ident: 10.1016/j.asoc.2021.107084_b10 article-title: DINGO: Distributed Newton-type method for gradient-norm optimization – year: 1995 ident: 10.1016/j.asoc.2021.107084_b17 – ident: 10.1016/j.asoc.2021.107084_b9 – year: 2004 ident: 10.1016/j.asoc.2021.107084_b21 – year: 2015 ident: 10.1016/j.asoc.2021.107084_b24 – start-page: 4452 year: 2018 ident: 10.1016/j.asoc.2021.107084_b16 article-title: Sparsified SGD with memory – start-page: 169 year: 2018 ident: 10.1016/j.asoc.2021.107084_b25 article-title: The convergence of stochastic gradient descent in asynchronous shared memory – start-page: 1223 year: 2012 ident: 10.1016/j.asoc.2021.107084_b8 article-title: Large scale distributed deep networks – start-page: 362 year: 2015 ident: 10.1016/j.asoc.2021.107084_b11 article-title: DiSCO: Distributed optimization for self-concordant empirical loss – year: 1995 ident: 10.1016/j.asoc.2021.107084_b19 – year: 2016 ident: 10.1016/j.asoc.2021.107084_b32 article-title: The WEKA workbench – year: 2019 ident: 10.1016/j.asoc.2021.107084_b4 – volume: 6 start-page: 5 year: 2005 ident: 10.1016/j.asoc.2021.107084_b7 article-title: Diversity creation methods: A survey and categorisation publication-title: Inf. Fusion doi: 10.1016/j.inffus.2004.04.004 – start-page: 2595 year: 2010 ident: 10.1016/j.asoc.2021.107084_b14 article-title: Parallelized stochastic gradient descent – volume: 2016 start-page: 67 year: 2016 ident: 10.1016/j.asoc.2021.107084_b2 article-title: A survey of machine learning for big data processing publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-016-0355-x – volume: 12 start-page: 2121 year: 2011 ident: 10.1016/j.asoc.2021.107084_b29 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – volume: 5 start-page: 1 year: 2019 ident: 10.1016/j.asoc.2021.107084_b3 article-title: Recent advances and applications of machine learning in solid-state materials science publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0221-0 – start-page: 2332 year: 2018 ident: 10.1016/j.asoc.2021.107084_b12 article-title: GIANT: Globally improved approximate Newton method for distributed optimization – year: 2014 ident: 10.1016/j.asoc.2021.107084_b30 – volume: 51 start-page: 2326 year: 2005 ident: 10.1016/j.asoc.2021.107084_b34 article-title: Detection of outliers in reference distributions: Performance of Horn’s algorithm publication-title: Clin. Chem. doi: 10.1373/clinchem.2005.058339 – start-page: 281 year: 2007 ident: 10.1016/j.asoc.2021.107084_b6 article-title: Map-reduce for machine learning on multicore – year: 2015 ident: 10.1016/j.asoc.2021.107084_b22 – ident: 10.1016/j.asoc.2021.107084_b33 – year: 2012 ident: 10.1016/j.asoc.2021.107084_b23 – year: 2012 ident: 10.1016/j.asoc.2021.107084_b28 – year: 2010 ident: 10.1016/j.asoc.2021.107084_b5 – year: 2019 ident: 10.1016/j.asoc.2021.107084_b31 – start-page: 873 year: 2011 ident: 10.1016/j.asoc.2021.107084_b15 article-title: Distributed delayed stochastic optimization |
SSID | ssj0016928 |
Score | 2.4085574 |
Snippet | Stochastic gradient descent (SGD) algorithm and its variations have been effectively used to optimize neural network models. However, with the rapid growth of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107084 |
SubjectTerms | Asynchronous/synchronous stochastic gradient descent Classification Deep learning Gradient Methods Stochastic gradient descent |
Title | Guided parallelized stochastic gradient descent for delay compensation |
URI | https://dx.doi.org/10.1016/j.asoc.2021.107084 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH50uXhxF-tS5uBNYrNMJsmxFGvdiqiF3kJmiUZCLSU96MHf7ptkUhSkB48zzIPwzeQtyTffAzhzhC8T7itLcdwGKlxuhVKmFuOp8tzIDoOSm3M_ZqMJvZn60wYM6rswmlZpfH_l00tvbWZ6Bs3ePMt6T1h5hDSizC0_UQdBE9ouRvuwBe3-9e1ovPqZwKKyxapeb2kDc3emonklCAKWia6DE0EpcvpXfPoRc4bbsGmSRdKvnmcHGmq2C1t1IwZi3ss9GF4tM6kk0Treea7y7BMHmNWJ10TLMJOXRUnsKoisxJsIZqpEy0N-EE0px0q23J99mAwvnwcjyzRIsIRn24XlRwmXNg8CqViaMCow_oeOh9uiRMioYm6SMiwoEiU5-jFXOUJgAcdtxkWIyY53AK3Z-0wdAomoDCgPVYoBm1LP5r6nlONzrF8dD1O-Djg1LLEw6uG6iUUe1zSxt1hDGWso4wrKDpyvbOaVdsba1X6NdvzrBMTo3NfYHf3T7hg29Khi4ZxAq1gs1SkmGAXvQvPiy-niMRo83j10zXH6BrtJ0ao |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFH4q7QALN6KcHthQ1ByOk4xVRUnpsdBK3aL4CARVparSAX49z4lTgYQYGOP4SdFn5x3J5-8B3DnClyn3laU4LgMVLrdCKTOL8Ux5bmSHQcnNGU9YPKNPc3_egF59FkbTKo3vr3x66a3NSMeg2VnleecZK4-QRpS55SfqINiBFtVNrZvQ6g6G8WT7M4FFZYtVPd_SBubsTEXzShEELBNdBweCUuT0t_j0Leb0D2HfJIukWz3PETTU8hgO6kYMxLyXJ9B_3ORSSaJ1vBcLtcg_8QKzOvGaahlm8rIuiV0FkZV4E8FMlWh5yA-iKeVYyZbrcwqz_sO0F1umQYIlPNsuLD9KubR5EEjFspRRgfE_dDxcFiVCRhVz04xhQZEqydGPucoRAgs4bjMuQkx2vDNoLt-X6hxIRGVAeagyDNiUejb3PaUcn2P96niY8rXBqWFJhFEP100sFklNE3tLNJSJhjKpoGzD_dZmVWln_Dnbr9FOfuyABJ37H3YX_7S7hd14Oh4lo8FkeAl7-k7FyLmCZrHeqGtMNgp-YzbTFyC10fs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guided+parallelized+stochastic+gradient+descent+for+delay+compensation&rft.jtitle=Applied+soft+computing&rft.au=Sharma%2C+Anuraganand&rft.date=2021-04-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=102&rft_id=info:doi/10.1016%2Fj.asoc.2021.107084&rft.externalDocID=S1568494621000077 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |