MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier
The proposed MRI breast cancer diagnosis is comprised of the following four fundamental building phases: (1) pre-processing phase: In the first phase of the investigation, a preprocessing algorithm based on fuzzy Type-II is presented. It is adopted and used to improve the quality of the images and t...
Saved in:
| Published in | Applied soft computing Vol. 14; pp. 62 - 71 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.01.2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 |
| DOI | 10.1016/j.asoc.2013.08.011 |
Cover
| Abstract | The proposed MRI breast cancer diagnosis is comprised of the following four fundamental building phases: (1) pre-processing phase: In the first phase of the investigation, a preprocessing algorithm based on fuzzy Type-II is presented. It is adopted and used to improve the quality of the images and to make the segmentation and feature extraction phase more reliable, (2) segmentation phase: in the second phase, a segmentation algorithm using the adaptive ant-based segmentation technique is presented to segment breast MR images. This technique is an improved ant-based clustering algorithm for segmenting breast MR images, (3) feature extraction phase: twenty statistical-based features have been extracted, normalized and represented in a database as vector values, (4) classification phase: the last phase is the classification and prediction of new objects, it is dependent on the multilayer perceptron neural networks classifier. These four phases are described in detail in the following section along with the steps involved and the characteristics feature for each phase and the overall architecture of the introduced approach is described in above this figure. [Display omitted]
•Proposed a hybrid algorithm to classify the breast cancer images into two outcomes: Benign or Malignant.•An improved version of the classical ant-based clustering algorithm to segment the region of interest of breast images.•The overall accuracy offered by the employed hybrid technique confirms that the effectiveness and performance of the proposed hybrid system is high.
This article introduces a hybrid approach that combines the advantages of fuzzy sets, ant-based clustering and multilayer perceptron neural networks (MLPNN) classifier, in conjunction with statistical-based feature extraction technique. An application of breast cancer MRI imaging has been chosen and hybridization system has been applied to see their ability and accuracy to classify the breast cancer images into two outcomes: Benign or Malignant. The introduced hybrid system starts with an algorithm based on type-II fuzzy sets to enhance the contrast of the input images. This is followed by an improved version of the classical ant-based clustering algorithm, called adaptive ant-based clustering to identify target objects through an optimization methodology that maintains the optimum result during iterations. Then, more than twenty statistical-based features are extracted and normalized. Finally, a MLPNN classifier was employed to evaluate the ability of the lesion descriptors for discrimination of different regions of interest to determine whether the cancer is Benign or Malignant. To evaluate the performance of presented approach, we present tests on different breast MRI images. The experimental results obtained, show that the adaptive ant-based segmentation is superior to the classical ant-based clustering technique and the overall accuracy offered by the employed hybrid technique confirm that the effectiveness and performance of the proposed hybrid system is high. |
|---|---|
| AbstractList | The proposed MRI breast cancer diagnosis is comprised of the following four fundamental building phases: (1) pre-processing phase: In the first phase of the investigation, a preprocessing algorithm based on fuzzy Type-II is presented. It is adopted and used to improve the quality of the images and to make the segmentation and feature extraction phase more reliable, (2) segmentation phase: in the second phase, a segmentation algorithm using the adaptive ant-based segmentation technique is presented to segment breast MR images. This technique is an improved ant-based clustering algorithm for segmenting breast MR images, (3) feature extraction phase: twenty statistical-based features have been extracted, normalized and represented in a database as vector values, (4) classification phase: the last phase is the classification and prediction of new objects, it is dependent on the multilayer perceptron neural networks classifier. These four phases are described in detail in the following section along with the steps involved and the characteristics feature for each phase and the overall architecture of the introduced approach is described in above this figure. [Display omitted]
•Proposed a hybrid algorithm to classify the breast cancer images into two outcomes: Benign or Malignant.•An improved version of the classical ant-based clustering algorithm to segment the region of interest of breast images.•The overall accuracy offered by the employed hybrid technique confirms that the effectiveness and performance of the proposed hybrid system is high.
This article introduces a hybrid approach that combines the advantages of fuzzy sets, ant-based clustering and multilayer perceptron neural networks (MLPNN) classifier, in conjunction with statistical-based feature extraction technique. An application of breast cancer MRI imaging has been chosen and hybridization system has been applied to see their ability and accuracy to classify the breast cancer images into two outcomes: Benign or Malignant. The introduced hybrid system starts with an algorithm based on type-II fuzzy sets to enhance the contrast of the input images. This is followed by an improved version of the classical ant-based clustering algorithm, called adaptive ant-based clustering to identify target objects through an optimization methodology that maintains the optimum result during iterations. Then, more than twenty statistical-based features are extracted and normalized. Finally, a MLPNN classifier was employed to evaluate the ability of the lesion descriptors for discrimination of different regions of interest to determine whether the cancer is Benign or Malignant. To evaluate the performance of presented approach, we present tests on different breast MRI images. The experimental results obtained, show that the adaptive ant-based segmentation is superior to the classical ant-based clustering technique and the overall accuracy offered by the employed hybrid technique confirm that the effectiveness and performance of the proposed hybrid system is high. |
| Author | Azar, Ahmad Taher Shoman, Mahmoud Hassanien, Aboul Ella Moftah, Hossam M. |
| Author_xml | – sequence: 1 givenname: Aboul Ella surname: Hassanien fullname: Hassanien, Aboul Ella email: aboitcairo@gmail.com organization: Faculty of Computers and Information, Cairo University, Egypt – sequence: 2 givenname: Hossam M. surname: Moftah fullname: Moftah, Hossam M. email: hossamm@gmail.com organization: Faculty of Computers and Information, Beni Suef University, Beni Suef, Egypt – sequence: 3 givenname: Ahmad Taher surname: Azar fullname: Azar, Ahmad Taher email: ahmad_t_azar@yahoo.com organization: Faculty of Computers and Information, Benha University, Egypt – sequence: 4 givenname: Mahmoud surname: Shoman fullname: Shoman, Mahmoud organization: Faculty of Computers and Information, Cairo University, Egypt |
| BookMark | eNp9kM9KxDAQh4MoqKsv4Ckv0Jq03TQFLyL-WVAE0XOYJpM1azctSVbZF_C5zbKePHiaYYZvmN93Sg796JGQC85Kzri4XJUQR11WjNclkyXj_ICccNlWRSckP8z9XMii6RpxTE5jXLEMdZU8Id9PLwvaB4SYqAavMVDjYOnH6CJ93_bBGQrTFEbQ73QTnV9SMDAl94kUfCp6iGhoxOUafYLkRp_Hhq43Q3IDbPO5CYPGKYW88bgJMOSSvsbwEakeIEZnHYYzcmRhiHj-W2fk7e729eaheHy-X9xcPxa6ZiwVDVatET1Yw8xcdiCslWxupei7vum71lpWS2vmumVNJTopKovSQsta6EFrqGdE7u_qMMYY0Crt9m-nAG5QnKmdT7VSO59q51MxqbLPjFZ_0Cm4NYTt_9DVHsIc6jMHVVE7zJqNC6iTMqP7D_8BDGCWag |
| CitedBy_id | crossref_primary_10_4018_IJSKD_324164 crossref_primary_10_2174_0929867328666201228125208 crossref_primary_10_1002_ima_22130 crossref_primary_10_4018_ijsbbt_2013100105 crossref_primary_10_4018_IJSKD_301263 crossref_primary_10_1080_00051144_2023_2253064 crossref_primary_10_1186_s13638_019_1582_2 crossref_primary_10_4018_IJSKD_289036 crossref_primary_10_4018_IJSKD_290657 crossref_primary_10_1016_j_ceh_2020_11_002 crossref_primary_10_4018_IJSKD_315750 crossref_primary_10_1007_s11831_022_09785_w crossref_primary_10_1016_j_ins_2015_02_015 crossref_primary_10_3390_e21111110 crossref_primary_10_2174_2666255813999200915141534 crossref_primary_10_1186_s12911_018_0657_z crossref_primary_10_1007_s00521_018_3359_7 crossref_primary_10_1145_3345314 crossref_primary_10_1016_j_patcog_2017_08_004 crossref_primary_10_1007_s10278_018_00171_2 crossref_primary_10_1007_s11831_018_9257_4 crossref_primary_10_1016_j_compbiomed_2014_03_003 crossref_primary_10_4018_IJSKD_289041 crossref_primary_10_1108_COMPEL_02_2021_0031 crossref_primary_10_3390_sym12111758 crossref_primary_10_1016_j_jestch_2014_04_009 crossref_primary_10_1007_s13721_021_00290_x crossref_primary_10_1080_21681163_2024_2302387 crossref_primary_10_1007_s00521_016_2177_z crossref_primary_10_4018_IJSKD_330150 crossref_primary_10_1016_j_asoc_2018_07_060 crossref_primary_10_1007_s10064_022_02967_7 crossref_primary_10_4018_IJSSMET_323452 crossref_primary_10_1007_s13246_020_00902_2 crossref_primary_10_1007_s13748_019_00191_1 crossref_primary_10_1007_s10916_017_0887_0 crossref_primary_10_1016_j_jenvman_2022_115316 crossref_primary_10_1016_j_eswa_2017_11_057 crossref_primary_10_1016_j_asoc_2014_10_032 crossref_primary_10_1016_j_asoc_2018_05_033 crossref_primary_10_1016_j_mri_2016_11_020 crossref_primary_10_1016_j_bbe_2018_07_005 crossref_primary_10_4015_S1016237218500424 crossref_primary_10_1007_s11042_018_6005_6 crossref_primary_10_1016_j_cmpb_2019_04_026 crossref_primary_10_1038_s41598_022_25089_2 |
| Cites_doi | 10.1109/EIT.2007.4374523 10.1007/11559573_20 10.1016/j.compmedimag.2012.07.004 10.1109/3477.484436 10.1016/j.jal.2012.07.003 10.1016/j.asoc.2012.11.022 10.3233/HIS-2009-0092 10.3844/jcssp.2007.162.167 10.1016/j.compmedimag.2007.02.007 10.1016/j.eswa.2008.10.004 10.7763/LNSE.2013.V1.26 10.1007/BF01417909 10.1016/S0262-8856(00)00045-7 10.1016/j.engappai.2012.10.013 10.1007/978-3-642-35326-0_40 10.1016/j.patrec.2009.09.011 10.1371/journal.pone.0037018 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. |
| Copyright_xml | – notice: 2013 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2013.08.011 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 71 |
| ExternalDocumentID | 10_1016_j_asoc_2013_08_011 S1568494613002846 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-4e27d6bafd0d589a6ff805f86b9b4b97ff038fd5c704269862fe8fa707abacca3 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Thu Apr 24 23:07:39 EDT 2025 Wed Oct 01 01:39:23 EDT 2025 Fri Feb 23 02:28:01 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Magnetic resonance (MR) images Swarm intelligence Ant Colony Optimization (ACO) Segmentation Clustering Neural network classifier |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-4e27d6bafd0d589a6ff805f86b9b4b97ff038fd5c704269862fe8fa707abacca3 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2013_08_011 crossref_primary_10_1016_j_asoc_2013_08_011 elsevier_sciencedirect_doi_10_1016_j_asoc_2013_08_011 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2014 2014-1-00 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – month: 01 year: 2014 text: January 2014 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ganesan, Radhakrishnan (bib0075) 2009; 4 Qin, Jim (bib0090) 2005; 1 L. Zhang, Q. Cao, J. Lee, A novel ant-based clustering algorithm using Renyi entropy, Applied Soft Computing, Available online 5 December 2012. Akbar, Mirkamal, Aidin (bib0085) 2011; 7076 Hassanien, Kim (bib0005) 2012; 10 Betanzosa, Varelaa, Martinez (bib0045) 2000; 18 Clopinet, Elisseeff (bib0150) 2003; 3 Wei-Chang, Wei-Wen, Yuk (bib0070) 2009; 36 Karaks, Tez, Klc, Kuru, Guler (bib0120) 2013; 26 Hassanien (bib0130) 2009; 6 Dorigo, Maniezzo, Colorni (bib0105) 1996; 26 Behrens, Laue, Althaus, Boehler, Kuemmerlen, Hahn, Peitgen (bib0010) 2007; 31 Ensafi, Tizhoosh (bib0015) 2005; 3656 Wua, Lina, Moonb (bib0115) 2012; 36 Deneubourg, Aron, Goss, Pasteels (bib0140) 1990; 3 Ojola, Pietikainen (bib0155) 1999; 32 Chuang, Lin, Chang, Yang (bib0065) 2012; 7 Jain (bib0040) 2010; 31 Dheeba, Selvi (bib0080) 2013; 10 Hassanien, Soliman, El-Bendary (bib0030) 2011 Ali, Umi, Nor, Ibrahim (bib0035) 2012 Megahed, Ismail, Badr, Tolba (bib0060) 2012; 322 Aswin, Deepak (bib0025) 2013; 1 Deneubourg, Goss, Franks, Sendova-Franks, Detrain, Chretien (bib0135) 1991 Lumer, Faieta (bib0145) 1994 Marco, Mauro, Thomas (bib0100) 2006 Yeh, Chang, Chung (bib0125) 2009; 36 Tolba, Mostafa, Gharib, Gharib, Abdel-Megeed Salem (bib0020) 2003 Hussain (bib0050) 2011; 3 Tewolde, Hanna (bib0055) 2007 Salima, Mohamed (bib0095) 2007; 3 Hassanien (10.1016/j.asoc.2013.08.011_bib0005) 2012; 10 Qin (10.1016/j.asoc.2013.08.011_bib0090) 2005; 1 Akbar (10.1016/j.asoc.2013.08.011_bib0085) 2011; 7076 Deneubourg (10.1016/j.asoc.2013.08.011_bib0140) 1990; 3 Tewolde (10.1016/j.asoc.2013.08.011_bib0055) 2007 Ali (10.1016/j.asoc.2013.08.011_bib0035) 2012 Yeh (10.1016/j.asoc.2013.08.011_bib0125) 2009; 36 Wua (10.1016/j.asoc.2013.08.011_bib0115) 2012; 36 Salima (10.1016/j.asoc.2013.08.011_bib0095) 2007; 3 Behrens (10.1016/j.asoc.2013.08.011_bib0010) 2007; 31 Dorigo (10.1016/j.asoc.2013.08.011_bib0105) 1996; 26 Betanzosa (10.1016/j.asoc.2013.08.011_bib0045) 2000; 18 Aswin (10.1016/j.asoc.2013.08.011_bib0025) 2013; 1 Marco (10.1016/j.asoc.2013.08.011_bib0100) 2006 Ensafi (10.1016/j.asoc.2013.08.011_bib0015) 2005; 3656 Hassanien (10.1016/j.asoc.2013.08.011_bib0130) 2009; 6 10.1016/j.asoc.2013.08.011_bib0110 Chuang (10.1016/j.asoc.2013.08.011_bib0065) 2012; 7 Karaks (10.1016/j.asoc.2013.08.011_bib0120) 2013; 26 Lumer (10.1016/j.asoc.2013.08.011_bib0145) 1994 Wei-Chang (10.1016/j.asoc.2013.08.011_bib0070) 2009; 36 Hassanien (10.1016/j.asoc.2013.08.011_bib0030) 2011 Clopinet (10.1016/j.asoc.2013.08.011_bib0150) 2003; 3 Deneubourg (10.1016/j.asoc.2013.08.011_bib0135) 1991 Jain (10.1016/j.asoc.2013.08.011_bib0040) 2010; 31 Ojola (10.1016/j.asoc.2013.08.011_bib0155) 1999; 32 Hussain (10.1016/j.asoc.2013.08.011_bib0050) 2011; 3 Dheeba (10.1016/j.asoc.2013.08.011_bib0080) 2013; 10 Megahed (10.1016/j.asoc.2013.08.011_bib0060) 2012; 322 Ganesan (10.1016/j.asoc.2013.08.011_bib0075) 2009; 4 Tolba (10.1016/j.asoc.2013.08.011_bib0020) 2003 |
| References_xml | – volume: 10 year: 2013 ident: bib0080 article-title: A CAD system for breast cancer diagnosis using modified genetic algorithm optimized artificial neural network publication-title: Swarm, Evolutionary, and Memetic Computing – start-page: 1556 year: 2006 end-page: 1603 ident: bib0100 article-title: Ant colony optimization – artificial ants as a computational intelligence technique publication-title: IEEE Computational Intelligence Magazine – year: 1994 ident: bib0145 article-title: Diversity and adaptation in populations of clustering ants publication-title: From Animals to Animats 3, Proceedings of the 3rd International Conference on the Simulation of Adaptive Behavior – year: 2012 ident: bib0035 article-title: Breast MRI tumour segmentation using modified automatic seeded region growing based on particle swarm optimization image clustering publication-title: Online Conference on Soft Computing in Industrial Applications Anyware on Earth, December 10–21 – volume: 18 start-page: 1045 year: 2000 ident: bib0045 article-title: Analysis and evolution of hard and fuzzy clustering segmentation techniques in burned patient images publication-title: Image and Vision Computing – volume: 1 year: 2005 ident: bib0090 article-title: A genetic algorithm for clustering on image data publication-title: International Journal of Information and Mathematical Sciences – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: bib0040 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognition Letters – volume: 7 start-page: e37018 year: 2012 ident: bib0065 article-title: An improved PSO algorithm for generating protective SNP barcodes in breast cancer publication-title: PLoS ONE – reference: L. Zhang, Q. Cao, J. Lee, A novel ant-based clustering algorithm using Renyi entropy, Applied Soft Computing, Available online 5 December 2012. – volume: 6 start-page: 155 year: 2009 end-page: 167 ident: bib0130 article-title: Intelligence techniques for prostate ultrasound image analysis publication-title: International Journal of Hybrid Intelligent Systems – volume: 32 start-page: 447 year: 1999 end-page: 486 ident: bib0155 article-title: Unsupervised texture segmentation using feature distribution publication-title: Pattern Recognition – start-page: 443 year: 2007 end-page: 446 ident: bib0055 article-title: Particle Swarm Optimization for classification of breast cancer data using single and multisurface methods of data separation publication-title: IEEE International Conference on Electro/Information Technology – volume: 3 start-page: 162 year: 2007 end-page: 167 ident: bib0095 article-title: An efficient ant algorithm for swarm-based image clustering publication-title: Journal of Computer Science – volume: 1 start-page: 117 year: 2013 end-page: 121 ident: bib0025 article-title: Medical diagnostics using cloud computing with fuzzylogic and uncertainty factors in mobile devices publication-title: Lecture Notes on Software Engineering – start-page: 77 year: 2011 end-page: 83 ident: bib0030 article-title: Contrast enhancement of breast MRI images based on fuzzy Type-II, soft computing models in industrial and environmental applications publication-title: 6th International Conference Soft Cmputing, vol. 87 – volume: 36 start-page: 627 year: 2012 end-page: 633 ident: bib0115 article-title: Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images publication-title: Computerized Medical Imaging and Graphics – volume: 3 year: 2011 ident: bib0050 article-title: Fuzzy clustering based malignant areas detection in noisy breast magnetic resonant (MR) images publication-title: International Journal of Academic Research – volume: 3656 start-page: 159 year: 2005 end-page: 166 ident: bib0015 article-title: Type-2 fuzzy image enhancement publication-title: Lecture Notes in Computer Science – volume: 31 start-page: 236 year: 2007 end-page: 247 ident: bib0010 article-title: Computer assistance for MR based diagnosis of breast cancer: present and future challenges publication-title: Computerized Medical Imaging and Graphics – volume: 26 start-page: 945 year: 2013 end-page: 950 ident: bib0120 article-title: A genetic algorithm model based on artificial neural network for prediction of the axillary lymph node status in breast cancer publication-title: Engineering Applications of Artificial Intelligence – volume: 4 start-page: 157 year: 2009 end-page: 161 ident: bib0075 article-title: Segmentation of computed tomography brain images using genetic algorithm publication-title: International Journal of Soft Computing – volume: 26 start-page: 29 year: 1996 end-page: 41 ident: bib0105 article-title: Ant system: optimization by a colony of cooperating agents publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib0150 article-title: An introduction to variable and feature selection publication-title: The Journal of Machine Learning Research – volume: 322 start-page: 401 year: 2012 end-page: 412 ident: bib0060 article-title: An enhanced cloud-based view materialization approach for peer-to-peer architecture publication-title: Communications in Computer and Information Science – volume: 36 start-page: 8204 year: 2009 end-page: 8211 ident: bib0070 article-title: A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method publication-title: Expert Systems with Applications – start-page: 165 year: 2003 end-page: 170 ident: bib0020 article-title: MR-Brain Image Segmentation Using Gaussian Multiresolution Analysis and the EM Algorithm publication-title: Proceedings of the 5th International Conference on Enterprise Information Systems (ICEIS) – volume: 10 start-page: 277 year: 2012 end-page: 284 ident: bib0005 article-title: Breast cancer MRI diagnosis approach using support vector machine and pulse coupled neural networks publication-title: Journal of Applied Logic – volume: 7076 start-page: 349 year: 2011 end-page: 357 ident: bib0085 article-title: A new method for medical image clustering using genetic algorithm publication-title: IJCSI International Journal of Computer Science Issues – volume: 36 start-page: 8204 year: 2009 end-page: 8211 ident: bib0125 article-title: A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method publication-title: Expert Systems with Applications – year: 1991 ident: bib0135 article-title: The dynamic of collective sorting robot-like ants and ant-like robots publication-title: SAB 90-1st Conf. on Simulation of Adaptive Behavior: From Animals to Animats – volume: 3 start-page: 159 year: 1990 end-page: 168 ident: bib0140 article-title: The self-organizing exploratory pattern of the argentine ant publication-title: Journal of Insect Behavior – start-page: 443 year: 2007 ident: 10.1016/j.asoc.2013.08.011_bib0055 article-title: Particle Swarm Optimization for classification of breast cancer data using single and multisurface methods of data separation publication-title: IEEE International Conference on Electro/Information Technology doi: 10.1109/EIT.2007.4374523 – volume: 3656 start-page: 159 year: 2005 ident: 10.1016/j.asoc.2013.08.011_bib0015 article-title: Type-2 fuzzy image enhancement publication-title: Lecture Notes in Computer Science doi: 10.1007/11559573_20 – volume: 36 start-page: 627 issue: 8 year: 2012 ident: 10.1016/j.asoc.2013.08.011_bib0115 article-title: Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2012.07.004 – volume: 10 year: 2013 ident: 10.1016/j.asoc.2013.08.011_bib0080 article-title: A CAD system for breast cancer diagnosis using modified genetic algorithm optimized artificial neural network publication-title: Swarm, Evolutionary, and Memetic Computing – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.asoc.2013.08.011_bib0150 article-title: An introduction to variable and feature selection publication-title: The Journal of Machine Learning Research – volume: 26 start-page: 29 year: 1996 ident: 10.1016/j.asoc.2013.08.011_bib0105 article-title: Ant system: optimization by a colony of cooperating agents publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B doi: 10.1109/3477.484436 – year: 2012 ident: 10.1016/j.asoc.2013.08.011_bib0035 article-title: Breast MRI tumour segmentation using modified automatic seeded region growing based on particle swarm optimization image clustering – volume: 10 start-page: 277 issue: 4 year: 2012 ident: 10.1016/j.asoc.2013.08.011_bib0005 article-title: Breast cancer MRI diagnosis approach using support vector machine and pulse coupled neural networks publication-title: Journal of Applied Logic doi: 10.1016/j.jal.2012.07.003 – year: 1991 ident: 10.1016/j.asoc.2013.08.011_bib0135 article-title: The dynamic of collective sorting robot-like ants and ant-like robots – ident: 10.1016/j.asoc.2013.08.011_bib0110 doi: 10.1016/j.asoc.2012.11.022 – volume: 6 start-page: 155 issue: 3 year: 2009 ident: 10.1016/j.asoc.2013.08.011_bib0130 article-title: Intelligence techniques for prostate ultrasound image analysis publication-title: International Journal of Hybrid Intelligent Systems doi: 10.3233/HIS-2009-0092 – volume: 3 start-page: 162 issue: 3 year: 2007 ident: 10.1016/j.asoc.2013.08.011_bib0095 article-title: An efficient ant algorithm for swarm-based image clustering publication-title: Journal of Computer Science doi: 10.3844/jcssp.2007.162.167 – year: 1994 ident: 10.1016/j.asoc.2013.08.011_bib0145 article-title: Diversity and adaptation in populations of clustering ants – volume: 31 start-page: 236 issue: 4–5 year: 2007 ident: 10.1016/j.asoc.2013.08.011_bib0010 article-title: Computer assistance for MR based diagnosis of breast cancer: present and future challenges publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2007.02.007 – volume: 36 start-page: 8204 issue: 4 year: 2009 ident: 10.1016/j.asoc.2013.08.011_bib0070 article-title: A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.10.004 – volume: 7076 start-page: 349 year: 2011 ident: 10.1016/j.asoc.2013.08.011_bib0085 article-title: A new method for medical image clustering using genetic algorithm publication-title: IJCSI International Journal of Computer Science Issues – start-page: 1556 year: 2006 ident: 10.1016/j.asoc.2013.08.011_bib0100 article-title: Ant colony optimization – artificial ants as a computational intelligence technique publication-title: IEEE Computational Intelligence Magazine – volume: 1 start-page: 117 issue: 1 year: 2013 ident: 10.1016/j.asoc.2013.08.011_bib0025 article-title: Medical diagnostics using cloud computing with fuzzylogic and uncertainty factors in mobile devices publication-title: Lecture Notes on Software Engineering doi: 10.7763/LNSE.2013.V1.26 – volume: 3 start-page: 159 issue: 2 year: 1990 ident: 10.1016/j.asoc.2013.08.011_bib0140 article-title: The self-organizing exploratory pattern of the argentine ant publication-title: Journal of Insect Behavior doi: 10.1007/BF01417909 – volume: 18 start-page: 1045 issue: 13 year: 2000 ident: 10.1016/j.asoc.2013.08.011_bib0045 article-title: Analysis and evolution of hard and fuzzy clustering segmentation techniques in burned patient images publication-title: Image and Vision Computing doi: 10.1016/S0262-8856(00)00045-7 – volume: 3 issue: 2 year: 2011 ident: 10.1016/j.asoc.2013.08.011_bib0050 article-title: Fuzzy clustering based malignant areas detection in noisy breast magnetic resonant (MR) images publication-title: International Journal of Academic Research – volume: 1 issue: 1 year: 2005 ident: 10.1016/j.asoc.2013.08.011_bib0090 article-title: A genetic algorithm for clustering on image data publication-title: International Journal of Information and Mathematical Sciences – volume: 26 start-page: 945 issue: 3 year: 2013 ident: 10.1016/j.asoc.2013.08.011_bib0120 article-title: A genetic algorithm model based on artificial neural network for prediction of the axillary lymph node status in breast cancer publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2012.10.013 – volume: 322 start-page: 401 year: 2012 ident: 10.1016/j.asoc.2013.08.011_bib0060 article-title: An enhanced cloud-based view materialization approach for peer-to-peer architecture publication-title: Communications in Computer and Information Science doi: 10.1007/978-3-642-35326-0_40 – volume: 36 start-page: 8204 issue: 4 year: 2009 ident: 10.1016/j.asoc.2013.08.011_bib0125 article-title: A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.10.004 – start-page: 165 year: 2003 ident: 10.1016/j.asoc.2013.08.011_bib0020 article-title: MR-Brain Image Segmentation Using Gaussian Multiresolution Analysis and the EM Algorithm – volume: 32 start-page: 447 year: 1999 ident: 10.1016/j.asoc.2013.08.011_bib0155 article-title: Unsupervised texture segmentation using feature distribution publication-title: Pattern Recognition – volume: 4 start-page: 157 issue: 4 year: 2009 ident: 10.1016/j.asoc.2013.08.011_bib0075 article-title: Segmentation of computed tomography brain images using genetic algorithm publication-title: International Journal of Soft Computing – volume: 31 start-page: 651 year: 2010 ident: 10.1016/j.asoc.2013.08.011_bib0040 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2009.09.011 – start-page: 77 year: 2011 ident: 10.1016/j.asoc.2013.08.011_bib0030 article-title: Contrast enhancement of breast MRI images based on fuzzy Type-II, soft computing models in industrial and environmental applications – volume: 7 start-page: e37018 issue: 5 year: 2012 ident: 10.1016/j.asoc.2013.08.011_bib0065 article-title: An improved PSO algorithm for generating protective SNP barcodes in breast cancer publication-title: PLoS ONE doi: 10.1371/journal.pone.0037018 |
| SSID | ssj0016928 |
| Score | 2.3286145 |
| Snippet | The proposed MRI breast cancer diagnosis is comprised of the following four fundamental building phases: (1) pre-processing phase: In the first phase of the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 62 |
| SubjectTerms | Ant Colony Optimization (ACO) Clustering Magnetic resonance (MR) images Neural network classifier Segmentation Swarm intelligence |
| Title | MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier |
| URI | https://dx.doi.org/10.1016/j.asoc.2013.08.011 |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YENhSatndhjVVG1PCpUqNQtsuO4FJVQtWVgYeR3c5c4CCTUgSmKc5asu_M9ou_uCDmH68_Bs4WeFqoFCYrmnuQi8MKmZQlrRpDm5gDZQdgbsesxH1dIp6yFQVils_2FTc-ttVtpOG425tNp4wEyD8EkwwAYnCTDttuMRTjF4PLjG-YRhDKfr4rEHlK7wpkC46WAAwjvauVtPIPgb-f0w-F0d8iWixRpuzjMLqmk2R7ZLqcwUHcp98nn3bBPNWLLVzRBGS6oKfBz0yV9eseKLFp2DqcIc59QZdQczRwFtnroxwxdppMXV4aUwbKhOdJwpiAip_MC_LKAL9j-Eg6VFeDxJU0w-J5aOP4BGXWvHjs9z01X8BJg2MpjaTMyoVbW-IYLqUJrhc-tCLXUTMvIWr8lrOFJhGmWhMzHpsKqyI-UViD31iGpZq9ZekQo54kwMgJ94JYFxgeyxAoNwTvYi1SGNRKUbI0T13ocJ2DM4hJj9hyjKGIURYxjMYOgRi6-98yLxhtrqXkprfiX-sTgGdbsO_7nvhOyCW-s-BdzSqqrxVt6BtHJStdz9auTjXZneHuPz_5Nb_AFOSnpUA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2woNGltxx5RBWp5DTykbpEdx6WohKotAwsjv5u7xKlAQgys9lmy7s73sL67I-QYnj8HzyYCI3UbEhTDA8VlFIiWYylrxZDmFgDZW9F9ZJd93q-RTlULg7BKb_tLm15Ya7_S9NxsjofD5j1kHpIphgEwOEkmFsgi460YM7DTjznOIxKqGLCK1AGS-8qZEuSlgQWI72oXfTyj6Hfv9M3jXKyRFR8q0rPyNuukluUbZLUaw0D9q9wknzd3PWoQXD6jKQpxQm0JoBtO6dM7lmTRqnU4RZz7gGqrx2jnKPA1QEdm6TQbvPg6pByWLS2ghiMNITkdl-iXCexg_0u4VF6ix6c0xeh76OD6W-Tx4vyh0w38eIUgBY7NApa1YiuMdja0XCotnJMhd1IYZZhRsXNhWzrL0xjzLAWpj8uk03EYa6NB8O1tUs9f82yHUM5TaVUMCsEdi2wIZKmTBqJ3MBiZEg0SVWxNUt97HEdgjJIKZPacoCgSFEWCczGjqEFO5mfGZeeNP6l5Ja3kh_4k4Br-OLf7z3NHZKn7cHOdXPdur_bIMuyw8mNmn9Rnk7fsAEKVmTksVPELX_HpUA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI+breast+cancer+diagnosis+hybrid+approach+using+adaptive+ant-based+segmentation+and+multilayer+perceptron+neural+networks+classifier&rft.jtitle=Applied+soft+computing&rft.au=Hassanien%2C+Aboul+Ella&rft.au=Moftah%2C+Hossam+M.&rft.au=Azar%2C+Ahmad+Taher&rft.au=Shoman%2C+Mahmoud&rft.date=2014-01-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=14&rft.spage=62&rft.epage=71&rft_id=info:doi/10.1016%2Fj.asoc.2013.08.011&rft.externalDocID=S1568494613002846 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |