An efficient algorithm for computation of spatial heat generation during interaction of high energy proton beam with target materials

The interaction of a proton beam with target material leads to heat generation and subsequently temperature rise in the target materials. Conventionally, the mechanical design of target materials involves thermal analysis with heat input through proton energy deposition using Monte Carlo based parti...

Full description

Saved in:
Bibliographic Details
Published inNuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Vol. 461; pp. 16 - 24
Main Authors Nidhin, S.L., Joshi, S.C., Paul, C.P., Senecha, V.K., Sharma, N.K., Kane, G.V.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2019
Subjects
Online AccessGet full text
ISSN0168-583X
1872-9584
DOI10.1016/j.nimb.2019.09.016

Cover

Abstract The interaction of a proton beam with target material leads to heat generation and subsequently temperature rise in the target materials. Conventionally, the mechanical design of target materials involves thermal analysis with heat input through proton energy deposition using Monte Carlo based particle transport codes. This computation involves two step process: simulation of proton energy deposition and thermal analysis. In the present work, a single step Semi Empirical heat generation algorithm (SEHG) is developed that enhances the capability of a thermal solver to compute energy deposition by proton beam on target materials. The results of SEHG algorithm is benchmarked with, ‘FLUKA’ up to 1 GeV beam energy and is valid till the onset of nucleon disintegration phase. The developed algorithm paved ways for a simple and efficient investigation for thermal effects of beam – material interactions, without compromising the quality of mechanical design performance.
AbstractList The interaction of a proton beam with target material leads to heat generation and subsequently temperature rise in the target materials. Conventionally, the mechanical design of target materials involves thermal analysis with heat input through proton energy deposition using Monte Carlo based particle transport codes. This computation involves two step process: simulation of proton energy deposition and thermal analysis. In the present work, a single step Semi Empirical heat generation algorithm (SEHG) is developed that enhances the capability of a thermal solver to compute energy deposition by proton beam on target materials. The results of SEHG algorithm is benchmarked with, ‘FLUKA’ up to 1 GeV beam energy and is valid till the onset of nucleon disintegration phase. The developed algorithm paved ways for a simple and efficient investigation for thermal effects of beam – material interactions, without compromising the quality of mechanical design performance.
Author Joshi, S.C.
Kane, G.V.
Paul, C.P.
Sharma, N.K.
Nidhin, S.L.
Senecha, V.K.
Author_xml – sequence: 1
  givenname: S.L.
  surname: Nidhin
  fullname: Nidhin, S.L.
  email: nidhin@rrcat.gov.in
  organization: Raja Ramanna Centre for Advanced Technology, Indore 452013, MP, India
– sequence: 2
  givenname: S.C.
  surname: Joshi
  fullname: Joshi, S.C.
  organization: Raja Ramanna Centre for Advanced Technology, Indore 452013, MP, India
– sequence: 3
  givenname: C.P.
  surname: Paul
  fullname: Paul, C.P.
  organization: Raja Ramanna Centre for Advanced Technology, Indore 452013, MP, India
– sequence: 4
  givenname: V.K.
  surname: Senecha
  fullname: Senecha, V.K.
  organization: Raja Ramanna Centre for Advanced Technology, Indore 452013, MP, India
– sequence: 5
  givenname: N.K.
  surname: Sharma
  fullname: Sharma, N.K.
  organization: Raja Ramanna Centre for Advanced Technology, Indore 452013, MP, India
– sequence: 6
  givenname: G.V.
  surname: Kane
  fullname: Kane, G.V.
  organization: Raja Ramanna Centre for Advanced Technology, Indore 452013, MP, India
BookMark eNp9UMtqwzAQFCWFJml_oCf9gF3Jjh-BXkLoCwK9tNCbkOWVrRBLRlZa8gH9765xe-khYsWK2ZlhNQsys84CIbecxZzx_G4fW9NVccL4OmZYPL8gc14WSbTOytWMzBEpo6xMP67IYhj2DE-WZnPyvbEUtDbKgA1UHhrnTWg7qp2nynX9MchgnKVO06HHpzzQFmSgDVjw06g-emMbamxARP2xW9O0dCQ1J9p7FxCtQHb0C-1pkL6BQDuJErQcrsmlxgY3v31J3h8f3rbP0e716WW72UUqZSxEWa6VLpSUUkENvMhVvc7kqs6qus5ZUlZJqtMaryyLUkKBkyJnmdIckJbLdEmSyVd5NwwetOi96aQ_Cc7EGKTYizFIMQYpGBbPUVT-EykzpRK8NIfz0vtJCvipTwNeDGPQuL3xoIKonTkn_wFz2JYk
CitedBy_id crossref_primary_10_1016_j_cpc_2021_108104
Cites_doi 10.1016/j.phpro.2017.09.035
10.1016/j.ppnp.2012.03.001
10.1016/j.fusengdes.2017.12.018
10.2172/877507
10.1016/j.nimb.2010.02.091
10.1016/j.nimb.2004.01.208
10.1016/j.nima.2017.03.003
10.1016/S0168-9002(03)01368-8
10.1016/S0168-9002(01)00160-7
10.1016/j.ppnp.2018.08.001
10.1016/j.nuclphysbps.2010.12.075
10.1016/j.nucengdes.2018.02.011
10.1016/j.nds.2014.07.049
10.1080/00223131.2017.1419890
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.nimb.2019.09.016
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1872-9584
EndPage 24
ExternalDocumentID 10_1016_j_nimb_2019_09_016
S0168583X19306093
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACRLP
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LZ4
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
T5K
TN5
~02
~G-
29N
3O-
53G
6TJ
8WZ
A6W
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFFNX
AFJKZ
AGHFR
AGQPQ
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HME
HVGLF
HZ~
H~9
MVM
R2-
SEW
SHN
SSZ
VOH
WUQ
~HD
ID FETCH-LOGICAL-c300t-56fcf7caaacede176cd95a4d5bdd6028b23f3d3f3a878ae74d57605cf1e5a46a3
IEDL.DBID .~1
ISSN 0168-583X
IngestDate Thu Apr 24 23:07:53 EDT 2025
Thu Oct 02 04:22:26 EDT 2025
Fri Feb 23 02:50:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy deposition
Heat generation
Spallation target
Proton beam
Spallation neutron source
Proton accelerators
Target materials
Accelerator driven sub-critical reactor (ADS)
Beam dump
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-56fcf7caaacede176cd95a4d5bdd6028b23f3d3f3a878ae74d57605cf1e5a46a3
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_nimb_2019_09_016
crossref_citationtrail_10_1016_j_nimb_2019_09_016
elsevier_sciencedirect_doi_10_1016_j_nimb_2019_09_016
PublicationCentury 2000
PublicationDate 2019-12-15
PublicationDateYYYYMMDD 2019-12-15
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sato, Iwamoto, Hashimoto, Ogawa, Furuta, Abe, Kai, Tsai, Matsuda, Iwase, Shigyo, Sihver, Niita (b0085) 2018
Tschirhart (b0010) 2011; 210–211
Dupree, Fraley (b0045) 2002
Aguilar, Sordo, Mora, Mena, Mancisidor, Aguilar, Bakedano, Herranz, Luna, Magan, Vivanco, Jimenez-Villacorta, Sjogreen, Oden, Perlado, Martinez, Bermejo (b0020) 2017
Senecha, Kawai (b0025) 2007
J. Ferrari, A. Sala, P.R. Fasso, A. Ranft, FLUKA: A multi-particle transport code (Program version 2005), Cern-2005-010. (2005). doi:10.5170/cern-2005-010.
Patankar (b0100) 1980
Nowicki, Wender, Mocko (b0015) 2017; 90
Turner (b0120) 1995
ANSYS
FLUKA
Nifenecker, David, Loiseaux, Meplan (b0030) 2001; 463
H. Versteeg, W. Malalasekera, Introduction To Computational Fluid Dynamics. The Finite Volume Method, Pearson Education Ltd, 1995.
Ziegler, Ziegler, Biersack (b0070) 2010; 268
SRIM
ENDF: Evaluated Nuclear Data File, (n.d.).
ANSYS FLUENT
Agostinelli (b0090) 2003; 506
Dong, Greco (b0130) 2019; 104
.
Böhlen, Cerutti, Chin, Fassò, Ferrari, Ortega, Mairani, Sala, Smirnov, Vlachoudis (b0055) 2014; 120
J.F. Ziegler, SRIM-2003, in: Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, North-Holland, 2004: pp. 1027–1036. doi:10.1016/j.nimb.2004.01.208.
ANSYS CFX
MCNP
Brüning, Burkhardt, Myers (b0005) 2012; 67
Brañas, Arranz, Nomen, Iglesias, Ogando, Parro, Castellanos, Mollá, Oliver, Rapisarda, Sauvan (b0035) 2018; 127
Sugawara, Eguchi, Obayashi, Iwamoto, Tsujimoto (b0040) 2018; 331
Brañas (10.1016/j.nimb.2019.09.016_b0035) 2018; 127
Sato (10.1016/j.nimb.2019.09.016_b0085) 2018
Patankar (10.1016/j.nimb.2019.09.016_b0100) 1980
Dong (10.1016/j.nimb.2019.09.016_b0130) 2019; 104
Nowicki (10.1016/j.nimb.2019.09.016_b0015) 2017; 90
10.1016/j.nimb.2019.09.016_b0105
10.1016/j.nimb.2019.09.016_b0125
10.1016/j.nimb.2019.09.016_b0110
Nifenecker (10.1016/j.nimb.2019.09.016_b0030) 2001; 463
10.1016/j.nimb.2019.09.016_b0075
Turner (10.1016/j.nimb.2019.09.016_b0120) 1995
10.1016/j.nimb.2019.09.016_b0095
10.1016/j.nimb.2019.09.016_b0050
Brüning (10.1016/j.nimb.2019.09.016_b0005) 2012; 67
Sugawara (10.1016/j.nimb.2019.09.016_b0040) 2018; 331
10.1016/j.nimb.2019.09.016_b0115
Senecha (10.1016/j.nimb.2019.09.016_b0025) 2007
10.1016/j.nimb.2019.09.016_b0065
Aguilar (10.1016/j.nimb.2019.09.016_b0020) 2017
Böhlen (10.1016/j.nimb.2019.09.016_b0055) 2014; 120
Tschirhart (10.1016/j.nimb.2019.09.016_b0010) 2011; 210–211
10.1016/j.nimb.2019.09.016_b0060
10.1016/j.nimb.2019.09.016_b0080
Dupree (10.1016/j.nimb.2019.09.016_b0045) 2002
Agostinelli (10.1016/j.nimb.2019.09.016_b0090) 2003; 506
Ziegler (10.1016/j.nimb.2019.09.016_b0070) 2010; 268
References_xml – volume: 67
  start-page: 705
  year: 2012
  end-page: 734
  ident: b0005
  article-title: The large hadron collider
  publication-title: Prog. Part. Nucl. Phys.
– reference: ANSYS FLUENT,
– volume: 463
  start-page: 428
  year: 2001
  end-page: 467
  ident: b0030
  article-title: Basics of accelerator driven subcritical reactors
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.
– volume: 506
  start-page: 250
  year: 2003
  end-page: 303
  ident: b0090
  article-title: Geant4—a simulation toolkit, Nucl. Instruments Methods Phys
  publication-title: Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.
– reference: ANSYS CFX,
– reference: SRIM,
– reference: J.F. Ziegler, SRIM-2003, in: Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, North-Holland, 2004: pp. 1027–1036. doi:10.1016/j.nimb.2004.01.208.
– volume: 104
  start-page: 97
  year: 2019
  end-page: 141
  ident: b0130
  article-title: Heavy quark production and properties of Quark-Gluon Plasma
  publication-title: Prog. Part. Nucl. Phys.
– reference: FLUKA,
– start-page: 99
  year: 2017
  end-page: 108
  ident: b0020
  article-title: Design specification for the European Spallation Source neutron generating target element
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 856
– volume: 127
  start-page: 127
  year: 2018
  end-page: 138
  ident: b0035
  article-title: The LIPAc beam dump
  publication-title: Fusion Eng. Des.
– volume: 268
  start-page: 1818
  year: 2010
  end-page: 1823
  ident: b0070
  article-title: SRIM – The stopping and range of ions in matter (2010)
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms
– volume: 210–211
  start-page: 203
  year: 2011
  end-page: 205
  ident: b0010
  article-title: The Fermilab Project-X Research Program
  publication-title: Nucl. Phys. B – Proc. Suppl.
– volume: 120
  start-page: 211
  year: 2014
  end-page: 214
  ident: b0055
  article-title: The FLUKA Code: Developments and challenges for high energy and medical applications
  publication-title: Nucl. Data Sheets.
– year: 1980
  ident: b0100
  article-title: Numerical heat transfer and fluid flow
– year: 2002
  ident: b0045
  article-title: A Monte Carlo primer: a practical approach to radiation transport
– start-page: 242
  year: 2007
  end-page: 244
  ident: b0025
  article-title: Target assembly and neutronics design study for the Indian Spallation Neutron Source using NMTC/JAM code
  publication-title: Asian Part. Accel. Conf.
– volume: 90
  start-page: 374
  year: 2017
  end-page: 380
  ident: b0015
  article-title: The Los Alamos Neutron Science Center Spallation Neutron Sources
  publication-title: Phys. Procedia.
– reference: .
– reference: ENDF: Evaluated Nuclear Data File, (n.d.).
– start-page: 684
  year: 2018
  end-page: 690
  ident: b0085
  article-title: Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02
  publication-title: J. Nucl. Sci. Technol. 55
– reference: ANSYS,
– year: 1995
  ident: b0120
  article-title: Atoms, Radiation, and Protection
– reference: J. Ferrari, A. Sala, P.R. Fasso, A. Ranft, FLUKA: A multi-particle transport code (Program version 2005), Cern-2005-010. (2005). doi:10.5170/cern-2005-010.
– reference: MCNP,
– volume: 331
  start-page: 11
  year: 2018
  end-page: 23
  ident: b0040
  article-title: Conceptual design study of beam window for accelerator-driven system with subcriticality adjustment rod
  publication-title: Nucl. Eng. Des.
– reference: H. Versteeg, W. Malalasekera, Introduction To Computational Fluid Dynamics. The Finite Volume Method, Pearson Education Ltd, 1995.
– volume: 90
  start-page: 374
  year: 2017
  ident: 10.1016/j.nimb.2019.09.016_b0015
  article-title: The Los Alamos Neutron Science Center Spallation Neutron Sources
  publication-title: Phys. Procedia.
  doi: 10.1016/j.phpro.2017.09.035
– volume: 67
  start-page: 705
  year: 2012
  ident: 10.1016/j.nimb.2019.09.016_b0005
  article-title: The large hadron collider
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2012.03.001
– volume: 127
  start-page: 127
  year: 2018
  ident: 10.1016/j.nimb.2019.09.016_b0035
  article-title: The LIPAc beam dump
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2017.12.018
– year: 2002
  ident: 10.1016/j.nimb.2019.09.016_b0045
– ident: 10.1016/j.nimb.2019.09.016_b0065
– ident: 10.1016/j.nimb.2019.09.016_b0080
– ident: 10.1016/j.nimb.2019.09.016_b0050
  doi: 10.2172/877507
– ident: 10.1016/j.nimb.2019.09.016_b0110
– ident: 10.1016/j.nimb.2019.09.016_b0095
– volume: 268
  start-page: 1818
  issue: 11–12
  year: 2010
  ident: 10.1016/j.nimb.2019.09.016_b0070
  article-title: SRIM – The stopping and range of ions in matter (2010)
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms
  doi: 10.1016/j.nimb.2010.02.091
– ident: 10.1016/j.nimb.2019.09.016_b0075
  doi: 10.1016/j.nimb.2004.01.208
– ident: 10.1016/j.nimb.2019.09.016_b0105
– start-page: 242
  year: 2007
  ident: 10.1016/j.nimb.2019.09.016_b0025
  article-title: Target assembly and neutronics design study for the Indian Spallation Neutron Source using NMTC/JAM code
  publication-title: Asian Part. Accel. Conf.
– ident: 10.1016/j.nimb.2019.09.016_b0060
– year: 1995
  ident: 10.1016/j.nimb.2019.09.016_b0120
– start-page: 99
  year: 2017
  ident: 10.1016/j.nimb.2019.09.016_b0020
  article-title: Design specification for the European Spallation Source neutron generating target element
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 856
  doi: 10.1016/j.nima.2017.03.003
– year: 1980
  ident: 10.1016/j.nimb.2019.09.016_b0100
– volume: 506
  start-page: 250
  year: 2003
  ident: 10.1016/j.nimb.2019.09.016_b0090
  article-title: Geant4—a simulation toolkit, Nucl. Instruments Methods Phys
  publication-title: Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.
  doi: 10.1016/S0168-9002(03)01368-8
– ident: 10.1016/j.nimb.2019.09.016_b0115
– volume: 463
  start-page: 428
  year: 2001
  ident: 10.1016/j.nimb.2019.09.016_b0030
  article-title: Basics of accelerator driven subcritical reactors
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.
  doi: 10.1016/S0168-9002(01)00160-7
– volume: 104
  start-page: 97
  year: 2019
  ident: 10.1016/j.nimb.2019.09.016_b0130
  article-title: Heavy quark production and properties of Quark-Gluon Plasma
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2018.08.001
– volume: 210–211
  start-page: 203
  year: 2011
  ident: 10.1016/j.nimb.2019.09.016_b0010
  article-title: The Fermilab Project-X Research Program
  publication-title: Nucl. Phys. B – Proc. Suppl.
  doi: 10.1016/j.nuclphysbps.2010.12.075
– volume: 331
  start-page: 11
  year: 2018
  ident: 10.1016/j.nimb.2019.09.016_b0040
  article-title: Conceptual design study of beam window for accelerator-driven system with subcriticality adjustment rod
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2018.02.011
– volume: 120
  start-page: 211
  year: 2014
  ident: 10.1016/j.nimb.2019.09.016_b0055
  article-title: The FLUKA Code: Developments and challenges for high energy and medical applications
  publication-title: Nucl. Data Sheets.
  doi: 10.1016/j.nds.2014.07.049
– start-page: 684
  year: 2018
  ident: 10.1016/j.nimb.2019.09.016_b0085
  article-title: Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02
  publication-title: J. Nucl. Sci. Technol. 55
  doi: 10.1080/00223131.2017.1419890
– ident: 10.1016/j.nimb.2019.09.016_b0125
SSID ssj0000535
Score 2.2777889
Snippet The interaction of a proton beam with target material leads to heat generation and subsequently temperature rise in the target materials. Conventionally, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 16
SubjectTerms Accelerator driven sub-critical reactor (ADS)
Beam dump
Energy deposition
Heat generation
Proton accelerators
Proton beam
Spallation neutron source
Spallation target
Target materials
Title An efficient algorithm for computation of spatial heat generation during interaction of high energy proton beam with target materials
URI https://dx.doi.org/10.1016/j.nimb.2019.09.016
Volume 461
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9584
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000535
  issn: 0168-583X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9584
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000535
  issn: 0168-583X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9584
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000535
  issn: 0168-583X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-9584
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000535
  issn: 0168-583X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yIngRn7i-yMGb1G23TdoeF1FWRS8q9Fameawru91F16s3_7czSesDxIPQFpompUzCzKR83zeMHes8SSuhdZBgOMKLEgGEKQS6UokUoBIFxEa-uZXDh-SqEMUSO2u5MASrbHy_9-nOWzctvcaavfl43LvDZCUTWVxgChJK3JgTgz1JqYrB6dsXzIP0S7y-t2MYFQ1xxmO86vG0InhX7rROqeb5b8HpW8C5WGdrTabIB_5jNtiSqTfZikNsqpct9j6ouXH6Dxg2OExGM9zmP045JqFcuVINzuZ8ZvkLoabxVeR3-cjpTLtHnqLISTHi2fMbqDcJGHPjKIGcVBywtTIw5fTHlnvgOMc016_cbfZwcX5_NgyamgqBisNwEQhplU0VAKCBTZRKpXMBiRaV1hJzjaof21jjCVmagUnxSYo7HmUjg90kxDusU89qs8s49MPYoMFBS5OYvoXY6KjqRzbLLdgw7rKoNWapGsFxqnsxKVtk2VNJE1DSBJQhHpHsspPPMXMvt_Fnb9HOUflj0ZQYD_4Yt_fPcftsle4IzRKJA9ZZPL-aQ8xJFtWRW3RHbHlweT28_QDTZuX8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF5RUFUuFfQhQgvsgVvlxo992McoAoXnBZBys8b7oEGJE4X02hv_uzO7TlskxKGS7cM-LGtmNQ_rm28YO7aV0I20NhHojvBhZAKphsQ2RigJRhigauSrazW6E-djOd5gw3UtDMEqO9sfbXqw1t1Iv5NmfzGZ9G8wWCllWYwxBEkVJuZv2JaQuaYM7PuvvzgPIjCJBN-hxGjcVc5EkFc7mTWE76oC2Sk1PX_JO_3jcU532PsuVOSD-DW7bMO1H9jbANk0jx_Z06DlLhBAoN_gML2fY57_Y8YxCuUm9GoIQudzzx8JNo2vIsPL7wPRdJiKNYqcKCOWscCBVhODMXehJpATjQOONg5mnH7Z8ogc5xjnxqP7id2dntwOR0nXVCExRZquEqm88doAAErYZVoZW0kQVjbWKgw2mrzwhcUbSl2C0zijMeUxPnO4TEHxmW2289btMQ55Wjihc7DKCZd7KJzNmjzzZeXBp0WPZWth1qZjHKfGF9N6DS17qEkBNSmgTvHKVI99-7NnEfk2Xl0t1zqqn52aGh3CK_v2_3PfEXs3ur26rC_Pri--sG2aIWhLJr-yzdXypzvAAGXVHIYD-Bs1uOeR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+algorithm+for+computation+of+spatial+heat+generation+during+interaction+of+high+energy+proton+beam+with+target+materials&rft.jtitle=Nuclear+instruments+%26+methods+in+physics+research.+Section+B%2C+Beam+interactions+with+materials+and+atoms&rft.au=Nidhin%2C+S.L.&rft.au=Joshi%2C+S.C.&rft.au=Paul%2C+C.P.&rft.au=Senecha%2C+V.K.&rft.date=2019-12-15&rft.issn=0168-583X&rft.volume=461&rft.spage=16&rft.epage=24&rft_id=info:doi/10.1016%2Fj.nimb.2019.09.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nimb_2019_09_016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-583X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-583X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-583X&client=summon