Building extensible frameworks for data processing: The case of MDP, Modular toolkit for Data Processing
► MDP is an open-source library for scientific data processing in Python. ► It provides a framework for reoccurring tasks, like combining multiple algorithms. ► MDP includes a flexible extension mechanism, allowing for instance convenient parallelization for selected algorithms. Data processing is a...
Saved in:
| Published in | Journal of computational science Vol. 4; no. 5; pp. 345 - 351 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.09.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1877-7503 1877-7511 |
| DOI | 10.1016/j.jocs.2011.10.005 |
Cover
| Abstract | ► MDP is an open-source library for scientific data processing in Python. ► It provides a framework for reoccurring tasks, like combining multiple algorithms. ► MDP includes a flexible extension mechanism, allowing for instance convenient parallelization for selected algorithms.
Data processing is a ubiquitous task in scientific research, and much energy is spent on the development of appropriate algorithms. It is thus relatively easy to find software implementations of the most common methods. On the other hand, when building concrete applications, developers are often confronted with several additional chores that need to be carried out beside the individual processing steps. These include for example training and executing a sequence of several algorithms, writing code that can be executed in parallel on several processors, or producing a visual description of the application. The Modular toolkit for Data Processing (MDP) is an open source Python library that provides an implementation of several widespread algorithms and offers a unified framework to combine them to build more complex data processing architectures. In this paper we concentrate on some of the newer features of MDP, focusing on the choices made to automatize repetitive tasks for users and developers. In particular, we describe the support for parallel computing and how this is implemented via a flexible extension mechanism. We also briefly discuss the support for algorithms that require bi-directional data flow. |
|---|---|
| AbstractList | ► MDP is an open-source library for scientific data processing in Python. ► It provides a framework for reoccurring tasks, like combining multiple algorithms. ► MDP includes a flexible extension mechanism, allowing for instance convenient parallelization for selected algorithms.
Data processing is a ubiquitous task in scientific research, and much energy is spent on the development of appropriate algorithms. It is thus relatively easy to find software implementations of the most common methods. On the other hand, when building concrete applications, developers are often confronted with several additional chores that need to be carried out beside the individual processing steps. These include for example training and executing a sequence of several algorithms, writing code that can be executed in parallel on several processors, or producing a visual description of the application. The Modular toolkit for Data Processing (MDP) is an open source Python library that provides an implementation of several widespread algorithms and offers a unified framework to combine them to build more complex data processing architectures. In this paper we concentrate on some of the newer features of MDP, focusing on the choices made to automatize repetitive tasks for users and developers. In particular, we describe the support for parallel computing and how this is implemented via a flexible extension mechanism. We also briefly discuss the support for algorithms that require bi-directional data flow. |
| Author | Wilbert, Niko Berkes, Pietro Jędrzejewski-Szmek, Zbigniew Wiskott, Laurenz Schuppner, Rike-Benjamin Zito, Tiziano |
| Author_xml | – sequence: 1 givenname: Niko surname: Wilbert fullname: Wilbert, Niko email: mail@nikowilbert.de organization: Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Germany – sequence: 2 givenname: Tiziano surname: Zito fullname: Zito, Tiziano organization: Bernstein Center for Computational Neuroscience, Berlin, Germany – sequence: 3 givenname: Rike-Benjamin surname: Schuppner fullname: Schuppner, Rike-Benjamin organization: Bernstein Center for Computational Neuroscience, Berlin, Germany – sequence: 4 givenname: Zbigniew surname: Jędrzejewski-Szmek fullname: Jędrzejewski-Szmek, Zbigniew organization: Institute of Experimental Physics, University of Warsaw, Poland – sequence: 5 givenname: Laurenz surname: Wiskott fullname: Wiskott, Laurenz organization: Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Germany – sequence: 6 givenname: Pietro surname: Berkes fullname: Berkes, Pietro organization: National Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA |
| BookMark | eNp9kE1PAjEQhhuDiYj8AU_9AbK22_3CeFHwK4HIAc9Nt51Kl2VL2uLHv3dXDAcPzGUmb-aZZJ5z1GtsAwhdUhJRQrPrKqqs9FFMKG2DiJD0BPVpkeejPKW0d5gJO0ND7yvSFiuKMWV9tLrfmVqZ5h3DV4DGm7IGrJ3YwKd1a4-1dViJIPDWWQnet5s3eLkCLIUHbDWeTxdXeG7VrhYOB2vrtQm_1LSjFgfqAp1qUXsY_vUBent8WE6eR7PXp5fJ3WwkGSFhlGiQUBYsiVOpaaKzUjJVKJ2SmNEE4rEmcS5kkozTTAHRWUJjWZKCiiwDpjUboGJ_VzrrvQPNpQkiGNsEJ0zNKeGdNF7xThrvpHVZK61F43_o1pmNcN_Hods9BO1THwYc99JAI0EZBzJwZc0x_Acbb4kp |
| CitedBy_id | crossref_primary_10_1016_j_jocs_2012_08_018 crossref_primary_10_1016_j_jocs_2013_08_001 crossref_primary_10_1016_j_jocs_2014_02_006 |
| Cites_doi | 10.25080/Majora-92bf1922-003 10.1111/j.1469-1809.1936.tb02137.x 10.3389/neuro.11.008.2008 10.1016/j.sab.2006.12.002 10.1145/1961189.1961199 10.3389/neuro.11.014.2009 10.1371/journal.pcbi.0030166 10.1162/neco.2006.18.7.1527 10.1109/72.761722 10.1038/323533a0 10.1126/science.290.5500.2323 10.3389/neuro.11.003.2009 10.25080/GTCA8577 10.1162/089976602317318938 10.1162/NECO_a_00171 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier B.V. |
| Copyright_xml | – notice: 2011 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jocs.2011.10.005 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Business |
| EISSN | 1877-7511 |
| EndPage | 351 |
| ExternalDocumentID | 10_1016_j_jocs_2011_10_005 S1877750311000913 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-4feceb83425cf14f6bc3d8df502314e29f027ac44956de0f6412cb081a66e3ff3 |
| IEDL.DBID | .~1 |
| ISSN | 1877-7503 |
| IngestDate | Wed Oct 01 06:41:06 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Fri Feb 23 02:31:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Scientific computing Computational neuroscience Machine learning Python |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-4feceb83425cf14f6bc3d8df502314e29f027ac44956de0f6412cb081a66e3ff3 |
| PageCount | 7 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jocs_2011_10_005 crossref_primary_10_1016_j_jocs_2011_10_005 elsevier_sciencedirect_doi_10_1016_j_jocs_2011_10_005 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-09-01 |
| PublicationDateYYYYMMDD | 2013-09-01 |
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of computational science |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, A. Fasih, Pycuda GPU run-time code generation for high-performance computing, CoRR abs/0911.3456. Schaul, Bayer, Wierstra, Sun, Felder, Sehnke, Rückstieß, Schmidhuber (bib0010) 2010; 11 S. Garcia, N. Fourcaud-Trocmé, OpenElectrophy: an electrophysiological data-and analysis-sharing framework, Frontiers in Neuroinformatics 3, doi:10.3389/neuro.11.014.2009. Roweis, Saul (bib0055) 2000; 290 Seljebotn (bib0125) 2009 Jolliffe (bib0070) 1986 Wiskott, Sejnowski (bib0050) 2002; 14 Rumelhart, Hinton, Williams (bib0085) 1986; 323 Fisher (bib0135) 1936; 7 Fritzke (bib0060) 1995 Sonnenburg, Ratsch, De Bona (bib0040) 2010; 11 Bengio (bib0090) 2009 Kickzales, Lamping, Mendhekar, Maeda, Lopes, Loingtier, Irwin (bib0130) 1997 Solé, Papillon, Cotte, Walter, Susini (bib0025) 2007; 62 Sutter (bib0105) 2005; 30 Chang, Lin (bib0035) 2011; 2 Hinton, Osindero, Teh (bib0095) 2006; 18 Bryson, Ho (bib0080) 1969 Berkes (bib0140) 2005 J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU math expression compiler, in: Proceedings of the Python for Scientific Computing Conference (SciPy), 2010, oral, http://www.iro.umontreal.ca/lisa/pointeurs/theano_scipy2010.pdf. . Foster (bib0100) 1995 Demšar, Zupan, Leban, Curk (bib0005) 2004; 2004 Hyvärinen (bib0045) 1999; 10 E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open Source Scientific Tools for Python, 2001–present Franzius, Sprekeler, Wiskott (bib0120) 2007; 3 M. Franzius, N. Wilbert, L. Wiskott, Invariant object recognition and pose estimation with slow feature analysis, Neural Computation 23 (9) (2011) 2289–2323. M. Hanke, Y. Halchenko, P. Sederberg, E. Olivetti, I. Fründ, J. Rieger, C. Herrmann, J. Haxby, S. Hanson, S. Pollmann, PyMVPA: a unifying approach to the analysis of neuroscientific data, Frontiers in Neuroinformatics 3 (0), doi:10.3389/neuro.11.003.2009. T. Zito, N. Wilbert, L. Wiskott, P. Berkes, Modular toolkit for Data Processing (MDP): a Python data processing framework, Frontiers in Neuroinformatics 2, doi:10.3389/neuro.11.008.2008. Berkes (10.1016/j.jocs.2011.10.005_bib0140) 2005 Rumelhart (10.1016/j.jocs.2011.10.005_bib0085) 1986; 323 10.1016/j.jocs.2011.10.005_bib0020 Sonnenburg (10.1016/j.jocs.2011.10.005_bib0040) 2010; 11 Fritzke (10.1016/j.jocs.2011.10.005_bib0060) 1995 10.1016/j.jocs.2011.10.005_bib0065 Jolliffe (10.1016/j.jocs.2011.10.005_bib0070) 1986 Franzius (10.1016/j.jocs.2011.10.005_bib0120) 2007; 3 Hinton (10.1016/j.jocs.2011.10.005_bib0095) 2006; 18 Kickzales (10.1016/j.jocs.2011.10.005_bib0130) 1997 Fisher (10.1016/j.jocs.2011.10.005_bib0135) 1936; 7 Seljebotn (10.1016/j.jocs.2011.10.005_bib0125) 2009 10.1016/j.jocs.2011.10.005_bib0075 10.1016/j.jocs.2011.10.005_bib0030 Demšar (10.1016/j.jocs.2011.10.005_bib0005) 2004; 2004 10.1016/j.jocs.2011.10.005_bib0110 Solé (10.1016/j.jocs.2011.10.005_bib0025) 2007; 62 10.1016/j.jocs.2011.10.005_bib0115 10.1016/j.jocs.2011.10.005_bib0015 Hyvärinen (10.1016/j.jocs.2011.10.005_bib0045) 1999; 10 Bryson (10.1016/j.jocs.2011.10.005_bib0080) 1969 Sutter (10.1016/j.jocs.2011.10.005_bib0105) 2005; 30 Bengio (10.1016/j.jocs.2011.10.005_bib0090) 2009 Schaul (10.1016/j.jocs.2011.10.005_bib0010) 2010; 11 Wiskott (10.1016/j.jocs.2011.10.005_bib0050) 2002; 14 Roweis (10.1016/j.jocs.2011.10.005_bib0055) 2000; 290 Chang (10.1016/j.jocs.2011.10.005_bib0035) 2011; 2 Foster (10.1016/j.jocs.2011.10.005_bib0100) 1995 |
| References_xml | – year: 2009 ident: bib0125 article-title: Fast numerical computations with Cython publication-title: Proceedings of the 8th Python in Science Conference – volume: 30 start-page: 16 year: 2005 end-page: 20 ident: bib0105 article-title: The free lunch is over: a fundamental turn toward concurrency in software publication-title: Dr. Dobb's Journal – reference: T. Zito, N. Wilbert, L. Wiskott, P. Berkes, Modular toolkit for Data Processing (MDP): a Python data processing framework, Frontiers in Neuroinformatics 2, doi:10.3389/neuro.11.008.2008. – year: 1969 ident: bib0080 article-title: Applied Optimal Control: Optimization, Estimation, and Control – reference: J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU math expression compiler, in: Proceedings of the Python for Scientific Computing Conference (SciPy), 2010, oral, http://www.iro.umontreal.ca/lisa/pointeurs/theano_scipy2010.pdf. – reference: M. Franzius, N. Wilbert, L. Wiskott, Invariant object recognition and pose estimation with slow feature analysis, Neural Computation 23 (9) (2011) 2289–2323. – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: bib0095 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation – reference: A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, A. Fasih, Pycuda GPU run-time code generation for high-performance computing, CoRR abs/0911.3456. – volume: 2 year: 2011 ident: bib0035 article-title: LIBSVM: a library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology – volume: 2004 start-page: 537 year: 2004 end-page: 539 ident: bib0005 article-title: Orange: from experimental machine learning to interactive data mining publication-title: Knowledge Discovery in Databases: PKDD – start-page: 625 year: 1995 end-page: 632 ident: bib0060 article-title: A growing neural gas network learns topologies publication-title: Advances in Neural Information Processing Systems – start-page: 220 year: 1997 end-page: 242 ident: bib0130 article-title: Aspect-oriented programming publication-title: Proceedings of ECOOP – volume: 3 start-page: e166 year: 2007 ident: bib0120 article-title: Slowness and sparseness lead to place, head-direction, and spatial-view cells publication-title: PLoS Computational Biology – volume: 11 start-page: 1799 year: 2010 end-page: 1802 ident: bib0040 article-title: The SHOGUN machine learning toolbox publication-title: Journal of Machine Learning Research – volume: 7 start-page: 179 year: 1936 end-page: 188 ident: bib0135 article-title: The use of multiple measurements in taxonomic problems publication-title: Annals of Eugenics – reference: E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open Source Scientific Tools for Python, 2001–present, – volume: 14 start-page: 715 year: 2002 end-page: 770 ident: bib0050 article-title: Slow feature analysis: unsupervised learning of invariances publication-title: Neural Computation – reference: . – volume: 62 start-page: 63 year: 2007 end-page: 68 ident: bib0025 article-title: A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra publication-title: Spectrochimica Acta Part B: Atomic Spectroscopy – reference: M. Hanke, Y. Halchenko, P. Sederberg, E. Olivetti, I. Fründ, J. Rieger, C. Herrmann, J. Haxby, S. Hanson, S. Pollmann, PyMVPA: a unifying approach to the analysis of neuroscientific data, Frontiers in Neuroinformatics 3 (0), doi:10.3389/neuro.11.003.2009. – year: 1986 ident: bib0070 article-title: Principal Component Analysis – volume: 10 start-page: 626 year: 1999 end-page: 634 ident: bib0045 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Transactions on Neural Networks – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bib0085 article-title: Learning representations by back-propagating errors publication-title: Nature – year: 2009 ident: bib0090 article-title: Learning Deep Architectures for AI – year: 1995 ident: bib0100 article-title: Designing and Building Parallel Programs – volume: 11 start-page: 743 year: 2010 end-page: 746 ident: bib0010 publication-title: Journal of Machine Learning Research – volume: 290 start-page: 2323 year: 2000 ident: bib0055 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science – reference: S. Garcia, N. Fourcaud-Trocmé, OpenElectrophy: an electrophysiological data-and analysis-sharing framework, Frontiers in Neuroinformatics 3, doi:10.3389/neuro.11.014.2009. – start-page: 285 year: 2005 end-page: 287 ident: bib0140 article-title: Handwritten digit recognition with nonlinear Fisher discriminant analysis publication-title: Proceedings of ICANN 2005 2 (LNCS 3696) – ident: 10.1016/j.jocs.2011.10.005_bib0115 doi: 10.25080/Majora-92bf1922-003 – volume: 7 start-page: 179 issue: 2 year: 1936 ident: 10.1016/j.jocs.2011.10.005_bib0135 article-title: The use of multiple measurements in taxonomic problems publication-title: Annals of Eugenics doi: 10.1111/j.1469-1809.1936.tb02137.x – year: 1969 ident: 10.1016/j.jocs.2011.10.005_bib0080 – ident: 10.1016/j.jocs.2011.10.005_bib0065 doi: 10.3389/neuro.11.008.2008 – volume: 30 start-page: 16 issue: 3 year: 2005 ident: 10.1016/j.jocs.2011.10.005_bib0105 article-title: The free lunch is over: a fundamental turn toward concurrency in software publication-title: Dr. Dobb's Journal – volume: 11 start-page: 1799 year: 2010 ident: 10.1016/j.jocs.2011.10.005_bib0040 article-title: The SHOGUN machine learning toolbox publication-title: Journal of Machine Learning Research – year: 2009 ident: 10.1016/j.jocs.2011.10.005_bib0090 – start-page: 285 year: 2005 ident: 10.1016/j.jocs.2011.10.005_bib0140 article-title: Handwritten digit recognition with nonlinear Fisher discriminant analysis – volume: 62 start-page: 63 issue: 1 year: 2007 ident: 10.1016/j.jocs.2011.10.005_bib0025 article-title: A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra publication-title: Spectrochimica Acta Part B: Atomic Spectroscopy doi: 10.1016/j.sab.2006.12.002 – volume: 2 year: 2011 ident: 10.1016/j.jocs.2011.10.005_bib0035 article-title: LIBSVM: a library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology doi: 10.1145/1961189.1961199 – ident: 10.1016/j.jocs.2011.10.005_bib0030 doi: 10.3389/neuro.11.014.2009 – volume: 11 start-page: 743 year: 2010 ident: 10.1016/j.jocs.2011.10.005_bib0010 publication-title: Journal of Machine Learning Research – start-page: 625 year: 1995 ident: 10.1016/j.jocs.2011.10.005_bib0060 article-title: A growing neural gas network learns topologies publication-title: Advances in Neural Information Processing Systems – start-page: 220 year: 1997 ident: 10.1016/j.jocs.2011.10.005_bib0130 article-title: Aspect-oriented programming – volume: 3 start-page: e166 issue: 8 year: 2007 ident: 10.1016/j.jocs.2011.10.005_bib0120 article-title: Slowness and sparseness lead to place, head-direction, and spatial-view cells publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.0030166 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.jocs.2011.10.005_bib0095 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation doi: 10.1162/neco.2006.18.7.1527 – volume: 10 start-page: 626 year: 1999 ident: 10.1016/j.jocs.2011.10.005_bib0045 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.761722 – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.jocs.2011.10.005_bib0085 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – ident: 10.1016/j.jocs.2011.10.005_bib0015 – volume: 290 start-page: 2323 issue: 5500 year: 2000 ident: 10.1016/j.jocs.2011.10.005_bib0055 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – ident: 10.1016/j.jocs.2011.10.005_bib0020 doi: 10.3389/neuro.11.003.2009 – volume: 2004 start-page: 537 year: 2004 ident: 10.1016/j.jocs.2011.10.005_bib0005 article-title: Orange: from experimental machine learning to interactive data mining publication-title: Knowledge Discovery in Databases: PKDD – year: 2009 ident: 10.1016/j.jocs.2011.10.005_bib0125 article-title: Fast numerical computations with Cython doi: 10.25080/GTCA8577 – year: 1986 ident: 10.1016/j.jocs.2011.10.005_bib0070 – year: 1995 ident: 10.1016/j.jocs.2011.10.005_bib0100 – volume: 14 start-page: 715 issue: 4 year: 2002 ident: 10.1016/j.jocs.2011.10.005_bib0050 article-title: Slow feature analysis: unsupervised learning of invariances publication-title: Neural Computation doi: 10.1162/089976602317318938 – ident: 10.1016/j.jocs.2011.10.005_bib0075 doi: 10.1162/NECO_a_00171 – ident: 10.1016/j.jocs.2011.10.005_bib0110 |
| SSID | ssj0000388913 |
| Score | 1.9305415 |
| Snippet | ► MDP is an open-source library for scientific data processing in Python. ► It provides a framework for reoccurring tasks, like combining multiple algorithms.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 345 |
| SubjectTerms | Computational neuroscience Machine learning Python Scientific computing |
| Title | Building extensible frameworks for data processing: The case of MDP, Modular toolkit for Data Processing |
| URI | https://dx.doi.org/10.1016/j.jocs.2011.10.005 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1877-7511 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388913 issn: 1877-7503 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1877-7511 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388913 issn: 1877-7503 databaseCode: .~1 dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1877-7511 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388913 issn: 1877-7503 databaseCode: AIKHN dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1877-7511 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388913 issn: 1877-7503 databaseCode: ACRLP dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1877-7511 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388913 issn: 1877-7503 databaseCode: AKRWK dateStart: 20100501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA5jgvgibir-HHnwQdG6tUm71be5OaayMdDB3kqb5nBzrMPVV_9279p0KMgefA25Ui6X3CV8932MXThuDFq7sRXinceSTQArxDRv-ZEgBRGphaBu5MHQ64_l08SdlFin6IUhWKU5-_MzPTutzUjdeLO-nE7rLzZR2bkYlPRE7WfKtVI2ScXg9stev7MQ24mfqSTTfIsMTO9MDvOaJWqVM3lmIC_37_z0I-f09tiuKRZ5O_-fCivpRZVtF1j1KquYnbnil4Y--mqfvd0bpWuePXBjyM81hwKDteJYpXLChfJl3iOAM-84RgtXmNB4AnzQHd3wQRITQJWnSTJ_n6aZVZesRmurAzbuPbx2-pbRU7CUaDRSS4JWOmoJ3KYKbAlepETcisElDjipHR9wvUIl6c4U6wZ40nZUhDVD6HlaAIhDVl4kC33EuIgk1lmgQyz_JH6tBR41pXoA1OzqxMfMLrwYKEM2TpoX86BAlc0C8nxAnqcx9Pwxu17bLHOqjY2z3WJxgl8BE2Au2GB38k-7U7bjZEoYBC87Y-X041OfYz2SRrUs4Gpsq_343B9-AyPV3kk |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA6ioL6Im4rzZx58UDRubdJu8003Zeo2Bk7wrbRpDjfHOlx99W_3rk2Hgvjga8hXyuWSu4TvvmPsxPViMMaLRYh3HqHqACLEMC-akaQOIspISdXIvb7feVYPL97LEmsVtTBEq7Rnf36mZ6e1Halaa1Zno1H1ySEpOw-dkp6om9S5dkV5bp1uYJefzuKhheROmlmbZAIIQtjimZznNU70PJfyzFhe3u8B6lvQudtkGzZb5Nf5D5XYkpmW2WpBVi-zkt2ac35q9aPPttjrjW11zbMXbvT5ieFQkLDmHNNUTsRQPsuLBHDmFUd34RojGk-A99qDC95LYmKo8jRJJm-jNEO1CTVYoLbZ893tsNURtqGC0LJWS4UCo03UkLhPNTgK_EjLuBGDRyJwyrhNwAULtaJLU2xq4CvH1REmDaHvGwkgd9jyNJmaXcZlpDDRAhNi_qfwaw3wqSrVB6BqVzeuMKewYqCt2jg1vZgEBa1sHJDlA7I8jaHlK-x8gZnlWht_zvaKxQl-eEyAweAP3N4_ccdsrTPsdYPuff9xn627WVsM4podsOX0_cMcYnKSRkeZ830BZePf3g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+extensible+frameworks+for+data+processing%3A+The+case+of+MDP%2C+Modular+toolkit+for+Data+Processing&rft.jtitle=Journal+of+computational+science&rft.au=Wilbert%2C+Niko&rft.au=Zito%2C+Tiziano&rft.au=Schuppner%2C+Rike-Benjamin&rft.au=J%C4%99drzejewski-Szmek%2C+Zbigniew&rft.date=2013-09-01&rft.pub=Elsevier+B.V&rft.issn=1877-7503&rft.eissn=1877-7511&rft.volume=4&rft.issue=5&rft.spage=345&rft.epage=351&rft_id=info:doi/10.1016%2Fj.jocs.2011.10.005&rft.externalDocID=S1877750311000913 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon |