Tensor-based dynamic brain functional network for motor imagery classification

•A tensor model of the dynamic brain functional network is proposed.•This method relies on the changing of the interaction of various brain regions.•Orthogonal decomposition of partially symmetric tensors can extract MI features.•The identification electrode is located near Cz during the MI period....

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 69; p. 102940
Main Authors Zhang, Qizhong, Guo, Bin, Kong, Wanzeng, Xi, Xugang, Zhou, Yizhi, Gao, Farong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2021
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2021.102940

Cover

Abstract •A tensor model of the dynamic brain functional network is proposed.•This method relies on the changing of the interaction of various brain regions.•Orthogonal decomposition of partially symmetric tensors can extract MI features.•The identification electrode is located near Cz during the MI period. The classification of motor imagery (MI) task based on Electroencephalography (EEG) is an important problem in brain-computer interface (BCI) system. The high-precision classification of MI is a challenging task in which the process of feature extraction is crucial step. In this work, we propose a tensor model of a dynamic brain functional network (DBFN) to decode motion intentions. First, we construct the brain functional network in each small window. Then, the BFN of each time window is superimposed into a DBFN tensor with time as the axis. A tensor decomposition method with orthogonal and partial symmetric constraints is used to analyze the DBFN. Finally, the core tensor features are used as an input of the extreme learning machine (ELM) for classification. The results show that the proposed method is better than the degree, clustering coefficient of network, and principal component analysis of DBFN matrix model and the average accuracies are improved by 17.33%, 12.91%, and 17.5% under ELM, respectively. Moreover, the classification accuracy of the proposed method has the lowest variance, i.e., 5.96, indicating that the core tensor features are more adaptable to the subjects. The proposed method has the highest accuracy of 95% under both ELM and support vector machine (SVM). The average accuracy rates of ELM and SVM are 87.08% and 85.83%, respectively. The proposed method effectively extracts the EEG signal characteristics of MI and has strong robustness. This provides a reference for further research on the feature extraction algorithm of BCI.
AbstractList •A tensor model of the dynamic brain functional network is proposed.•This method relies on the changing of the interaction of various brain regions.•Orthogonal decomposition of partially symmetric tensors can extract MI features.•The identification electrode is located near Cz during the MI period. The classification of motor imagery (MI) task based on Electroencephalography (EEG) is an important problem in brain-computer interface (BCI) system. The high-precision classification of MI is a challenging task in which the process of feature extraction is crucial step. In this work, we propose a tensor model of a dynamic brain functional network (DBFN) to decode motion intentions. First, we construct the brain functional network in each small window. Then, the BFN of each time window is superimposed into a DBFN tensor with time as the axis. A tensor decomposition method with orthogonal and partial symmetric constraints is used to analyze the DBFN. Finally, the core tensor features are used as an input of the extreme learning machine (ELM) for classification. The results show that the proposed method is better than the degree, clustering coefficient of network, and principal component analysis of DBFN matrix model and the average accuracies are improved by 17.33%, 12.91%, and 17.5% under ELM, respectively. Moreover, the classification accuracy of the proposed method has the lowest variance, i.e., 5.96, indicating that the core tensor features are more adaptable to the subjects. The proposed method has the highest accuracy of 95% under both ELM and support vector machine (SVM). The average accuracy rates of ELM and SVM are 87.08% and 85.83%, respectively. The proposed method effectively extracts the EEG signal characteristics of MI and has strong robustness. This provides a reference for further research on the feature extraction algorithm of BCI.
ArticleNumber 102940
Author Guo, Bin
Zhang, Qizhong
Kong, Wanzeng
Xi, Xugang
Gao, Farong
Zhou, Yizhi
Author_xml – sequence: 1
  givenname: Qizhong
  surname: Zhang
  fullname: Zhang, Qizhong
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
– sequence: 2
  givenname: Bin
  surname: Guo
  fullname: Guo, Bin
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
– sequence: 3
  givenname: Wanzeng
  surname: Kong
  fullname: Kong, Wanzeng
  organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
– sequence: 4
  givenname: Xugang
  surname: Xi
  fullname: Xi, Xugang
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
– sequence: 5
  givenname: Yizhi
  surname: Zhou
  fullname: Zhou, Yizhi
  organization: Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USA
– sequence: 6
  givenname: Farong
  orcidid: 0000-0003-4984-2500
  surname: Gao
  fullname: Gao, Farong
  email: frgao@hdu.edu.cn
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
BookMark eNp9kE1LAzEQhoMo2Fb_gKf8ga1JmuwHeJHiFxS91HOYZCeSuk1Ksir99-5avXjoZWYY5hne952S0xADEnLF2ZwzXl5v5ibv7FwwwYeFaCQ7IRNeybKoOatP_2bWyHMyzXnDmKwrLifkeY0hx1QYyNjSdh9g6y01CXyg7iPY3scAHQ3Yf8X0Tl1MdBv7ofotvGHaU9tBzt55C-PpBTlz0GW8_O0z8np_t14-FquXh6fl7aqwC8b6QjpbykYI42rJFSBTUDVSKcdbazgCWAGqdBJLaMAZ06BquVlUhlWVEhIXMyIOf22KOSd0epcGRWmvOdNjInqjx0T0mIg-JDJA9T_I-v5Hdj_47Y6jNwcUB1OfHpPO1mOw2PqEttdt9Mfwb0rDgE0
CitedBy_id crossref_primary_10_1080_2326263X_2024_2401663
crossref_primary_10_1109_TMI_2024_3363014
crossref_primary_10_3389_fnins_2023_1125230
crossref_primary_10_1109_TNSRE_2023_3277867
crossref_primary_10_3390_s24030877
crossref_primary_10_3390_math10224387
crossref_primary_10_1016_j_bspc_2022_103855
crossref_primary_10_3389_frobt_2024_1362735
crossref_primary_10_1016_j_neucom_2025_129911
crossref_primary_10_3390_bios14050211
crossref_primary_10_1007_s11571_024_10100_5
crossref_primary_10_1109_TIM_2025_3551032
crossref_primary_10_1109_ACCESS_2024_3393413
crossref_primary_10_1038_s41598_024_79202_8
Cites_doi 10.1109/TSP.2017.2728500
10.1016/j.neubiorev.2014.12.010
10.1016/j.clinph.2004.04.029
10.1109/ACCESS.2019.2917327
10.1023/A:1018996712442
10.1049/htl.2019.0053
10.1037/0033-2909.127.3.358
10.1137/S0895479896305696
10.1109/ACCESS.2018.2842082
10.1088/1741-2552/ab0328
10.1007/s12021-014-9251-4
10.1109/NER.2015.7146587
10.1016/S1388-2457(02)00057-3
10.1109/TNSRE.2012.2184838
10.1007/s12021-013-9186-1
10.1093/cercor/8.7.563
10.1016/S0167-2789(01)00386-4
10.1137/07070111X
10.1016/j.irbm.2018.02.001
10.1016/j.neuroscience.2020.04.006
10.1109/TCDS.2017.2777180
10.1109/34.824819
10.1088/1741-2552/abce70
10.1016/j.neucom.2005.12.126
10.1016/j.neucom.2010.02.019
10.1371/journal.pone.0146443
10.1016/j.neuroimage.2006.06.066
10.1016/j.procs.2016.07.422
10.1109/TNSRE.2019.2958076
10.1109/ICSIPA.2015.7412202
10.1007/s11517-019-01989-w
10.1109/JSEN.2019.2942153
10.1016/j.bspc.2017.09.026
10.1016/j.compbiomed.2017.09.022
10.1007/s12559-015-9317-0
10.1016/j.protcy.2016.08.048
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2021.102940
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2021_102940
S1746809421005371
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-4fc64922bf8415ae05a79455f1dcb1eaac2a56f4e6a9afbb9e5d1b37b077524e3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 22:53:30 EDT 2025
Wed Oct 29 21:19:26 EDT 2025
Fri Feb 23 02:43:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Brain-computer interface
Tensor decomposition
Dynamic brain functional network
Motor imagery
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-4fc64922bf8415ae05a79455f1dcb1eaac2a56f4e6a9afbb9e5d1b37b077524e3
ORCID 0000-0003-4984-2500
ParticipantIDs crossref_primary_10_1016_j_bspc_2021_102940
crossref_citationtrail_10_1016_j_bspc_2021_102940
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102940
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References M. Hamedi, S.H. Salleh, S.B. Samdin, A.M. Noor, Motor imagery brain functional connectivity analysis via coherence, in: IEEE 2015 International Conference on Signal and Image Processing Applications, ICSIPA 2015 - Proceedings, 2016: pp. 269–273. https://doi.org/10.1109/ICSIPA.2015.7412202.
Stefano Filho, Attux, Castellano (b0075) 2018; 40
Saini, Payal, Satija (b0125) 2020; 20
Bousseta, El Ouakouak, Gharbi, Regragui (b0200) 2018; 39
Lowet, Roberts, Bonizzi, Karel, De Weerd, Tort (b0180) 2016; 11
Solé-Casals, Vialatte, Dauwels (b0025) 2015; 7
Shamsi, Haddad, Najafizadeh (b0070) 2021; 18
Ding, Zhang, Xu, Guo, Zhang (b0115) 2015; 2015
Stam, van Dijk (b0150) 2002; 163
Siuly, Li (b0100) 2012; 20
Khanna, Pascual-Leone, Michel, Farzan (b0135) 2015; 49
Zhang, Li, Wang, Liu, Shi, Chen, Zhang, Hu (b0190) 2019; 7
Rodrigues, Filho, Attux, Castellano, Soriano (b0060) 2019; 57
Jiang, Bin Bian, Tian (b0185) 2019; 19
Deng, Yu, Lin, Gu, Li (b0005) 2020; 28
Lange, Low, Johar, Hanapiah, Kamaruzaman (b0015) 2016; 26
Bamdad, Zarshenas, Auais (b0035) 2015; 10
Montez, Linkenkaer-Hansen, van Dijk, Stam (b0140) 2006; 33
De Lathauwer, De Moor, Vandewalle (b0085) 2000; 21
Huang, Ding, Zhou (b0120) 2010; 74
Kübler, Kotchoubey, Kaiser, Birbaumer, Wolpaw (b0030) 2001; 127
Khanmohammadi (b0155) 2017; 91
Kolda, Bader (b0080) 2009; 51
Ai, Chen, Chen, Liu, Zhou, Xin, Ji (b0195) 2019; 16
Mannan, Kamran, Jeong (b0165) 2018; 6
Jain, Duin, Mao (b0170) 2000; 22
McEvoy, Smith, Gevins (b0040) 1998; 8
Nolte, Bai, Wheaton, Mari, Vorbach, Hallett (b0175) 2004; 115
Gu, Yu, Ma, Wang, Li, Fan (b0055) 2020; 436
Moghadamfalahi, Akcakaya, Nezamfar, Sourati, Erdogmus (b0010) 2017; 65
Duan, Bao, Miao, Xu, Chen (b0110) 2016
Huang, Zhu, Siew (b0105) 2006; 70
B. Elasuty, S. Eldawlatly, Dynamic Bayesian Networks for EEG motor imagery feature extraction, in: Int. IEEE/EMBS Conf. Neural Eng. NER, 2015: pp. 170–173. https://doi.org/10.1109/NER.2015.7146587.
Gaxiola-Tirado, Salazar-Varas, Gutierrez (b0065) 2018; 10
Tanji, Shima (b0045) 1996; 70
Zaremba, Smoleński (b0095) 2000; 97
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (b0020) 2002; 113
Niso, Bruña, Pereda, Gutiérrez, Bajo, Maestú, del-Pozo (b0160) 2013; 11
Rosales, García-Dopico, Bajo, Nevado (b0145) 2015; 13
Saini, Satija, Upadhayay (b0130) 2020; 7
Tanji (10.1016/j.bspc.2021.102940_b0045) 1996; 70
Stefano Filho (10.1016/j.bspc.2021.102940_b0075) 2018; 40
Saini (10.1016/j.bspc.2021.102940_b0125) 2020; 20
Zaremba (10.1016/j.bspc.2021.102940_b0095) 2000; 97
De Lathauwer (10.1016/j.bspc.2021.102940_b0085) 2000; 21
Siuly (10.1016/j.bspc.2021.102940_b0100) 2012; 20
Solé-Casals (10.1016/j.bspc.2021.102940_b0025) 2015; 7
Duan (10.1016/j.bspc.2021.102940_b0110) 2016
Moghadamfalahi (10.1016/j.bspc.2021.102940_b0010) 2017; 65
Bousseta (10.1016/j.bspc.2021.102940_b0200) 2018; 39
Zhang (10.1016/j.bspc.2021.102940_b0190) 2019; 7
Nolte (10.1016/j.bspc.2021.102940_b0175) 2004; 115
Gaxiola-Tirado (10.1016/j.bspc.2021.102940_b0065) 2018; 10
Deng (10.1016/j.bspc.2021.102940_b0005) 2020; 28
Jiang (10.1016/j.bspc.2021.102940_b0185) 2019; 19
Ding (10.1016/j.bspc.2021.102940_b0115) 2015; 2015
Khanna (10.1016/j.bspc.2021.102940_b0135) 2015; 49
McEvoy (10.1016/j.bspc.2021.102940_b0040) 1998; 8
Rodrigues (10.1016/j.bspc.2021.102940_b0060) 2019; 57
Shamsi (10.1016/j.bspc.2021.102940_b0070) 2021; 18
Mannan (10.1016/j.bspc.2021.102940_b0165) 2018; 6
Kolda (10.1016/j.bspc.2021.102940_b0080) 2009; 51
Montez (10.1016/j.bspc.2021.102940_b0140) 2006; 33
Bamdad (10.1016/j.bspc.2021.102940_b0035) 2015; 10
Khanmohammadi (10.1016/j.bspc.2021.102940_b0155) 2017; 91
Jain (10.1016/j.bspc.2021.102940_b0170) 2000; 22
Huang (10.1016/j.bspc.2021.102940_b0105) 2006; 70
Saini (10.1016/j.bspc.2021.102940_b0130) 2020; 7
Lowet (10.1016/j.bspc.2021.102940_b0180) 2016; 11
Kübler (10.1016/j.bspc.2021.102940_b0030) 2001; 127
Ai (10.1016/j.bspc.2021.102940_b0195) 2019; 16
Rosales (10.1016/j.bspc.2021.102940_b0145) 2015; 13
Wolpaw (10.1016/j.bspc.2021.102940_b0020) 2002; 113
10.1016/j.bspc.2021.102940_b0050
Lange (10.1016/j.bspc.2021.102940_b0015) 2016; 26
10.1016/j.bspc.2021.102940_b0090
Stam (10.1016/j.bspc.2021.102940_b0150) 2002; 163
Gu (10.1016/j.bspc.2021.102940_b0055) 2020; 436
Huang (10.1016/j.bspc.2021.102940_b0120) 2010; 74
Niso (10.1016/j.bspc.2021.102940_b0160) 2013; 11
References_xml – volume: 18
  start-page: 016015
  year: 2021
  ident: b0070
  article-title: Early classification of motor tasks using dynamic functional connectivity graphs from EEG
  publication-title: J. Neural Eng.
– volume: 163
  start-page: 236
  year: 2002
  end-page: 251
  ident: b0150
  article-title: Synchronization likelihood: An unbiased measure of generalized synchronization in multivariate data sets
  publication-title: Physica D
– volume: 6
  start-page: 30630
  year: 2018
  end-page: 30652
  ident: b0165
  article-title: Identification and removal of physiological artifacts from electroencephalogram signals: A review
  publication-title: IEEE Access
– volume: 10
  start-page: 355
  year: 2015
  end-page: 364
  ident: b0035
  article-title: Application of BCI systems in neurorehabilitation: A scoping review
  publication-title: Disability and Rehabilitation: Assistive Technology.
– volume: 40
  start-page: 359
  year: 2018
  end-page: 365
  ident: b0075
  article-title: Can graph metrics be used for EEG-BCIs based on hand motor imagery?
  publication-title: Biomed. Signal Process. Control.
– volume: 7
  start-page: 35
  year: 2020
  end-page: 40
  ident: b0130
  article-title: Effective automated method for detection and suppression of muscle artefacts from single-channel EEG signal
  publication-title: Healthcare Technol. Lett.
– volume: 49
  start-page: 105
  year: 2015
  end-page: 113
  ident: b0135
  article-title: Microstates in resting-state EEG: Current status and future directions
  publication-title: Neurosci. Biobehav. Rev.
– volume: 20
  start-page: 526
  year: 2012
  end-page: 538
  ident: b0100
  article-title: Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 22
  start-page: 4
  year: 2000
  end-page: 37
  ident: b0170
  article-title: Statistical pattern recognition: A review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 65
  start-page: 5381
  year: 2017
  end-page: 5392
  ident: b0010
  article-title: An Active RBSE Framework to Generate Optimal Stimulus Sequences in a BCI for Spelling
  publication-title: IEEE Trans. Signal Process.
– volume: 8
  start-page: 563
  year: 1998
  end-page: 574
  ident: b0040
  article-title: Dynamic cortical networks of verbal and spatial working memory: Effects of memory load and task practice
  publication-title: Cereb. Cortex
– volume: 91
  start-page: 80
  year: 2017
  end-page: 95
  ident: b0155
  article-title: An improved synchronization likelihood method for quantifying neuronal synchrony
  publication-title: Comput. Biol. Med.
– volume: 115
  start-page: 2292
  year: 2004
  end-page: 2307
  ident: b0175
  article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency
  publication-title: Clin. Neurophysiol.
– volume: 70
  start-page: 95
  year: 1996
  end-page: 103
  ident: b0045
  article-title: Contrast of neuronal activity between the supplemental motor area and other cortical motor areas
  publication-title: Adv. Neurol.
– volume: 33
  start-page: 1117
  year: 2006
  end-page: 1125
  ident: b0140
  article-title: Synchronization likelihood with explicit time-frequency priors
  publication-title: NeuroImage.
– volume: 26
  start-page: 374
  year: 2016
  end-page: 381
  ident: b0015
  article-title: Classification of Electroencephalogram Data from Hand Grasp and Release Movements for BCI Controlled Prosthesis
  publication-title: Procedia Technol.
– volume: 127
  start-page: 358
  year: 2001
  end-page: 375
  ident: b0030
  article-title: Brain-computer communication: Unlocking the locked in
  publication-title: Psychol. Bull.
– volume: 74
  start-page: 155
  year: 2010
  end-page: 163
  ident: b0120
  article-title: Optimization method based extreme learning machine for classification
  publication-title: Neurocomputing.
– volume: 11
  start-page: 405
  year: 2013
  end-page: 434
  ident: b0160
  article-title: HERMES: Towards an integrated toolbox to characterize functional and effective brain connectivity
  publication-title: Neuroinformatics.
– volume: 57
  start-page: 1709
  year: 2019
  end-page: 1725
  ident: b0060
  article-title: Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces
  publication-title: Med. Biol. Eng. Compu.
– volume: 7
  start-page: 1
  year: 2015
  end-page: 2
  ident: b0025
  article-title: Alternative Techniques of Neural Signal Processing in Neuroengineering
  publication-title: Cognitive Computation.
– volume: 28
  start-page: 328
  year: 2020
  end-page: 338
  ident: b0005
  article-title: A Bayesian Shared Control Approach for Wheelchair Robot with Brain Machine Interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b0105
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing.
– reference: B. Elasuty, S. Eldawlatly, Dynamic Bayesian Networks for EEG motor imagery feature extraction, in: Int. IEEE/EMBS Conf. Neural Eng. NER, 2015: pp. 170–173. https://doi.org/10.1109/NER.2015.7146587.
– volume: 16
  start-page: 026032
  year: 2019
  ident: b0195
  article-title: Feature extraction of four-class motor imagery EEG signals based on functional brain network
  publication-title: J. Neural Eng.
– reference: M. Hamedi, S.H. Salleh, S.B. Samdin, A.M. Noor, Motor imagery brain functional connectivity analysis via coherence, in: IEEE 2015 International Conference on Signal and Image Processing Applications, ICSIPA 2015 - Proceedings, 2016: pp. 269–273. https://doi.org/10.1109/ICSIPA.2015.7412202.
– start-page: 176
  year: 2016
  end-page: 184
  ident: b0110
  article-title: Classification Based on Multilayer Extreme Learning Machine for Motor Imagery Task from EEG Signals, in
  publication-title: Procedia Comput. Sci.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 11
  ident: b0115
  article-title: Deep Extreme Learning Machine and Its Application in EEG Classification
  publication-title: Mathematical Problems in Engineering.
– volume: 51
  start-page: 455
  year: 2009
  end-page: 500
  ident: b0080
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
– volume: 20
  start-page: 369
  year: 2020
  end-page: 376
  ident: b0125
  article-title: An Effective and Robust Framework for Ocular Artifact Removal from Single-Channel EEG Signal Based on Variational Mode Decomposition
  publication-title: IEEE Sensors Journal.
– volume: 436
  start-page: 93
  year: 2020
  end-page: 109
  ident: b0055
  article-title: EEG-based Classification of Lower Limb Motor Imagery with Brain Network Analysis
  publication-title: Neuroscience
– volume: 97
  start-page: 131
  year: 2000
  end-page: 141
  ident: b0095
  article-title: Optimal portfolio choice under a liability constraint
  publication-title: Ann. Oper. Res.
– volume: 10
  start-page: 776
  year: 2018
  end-page: 783
  ident: b0065
  article-title: Using the Partial Directed Coherence to Assess Functional Connectivity in Electroencephalography Data for Brain-Computer Interfaces
  publication-title: IEEE Transactions on Cognitive and Developmental Systems.
– volume: 39
  start-page: 129
  year: 2018
  end-page: 135
  ident: b0200
  article-title: EEG Based Brain Computer Interface for Controlling a Robot Arm Movement Through Thought
  publication-title: Irbm.
– volume: 13
  start-page: 245
  year: 2015
  end-page: 258
  ident: b0145
  article-title: An Efficient Implementation of the Synchronization Likelihood Algorithm for Functional Connectivity
  publication-title: Neuroinformatics.
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: b0020
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
– volume: 7
  start-page: 74490
  year: 2019
  end-page: 74499
  ident: b0190
  article-title: Using Brain Network Features to Increase the Classification Accuracy of MI-BCI Inefficiency Subject
  publication-title: IEEE Access
– volume: 11
  start-page: e0146443
  year: 2016
  ident: b0180
  article-title: Quantifying neural oscillatory synchronization: A comparison between spectral coherence and phase-locking value approaches
  publication-title: PLoS ONE
– volume: 19
  start-page: 1
  year: 2019
  end-page: 18
  ident: b0185
  article-title: Removal of artifacts from EEG signals: A review
  publication-title: Sensors (Switzerland)
– volume: 21
  start-page: 1253
  year: 2000
  end-page: 1278
  ident: b0085
  article-title: A multilinear singular value decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 10
  start-page: 355
  issue: 5
  year: 2015
  ident: 10.1016/j.bspc.2021.102940_b0035
  article-title: Application of BCI systems in neurorehabilitation: A scoping review
  publication-title: Disability and Rehabilitation: Assistive Technology.
– volume: 65
  start-page: 5381
  issue: 20
  year: 2017
  ident: 10.1016/j.bspc.2021.102940_b0010
  article-title: An Active RBSE Framework to Generate Optimal Stimulus Sequences in a BCI for Spelling
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2728500
– volume: 49
  start-page: 105
  year: 2015
  ident: 10.1016/j.bspc.2021.102940_b0135
  article-title: Microstates in resting-state EEG: Current status and future directions
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2014.12.010
– volume: 115
  start-page: 2292
  issue: 10
  year: 2004
  ident: 10.1016/j.bspc.2021.102940_b0175
  article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.04.029
– volume: 7
  start-page: 74490
  year: 2019
  ident: 10.1016/j.bspc.2021.102940_b0190
  article-title: Using Brain Network Features to Increase the Classification Accuracy of MI-BCI Inefficiency Subject
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917327
– volume: 97
  start-page: 131
  year: 2000
  ident: 10.1016/j.bspc.2021.102940_b0095
  article-title: Optimal portfolio choice under a liability constraint
  publication-title: Ann. Oper. Res.
  doi: 10.1023/A:1018996712442
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.bspc.2021.102940_b0115
  article-title: Deep Extreme Learning Machine and Its Application in EEG Classification
  publication-title: Mathematical Problems in Engineering.
– volume: 7
  start-page: 35
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2021.102940_b0130
  article-title: Effective automated method for detection and suppression of muscle artefacts from single-channel EEG signal
  publication-title: Healthcare Technol. Lett.
  doi: 10.1049/htl.2019.0053
– volume: 127
  start-page: 358
  year: 2001
  ident: 10.1016/j.bspc.2021.102940_b0030
  article-title: Brain-computer communication: Unlocking the locked in
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.127.3.358
– volume: 21
  start-page: 1253
  issue: 4
  year: 2000
  ident: 10.1016/j.bspc.2021.102940_b0085
  article-title: A multilinear singular value decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896305696
– volume: 6
  start-page: 30630
  year: 2018
  ident: 10.1016/j.bspc.2021.102940_b0165
  article-title: Identification and removal of physiological artifacts from electroencephalogram signals: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2842082
– volume: 16
  start-page: 026032
  issue: 2
  year: 2019
  ident: 10.1016/j.bspc.2021.102940_b0195
  article-title: Feature extraction of four-class motor imagery EEG signals based on functional brain network
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0328
– volume: 13
  start-page: 245
  issue: 2
  year: 2015
  ident: 10.1016/j.bspc.2021.102940_b0145
  article-title: An Efficient Implementation of the Synchronization Likelihood Algorithm for Functional Connectivity
  publication-title: Neuroinformatics.
  doi: 10.1007/s12021-014-9251-4
– ident: 10.1016/j.bspc.2021.102940_b0090
  doi: 10.1109/NER.2015.7146587
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: 10.1016/j.bspc.2021.102940_b0020
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 20
  start-page: 526
  issue: 4
  year: 2012
  ident: 10.1016/j.bspc.2021.102940_b0100
  article-title: Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2184838
– volume: 11
  start-page: 405
  issue: 4
  year: 2013
  ident: 10.1016/j.bspc.2021.102940_b0160
  article-title: HERMES: Towards an integrated toolbox to characterize functional and effective brain connectivity
  publication-title: Neuroinformatics.
  doi: 10.1007/s12021-013-9186-1
– volume: 8
  start-page: 563
  year: 1998
  ident: 10.1016/j.bspc.2021.102940_b0040
  article-title: Dynamic cortical networks of verbal and spatial working memory: Effects of memory load and task practice
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/8.7.563
– volume: 163
  start-page: 236
  issue: 3-4
  year: 2002
  ident: 10.1016/j.bspc.2021.102940_b0150
  article-title: Synchronization likelihood: An unbiased measure of generalized synchronization in multivariate data sets
  publication-title: Physica D
  doi: 10.1016/S0167-2789(01)00386-4
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 10.1016/j.bspc.2021.102940_b0080
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 39
  start-page: 129
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2021.102940_b0200
  article-title: EEG Based Brain Computer Interface for Controlling a Robot Arm Movement Through Thought
  publication-title: Irbm.
  doi: 10.1016/j.irbm.2018.02.001
– volume: 436
  start-page: 93
  year: 2020
  ident: 10.1016/j.bspc.2021.102940_b0055
  article-title: EEG-based Classification of Lower Limb Motor Imagery with Brain Network Analysis
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2020.04.006
– volume: 10
  start-page: 776
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2021.102940_b0065
  article-title: Using the Partial Directed Coherence to Assess Functional Connectivity in Electroencephalography Data for Brain-Computer Interfaces
  publication-title: IEEE Transactions on Cognitive and Developmental Systems.
  doi: 10.1109/TCDS.2017.2777180
– volume: 70
  start-page: 95
  year: 1996
  ident: 10.1016/j.bspc.2021.102940_b0045
  article-title: Contrast of neuronal activity between the supplemental motor area and other cortical motor areas
  publication-title: Adv. Neurol.
– volume: 22
  start-page: 4
  year: 2000
  ident: 10.1016/j.bspc.2021.102940_b0170
  article-title: Statistical pattern recognition: A review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.824819
– volume: 18
  start-page: 016015
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2021.102940_b0070
  article-title: Early classification of motor tasks using dynamic functional connectivity graphs from EEG
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abce70
– volume: 19
  start-page: 1
  year: 2019
  ident: 10.1016/j.bspc.2021.102940_b0185
  article-title: Removal of artifacts from EEG signals: A review
  publication-title: Sensors (Switzerland)
– volume: 70
  start-page: 489
  issue: 1-3
  year: 2006
  ident: 10.1016/j.bspc.2021.102940_b0105
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2005.12.126
– volume: 74
  start-page: 155
  issue: 1-3
  year: 2010
  ident: 10.1016/j.bspc.2021.102940_b0120
  article-title: Optimization method based extreme learning machine for classification
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2010.02.019
– volume: 11
  start-page: e0146443
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2021.102940_b0180
  article-title: Quantifying neural oscillatory synchronization: A comparison between spectral coherence and phase-locking value approaches
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0146443
– volume: 33
  start-page: 1117
  issue: 4
  year: 2006
  ident: 10.1016/j.bspc.2021.102940_b0140
  article-title: Synchronization likelihood with explicit time-frequency priors
  publication-title: NeuroImage.
  doi: 10.1016/j.neuroimage.2006.06.066
– start-page: 176
  year: 2016
  ident: 10.1016/j.bspc.2021.102940_b0110
  article-title: Classification Based on Multilayer Extreme Learning Machine for Motor Imagery Task from EEG Signals, in
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.07.422
– volume: 28
  start-page: 328
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.102940_b0005
  article-title: A Bayesian Shared Control Approach for Wheelchair Robot with Brain Machine Interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2958076
– ident: 10.1016/j.bspc.2021.102940_b0050
  doi: 10.1109/ICSIPA.2015.7412202
– volume: 57
  start-page: 1709
  issue: 8
  year: 2019
  ident: 10.1016/j.bspc.2021.102940_b0060
  article-title: Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces
  publication-title: Med. Biol. Eng. Compu.
  doi: 10.1007/s11517-019-01989-w
– volume: 20
  start-page: 369
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.102940_b0125
  article-title: An Effective and Robust Framework for Ocular Artifact Removal from Single-Channel EEG Signal Based on Variational Mode Decomposition
  publication-title: IEEE Sensors Journal.
  doi: 10.1109/JSEN.2019.2942153
– volume: 40
  start-page: 359
  year: 2018
  ident: 10.1016/j.bspc.2021.102940_b0075
  article-title: Can graph metrics be used for EEG-BCIs based on hand motor imagery?
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2017.09.026
– volume: 91
  start-page: 80
  year: 2017
  ident: 10.1016/j.bspc.2021.102940_b0155
  article-title: An improved synchronization likelihood method for quantifying neuronal synchrony
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.022
– volume: 7
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.bspc.2021.102940_b0025
  article-title: Alternative Techniques of Neural Signal Processing in Neuroengineering
  publication-title: Cognitive Computation.
  doi: 10.1007/s12559-015-9317-0
– volume: 26
  start-page: 374
  year: 2016
  ident: 10.1016/j.bspc.2021.102940_b0015
  article-title: Classification of Electroencephalogram Data from Hand Grasp and Release Movements for BCI Controlled Prosthesis
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2016.08.048
SSID ssj0048714
Score 2.3412569
Snippet •A tensor model of the dynamic brain functional network is proposed.•This method relies on the changing of the interaction of various brain regions.•Orthogonal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102940
SubjectTerms Brain-computer interface
Dynamic brain functional network
Motor imagery
Tensor decomposition
Title Tensor-based dynamic brain functional network for motor imagery classification
URI https://dx.doi.org/10.1016/j.bspc.2021.102940
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg7eJHY3j30cS7FUxV5sobclT6jottR68OJvN7PZLQrSg5eFXRJYJsnMN-GbbxC6TiKmc6cs0bnhhHvMQRSjjBjGXZQZ4aiERPFpnIym_GEmZi00aGphgFZZ-_7g0ytvXX_p1dbsLefz3rPH0knmsxOftIAoSVXBzlPoYnD7taF5eDxe6XvDYAKj68KZwPFS70uQMaQxKBjkcAHyV3D6EXCGB2i_Roq4H37mELVseYT2fugHHqPxxCehixWBUGSwCc3lsYKuDxgCVrjnw2WgemOPT7FfGf-cv4F0xSfWgJ2BLFStzwmaDu8mgxGpGyQQzaJoTbjTCc8pVS7zcVjaSEh_vIRwsdEqtlJqKkXiuE1kLp1SuRUmVixVoHtHuWWnqF0uSnuGMM9illJlnE4lV85JkRqZu4xlCVSjqg6KG8sUulYPhyYWr0VDE3spwJoFWLMI1uygm82cZdDO2DpaNAYvfu2Awjv3LfPO_znvAu3CWyDzXaL2evVhrzzAWKtutYO6aKd__zgafwOlWtCF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IHtSD8Rnx2YM3U9ntYx9HQySowEVIuG36TDAKBPHgxd9uZ7sQTAwHL3vYnSabaTvzTfP1G4Rukojp3ClLdG444R5zEMUoI4ZxF2VGOCqhUOz1k86QP43EqIZay7swQKusYn-I6WW0rt40K282Z-Nx88Vj6STz1YkvWkCUxJdAW1zQFCqwu-8Vz8MD8lLgG6wJmFc3ZwLJS33MQMeQxiBhkMMJyF_ZaS3jtPfRXgUV8X34mwNUs5NDtLsmIHiE-gNfhU7nBHKRwSZ0l8cK2j5gyFjhoA9PAtcbe4CK_dT45_gdtCu-sAbwDGyhcoKO0bD9MGh1SNUhgWgWRQvCnU54TqlymU_E0kZC-v0lhIuNVrGVUlMpEsdtInPplMqtMLFiqQLhO8otO0H1yXRiTxHmWcxSqozTqeTKOSlSI3OXsSyB66iqgeKlZwpdyYdDF4u3YskTey3AmwV4swjebKDb1ZhZEM_YaC2WDi9-LYHCR_cN487-Oe4abXcGvW7Rfew_n6Md-BKYfReovph_2kuPNhbqqlxNP6X80ho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor-based+dynamic+brain+functional+network+for+motor+imagery+classification&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhang%2C+Qizhong&rft.au=Guo%2C+Bin&rft.au=Kong%2C+Wanzeng&rft.au=Xi%2C+Xugang&rft.date=2021-08-01&rft.issn=1746-8094&rft.volume=69&rft.spage=102940&rft_id=info:doi/10.1016%2Fj.bspc.2021.102940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon