Neural network algorithm enables mass calibration autocorrection for miniature mass spectrometry systems

Mass spectrometry (MS) is a powerful analytical technology widely used in a broad range of applications. Laboratory-scale mass spectrometers, however, are hardly used outside the analytical laboratories due to the large sizes and weights. Miniature mass spectrometers are therefore developed to facil...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mass spectrometry Vol. 490; p. 117085
Main Authors Wei, Yanjun, Jiao, Bin, Zhang, Haoyue, Zhang, Donghui, Bu, Jiexun, Zhou, Xiaoyu, Ouyang, Zheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2023
Subjects
Online AccessGet full text
ISSN1387-3806
1873-2798
DOI10.1016/j.ijms.2023.117085

Cover

Abstract Mass spectrometry (MS) is a powerful analytical technology widely used in a broad range of applications. Laboratory-scale mass spectrometers, however, are hardly used outside the analytical laboratories due to the large sizes and weights. Miniature mass spectrometers are therefore developed to facilitate on-site MS analysis. How to stabilize their analytical performances under complex environmental conditions on-site is a challenging problem, which needs to be addressed for the development of miniature MS instrumentation. Here, we report a neural network algorithm which enables automatic mass calibration corrections for a Cell miniature MS system (PURSPEC Technologies Inc.). To simulate the change of complex environmental conditions on-site, variations of temperature from 5 °C to 40 °C, pressure from 98647 Pa to 99406 Pa, humidity from 30 % to 65 %, were employed. The mass accuracy, characterized by the difference between measured mass and nominal mass, after autocorrection of the algorithm was within 0.08 Da. [Display omitted] •The complex environmental conditions on-site have a significant impact on mass accuracy.•A neural network algorithm was developed to correct the mass shift under complex on-site environments.•A test workflow was applied to simulate a real on-site analysis.
AbstractList Mass spectrometry (MS) is a powerful analytical technology widely used in a broad range of applications. Laboratory-scale mass spectrometers, however, are hardly used outside the analytical laboratories due to the large sizes and weights. Miniature mass spectrometers are therefore developed to facilitate on-site MS analysis. How to stabilize their analytical performances under complex environmental conditions on-site is a challenging problem, which needs to be addressed for the development of miniature MS instrumentation. Here, we report a neural network algorithm which enables automatic mass calibration corrections for a Cell miniature MS system (PURSPEC Technologies Inc.). To simulate the change of complex environmental conditions on-site, variations of temperature from 5 °C to 40 °C, pressure from 98647 Pa to 99406 Pa, humidity from 30 % to 65 %, were employed. The mass accuracy, characterized by the difference between measured mass and nominal mass, after autocorrection of the algorithm was within 0.08 Da. [Display omitted] •The complex environmental conditions on-site have a significant impact on mass accuracy.•A neural network algorithm was developed to correct the mass shift under complex on-site environments.•A test workflow was applied to simulate a real on-site analysis.
ArticleNumber 117085
Author Jiao, Bin
Wei, Yanjun
Zhang, Donghui
Zhou, Xiaoyu
Ouyang, Zheng
Bu, Jiexun
Zhang, Haoyue
Author_xml – sequence: 1
  givenname: Yanjun
  surname: Wei
  fullname: Wei, Yanjun
  organization: School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100096, China
– sequence: 2
  givenname: Bin
  surname: Jiao
  fullname: Jiao, Bin
  organization: State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
– sequence: 3
  givenname: Haoyue
  surname: Zhang
  fullname: Zhang, Haoyue
  organization: State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
– sequence: 4
  givenname: Donghui
  surname: Zhang
  fullname: Zhang, Donghui
  organization: State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
– sequence: 5
  givenname: Jiexun
  surname: Bu
  fullname: Bu, Jiexun
  organization: PURSPEC Technologies Inc., Beijing, 100084, China
– sequence: 6
  givenname: Xiaoyu
  orcidid: 0000-0002-9840-9159
  surname: Zhou
  fullname: Zhou, Xiaoyu
  email: zhouyuzxy@mail.tsinghua.edu.cn
  organization: State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
– sequence: 7
  givenname: Zheng
  surname: Ouyang
  fullname: Ouyang, Zheng
  email: ouyang@tsinghua.edu.cn
  organization: State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
BookMark eNp9kMlOwzAQQC1UJFrgBzj5BxK8NLYjcUEVm1TBBc6W64U6JHFlu6D-PUnDiUNPM6OZN5p5CzDrQ28BuMGoxAiz26b0TZdKgggtMeZIVGdgjgWnBeG1mA05FbygArELsEipQQhxWrE52L7afVQt7G3-CfELqvYzRJ-3HbS92rQ2wU6lBLVq_Saq7EMP1T4HHWK0-li6EGHne6_yPtppOu2GXgydzfEA0yFl26UrcO5Um-z1X7wEH48P76vnYv329LK6XxeaIpSLipsakarSDBtHXO3EclltjOZGIINILQjVS2ccq7nRmjmlnLOYEFTVTDDD6SUQ014dQ0rROql9Ph6eo_KtxEiOxmQjR2NyNCYnYwNK_qG76DsVD6ehuwmyw1Pf3kaZtLe9tsaPhqQJ_hT-Cz1givc
CitedBy_id crossref_primary_10_1016_j_jpba_2024_116194
Cites_doi 10.1109/72.870038
10.1016/j.ijms.2016.12.008
10.1016/bs.acc.2016.09.003
10.1016/j.cbpa.2018.08.006
10.1016/j.procs.2016.05.231
10.1089/ast.2016.1551
10.1038/s41592-019-0426-7
10.1016/j.chroma.2019.460476
10.1016/j.heliyon.2018.e00938
10.1093/bib/bbp012
10.1016/j.foodcont.2022.109042
10.1016/j.protcy.2013.12.159
10.1039/C9SC06240H
10.3390/cancers14174342
10.1007/s11214-012-9879-z
10.7150/thno.19410
10.1007/s13361-011-0108-x
10.1093/bioinformatics/btx724
10.1021/acs.analchem.1c02508
10.1021/ac800014v
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ijms.2023.117085
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2798
ExternalDocumentID 10_1016_j_ijms_2023_117085
S1387380623000763
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATCM
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ABZDS
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSK
SSP
SSQ
SSZ
T5K
TN5
UQL
ZCG
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-57d90255c61df2f9f8445bdc7d80d029823c4fdf697dcc6faaffe122059686d73
IEDL.DBID .~1
ISSN 1387-3806
IngestDate Wed Oct 29 21:15:00 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Fri Feb 23 02:38:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Miniature mass spectrometers
Neural network
Mass shift
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-57d90255c61df2f9f8445bdc7d80d029823c4fdf697dcc6faaffe122059686d73
ORCID 0000-0002-9840-9159
ParticipantIDs crossref_citationtrail_10_1016_j_ijms_2023_117085
crossref_primary_10_1016_j_ijms_2023_117085
elsevier_sciencedirect_doi_10_1016_j_ijms_2023_117085
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle International journal of mass spectrometry
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vestal (bib1) 2011; 22
Kohavi (bib25) 1995; 14
Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (bib10) 2018; 4
Goesmann, Brinckerhoff, Raulin, Goetz, Danell, Getty, Siljestrom, Missbach, Steininger, Arevalo, Buch, Freissinet, Grubisic, Meierhenrich, Pinnick, Stalport, Szopa, Vago, Lindner, Schulte, Brucato, Glavin, Grand, Li, van Amerom (bib7) 2017; 17
Jin, Li, Jin (bib19) 2015
Karystinos, Pados (bib22) 2000; 11
Pertzborn, Arolt, Ernst, Lechtenfeld, Kaesler, Pelzel, Guntinas-Lichius, von Eggeling, Hoffmann (bib15) 2022; 14
Zhang, Wang, Xia, Ouyang (bib4) 2017; 7
Fine, Rajasekar, Jethava, Chopra (bib12) 2020; 11
Lancashire, Lemetre, Ball (bib21) 2009; 10
French (bib3) 2017; 79
Li, Wang (bib13) 2019; 1604
Gurney (bib9) 1997
Gao, Cooks, Ouyang (bib18) 2008; 80
Mahaffy, Webster, Cabane, Conrad, Coll, Atreya, Arvey, Barciniak, Benna, Bleacher (bib8) 2012; 170
Yang, Shen, Zhao (bib24) 2021
Chavez, Bruce (bib2) 2019; 48
Mach, Winfield, Aguilar, Wright, Verbeck (bib5) 2017; 422
Singh (bib23) 2016; 85
Behrmann, Etmann, Boskamp, Casadonte, Kriegsmann, Maaβ (bib14) 2018; 34
Nawi, Atomi, Rehman (bib20) 2013; 11
Jiao, Ye, Liu, Bu, Wu, Zhang, Zhang, Ouyang (bib17) 2021; 93
Guo, Yang, Zhang (bib6) 2022; 5
Gessulat, Schmidt, Zolg, Samaras, Schnatbaum, Zerweck, Knaute, Rechenberger, Delanghe, Huhmer, Reimer, Ehrlich, Aiche, Kuster, Wilhelm (bib11) 2019; 16
Feng, Cheng, Wei, Chen, Zhang, Zhang, Xue, Chen, Li, Shang (bib16) 2022; 139
Feng (10.1016/j.ijms.2023.117085_bib16) 2022; 139
Fine (10.1016/j.ijms.2023.117085_bib12) 2020; 11
Kohavi (10.1016/j.ijms.2023.117085_bib25) 1995; 14
Abiodun (10.1016/j.ijms.2023.117085_bib10) 2018; 4
Karystinos (10.1016/j.ijms.2023.117085_bib22) 2000; 11
Lancashire (10.1016/j.ijms.2023.117085_bib21) 2009; 10
French (10.1016/j.ijms.2023.117085_bib3) 2017; 79
Nawi (10.1016/j.ijms.2023.117085_bib20) 2013; 11
Jin (10.1016/j.ijms.2023.117085_bib19) 2015
Pertzborn (10.1016/j.ijms.2023.117085_bib15) 2022; 14
Yang (10.1016/j.ijms.2023.117085_bib24) 2021
Li (10.1016/j.ijms.2023.117085_bib13) 2019; 1604
Behrmann (10.1016/j.ijms.2023.117085_bib14) 2018; 34
Gao (10.1016/j.ijms.2023.117085_bib18) 2008; 80
Vestal (10.1016/j.ijms.2023.117085_bib1) 2011; 22
Mahaffy (10.1016/j.ijms.2023.117085_bib8) 2012; 170
Chavez (10.1016/j.ijms.2023.117085_bib2) 2019; 48
Mach (10.1016/j.ijms.2023.117085_bib5) 2017; 422
Zhang (10.1016/j.ijms.2023.117085_bib4) 2017; 7
Gessulat (10.1016/j.ijms.2023.117085_bib11) 2019; 16
Goesmann (10.1016/j.ijms.2023.117085_bib7) 2017; 17
Singh (10.1016/j.ijms.2023.117085_bib23) 2016; 85
Guo (10.1016/j.ijms.2023.117085_bib6) 2022; 5
Jiao (10.1016/j.ijms.2023.117085_bib17) 2021; 93
Gurney (10.1016/j.ijms.2023.117085_bib9) 1997
References_xml – volume: 170
  start-page: 401
  year: 2012
  end-page: 478
  ident: bib8
  article-title: The sample analysis at Mars investigation and instrument suite
  publication-title: Space Sci. Rev.
– start-page: 2339
  year: 2021
  end-page: 2348
  ident: bib24
  article-title: AsymmNet: towards ultralight convolution neural networks using asymmetrical bottlenecks
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 79
  start-page: 153
  year: 2017
  end-page: 198
  ident: bib3
  article-title: Advances in clinical mass spectrometry
  publication-title: Adv. Clin. Chem.
– start-page: 2015
  year: 2015
  ident: bib19
  article-title: Data normalization to accelerate training for linear neural net to predict tropical cyclone tracks
  publication-title: Math. Probl Eng.
– volume: 17
  start-page: 655
  year: 2017
  end-page: 685
  ident: bib7
  article-title: The Mars organic molecule analyzer (MOMA) instrument: characterization of organic material in martian sediments
  publication-title: Astrobiology
– volume: 4
  year: 2018
  ident: bib10
  article-title: State-of-the-art in artificial neural network applications: a survey
  publication-title: Heliyon
– volume: 34
  start-page: 1215
  year: 2018
  end-page: 1223
  ident: bib14
  article-title: Deep learning for tumor classification in imaging mass spectrometry
  publication-title: Bioinformatics
– volume: 7
  start-page: 2968
  year: 2017
  ident: bib4
  article-title: Ambient ionization and miniature mass spectrometry systems for disease diagnosis and therapeutic monitoring
  publication-title: Theranostics
– year: 1997
  ident: bib9
  article-title: An Introduction to Neural Networks
– volume: 11
  start-page: 4618
  year: 2020
  end-page: 4630
  ident: bib12
  article-title: Spectral deep learning for prediction and prospective validation of functional groups
  publication-title: Chem. Sci.
– volume: 11
  start-page: 1050
  year: 2000
  end-page: 1057
  ident: bib22
  article-title: On overfitting, generalization, and randomly expanded training sets
  publication-title: IEEE Trans. Neural Network.
– volume: 22
  start-page: 953
  year: 2011
  end-page: 959
  ident: bib1
  article-title: The future of biological mass spectrometry
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 93
  start-page: 15607
  year: 2021
  end-page: 15616
  ident: bib17
  article-title: Handheld mass spectrometer with intelligent adaptability for on-site and point-of-care analysis
  publication-title: Anal. Chem.
– volume: 139
  year: 2022
  ident: bib16
  article-title: Novel method for rapid identification of Listeria monocytogenes based on metabolomics and deep learning
  publication-title: Food Control
– volume: 5
  start-page: 322
  year: 2022
  end-page: 331
  ident: bib6
  article-title: Rapid screening for 315 drugs in food and biological matrices by ultrahigh‐performance liquid chromatography quadrupole time of flight mass spectrometry and its application to a specific incident
  publication-title: Separ. Sci.
– volume: 422
  start-page: 148
  year: 2017
  end-page: 153
  ident: bib5
  article-title: A portable mass spectrometer study targeting anthropogenic contaminants in Sub-Antarctic Puerto Williams, Chile
  publication-title: Int. J. Mass Spectrom.
– volume: 1604
  year: 2019
  ident: bib13
  article-title: Peak alignment of gas chromatography–mass spectrometry data with deep learning
  publication-title: J. Chromatogr. A
– volume: 11
  start-page: 32
  year: 2013
  end-page: 39
  ident: bib20
  article-title: The effect of data pre-processing on optimized training of artificial neural networks
  publication-title: Procedia Technology
– volume: 14
  start-page: 4342
  year: 2022
  ident: bib15
  article-title: Multi-class cancer subtyping in salivary Gland Carcinomas with MALDI imaging and deep learning
  publication-title: Cancers
– volume: 80
  start-page: 4026
  year: 2008
  end-page: 4032
  ident: bib18
  article-title: Breaking the pumping speed barrier in mass spectrometry: discontinuous atmospheric pressure interface
  publication-title: Anal. Chem.
– volume: 48
  start-page: 8
  year: 2019
  end-page: 18
  ident: bib2
  article-title: Chemical cross-linking with mass spectrometry: a tool for systems structural biology
  publication-title: Curr. Opin. Chem. Biol.
– volume: 16
  start-page: 509
  year: 2019
  end-page: 518
  ident: bib11
  article-title: Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning
  publication-title: Nat. Methods
– volume: 10
  start-page: 315
  year: 2009
  end-page: 329
  ident: bib21
  article-title: An introduction to artificial neural networks in bioinformatics—application to complex microarray and mass spectrometry datasets in cancer studies
  publication-title: Briefings Bioinf.
– volume: 85
  start-page: 263
  year: 2016
  end-page: 270
  ident: bib23
  article-title: Proposing Solution to XOR problem using minimum configuration MLP
  publication-title: Proc. Comput. Sci.
– volume: 14
  start-page: 1137
  year: 1995
  end-page: 1145
  ident: bib25
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Ijcai
– start-page: 2015
  year: 2015
  ident: 10.1016/j.ijms.2023.117085_bib19
  article-title: Data normalization to accelerate training for linear neural net to predict tropical cyclone tracks
  publication-title: Math. Probl Eng.
– volume: 11
  start-page: 1050
  year: 2000
  ident: 10.1016/j.ijms.2023.117085_bib22
  article-title: On overfitting, generalization, and randomly expanded training sets
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/72.870038
– volume: 5
  start-page: 322
  year: 2022
  ident: 10.1016/j.ijms.2023.117085_bib6
  article-title: Rapid screening for 315 drugs in food and biological matrices by ultrahigh‐performance liquid chromatography quadrupole time of flight mass spectrometry and its application to a specific incident
  publication-title: Separ. Sci.
– volume: 422
  start-page: 148
  year: 2017
  ident: 10.1016/j.ijms.2023.117085_bib5
  article-title: A portable mass spectrometer study targeting anthropogenic contaminants in Sub-Antarctic Puerto Williams, Chile
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2016.12.008
– volume: 79
  start-page: 153
  year: 2017
  ident: 10.1016/j.ijms.2023.117085_bib3
  article-title: Advances in clinical mass spectrometry
  publication-title: Adv. Clin. Chem.
  doi: 10.1016/bs.acc.2016.09.003
– start-page: 2339
  year: 2021
  ident: 10.1016/j.ijms.2023.117085_bib24
  article-title: AsymmNet: towards ultralight convolution neural networks using asymmetrical bottlenecks
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 48
  start-page: 8
  year: 2019
  ident: 10.1016/j.ijms.2023.117085_bib2
  article-title: Chemical cross-linking with mass spectrometry: a tool for systems structural biology
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2018.08.006
– year: 1997
  ident: 10.1016/j.ijms.2023.117085_bib9
– volume: 85
  start-page: 263
  year: 2016
  ident: 10.1016/j.ijms.2023.117085_bib23
  article-title: Proposing Solution to XOR problem using minimum configuration MLP
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2016.05.231
– volume: 17
  start-page: 655
  year: 2017
  ident: 10.1016/j.ijms.2023.117085_bib7
  article-title: The Mars organic molecule analyzer (MOMA) instrument: characterization of organic material in martian sediments
  publication-title: Astrobiology
  doi: 10.1089/ast.2016.1551
– volume: 16
  start-page: 509
  year: 2019
  ident: 10.1016/j.ijms.2023.117085_bib11
  article-title: Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0426-7
– volume: 1604
  year: 2019
  ident: 10.1016/j.ijms.2023.117085_bib13
  article-title: Peak alignment of gas chromatography–mass spectrometry data with deep learning
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2019.460476
– volume: 4
  year: 2018
  ident: 10.1016/j.ijms.2023.117085_bib10
  article-title: State-of-the-art in artificial neural network applications: a survey
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00938
– volume: 10
  start-page: 315
  year: 2009
  ident: 10.1016/j.ijms.2023.117085_bib21
  article-title: An introduction to artificial neural networks in bioinformatics—application to complex microarray and mass spectrometry datasets in cancer studies
  publication-title: Briefings Bioinf.
  doi: 10.1093/bib/bbp012
– volume: 139
  year: 2022
  ident: 10.1016/j.ijms.2023.117085_bib16
  article-title: Novel method for rapid identification of Listeria monocytogenes based on metabolomics and deep learning
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2022.109042
– volume: 11
  start-page: 32
  year: 2013
  ident: 10.1016/j.ijms.2023.117085_bib20
  article-title: The effect of data pre-processing on optimized training of artificial neural networks
  publication-title: Procedia Technology
  doi: 10.1016/j.protcy.2013.12.159
– volume: 11
  start-page: 4618
  year: 2020
  ident: 10.1016/j.ijms.2023.117085_bib12
  article-title: Spectral deep learning for prediction and prospective validation of functional groups
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC06240H
– volume: 14
  start-page: 4342
  year: 2022
  ident: 10.1016/j.ijms.2023.117085_bib15
  article-title: Multi-class cancer subtyping in salivary Gland Carcinomas with MALDI imaging and deep learning
  publication-title: Cancers
  doi: 10.3390/cancers14174342
– volume: 170
  start-page: 401
  year: 2012
  ident: 10.1016/j.ijms.2023.117085_bib8
  article-title: The sample analysis at Mars investigation and instrument suite
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-012-9879-z
– volume: 7
  start-page: 2968
  year: 2017
  ident: 10.1016/j.ijms.2023.117085_bib4
  article-title: Ambient ionization and miniature mass spectrometry systems for disease diagnosis and therapeutic monitoring
  publication-title: Theranostics
  doi: 10.7150/thno.19410
– volume: 22
  start-page: 953
  year: 2011
  ident: 10.1016/j.ijms.2023.117085_bib1
  article-title: The future of biological mass spectrometry
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-011-0108-x
– volume: 34
  start-page: 1215
  year: 2018
  ident: 10.1016/j.ijms.2023.117085_bib14
  article-title: Deep learning for tumor classification in imaging mass spectrometry
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx724
– volume: 14
  start-page: 1137
  year: 1995
  ident: 10.1016/j.ijms.2023.117085_bib25
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Ijcai
– volume: 93
  start-page: 15607
  year: 2021
  ident: 10.1016/j.ijms.2023.117085_bib17
  article-title: Handheld mass spectrometer with intelligent adaptability for on-site and point-of-care analysis
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c02508
– volume: 80
  start-page: 4026
  year: 2008
  ident: 10.1016/j.ijms.2023.117085_bib18
  article-title: Breaking the pumping speed barrier in mass spectrometry: discontinuous atmospheric pressure interface
  publication-title: Anal. Chem.
  doi: 10.1021/ac800014v
SSID ssj0007356
Score 2.421653
Snippet Mass spectrometry (MS) is a powerful analytical technology widely used in a broad range of applications. Laboratory-scale mass spectrometers, however, are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117085
SubjectTerms Mass shift
Miniature mass spectrometers
Neural network
Title Neural network algorithm enables mass calibration autocorrection for miniature mass spectrometry systems
URI https://dx.doi.org/10.1016/j.ijms.2023.117085
Volume 490
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2798
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007356
  issn: 1387-3806
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2798
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007356
  issn: 1387-3806
  databaseCode: .~1
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2798
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007356
  issn: 1387-3806
  databaseCode: AIKHN
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2798
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007356
  issn: 1387-3806
  databaseCode: ACRLP
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2798
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007356
  issn: 1387-3806
  databaseCode: AKRWK
  dateStart: 19980601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LawIxEA5iKfRS-qT2ITn0VrbuI5vEo0jFvqS0Fbwt2WRTFV1F10Mv_e3NJGsfUDz0tOzuBJYvYWaWmfk-hC5FyJWJ2qGns4x6hAvu8TDlnq-pTnnAJLMV_Mce7fbJ3SAeVFB7PQsDbZWl73c-3Xrr8kmjRLMxH40aL0HEWcR9E79tPQkYPwlhoGJw_fHd5sEiq-AKxh5Yl4MzrsdrNJ4CZXcYQe3SBz3lv4LTj4DT2UO7ZaaIW-5j9lElyw_Qtu3YlMtDNARaDfM-d33cWEzeZuZHfzjFmR2HWuKpyYux2QL4IQb4sVgVMwlqHHaWAZt0FQOziKX2dNZ27hIIDIrFO3Ykz8sj1O_cvLa7Ximb4EmDROHFTEHtMJY0UDrUTc0JiVMlmeK-Asb1MJJEK02bTElJtRBaZwEM3DYpp4pFx6iaz_LsBGHu65grykmUmTxFCkEC0HjUaSRlHKi0hoI1XoksOcVB2mKSrJvHxglgnADGicO4hq6-1swdo8ZG63i9Dcmvc5EYl79h3ek_152hHbhzLX7nqFosVtmFSTuKtG7PVR1ttdrPD09wvb3v9j4BNJra6Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYoVdUuVZ8qfXroVqUkcWKbsUJFtAWWgsQWJXZcQBAQhKFLf3t9dtKHVDF0jc9S9Nm6O-u--w6h29jnUkdt31FpSp2Ax9zhfsIdV1GVcI8JZir43R5tD4LnYTisoGbZCwO0ysL3W59uvHXxpV6gWV-Mx_VXj3BGuKvjt6knkS20HYQ-gxfY_cc3z4MRM8IVrB0wLzpnLMlrPJmBZrdPoHjpwkDlv6LTj4jTOkD7RaqIH-zfHKJKmh2hHUPZFKtjNAJdDb2eWSI3jqdvc_3SH81wavqhVnimE2OszwBexIA_jtf5XMA4DtPMgHW-ikFaxGh7WmvTeAkKBvnyHVuV59UJGrQe-822U8xNcISGIndCJqF4GArqSeWrhuJBECZSMMldCZLrPhGBkoo2mBSCqjhWKvWg47ZBOZWMnKJqNs_SM4S5q0IuKQ9IqhMVEceBB0MeVUKECD2Z1JBX4hWJQlQcZltMo5I9NokA4wgwjizGNXT3tWdhJTU2WoflMUS_Lkakff6Gfef_3HeDdtv9bifqPPVeLtAerFi-3yWq5st1eqVzkDy5NnfsE4y12uk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+algorithm+enables+mass+calibration+autocorrection+for+miniature+mass+spectrometry+systems&rft.jtitle=International+journal+of+mass+spectrometry&rft.au=Wei%2C+Yanjun&rft.au=Jiao%2C+Bin&rft.au=Zhang%2C+Haoyue&rft.au=Zhang%2C+Donghui&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=1387-3806&rft.eissn=1873-2798&rft.volume=490&rft_id=info:doi/10.1016%2Fj.ijms.2023.117085&rft.externalDocID=S1387380623000763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-3806&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-3806&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-3806&client=summon