Tensor-based dynamic brain functional network for motor imagery classification
•A tensor model of the dynamic brain functional network is proposed.•This method relies on the changing of the interaction of various brain regions.•Orthogonal decomposition of partially symmetric tensors can extract MI features.•The identification electrode is located near Cz during the MI period....
Saved in:
| Published in | Biomedical signal processing and control Vol. 69; p. 102940 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.08.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1746-8094 1746-8108 |
| DOI | 10.1016/j.bspc.2021.102940 |
Cover
| Abstract | •A tensor model of the dynamic brain functional network is proposed.•This method relies on the changing of the interaction of various brain regions.•Orthogonal decomposition of partially symmetric tensors can extract MI features.•The identification electrode is located near Cz during the MI period.
The classification of motor imagery (MI) task based on Electroencephalography (EEG) is an important problem in brain-computer interface (BCI) system. The high-precision classification of MI is a challenging task in which the process of feature extraction is crucial step. In this work, we propose a tensor model of a dynamic brain functional network (DBFN) to decode motion intentions. First, we construct the brain functional network in each small window. Then, the BFN of each time window is superimposed into a DBFN tensor with time as the axis. A tensor decomposition method with orthogonal and partial symmetric constraints is used to analyze the DBFN. Finally, the core tensor features are used as an input of the extreme learning machine (ELM) for classification. The results show that the proposed method is better than the degree, clustering coefficient of network, and principal component analysis of DBFN matrix model and the average accuracies are improved by 17.33%, 12.91%, and 17.5% under ELM, respectively. Moreover, the classification accuracy of the proposed method has the lowest variance, i.e., 5.96, indicating that the core tensor features are more adaptable to the subjects. The proposed method has the highest accuracy of 95% under both ELM and support vector machine (SVM). The average accuracy rates of ELM and SVM are 87.08% and 85.83%, respectively. The proposed method effectively extracts the EEG signal characteristics of MI and has strong robustness. This provides a reference for further research on the feature extraction algorithm of BCI. |
|---|---|
| AbstractList | •A tensor model of the dynamic brain functional network is proposed.•This method relies on the changing of the interaction of various brain regions.•Orthogonal decomposition of partially symmetric tensors can extract MI features.•The identification electrode is located near Cz during the MI period.
The classification of motor imagery (MI) task based on Electroencephalography (EEG) is an important problem in brain-computer interface (BCI) system. The high-precision classification of MI is a challenging task in which the process of feature extraction is crucial step. In this work, we propose a tensor model of a dynamic brain functional network (DBFN) to decode motion intentions. First, we construct the brain functional network in each small window. Then, the BFN of each time window is superimposed into a DBFN tensor with time as the axis. A tensor decomposition method with orthogonal and partial symmetric constraints is used to analyze the DBFN. Finally, the core tensor features are used as an input of the extreme learning machine (ELM) for classification. The results show that the proposed method is better than the degree, clustering coefficient of network, and principal component analysis of DBFN matrix model and the average accuracies are improved by 17.33%, 12.91%, and 17.5% under ELM, respectively. Moreover, the classification accuracy of the proposed method has the lowest variance, i.e., 5.96, indicating that the core tensor features are more adaptable to the subjects. The proposed method has the highest accuracy of 95% under both ELM and support vector machine (SVM). The average accuracy rates of ELM and SVM are 87.08% and 85.83%, respectively. The proposed method effectively extracts the EEG signal characteristics of MI and has strong robustness. This provides a reference for further research on the feature extraction algorithm of BCI. |
| ArticleNumber | 102940 |
| Author | Guo, Bin Zhang, Qizhong Kong, Wanzeng Xi, Xugang Gao, Farong Zhou, Yizhi |
| Author_xml | – sequence: 1 givenname: Qizhong surname: Zhang fullname: Zhang, Qizhong organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China – sequence: 2 givenname: Bin surname: Guo fullname: Guo, Bin organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China – sequence: 3 givenname: Wanzeng surname: Kong fullname: Kong, Wanzeng organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China – sequence: 4 givenname: Xugang surname: Xi fullname: Xi, Xugang organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China – sequence: 5 givenname: Yizhi surname: Zhou fullname: Zhou, Yizhi organization: Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USA – sequence: 6 givenname: Farong orcidid: 0000-0003-4984-2500 surname: Gao fullname: Gao, Farong email: frgao@hdu.edu.cn organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China |
| BookMark | eNp9kE1LAzEQhoMo2Fb_gKf8ga1JmuwHeJHiFxS91HOYZCeSuk1Ksir99-5avXjoZWYY5hne952S0xADEnLF2ZwzXl5v5ibv7FwwwYeFaCQ7IRNeybKoOatP_2bWyHMyzXnDmKwrLifkeY0hx1QYyNjSdh9g6y01CXyg7iPY3scAHQ3Yf8X0Tl1MdBv7ofotvGHaU9tBzt55C-PpBTlz0GW8_O0z8np_t14-FquXh6fl7aqwC8b6QjpbykYI42rJFSBTUDVSKcdbazgCWAGqdBJLaMAZ06BquVlUhlWVEhIXMyIOf22KOSd0epcGRWmvOdNjInqjx0T0mIg-JDJA9T_I-v5Hdj_47Y6jNwcUB1OfHpPO1mOw2PqEttdt9Mfwb0rDgE0 |
| CitedBy_id | crossref_primary_10_1080_2326263X_2024_2401663 crossref_primary_10_1109_TMI_2024_3363014 crossref_primary_10_3389_fnins_2023_1125230 crossref_primary_10_1109_TNSRE_2023_3277867 crossref_primary_10_3390_s24030877 crossref_primary_10_3390_math10224387 crossref_primary_10_1016_j_bspc_2022_103855 crossref_primary_10_3389_frobt_2024_1362735 crossref_primary_10_1016_j_neucom_2025_129911 crossref_primary_10_3390_bios14050211 crossref_primary_10_1007_s11571_024_10100_5 crossref_primary_10_1109_TIM_2025_3551032 crossref_primary_10_1109_ACCESS_2024_3393413 crossref_primary_10_1038_s41598_024_79202_8 |
| Cites_doi | 10.1109/TSP.2017.2728500 10.1016/j.neubiorev.2014.12.010 10.1016/j.clinph.2004.04.029 10.1109/ACCESS.2019.2917327 10.1023/A:1018996712442 10.1049/htl.2019.0053 10.1037/0033-2909.127.3.358 10.1137/S0895479896305696 10.1109/ACCESS.2018.2842082 10.1088/1741-2552/ab0328 10.1007/s12021-014-9251-4 10.1109/NER.2015.7146587 10.1016/S1388-2457(02)00057-3 10.1109/TNSRE.2012.2184838 10.1007/s12021-013-9186-1 10.1093/cercor/8.7.563 10.1016/S0167-2789(01)00386-4 10.1137/07070111X 10.1016/j.irbm.2018.02.001 10.1016/j.neuroscience.2020.04.006 10.1109/TCDS.2017.2777180 10.1109/34.824819 10.1088/1741-2552/abce70 10.1016/j.neucom.2005.12.126 10.1016/j.neucom.2010.02.019 10.1371/journal.pone.0146443 10.1016/j.neuroimage.2006.06.066 10.1016/j.procs.2016.07.422 10.1109/TNSRE.2019.2958076 10.1109/ICSIPA.2015.7412202 10.1007/s11517-019-01989-w 10.1109/JSEN.2019.2942153 10.1016/j.bspc.2017.09.026 10.1016/j.compbiomed.2017.09.022 10.1007/s12559-015-9317-0 10.1016/j.protcy.2016.08.048 |
| ContentType | Journal Article |
| Copyright | 2021 |
| Copyright_xml | – notice: 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2021.102940 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2021_102940 S1746809421005371 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-4fc64922bf8415ae05a79455f1dcb1eaac2a56f4e6a9afbb9e5d1b37b077524e3 |
| IEDL.DBID | .~1 |
| ISSN | 1746-8094 |
| IngestDate | Thu Apr 24 22:53:30 EDT 2025 Wed Oct 29 21:19:26 EDT 2025 Fri Feb 23 02:43:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Brain-computer interface Tensor decomposition Dynamic brain functional network Motor imagery |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-4fc64922bf8415ae05a79455f1dcb1eaac2a56f4e6a9afbb9e5d1b37b077524e3 |
| ORCID | 0000-0003-4984-2500 |
| ParticipantIDs | crossref_primary_10_1016_j_bspc_2021_102940 crossref_citationtrail_10_1016_j_bspc_2021_102940 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102940 |
| PublicationCentury | 2000 |
| PublicationDate | August 2021 2021-08-00 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | M. Hamedi, S.H. Salleh, S.B. Samdin, A.M. Noor, Motor imagery brain functional connectivity analysis via coherence, in: IEEE 2015 International Conference on Signal and Image Processing Applications, ICSIPA 2015 - Proceedings, 2016: pp. 269–273. https://doi.org/10.1109/ICSIPA.2015.7412202. Stefano Filho, Attux, Castellano (b0075) 2018; 40 Saini, Payal, Satija (b0125) 2020; 20 Bousseta, El Ouakouak, Gharbi, Regragui (b0200) 2018; 39 Lowet, Roberts, Bonizzi, Karel, De Weerd, Tort (b0180) 2016; 11 Solé-Casals, Vialatte, Dauwels (b0025) 2015; 7 Shamsi, Haddad, Najafizadeh (b0070) 2021; 18 Ding, Zhang, Xu, Guo, Zhang (b0115) 2015; 2015 Stam, van Dijk (b0150) 2002; 163 Siuly, Li (b0100) 2012; 20 Khanna, Pascual-Leone, Michel, Farzan (b0135) 2015; 49 Zhang, Li, Wang, Liu, Shi, Chen, Zhang, Hu (b0190) 2019; 7 Rodrigues, Filho, Attux, Castellano, Soriano (b0060) 2019; 57 Jiang, Bin Bian, Tian (b0185) 2019; 19 Deng, Yu, Lin, Gu, Li (b0005) 2020; 28 Lange, Low, Johar, Hanapiah, Kamaruzaman (b0015) 2016; 26 Bamdad, Zarshenas, Auais (b0035) 2015; 10 Montez, Linkenkaer-Hansen, van Dijk, Stam (b0140) 2006; 33 De Lathauwer, De Moor, Vandewalle (b0085) 2000; 21 Huang, Ding, Zhou (b0120) 2010; 74 Kübler, Kotchoubey, Kaiser, Birbaumer, Wolpaw (b0030) 2001; 127 Khanmohammadi (b0155) 2017; 91 Kolda, Bader (b0080) 2009; 51 Ai, Chen, Chen, Liu, Zhou, Xin, Ji (b0195) 2019; 16 Mannan, Kamran, Jeong (b0165) 2018; 6 Jain, Duin, Mao (b0170) 2000; 22 McEvoy, Smith, Gevins (b0040) 1998; 8 Nolte, Bai, Wheaton, Mari, Vorbach, Hallett (b0175) 2004; 115 Gu, Yu, Ma, Wang, Li, Fan (b0055) 2020; 436 Moghadamfalahi, Akcakaya, Nezamfar, Sourati, Erdogmus (b0010) 2017; 65 Duan, Bao, Miao, Xu, Chen (b0110) 2016 Huang, Zhu, Siew (b0105) 2006; 70 B. Elasuty, S. Eldawlatly, Dynamic Bayesian Networks for EEG motor imagery feature extraction, in: Int. IEEE/EMBS Conf. Neural Eng. NER, 2015: pp. 170–173. https://doi.org/10.1109/NER.2015.7146587. Gaxiola-Tirado, Salazar-Varas, Gutierrez (b0065) 2018; 10 Tanji, Shima (b0045) 1996; 70 Zaremba, Smoleński (b0095) 2000; 97 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (b0020) 2002; 113 Niso, Bruña, Pereda, Gutiérrez, Bajo, Maestú, del-Pozo (b0160) 2013; 11 Rosales, García-Dopico, Bajo, Nevado (b0145) 2015; 13 Saini, Satija, Upadhayay (b0130) 2020; 7 Tanji (10.1016/j.bspc.2021.102940_b0045) 1996; 70 Stefano Filho (10.1016/j.bspc.2021.102940_b0075) 2018; 40 Saini (10.1016/j.bspc.2021.102940_b0125) 2020; 20 Zaremba (10.1016/j.bspc.2021.102940_b0095) 2000; 97 De Lathauwer (10.1016/j.bspc.2021.102940_b0085) 2000; 21 Siuly (10.1016/j.bspc.2021.102940_b0100) 2012; 20 Solé-Casals (10.1016/j.bspc.2021.102940_b0025) 2015; 7 Duan (10.1016/j.bspc.2021.102940_b0110) 2016 Moghadamfalahi (10.1016/j.bspc.2021.102940_b0010) 2017; 65 Bousseta (10.1016/j.bspc.2021.102940_b0200) 2018; 39 Zhang (10.1016/j.bspc.2021.102940_b0190) 2019; 7 Nolte (10.1016/j.bspc.2021.102940_b0175) 2004; 115 Gaxiola-Tirado (10.1016/j.bspc.2021.102940_b0065) 2018; 10 Deng (10.1016/j.bspc.2021.102940_b0005) 2020; 28 Jiang (10.1016/j.bspc.2021.102940_b0185) 2019; 19 Ding (10.1016/j.bspc.2021.102940_b0115) 2015; 2015 Khanna (10.1016/j.bspc.2021.102940_b0135) 2015; 49 McEvoy (10.1016/j.bspc.2021.102940_b0040) 1998; 8 Rodrigues (10.1016/j.bspc.2021.102940_b0060) 2019; 57 Shamsi (10.1016/j.bspc.2021.102940_b0070) 2021; 18 Mannan (10.1016/j.bspc.2021.102940_b0165) 2018; 6 Kolda (10.1016/j.bspc.2021.102940_b0080) 2009; 51 Montez (10.1016/j.bspc.2021.102940_b0140) 2006; 33 Bamdad (10.1016/j.bspc.2021.102940_b0035) 2015; 10 Khanmohammadi (10.1016/j.bspc.2021.102940_b0155) 2017; 91 Jain (10.1016/j.bspc.2021.102940_b0170) 2000; 22 Huang (10.1016/j.bspc.2021.102940_b0105) 2006; 70 Saini (10.1016/j.bspc.2021.102940_b0130) 2020; 7 Lowet (10.1016/j.bspc.2021.102940_b0180) 2016; 11 Kübler (10.1016/j.bspc.2021.102940_b0030) 2001; 127 Ai (10.1016/j.bspc.2021.102940_b0195) 2019; 16 Rosales (10.1016/j.bspc.2021.102940_b0145) 2015; 13 Wolpaw (10.1016/j.bspc.2021.102940_b0020) 2002; 113 10.1016/j.bspc.2021.102940_b0050 Lange (10.1016/j.bspc.2021.102940_b0015) 2016; 26 10.1016/j.bspc.2021.102940_b0090 Stam (10.1016/j.bspc.2021.102940_b0150) 2002; 163 Gu (10.1016/j.bspc.2021.102940_b0055) 2020; 436 Huang (10.1016/j.bspc.2021.102940_b0120) 2010; 74 Niso (10.1016/j.bspc.2021.102940_b0160) 2013; 11 |
| References_xml | – volume: 18 start-page: 016015 year: 2021 ident: b0070 article-title: Early classification of motor tasks using dynamic functional connectivity graphs from EEG publication-title: J. Neural Eng. – volume: 163 start-page: 236 year: 2002 end-page: 251 ident: b0150 article-title: Synchronization likelihood: An unbiased measure of generalized synchronization in multivariate data sets publication-title: Physica D – volume: 6 start-page: 30630 year: 2018 end-page: 30652 ident: b0165 article-title: Identification and removal of physiological artifacts from electroencephalogram signals: A review publication-title: IEEE Access – volume: 10 start-page: 355 year: 2015 end-page: 364 ident: b0035 article-title: Application of BCI systems in neurorehabilitation: A scoping review publication-title: Disability and Rehabilitation: Assistive Technology. – volume: 40 start-page: 359 year: 2018 end-page: 365 ident: b0075 article-title: Can graph metrics be used for EEG-BCIs based on hand motor imagery? publication-title: Biomed. Signal Process. Control. – volume: 7 start-page: 35 year: 2020 end-page: 40 ident: b0130 article-title: Effective automated method for detection and suppression of muscle artefacts from single-channel EEG signal publication-title: Healthcare Technol. Lett. – volume: 49 start-page: 105 year: 2015 end-page: 113 ident: b0135 article-title: Microstates in resting-state EEG: Current status and future directions publication-title: Neurosci. Biobehav. Rev. – volume: 20 start-page: 526 year: 2012 end-page: 538 ident: b0100 article-title: Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 22 start-page: 4 year: 2000 end-page: 37 ident: b0170 article-title: Statistical pattern recognition: A review publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 65 start-page: 5381 year: 2017 end-page: 5392 ident: b0010 article-title: An Active RBSE Framework to Generate Optimal Stimulus Sequences in a BCI for Spelling publication-title: IEEE Trans. Signal Process. – volume: 8 start-page: 563 year: 1998 end-page: 574 ident: b0040 article-title: Dynamic cortical networks of verbal and spatial working memory: Effects of memory load and task practice publication-title: Cereb. Cortex – volume: 91 start-page: 80 year: 2017 end-page: 95 ident: b0155 article-title: An improved synchronization likelihood method for quantifying neuronal synchrony publication-title: Comput. Biol. Med. – volume: 115 start-page: 2292 year: 2004 end-page: 2307 ident: b0175 article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency publication-title: Clin. Neurophysiol. – volume: 70 start-page: 95 year: 1996 end-page: 103 ident: b0045 article-title: Contrast of neuronal activity between the supplemental motor area and other cortical motor areas publication-title: Adv. Neurol. – volume: 33 start-page: 1117 year: 2006 end-page: 1125 ident: b0140 article-title: Synchronization likelihood with explicit time-frequency priors publication-title: NeuroImage. – volume: 26 start-page: 374 year: 2016 end-page: 381 ident: b0015 article-title: Classification of Electroencephalogram Data from Hand Grasp and Release Movements for BCI Controlled Prosthesis publication-title: Procedia Technol. – volume: 127 start-page: 358 year: 2001 end-page: 375 ident: b0030 article-title: Brain-computer communication: Unlocking the locked in publication-title: Psychol. Bull. – volume: 74 start-page: 155 year: 2010 end-page: 163 ident: b0120 article-title: Optimization method based extreme learning machine for classification publication-title: Neurocomputing. – volume: 11 start-page: 405 year: 2013 end-page: 434 ident: b0160 article-title: HERMES: Towards an integrated toolbox to characterize functional and effective brain connectivity publication-title: Neuroinformatics. – volume: 57 start-page: 1709 year: 2019 end-page: 1725 ident: b0060 article-title: Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces publication-title: Med. Biol. Eng. Compu. – volume: 7 start-page: 1 year: 2015 end-page: 2 ident: b0025 article-title: Alternative Techniques of Neural Signal Processing in Neuroengineering publication-title: Cognitive Computation. – volume: 28 start-page: 328 year: 2020 end-page: 338 ident: b0005 article-title: A Bayesian Shared Control Approach for Wheelchair Robot with Brain Machine Interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b0105 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing. – reference: B. Elasuty, S. Eldawlatly, Dynamic Bayesian Networks for EEG motor imagery feature extraction, in: Int. IEEE/EMBS Conf. Neural Eng. NER, 2015: pp. 170–173. https://doi.org/10.1109/NER.2015.7146587. – volume: 16 start-page: 026032 year: 2019 ident: b0195 article-title: Feature extraction of four-class motor imagery EEG signals based on functional brain network publication-title: J. Neural Eng. – reference: M. Hamedi, S.H. Salleh, S.B. Samdin, A.M. Noor, Motor imagery brain functional connectivity analysis via coherence, in: IEEE 2015 International Conference on Signal and Image Processing Applications, ICSIPA 2015 - Proceedings, 2016: pp. 269–273. https://doi.org/10.1109/ICSIPA.2015.7412202. – start-page: 176 year: 2016 end-page: 184 ident: b0110 article-title: Classification Based on Multilayer Extreme Learning Machine for Motor Imagery Task from EEG Signals, in publication-title: Procedia Comput. Sci. – volume: 2015 start-page: 1 year: 2015 end-page: 11 ident: b0115 article-title: Deep Extreme Learning Machine and Its Application in EEG Classification publication-title: Mathematical Problems in Engineering. – volume: 51 start-page: 455 year: 2009 end-page: 500 ident: b0080 article-title: Tensor decompositions and applications publication-title: SIAM Rev. – volume: 20 start-page: 369 year: 2020 end-page: 376 ident: b0125 article-title: An Effective and Robust Framework for Ocular Artifact Removal from Single-Channel EEG Signal Based on Variational Mode Decomposition publication-title: IEEE Sensors Journal. – volume: 436 start-page: 93 year: 2020 end-page: 109 ident: b0055 article-title: EEG-based Classification of Lower Limb Motor Imagery with Brain Network Analysis publication-title: Neuroscience – volume: 97 start-page: 131 year: 2000 end-page: 141 ident: b0095 article-title: Optimal portfolio choice under a liability constraint publication-title: Ann. Oper. Res. – volume: 10 start-page: 776 year: 2018 end-page: 783 ident: b0065 article-title: Using the Partial Directed Coherence to Assess Functional Connectivity in Electroencephalography Data for Brain-Computer Interfaces publication-title: IEEE Transactions on Cognitive and Developmental Systems. – volume: 39 start-page: 129 year: 2018 end-page: 135 ident: b0200 article-title: EEG Based Brain Computer Interface for Controlling a Robot Arm Movement Through Thought publication-title: Irbm. – volume: 13 start-page: 245 year: 2015 end-page: 258 ident: b0145 article-title: An Efficient Implementation of the Synchronization Likelihood Algorithm for Functional Connectivity publication-title: Neuroinformatics. – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: b0020 article-title: Brain-computer interfaces for communication and control publication-title: Clin. Neurophysiol. – volume: 7 start-page: 74490 year: 2019 end-page: 74499 ident: b0190 article-title: Using Brain Network Features to Increase the Classification Accuracy of MI-BCI Inefficiency Subject publication-title: IEEE Access – volume: 11 start-page: e0146443 year: 2016 ident: b0180 article-title: Quantifying neural oscillatory synchronization: A comparison between spectral coherence and phase-locking value approaches publication-title: PLoS ONE – volume: 19 start-page: 1 year: 2019 end-page: 18 ident: b0185 article-title: Removal of artifacts from EEG signals: A review publication-title: Sensors (Switzerland) – volume: 21 start-page: 1253 year: 2000 end-page: 1278 ident: b0085 article-title: A multilinear singular value decomposition publication-title: SIAM J. Matrix Anal. Appl. – volume: 10 start-page: 355 issue: 5 year: 2015 ident: 10.1016/j.bspc.2021.102940_b0035 article-title: Application of BCI systems in neurorehabilitation: A scoping review publication-title: Disability and Rehabilitation: Assistive Technology. – volume: 65 start-page: 5381 issue: 20 year: 2017 ident: 10.1016/j.bspc.2021.102940_b0010 article-title: An Active RBSE Framework to Generate Optimal Stimulus Sequences in a BCI for Spelling publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2728500 – volume: 49 start-page: 105 year: 2015 ident: 10.1016/j.bspc.2021.102940_b0135 article-title: Microstates in resting-state EEG: Current status and future directions publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2014.12.010 – volume: 115 start-page: 2292 issue: 10 year: 2004 ident: 10.1016/j.bspc.2021.102940_b0175 article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.04.029 – volume: 7 start-page: 74490 year: 2019 ident: 10.1016/j.bspc.2021.102940_b0190 article-title: Using Brain Network Features to Increase the Classification Accuracy of MI-BCI Inefficiency Subject publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917327 – volume: 97 start-page: 131 year: 2000 ident: 10.1016/j.bspc.2021.102940_b0095 article-title: Optimal portfolio choice under a liability constraint publication-title: Ann. Oper. Res. doi: 10.1023/A:1018996712442 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.bspc.2021.102940_b0115 article-title: Deep Extreme Learning Machine and Its Application in EEG Classification publication-title: Mathematical Problems in Engineering. – volume: 7 start-page: 35 issue: 2 year: 2020 ident: 10.1016/j.bspc.2021.102940_b0130 article-title: Effective automated method for detection and suppression of muscle artefacts from single-channel EEG signal publication-title: Healthcare Technol. Lett. doi: 10.1049/htl.2019.0053 – volume: 127 start-page: 358 year: 2001 ident: 10.1016/j.bspc.2021.102940_b0030 article-title: Brain-computer communication: Unlocking the locked in publication-title: Psychol. Bull. doi: 10.1037/0033-2909.127.3.358 – volume: 21 start-page: 1253 issue: 4 year: 2000 ident: 10.1016/j.bspc.2021.102940_b0085 article-title: A multilinear singular value decomposition publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479896305696 – volume: 6 start-page: 30630 year: 2018 ident: 10.1016/j.bspc.2021.102940_b0165 article-title: Identification and removal of physiological artifacts from electroencephalogram signals: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2842082 – volume: 16 start-page: 026032 issue: 2 year: 2019 ident: 10.1016/j.bspc.2021.102940_b0195 article-title: Feature extraction of four-class motor imagery EEG signals based on functional brain network publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0328 – volume: 13 start-page: 245 issue: 2 year: 2015 ident: 10.1016/j.bspc.2021.102940_b0145 article-title: An Efficient Implementation of the Synchronization Likelihood Algorithm for Functional Connectivity publication-title: Neuroinformatics. doi: 10.1007/s12021-014-9251-4 – ident: 10.1016/j.bspc.2021.102940_b0090 doi: 10.1109/NER.2015.7146587 – volume: 113 start-page: 767 issue: 6 year: 2002 ident: 10.1016/j.bspc.2021.102940_b0020 article-title: Brain-computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 20 start-page: 526 issue: 4 year: 2012 ident: 10.1016/j.bspc.2021.102940_b0100 article-title: Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2184838 – volume: 11 start-page: 405 issue: 4 year: 2013 ident: 10.1016/j.bspc.2021.102940_b0160 article-title: HERMES: Towards an integrated toolbox to characterize functional and effective brain connectivity publication-title: Neuroinformatics. doi: 10.1007/s12021-013-9186-1 – volume: 8 start-page: 563 year: 1998 ident: 10.1016/j.bspc.2021.102940_b0040 article-title: Dynamic cortical networks of verbal and spatial working memory: Effects of memory load and task practice publication-title: Cereb. Cortex doi: 10.1093/cercor/8.7.563 – volume: 163 start-page: 236 issue: 3-4 year: 2002 ident: 10.1016/j.bspc.2021.102940_b0150 article-title: Synchronization likelihood: An unbiased measure of generalized synchronization in multivariate data sets publication-title: Physica D doi: 10.1016/S0167-2789(01)00386-4 – volume: 51 start-page: 455 issue: 3 year: 2009 ident: 10.1016/j.bspc.2021.102940_b0080 article-title: Tensor decompositions and applications publication-title: SIAM Rev. doi: 10.1137/07070111X – volume: 39 start-page: 129 issue: 2 year: 2018 ident: 10.1016/j.bspc.2021.102940_b0200 article-title: EEG Based Brain Computer Interface for Controlling a Robot Arm Movement Through Thought publication-title: Irbm. doi: 10.1016/j.irbm.2018.02.001 – volume: 436 start-page: 93 year: 2020 ident: 10.1016/j.bspc.2021.102940_b0055 article-title: EEG-based Classification of Lower Limb Motor Imagery with Brain Network Analysis publication-title: Neuroscience doi: 10.1016/j.neuroscience.2020.04.006 – volume: 10 start-page: 776 issue: 3 year: 2018 ident: 10.1016/j.bspc.2021.102940_b0065 article-title: Using the Partial Directed Coherence to Assess Functional Connectivity in Electroencephalography Data for Brain-Computer Interfaces publication-title: IEEE Transactions on Cognitive and Developmental Systems. doi: 10.1109/TCDS.2017.2777180 – volume: 70 start-page: 95 year: 1996 ident: 10.1016/j.bspc.2021.102940_b0045 article-title: Contrast of neuronal activity between the supplemental motor area and other cortical motor areas publication-title: Adv. Neurol. – volume: 22 start-page: 4 year: 2000 ident: 10.1016/j.bspc.2021.102940_b0170 article-title: Statistical pattern recognition: A review publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.824819 – volume: 18 start-page: 016015 issue: 1 year: 2021 ident: 10.1016/j.bspc.2021.102940_b0070 article-title: Early classification of motor tasks using dynamic functional connectivity graphs from EEG publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abce70 – volume: 19 start-page: 1 year: 2019 ident: 10.1016/j.bspc.2021.102940_b0185 article-title: Removal of artifacts from EEG signals: A review publication-title: Sensors (Switzerland) – volume: 70 start-page: 489 issue: 1-3 year: 2006 ident: 10.1016/j.bspc.2021.102940_b0105 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing. doi: 10.1016/j.neucom.2005.12.126 – volume: 74 start-page: 155 issue: 1-3 year: 2010 ident: 10.1016/j.bspc.2021.102940_b0120 article-title: Optimization method based extreme learning machine for classification publication-title: Neurocomputing. doi: 10.1016/j.neucom.2010.02.019 – volume: 11 start-page: e0146443 issue: 1 year: 2016 ident: 10.1016/j.bspc.2021.102940_b0180 article-title: Quantifying neural oscillatory synchronization: A comparison between spectral coherence and phase-locking value approaches publication-title: PLoS ONE doi: 10.1371/journal.pone.0146443 – volume: 33 start-page: 1117 issue: 4 year: 2006 ident: 10.1016/j.bspc.2021.102940_b0140 article-title: Synchronization likelihood with explicit time-frequency priors publication-title: NeuroImage. doi: 10.1016/j.neuroimage.2006.06.066 – start-page: 176 year: 2016 ident: 10.1016/j.bspc.2021.102940_b0110 article-title: Classification Based on Multilayer Extreme Learning Machine for Motor Imagery Task from EEG Signals, in publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.07.422 – volume: 28 start-page: 328 issue: 1 year: 2020 ident: 10.1016/j.bspc.2021.102940_b0005 article-title: A Bayesian Shared Control Approach for Wheelchair Robot with Brain Machine Interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2958076 – ident: 10.1016/j.bspc.2021.102940_b0050 doi: 10.1109/ICSIPA.2015.7412202 – volume: 57 start-page: 1709 issue: 8 year: 2019 ident: 10.1016/j.bspc.2021.102940_b0060 article-title: Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces publication-title: Med. Biol. Eng. Compu. doi: 10.1007/s11517-019-01989-w – volume: 20 start-page: 369 issue: 1 year: 2020 ident: 10.1016/j.bspc.2021.102940_b0125 article-title: An Effective and Robust Framework for Ocular Artifact Removal from Single-Channel EEG Signal Based on Variational Mode Decomposition publication-title: IEEE Sensors Journal. doi: 10.1109/JSEN.2019.2942153 – volume: 40 start-page: 359 year: 2018 ident: 10.1016/j.bspc.2021.102940_b0075 article-title: Can graph metrics be used for EEG-BCIs based on hand motor imagery? publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2017.09.026 – volume: 91 start-page: 80 year: 2017 ident: 10.1016/j.bspc.2021.102940_b0155 article-title: An improved synchronization likelihood method for quantifying neuronal synchrony publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.022 – volume: 7 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.bspc.2021.102940_b0025 article-title: Alternative Techniques of Neural Signal Processing in Neuroengineering publication-title: Cognitive Computation. doi: 10.1007/s12559-015-9317-0 – volume: 26 start-page: 374 year: 2016 ident: 10.1016/j.bspc.2021.102940_b0015 article-title: Classification of Electroencephalogram Data from Hand Grasp and Release Movements for BCI Controlled Prosthesis publication-title: Procedia Technol. doi: 10.1016/j.protcy.2016.08.048 |
| SSID | ssj0048714 |
| Score | 2.3412569 |
| Snippet | •A tensor model of the dynamic brain functional network is proposed.•This method relies on the changing of the interaction of various brain regions.•Orthogonal... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 102940 |
| SubjectTerms | Brain-computer interface Dynamic brain functional network Motor imagery Tensor decomposition |
| Title | Tensor-based dynamic brain functional network for motor imagery classification |
| URI | https://dx.doi.org/10.1016/j.bspc.2021.102940 |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg7eJHY3j30cS7FUxV5sobclT6jottR68OJvN7PZLQrSg5eFXRJYJsnMN-GbbxC6TiKmc6cs0bnhhHvMQRSjjBjGXZQZ4aiERPFpnIym_GEmZi00aGphgFZZ-_7g0ytvXX_p1dbsLefz3rPH0knmsxOftIAoSVXBzlPoYnD7taF5eDxe6XvDYAKj68KZwPFS70uQMaQxKBjkcAHyV3D6EXCGB2i_Roq4H37mELVseYT2fugHHqPxxCehixWBUGSwCc3lsYKuDxgCVrjnw2WgemOPT7FfGf-cv4F0xSfWgJ2BLFStzwmaDu8mgxGpGyQQzaJoTbjTCc8pVS7zcVjaSEh_vIRwsdEqtlJqKkXiuE1kLp1SuRUmVixVoHtHuWWnqF0uSnuGMM9illJlnE4lV85JkRqZu4xlCVSjqg6KG8sUulYPhyYWr0VDE3spwJoFWLMI1uygm82cZdDO2DpaNAYvfu2Awjv3LfPO_znvAu3CWyDzXaL2evVhrzzAWKtutYO6aKd__zgafwOlWtCF |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IHtSD8Rnx2YM3U9ntYx9HQySowEVIuG36TDAKBPHgxd9uZ7sQTAwHL3vYnSabaTvzTfP1G4Rukojp3ClLdG444R5zEMUoI4ZxF2VGOCqhUOz1k86QP43EqIZay7swQKusYn-I6WW0rt40K282Z-Nx88Vj6STz1YkvWkCUxJdAW1zQFCqwu-8Vz8MD8lLgG6wJmFc3ZwLJS33MQMeQxiBhkMMJyF_ZaS3jtPfRXgUV8X34mwNUs5NDtLsmIHiE-gNfhU7nBHKRwSZ0l8cK2j5gyFjhoA9PAtcbe4CK_dT45_gdtCu-sAbwDGyhcoKO0bD9MGh1SNUhgWgWRQvCnU54TqlymU_E0kZC-v0lhIuNVrGVUlMpEsdtInPplMqtMLFiqQLhO8otO0H1yXRiTxHmWcxSqozTqeTKOSlSI3OXsSyB66iqgeKlZwpdyYdDF4u3YskTey3AmwV4swjebKDb1ZhZEM_YaC2WDi9-LYHCR_cN487-Oe4abXcGvW7Rfew_n6Md-BKYfReovph_2kuPNhbqqlxNP6X80ho |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor-based+dynamic+brain+functional+network+for+motor+imagery+classification&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhang%2C+Qizhong&rft.au=Guo%2C+Bin&rft.au=Kong%2C+Wanzeng&rft.au=Xi%2C+Xugang&rft.date=2021-08-01&rft.issn=1746-8094&rft.volume=69&rft.spage=102940&rft_id=info:doi/10.1016%2Fj.bspc.2021.102940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102940 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |