Neural network algorithm enables mass calibration autocorrection for miniature mass spectrometry systems
Mass spectrometry (MS) is a powerful analytical technology widely used in a broad range of applications. Laboratory-scale mass spectrometers, however, are hardly used outside the analytical laboratories due to the large sizes and weights. Miniature mass spectrometers are therefore developed to facil...
        Saved in:
      
    
          | Published in | International journal of mass spectrometry Vol. 490; p. 117085 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.08.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1387-3806 1873-2798  | 
| DOI | 10.1016/j.ijms.2023.117085 | 
Cover
| Abstract | Mass spectrometry (MS) is a powerful analytical technology widely used in a broad range of applications. Laboratory-scale mass spectrometers, however, are hardly used outside the analytical laboratories due to the large sizes and weights. Miniature mass spectrometers are therefore developed to facilitate on-site MS analysis. How to stabilize their analytical performances under complex environmental conditions on-site is a challenging problem, which needs to be addressed for the development of miniature MS instrumentation. Here, we report a neural network algorithm which enables automatic mass calibration corrections for a Cell miniature MS system (PURSPEC Technologies Inc.). To simulate the change of complex environmental conditions on-site, variations of temperature from 5 °C to 40 °C, pressure from 98647 Pa to 99406 Pa, humidity from 30 % to 65 %, were employed. The mass accuracy, characterized by the difference between measured mass and nominal mass, after autocorrection of the algorithm was within 0.08 Da.
[Display omitted]
•The complex environmental conditions on-site have a significant impact on mass accuracy.•A neural network algorithm was developed to correct the mass shift under complex on-site environments.•A test workflow was applied to simulate a real on-site analysis. | 
    
|---|---|
| AbstractList | Mass spectrometry (MS) is a powerful analytical technology widely used in a broad range of applications. Laboratory-scale mass spectrometers, however, are hardly used outside the analytical laboratories due to the large sizes and weights. Miniature mass spectrometers are therefore developed to facilitate on-site MS analysis. How to stabilize their analytical performances under complex environmental conditions on-site is a challenging problem, which needs to be addressed for the development of miniature MS instrumentation. Here, we report a neural network algorithm which enables automatic mass calibration corrections for a Cell miniature MS system (PURSPEC Technologies Inc.). To simulate the change of complex environmental conditions on-site, variations of temperature from 5 °C to 40 °C, pressure from 98647 Pa to 99406 Pa, humidity from 30 % to 65 %, were employed. The mass accuracy, characterized by the difference between measured mass and nominal mass, after autocorrection of the algorithm was within 0.08 Da.
[Display omitted]
•The complex environmental conditions on-site have a significant impact on mass accuracy.•A neural network algorithm was developed to correct the mass shift under complex on-site environments.•A test workflow was applied to simulate a real on-site analysis. | 
    
| ArticleNumber | 117085 | 
    
| Author | Jiao, Bin Wei, Yanjun Zhang, Donghui Zhou, Xiaoyu Ouyang, Zheng Bu, Jiexun Zhang, Haoyue  | 
    
| Author_xml | – sequence: 1 givenname: Yanjun surname: Wei fullname: Wei, Yanjun organization: School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100096, China – sequence: 2 givenname: Bin surname: Jiao fullname: Jiao, Bin organization: State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China – sequence: 3 givenname: Haoyue surname: Zhang fullname: Zhang, Haoyue organization: State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China – sequence: 4 givenname: Donghui surname: Zhang fullname: Zhang, Donghui organization: State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China – sequence: 5 givenname: Jiexun surname: Bu fullname: Bu, Jiexun organization: PURSPEC Technologies Inc., Beijing, 100084, China – sequence: 6 givenname: Xiaoyu orcidid: 0000-0002-9840-9159 surname: Zhou fullname: Zhou, Xiaoyu email: zhouyuzxy@mail.tsinghua.edu.cn organization: State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China – sequence: 7 givenname: Zheng surname: Ouyang fullname: Ouyang, Zheng email: ouyang@tsinghua.edu.cn organization: State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China  | 
    
| BookMark | eNp9kMlOwzAQQC1UJFrgBzj5BxK8NLYjcUEVm1TBBc6W64U6JHFlu6D-PUnDiUNPM6OZN5p5CzDrQ28BuMGoxAiz26b0TZdKgggtMeZIVGdgjgWnBeG1mA05FbygArELsEipQQhxWrE52L7afVQt7G3-CfELqvYzRJ-3HbS92rQ2wU6lBLVq_Saq7EMP1T4HHWK0-li6EGHne6_yPtppOu2GXgydzfEA0yFl26UrcO5Um-z1X7wEH48P76vnYv329LK6XxeaIpSLipsakarSDBtHXO3EclltjOZGIINILQjVS2ccq7nRmjmlnLOYEFTVTDDD6SUQ014dQ0rROql9Ph6eo_KtxEiOxmQjR2NyNCYnYwNK_qG76DsVD6ehuwmyw1Pf3kaZtLe9tsaPhqQJ_hT-Cz1givc | 
    
| CitedBy_id | crossref_primary_10_1016_j_jpba_2024_116194 | 
    
| Cites_doi | 10.1109/72.870038 10.1016/j.ijms.2016.12.008 10.1016/bs.acc.2016.09.003 10.1016/j.cbpa.2018.08.006 10.1016/j.procs.2016.05.231 10.1089/ast.2016.1551 10.1038/s41592-019-0426-7 10.1016/j.chroma.2019.460476 10.1016/j.heliyon.2018.e00938 10.1093/bib/bbp012 10.1016/j.foodcont.2022.109042 10.1016/j.protcy.2013.12.159 10.1039/C9SC06240H 10.3390/cancers14174342 10.1007/s11214-012-9879-z 10.7150/thno.19410 10.1007/s13361-011-0108-x 10.1093/bioinformatics/btx724 10.1021/acs.analchem.1c02508 10.1021/ac800014v  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2023 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.ijms.2023.117085 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1873-2798 | 
    
| ExternalDocumentID | 10_1016_j_ijms_2023_117085 S1387380623000763  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AATCM AAXUO ABFNM ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ABZDS ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGGZJ OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SDF SDG SDP SES SEW SPC SPCBC SPD SSK SSP SSQ SSZ T5K TN5 UQL ZCG ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c300t-57d90255c61df2f9f8445bdc7d80d029823c4fdf697dcc6faaffe122059686d73 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1387-3806 | 
    
| IngestDate | Wed Oct 29 21:15:00 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Fri Feb 23 02:38:15 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Miniature mass spectrometers Neural network Mass shift  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c300t-57d90255c61df2f9f8445bdc7d80d029823c4fdf697dcc6faaffe122059686d73 | 
    
| ORCID | 0000-0002-9840-9159 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijms_2023_117085 crossref_primary_10_1016_j_ijms_2023_117085 elsevier_sciencedirect_doi_10_1016_j_ijms_2023_117085  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 2023 2023-08-00  | 
    
| PublicationDateYYYYMMDD | 2023-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | International journal of mass spectrometry | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Vestal (bib1) 2011; 22 Kohavi (bib25) 1995; 14 Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (bib10) 2018; 4 Goesmann, Brinckerhoff, Raulin, Goetz, Danell, Getty, Siljestrom, Missbach, Steininger, Arevalo, Buch, Freissinet, Grubisic, Meierhenrich, Pinnick, Stalport, Szopa, Vago, Lindner, Schulte, Brucato, Glavin, Grand, Li, van Amerom (bib7) 2017; 17 Jin, Li, Jin (bib19) 2015 Karystinos, Pados (bib22) 2000; 11 Pertzborn, Arolt, Ernst, Lechtenfeld, Kaesler, Pelzel, Guntinas-Lichius, von Eggeling, Hoffmann (bib15) 2022; 14 Zhang, Wang, Xia, Ouyang (bib4) 2017; 7 Fine, Rajasekar, Jethava, Chopra (bib12) 2020; 11 Lancashire, Lemetre, Ball (bib21) 2009; 10 French (bib3) 2017; 79 Li, Wang (bib13) 2019; 1604 Gurney (bib9) 1997 Gao, Cooks, Ouyang (bib18) 2008; 80 Mahaffy, Webster, Cabane, Conrad, Coll, Atreya, Arvey, Barciniak, Benna, Bleacher (bib8) 2012; 170 Yang, Shen, Zhao (bib24) 2021 Chavez, Bruce (bib2) 2019; 48 Mach, Winfield, Aguilar, Wright, Verbeck (bib5) 2017; 422 Singh (bib23) 2016; 85 Behrmann, Etmann, Boskamp, Casadonte, Kriegsmann, Maaβ (bib14) 2018; 34 Nawi, Atomi, Rehman (bib20) 2013; 11 Jiao, Ye, Liu, Bu, Wu, Zhang, Zhang, Ouyang (bib17) 2021; 93 Guo, Yang, Zhang (bib6) 2022; 5 Gessulat, Schmidt, Zolg, Samaras, Schnatbaum, Zerweck, Knaute, Rechenberger, Delanghe, Huhmer, Reimer, Ehrlich, Aiche, Kuster, Wilhelm (bib11) 2019; 16 Feng, Cheng, Wei, Chen, Zhang, Zhang, Xue, Chen, Li, Shang (bib16) 2022; 139 Feng (10.1016/j.ijms.2023.117085_bib16) 2022; 139 Fine (10.1016/j.ijms.2023.117085_bib12) 2020; 11 Kohavi (10.1016/j.ijms.2023.117085_bib25) 1995; 14 Abiodun (10.1016/j.ijms.2023.117085_bib10) 2018; 4 Karystinos (10.1016/j.ijms.2023.117085_bib22) 2000; 11 Lancashire (10.1016/j.ijms.2023.117085_bib21) 2009; 10 French (10.1016/j.ijms.2023.117085_bib3) 2017; 79 Nawi (10.1016/j.ijms.2023.117085_bib20) 2013; 11 Jin (10.1016/j.ijms.2023.117085_bib19) 2015 Pertzborn (10.1016/j.ijms.2023.117085_bib15) 2022; 14 Yang (10.1016/j.ijms.2023.117085_bib24) 2021 Li (10.1016/j.ijms.2023.117085_bib13) 2019; 1604 Behrmann (10.1016/j.ijms.2023.117085_bib14) 2018; 34 Gao (10.1016/j.ijms.2023.117085_bib18) 2008; 80 Vestal (10.1016/j.ijms.2023.117085_bib1) 2011; 22 Mahaffy (10.1016/j.ijms.2023.117085_bib8) 2012; 170 Chavez (10.1016/j.ijms.2023.117085_bib2) 2019; 48 Mach (10.1016/j.ijms.2023.117085_bib5) 2017; 422 Zhang (10.1016/j.ijms.2023.117085_bib4) 2017; 7 Gessulat (10.1016/j.ijms.2023.117085_bib11) 2019; 16 Goesmann (10.1016/j.ijms.2023.117085_bib7) 2017; 17 Singh (10.1016/j.ijms.2023.117085_bib23) 2016; 85 Guo (10.1016/j.ijms.2023.117085_bib6) 2022; 5 Jiao (10.1016/j.ijms.2023.117085_bib17) 2021; 93 Gurney (10.1016/j.ijms.2023.117085_bib9) 1997  | 
    
| References_xml | – volume: 170 start-page: 401 year: 2012 end-page: 478 ident: bib8 article-title: The sample analysis at Mars investigation and instrument suite publication-title: Space Sci. Rev. – start-page: 2339 year: 2021 end-page: 2348 ident: bib24 article-title: AsymmNet: towards ultralight convolution neural networks using asymmetrical bottlenecks publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 79 start-page: 153 year: 2017 end-page: 198 ident: bib3 article-title: Advances in clinical mass spectrometry publication-title: Adv. Clin. Chem. – start-page: 2015 year: 2015 ident: bib19 article-title: Data normalization to accelerate training for linear neural net to predict tropical cyclone tracks publication-title: Math. Probl Eng. – volume: 17 start-page: 655 year: 2017 end-page: 685 ident: bib7 article-title: The Mars organic molecule analyzer (MOMA) instrument: characterization of organic material in martian sediments publication-title: Astrobiology – volume: 4 year: 2018 ident: bib10 article-title: State-of-the-art in artificial neural network applications: a survey publication-title: Heliyon – volume: 34 start-page: 1215 year: 2018 end-page: 1223 ident: bib14 article-title: Deep learning for tumor classification in imaging mass spectrometry publication-title: Bioinformatics – volume: 7 start-page: 2968 year: 2017 ident: bib4 article-title: Ambient ionization and miniature mass spectrometry systems for disease diagnosis and therapeutic monitoring publication-title: Theranostics – year: 1997 ident: bib9 article-title: An Introduction to Neural Networks – volume: 11 start-page: 4618 year: 2020 end-page: 4630 ident: bib12 article-title: Spectral deep learning for prediction and prospective validation of functional groups publication-title: Chem. Sci. – volume: 11 start-page: 1050 year: 2000 end-page: 1057 ident: bib22 article-title: On overfitting, generalization, and randomly expanded training sets publication-title: IEEE Trans. Neural Network. – volume: 22 start-page: 953 year: 2011 end-page: 959 ident: bib1 article-title: The future of biological mass spectrometry publication-title: J. Am. Soc. Mass Spectrom. – volume: 93 start-page: 15607 year: 2021 end-page: 15616 ident: bib17 article-title: Handheld mass spectrometer with intelligent adaptability for on-site and point-of-care analysis publication-title: Anal. Chem. – volume: 139 year: 2022 ident: bib16 article-title: Novel method for rapid identification of Listeria monocytogenes based on metabolomics and deep learning publication-title: Food Control – volume: 5 start-page: 322 year: 2022 end-page: 331 ident: bib6 article-title: Rapid screening for 315 drugs in food and biological matrices by ultrahigh‐performance liquid chromatography quadrupole time of flight mass spectrometry and its application to a specific incident publication-title: Separ. Sci. – volume: 422 start-page: 148 year: 2017 end-page: 153 ident: bib5 article-title: A portable mass spectrometer study targeting anthropogenic contaminants in Sub-Antarctic Puerto Williams, Chile publication-title: Int. J. Mass Spectrom. – volume: 1604 year: 2019 ident: bib13 article-title: Peak alignment of gas chromatography–mass spectrometry data with deep learning publication-title: J. Chromatogr. A – volume: 11 start-page: 32 year: 2013 end-page: 39 ident: bib20 article-title: The effect of data pre-processing on optimized training of artificial neural networks publication-title: Procedia Technology – volume: 14 start-page: 4342 year: 2022 ident: bib15 article-title: Multi-class cancer subtyping in salivary Gland Carcinomas with MALDI imaging and deep learning publication-title: Cancers – volume: 80 start-page: 4026 year: 2008 end-page: 4032 ident: bib18 article-title: Breaking the pumping speed barrier in mass spectrometry: discontinuous atmospheric pressure interface publication-title: Anal. Chem. – volume: 48 start-page: 8 year: 2019 end-page: 18 ident: bib2 article-title: Chemical cross-linking with mass spectrometry: a tool for systems structural biology publication-title: Curr. Opin. Chem. Biol. – volume: 16 start-page: 509 year: 2019 end-page: 518 ident: bib11 article-title: Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning publication-title: Nat. Methods – volume: 10 start-page: 315 year: 2009 end-page: 329 ident: bib21 article-title: An introduction to artificial neural networks in bioinformatics—application to complex microarray and mass spectrometry datasets in cancer studies publication-title: Briefings Bioinf. – volume: 85 start-page: 263 year: 2016 end-page: 270 ident: bib23 article-title: Proposing Solution to XOR problem using minimum configuration MLP publication-title: Proc. Comput. Sci. – volume: 14 start-page: 1137 year: 1995 end-page: 1145 ident: bib25 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: Ijcai – start-page: 2015 year: 2015 ident: 10.1016/j.ijms.2023.117085_bib19 article-title: Data normalization to accelerate training for linear neural net to predict tropical cyclone tracks publication-title: Math. Probl Eng. – volume: 11 start-page: 1050 year: 2000 ident: 10.1016/j.ijms.2023.117085_bib22 article-title: On overfitting, generalization, and randomly expanded training sets publication-title: IEEE Trans. Neural Network. doi: 10.1109/72.870038 – volume: 5 start-page: 322 year: 2022 ident: 10.1016/j.ijms.2023.117085_bib6 article-title: Rapid screening for 315 drugs in food and biological matrices by ultrahigh‐performance liquid chromatography quadrupole time of flight mass spectrometry and its application to a specific incident publication-title: Separ. Sci. – volume: 422 start-page: 148 year: 2017 ident: 10.1016/j.ijms.2023.117085_bib5 article-title: A portable mass spectrometer study targeting anthropogenic contaminants in Sub-Antarctic Puerto Williams, Chile publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2016.12.008 – volume: 79 start-page: 153 year: 2017 ident: 10.1016/j.ijms.2023.117085_bib3 article-title: Advances in clinical mass spectrometry publication-title: Adv. Clin. Chem. doi: 10.1016/bs.acc.2016.09.003 – start-page: 2339 year: 2021 ident: 10.1016/j.ijms.2023.117085_bib24 article-title: AsymmNet: towards ultralight convolution neural networks using asymmetrical bottlenecks publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 48 start-page: 8 year: 2019 ident: 10.1016/j.ijms.2023.117085_bib2 article-title: Chemical cross-linking with mass spectrometry: a tool for systems structural biology publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2018.08.006 – year: 1997 ident: 10.1016/j.ijms.2023.117085_bib9 – volume: 85 start-page: 263 year: 2016 ident: 10.1016/j.ijms.2023.117085_bib23 article-title: Proposing Solution to XOR problem using minimum configuration MLP publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2016.05.231 – volume: 17 start-page: 655 year: 2017 ident: 10.1016/j.ijms.2023.117085_bib7 article-title: The Mars organic molecule analyzer (MOMA) instrument: characterization of organic material in martian sediments publication-title: Astrobiology doi: 10.1089/ast.2016.1551 – volume: 16 start-page: 509 year: 2019 ident: 10.1016/j.ijms.2023.117085_bib11 article-title: Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning publication-title: Nat. Methods doi: 10.1038/s41592-019-0426-7 – volume: 1604 year: 2019 ident: 10.1016/j.ijms.2023.117085_bib13 article-title: Peak alignment of gas chromatography–mass spectrometry data with deep learning publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2019.460476 – volume: 4 year: 2018 ident: 10.1016/j.ijms.2023.117085_bib10 article-title: State-of-the-art in artificial neural network applications: a survey publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00938 – volume: 10 start-page: 315 year: 2009 ident: 10.1016/j.ijms.2023.117085_bib21 article-title: An introduction to artificial neural networks in bioinformatics—application to complex microarray and mass spectrometry datasets in cancer studies publication-title: Briefings Bioinf. doi: 10.1093/bib/bbp012 – volume: 139 year: 2022 ident: 10.1016/j.ijms.2023.117085_bib16 article-title: Novel method for rapid identification of Listeria monocytogenes based on metabolomics and deep learning publication-title: Food Control doi: 10.1016/j.foodcont.2022.109042 – volume: 11 start-page: 32 year: 2013 ident: 10.1016/j.ijms.2023.117085_bib20 article-title: The effect of data pre-processing on optimized training of artificial neural networks publication-title: Procedia Technology doi: 10.1016/j.protcy.2013.12.159 – volume: 11 start-page: 4618 year: 2020 ident: 10.1016/j.ijms.2023.117085_bib12 article-title: Spectral deep learning for prediction and prospective validation of functional groups publication-title: Chem. Sci. doi: 10.1039/C9SC06240H – volume: 14 start-page: 4342 year: 2022 ident: 10.1016/j.ijms.2023.117085_bib15 article-title: Multi-class cancer subtyping in salivary Gland Carcinomas with MALDI imaging and deep learning publication-title: Cancers doi: 10.3390/cancers14174342 – volume: 170 start-page: 401 year: 2012 ident: 10.1016/j.ijms.2023.117085_bib8 article-title: The sample analysis at Mars investigation and instrument suite publication-title: Space Sci. Rev. doi: 10.1007/s11214-012-9879-z – volume: 7 start-page: 2968 year: 2017 ident: 10.1016/j.ijms.2023.117085_bib4 article-title: Ambient ionization and miniature mass spectrometry systems for disease diagnosis and therapeutic monitoring publication-title: Theranostics doi: 10.7150/thno.19410 – volume: 22 start-page: 953 year: 2011 ident: 10.1016/j.ijms.2023.117085_bib1 article-title: The future of biological mass spectrometry publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-011-0108-x – volume: 34 start-page: 1215 year: 2018 ident: 10.1016/j.ijms.2023.117085_bib14 article-title: Deep learning for tumor classification in imaging mass spectrometry publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx724 – volume: 14 start-page: 1137 year: 1995 ident: 10.1016/j.ijms.2023.117085_bib25 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: Ijcai – volume: 93 start-page: 15607 year: 2021 ident: 10.1016/j.ijms.2023.117085_bib17 article-title: Handheld mass spectrometer with intelligent adaptability for on-site and point-of-care analysis publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c02508 – volume: 80 start-page: 4026 year: 2008 ident: 10.1016/j.ijms.2023.117085_bib18 article-title: Breaking the pumping speed barrier in mass spectrometry: discontinuous atmospheric pressure interface publication-title: Anal. Chem. doi: 10.1021/ac800014v  | 
    
| SSID | ssj0007356 | 
    
| Score | 2.421653 | 
    
| Snippet | Mass spectrometry (MS) is a powerful analytical technology widely used in a broad range of applications. Laboratory-scale mass spectrometers, however, are... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 117085 | 
    
| SubjectTerms | Mass shift Miniature mass spectrometers Neural network  | 
    
| Title | Neural network algorithm enables mass calibration autocorrection for miniature mass spectrometry systems | 
    
| URI | https://dx.doi.org/10.1016/j.ijms.2023.117085 | 
    
| Volume | 490 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2798 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007356 issn: 1387-3806 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2798 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007356 issn: 1387-3806 databaseCode: .~1 dateStart: 19980601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1873-2798 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007356 issn: 1387-3806 databaseCode: AIKHN dateStart: 19980601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2798 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007356 issn: 1387-3806 databaseCode: ACRLP dateStart: 19980601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2798 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007356 issn: 1387-3806 databaseCode: AKRWK dateStart: 19980601 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LawIxEA5iKfRS-qT2ITn0VrbuI5vEo0jFvqS0Fbwt2WRTFV1F10Mv_e3NJGsfUDz0tOzuBJYvYWaWmfk-hC5FyJWJ2qGns4x6hAvu8TDlnq-pTnnAJLMV_Mce7fbJ3SAeVFB7PQsDbZWl73c-3Xrr8kmjRLMxH40aL0HEWcR9E79tPQkYPwlhoGJw_fHd5sEiq-AKxh5Yl4MzrsdrNJ4CZXcYQe3SBz3lv4LTj4DT2UO7ZaaIW-5j9lElyw_Qtu3YlMtDNARaDfM-d33cWEzeZuZHfzjFmR2HWuKpyYux2QL4IQb4sVgVMwlqHHaWAZt0FQOziKX2dNZ27hIIDIrFO3Ykz8sj1O_cvLa7Ximb4EmDROHFTEHtMJY0UDrUTc0JiVMlmeK-Asb1MJJEK02bTElJtRBaZwEM3DYpp4pFx6iaz_LsBGHu65grykmUmTxFCkEC0HjUaSRlHKi0hoI1XoksOcVB2mKSrJvHxglgnADGicO4hq6-1swdo8ZG63i9Dcmvc5EYl79h3ek_152hHbhzLX7nqFosVtmFSTuKtG7PVR1ttdrPD09wvb3v9j4BNJra6Q | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYoVdUuVZ8qfXroVqUkcWKbsUJFtAWWgsQWJXZcQBAQhKFLf3t9dtKHVDF0jc9S9Nm6O-u--w6h29jnUkdt31FpSp2Ax9zhfsIdV1GVcI8JZir43R5tD4LnYTisoGbZCwO0ysL3W59uvHXxpV6gWV-Mx_VXj3BGuKvjt6knkS20HYQ-gxfY_cc3z4MRM8IVrB0wLzpnLMlrPJmBZrdPoHjpwkDlv6LTj4jTOkD7RaqIH-zfHKJKmh2hHUPZFKtjNAJdDb2eWSI3jqdvc_3SH81wavqhVnimE2OszwBexIA_jtf5XMA4DtPMgHW-ikFaxGh7WmvTeAkKBvnyHVuV59UJGrQe-822U8xNcISGIndCJqF4GArqSeWrhuJBECZSMMldCZLrPhGBkoo2mBSCqjhWKvWg47ZBOZWMnKJqNs_SM4S5q0IuKQ9IqhMVEceBB0MeVUKECD2Z1JBX4hWJQlQcZltMo5I9NokA4wgwjizGNXT3tWdhJTU2WoflMUS_Lkakff6Gfef_3HeDdtv9bifqPPVeLtAerFi-3yWq5st1eqVzkDy5NnfsE4y12uk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+algorithm+enables+mass+calibration+autocorrection+for+miniature+mass+spectrometry+systems&rft.jtitle=International+journal+of+mass+spectrometry&rft.au=Wei%2C+Yanjun&rft.au=Jiao%2C+Bin&rft.au=Zhang%2C+Haoyue&rft.au=Zhang%2C+Donghui&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=1387-3806&rft.eissn=1873-2798&rft.volume=490&rft_id=info:doi/10.1016%2Fj.ijms.2023.117085&rft.externalDocID=S1387380623000763 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-3806&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-3806&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-3806&client=summon |