MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier

The proposed MRI breast cancer diagnosis is comprised of the following four fundamental building phases: (1) pre-processing phase: In the first phase of the investigation, a preprocessing algorithm based on fuzzy Type-II is presented. It is adopted and used to improve the quality of the images and t...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 14; pp. 62 - 71
Main Authors Hassanien, Aboul Ella, Moftah, Hossam M., Azar, Ahmad Taher, Shoman, Mahmoud
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2014
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2013.08.011

Cover

Abstract The proposed MRI breast cancer diagnosis is comprised of the following four fundamental building phases: (1) pre-processing phase: In the first phase of the investigation, a preprocessing algorithm based on fuzzy Type-II is presented. It is adopted and used to improve the quality of the images and to make the segmentation and feature extraction phase more reliable, (2) segmentation phase: in the second phase, a segmentation algorithm using the adaptive ant-based segmentation technique is presented to segment breast MR images. This technique is an improved ant-based clustering algorithm for segmenting breast MR images, (3) feature extraction phase: twenty statistical-based features have been extracted, normalized and represented in a database as vector values, (4) classification phase: the last phase is the classification and prediction of new objects, it is dependent on the multilayer perceptron neural networks classifier. These four phases are described in detail in the following section along with the steps involved and the characteristics feature for each phase and the overall architecture of the introduced approach is described in above this figure. [Display omitted] •Proposed a hybrid algorithm to classify the breast cancer images into two outcomes: Benign or Malignant.•An improved version of the classical ant-based clustering algorithm to segment the region of interest of breast images.•The overall accuracy offered by the employed hybrid technique confirms that the effectiveness and performance of the proposed hybrid system is high. This article introduces a hybrid approach that combines the advantages of fuzzy sets, ant-based clustering and multilayer perceptron neural networks (MLPNN) classifier, in conjunction with statistical-based feature extraction technique. An application of breast cancer MRI imaging has been chosen and hybridization system has been applied to see their ability and accuracy to classify the breast cancer images into two outcomes: Benign or Malignant. The introduced hybrid system starts with an algorithm based on type-II fuzzy sets to enhance the contrast of the input images. This is followed by an improved version of the classical ant-based clustering algorithm, called adaptive ant-based clustering to identify target objects through an optimization methodology that maintains the optimum result during iterations. Then, more than twenty statistical-based features are extracted and normalized. Finally, a MLPNN classifier was employed to evaluate the ability of the lesion descriptors for discrimination of different regions of interest to determine whether the cancer is Benign or Malignant. To evaluate the performance of presented approach, we present tests on different breast MRI images. The experimental results obtained, show that the adaptive ant-based segmentation is superior to the classical ant-based clustering technique and the overall accuracy offered by the employed hybrid technique confirm that the effectiveness and performance of the proposed hybrid system is high.
AbstractList The proposed MRI breast cancer diagnosis is comprised of the following four fundamental building phases: (1) pre-processing phase: In the first phase of the investigation, a preprocessing algorithm based on fuzzy Type-II is presented. It is adopted and used to improve the quality of the images and to make the segmentation and feature extraction phase more reliable, (2) segmentation phase: in the second phase, a segmentation algorithm using the adaptive ant-based segmentation technique is presented to segment breast MR images. This technique is an improved ant-based clustering algorithm for segmenting breast MR images, (3) feature extraction phase: twenty statistical-based features have been extracted, normalized and represented in a database as vector values, (4) classification phase: the last phase is the classification and prediction of new objects, it is dependent on the multilayer perceptron neural networks classifier. These four phases are described in detail in the following section along with the steps involved and the characteristics feature for each phase and the overall architecture of the introduced approach is described in above this figure. [Display omitted] •Proposed a hybrid algorithm to classify the breast cancer images into two outcomes: Benign or Malignant.•An improved version of the classical ant-based clustering algorithm to segment the region of interest of breast images.•The overall accuracy offered by the employed hybrid technique confirms that the effectiveness and performance of the proposed hybrid system is high. This article introduces a hybrid approach that combines the advantages of fuzzy sets, ant-based clustering and multilayer perceptron neural networks (MLPNN) classifier, in conjunction with statistical-based feature extraction technique. An application of breast cancer MRI imaging has been chosen and hybridization system has been applied to see their ability and accuracy to classify the breast cancer images into two outcomes: Benign or Malignant. The introduced hybrid system starts with an algorithm based on type-II fuzzy sets to enhance the contrast of the input images. This is followed by an improved version of the classical ant-based clustering algorithm, called adaptive ant-based clustering to identify target objects through an optimization methodology that maintains the optimum result during iterations. Then, more than twenty statistical-based features are extracted and normalized. Finally, a MLPNN classifier was employed to evaluate the ability of the lesion descriptors for discrimination of different regions of interest to determine whether the cancer is Benign or Malignant. To evaluate the performance of presented approach, we present tests on different breast MRI images. The experimental results obtained, show that the adaptive ant-based segmentation is superior to the classical ant-based clustering technique and the overall accuracy offered by the employed hybrid technique confirm that the effectiveness and performance of the proposed hybrid system is high.
Author Azar, Ahmad Taher
Shoman, Mahmoud
Hassanien, Aboul Ella
Moftah, Hossam M.
Author_xml – sequence: 1
  givenname: Aboul Ella
  surname: Hassanien
  fullname: Hassanien, Aboul Ella
  email: aboitcairo@gmail.com
  organization: Faculty of Computers and Information, Cairo University, Egypt
– sequence: 2
  givenname: Hossam M.
  surname: Moftah
  fullname: Moftah, Hossam M.
  email: hossamm@gmail.com
  organization: Faculty of Computers and Information, Beni Suef University, Beni Suef, Egypt
– sequence: 3
  givenname: Ahmad Taher
  surname: Azar
  fullname: Azar, Ahmad Taher
  email: ahmad_t_azar@yahoo.com
  organization: Faculty of Computers and Information, Benha University, Egypt
– sequence: 4
  givenname: Mahmoud
  surname: Shoman
  fullname: Shoman, Mahmoud
  organization: Faculty of Computers and Information, Cairo University, Egypt
BookMark eNp9kM9KxDAQh4MoqKsv4Ckv0Jq03TQFLyL-WVAE0XOYJpM1azctSVbZF_C5zbKePHiaYYZvmN93Sg796JGQC85Kzri4XJUQR11WjNclkyXj_ICccNlWRSckP8z9XMii6RpxTE5jXLEMdZU8Id9PLwvaB4SYqAavMVDjYOnH6CJ93_bBGQrTFEbQ73QTnV9SMDAl94kUfCp6iGhoxOUafYLkRp_Hhq43Q3IDbPO5CYPGKYW88bgJMOSSvsbwEakeIEZnHYYzcmRhiHj-W2fk7e729eaheHy-X9xcPxa6ZiwVDVatET1Yw8xcdiCslWxupei7vum71lpWS2vmumVNJTopKovSQsta6EFrqGdE7u_qMMYY0Crt9m-nAG5QnKmdT7VSO59q51MxqbLPjFZ_0Cm4NYTt_9DVHsIc6jMHVVE7zJqNC6iTMqP7D_8BDGCWag
CitedBy_id crossref_primary_10_4018_IJSKD_324164
crossref_primary_10_2174_0929867328666201228125208
crossref_primary_10_1002_ima_22130
crossref_primary_10_4018_ijsbbt_2013100105
crossref_primary_10_4018_IJSKD_301263
crossref_primary_10_1080_00051144_2023_2253064
crossref_primary_10_1186_s13638_019_1582_2
crossref_primary_10_4018_IJSKD_289036
crossref_primary_10_4018_IJSKD_290657
crossref_primary_10_1016_j_ceh_2020_11_002
crossref_primary_10_4018_IJSKD_315750
crossref_primary_10_1007_s11831_022_09785_w
crossref_primary_10_1016_j_ins_2015_02_015
crossref_primary_10_3390_e21111110
crossref_primary_10_2174_2666255813999200915141534
crossref_primary_10_1186_s12911_018_0657_z
crossref_primary_10_1007_s00521_018_3359_7
crossref_primary_10_1145_3345314
crossref_primary_10_1016_j_patcog_2017_08_004
crossref_primary_10_1007_s10278_018_00171_2
crossref_primary_10_1007_s11831_018_9257_4
crossref_primary_10_1016_j_compbiomed_2014_03_003
crossref_primary_10_4018_IJSKD_289041
crossref_primary_10_1108_COMPEL_02_2021_0031
crossref_primary_10_3390_sym12111758
crossref_primary_10_1016_j_jestch_2014_04_009
crossref_primary_10_1007_s13721_021_00290_x
crossref_primary_10_1080_21681163_2024_2302387
crossref_primary_10_1007_s00521_016_2177_z
crossref_primary_10_4018_IJSKD_330150
crossref_primary_10_1016_j_asoc_2018_07_060
crossref_primary_10_1007_s10064_022_02967_7
crossref_primary_10_4018_IJSSMET_323452
crossref_primary_10_1007_s13246_020_00902_2
crossref_primary_10_1007_s13748_019_00191_1
crossref_primary_10_1007_s10916_017_0887_0
crossref_primary_10_1016_j_jenvman_2022_115316
crossref_primary_10_1016_j_eswa_2017_11_057
crossref_primary_10_1016_j_asoc_2014_10_032
crossref_primary_10_1016_j_asoc_2018_05_033
crossref_primary_10_1016_j_mri_2016_11_020
crossref_primary_10_1016_j_bbe_2018_07_005
crossref_primary_10_4015_S1016237218500424
crossref_primary_10_1007_s11042_018_6005_6
crossref_primary_10_1016_j_cmpb_2019_04_026
crossref_primary_10_1038_s41598_022_25089_2
Cites_doi 10.1109/EIT.2007.4374523
10.1007/11559573_20
10.1016/j.compmedimag.2012.07.004
10.1109/3477.484436
10.1016/j.jal.2012.07.003
10.1016/j.asoc.2012.11.022
10.3233/HIS-2009-0092
10.3844/jcssp.2007.162.167
10.1016/j.compmedimag.2007.02.007
10.1016/j.eswa.2008.10.004
10.7763/LNSE.2013.V1.26
10.1007/BF01417909
10.1016/S0262-8856(00)00045-7
10.1016/j.engappai.2012.10.013
10.1007/978-3-642-35326-0_40
10.1016/j.patrec.2009.09.011
10.1371/journal.pone.0037018
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2013.08.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 71
ExternalDocumentID 10_1016_j_asoc_2013_08_011
S1568494613002846
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-4e27d6bafd0d589a6ff805f86b9b4b97ff038fd5c704269862fe8fa707abacca3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:07:39 EDT 2025
Wed Oct 01 01:39:23 EDT 2025
Fri Feb 23 02:28:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Magnetic resonance (MR) images
Swarm intelligence
Ant Colony Optimization (ACO)
Segmentation
Clustering
Neural network classifier
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-4e27d6bafd0d589a6ff805f86b9b4b97ff038fd5c704269862fe8fa707abacca3
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2013_08_011
crossref_primary_10_1016_j_asoc_2013_08_011
elsevier_sciencedirect_doi_10_1016_j_asoc_2013_08_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2014
2014-1-00
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ganesan, Radhakrishnan (bib0075) 2009; 4
Qin, Jim (bib0090) 2005; 1
L. Zhang, Q. Cao, J. Lee, A novel ant-based clustering algorithm using Renyi entropy, Applied Soft Computing, Available online 5 December 2012.
Akbar, Mirkamal, Aidin (bib0085) 2011; 7076
Hassanien, Kim (bib0005) 2012; 10
Betanzosa, Varelaa, Martinez (bib0045) 2000; 18
Clopinet, Elisseeff (bib0150) 2003; 3
Wei-Chang, Wei-Wen, Yuk (bib0070) 2009; 36
Karaks, Tez, Klc, Kuru, Guler (bib0120) 2013; 26
Hassanien (bib0130) 2009; 6
Dorigo, Maniezzo, Colorni (bib0105) 1996; 26
Behrens, Laue, Althaus, Boehler, Kuemmerlen, Hahn, Peitgen (bib0010) 2007; 31
Ensafi, Tizhoosh (bib0015) 2005; 3656
Wua, Lina, Moonb (bib0115) 2012; 36
Deneubourg, Aron, Goss, Pasteels (bib0140) 1990; 3
Ojola, Pietikainen (bib0155) 1999; 32
Chuang, Lin, Chang, Yang (bib0065) 2012; 7
Jain (bib0040) 2010; 31
Dheeba, Selvi (bib0080) 2013; 10
Hassanien, Soliman, El-Bendary (bib0030) 2011
Ali, Umi, Nor, Ibrahim (bib0035) 2012
Megahed, Ismail, Badr, Tolba (bib0060) 2012; 322
Aswin, Deepak (bib0025) 2013; 1
Deneubourg, Goss, Franks, Sendova-Franks, Detrain, Chretien (bib0135) 1991
Lumer, Faieta (bib0145) 1994
Marco, Mauro, Thomas (bib0100) 2006
Yeh, Chang, Chung (bib0125) 2009; 36
Tolba, Mostafa, Gharib, Gharib, Abdel-Megeed Salem (bib0020) 2003
Hussain (bib0050) 2011; 3
Tewolde, Hanna (bib0055) 2007
Salima, Mohamed (bib0095) 2007; 3
Hassanien (10.1016/j.asoc.2013.08.011_bib0005) 2012; 10
Qin (10.1016/j.asoc.2013.08.011_bib0090) 2005; 1
Akbar (10.1016/j.asoc.2013.08.011_bib0085) 2011; 7076
Deneubourg (10.1016/j.asoc.2013.08.011_bib0140) 1990; 3
Tewolde (10.1016/j.asoc.2013.08.011_bib0055) 2007
Ali (10.1016/j.asoc.2013.08.011_bib0035) 2012
Yeh (10.1016/j.asoc.2013.08.011_bib0125) 2009; 36
Wua (10.1016/j.asoc.2013.08.011_bib0115) 2012; 36
Salima (10.1016/j.asoc.2013.08.011_bib0095) 2007; 3
Behrens (10.1016/j.asoc.2013.08.011_bib0010) 2007; 31
Dorigo (10.1016/j.asoc.2013.08.011_bib0105) 1996; 26
Betanzosa (10.1016/j.asoc.2013.08.011_bib0045) 2000; 18
Aswin (10.1016/j.asoc.2013.08.011_bib0025) 2013; 1
Marco (10.1016/j.asoc.2013.08.011_bib0100) 2006
Ensafi (10.1016/j.asoc.2013.08.011_bib0015) 2005; 3656
Hassanien (10.1016/j.asoc.2013.08.011_bib0130) 2009; 6
10.1016/j.asoc.2013.08.011_bib0110
Chuang (10.1016/j.asoc.2013.08.011_bib0065) 2012; 7
Karaks (10.1016/j.asoc.2013.08.011_bib0120) 2013; 26
Lumer (10.1016/j.asoc.2013.08.011_bib0145) 1994
Wei-Chang (10.1016/j.asoc.2013.08.011_bib0070) 2009; 36
Hassanien (10.1016/j.asoc.2013.08.011_bib0030) 2011
Clopinet (10.1016/j.asoc.2013.08.011_bib0150) 2003; 3
Deneubourg (10.1016/j.asoc.2013.08.011_bib0135) 1991
Jain (10.1016/j.asoc.2013.08.011_bib0040) 2010; 31
Ojola (10.1016/j.asoc.2013.08.011_bib0155) 1999; 32
Hussain (10.1016/j.asoc.2013.08.011_bib0050) 2011; 3
Dheeba (10.1016/j.asoc.2013.08.011_bib0080) 2013; 10
Megahed (10.1016/j.asoc.2013.08.011_bib0060) 2012; 322
Ganesan (10.1016/j.asoc.2013.08.011_bib0075) 2009; 4
Tolba (10.1016/j.asoc.2013.08.011_bib0020) 2003
References_xml – volume: 10
  year: 2013
  ident: bib0080
  article-title: A CAD system for breast cancer diagnosis using modified genetic algorithm optimized artificial neural network
  publication-title: Swarm, Evolutionary, and Memetic Computing
– start-page: 1556
  year: 2006
  end-page: 1603
  ident: bib0100
  article-title: Ant colony optimization – artificial ants as a computational intelligence technique
  publication-title: IEEE Computational Intelligence Magazine
– year: 1994
  ident: bib0145
  article-title: Diversity and adaptation in populations of clustering ants
  publication-title: From Animals to Animats 3, Proceedings of the 3rd International Conference on the Simulation of Adaptive Behavior
– year: 2012
  ident: bib0035
  article-title: Breast MRI tumour segmentation using modified automatic seeded region growing based on particle swarm optimization image clustering
  publication-title: Online Conference on Soft Computing in Industrial Applications Anyware on Earth, December 10–21
– volume: 18
  start-page: 1045
  year: 2000
  ident: bib0045
  article-title: Analysis and evolution of hard and fuzzy clustering segmentation techniques in burned patient images
  publication-title: Image and Vision Computing
– volume: 1
  year: 2005
  ident: bib0090
  article-title: A genetic algorithm for clustering on image data
  publication-title: International Journal of Information and Mathematical Sciences
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: bib0040
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognition Letters
– volume: 7
  start-page: e37018
  year: 2012
  ident: bib0065
  article-title: An improved PSO algorithm for generating protective SNP barcodes in breast cancer
  publication-title: PLoS ONE
– reference: L. Zhang, Q. Cao, J. Lee, A novel ant-based clustering algorithm using Renyi entropy, Applied Soft Computing, Available online 5 December 2012.
– volume: 6
  start-page: 155
  year: 2009
  end-page: 167
  ident: bib0130
  article-title: Intelligence techniques for prostate ultrasound image analysis
  publication-title: International Journal of Hybrid Intelligent Systems
– volume: 32
  start-page: 447
  year: 1999
  end-page: 486
  ident: bib0155
  article-title: Unsupervised texture segmentation using feature distribution
  publication-title: Pattern Recognition
– start-page: 443
  year: 2007
  end-page: 446
  ident: bib0055
  article-title: Particle Swarm Optimization for classification of breast cancer data using single and multisurface methods of data separation
  publication-title: IEEE International Conference on Electro/Information Technology
– volume: 3
  start-page: 162
  year: 2007
  end-page: 167
  ident: bib0095
  article-title: An efficient ant algorithm for swarm-based image clustering
  publication-title: Journal of Computer Science
– volume: 1
  start-page: 117
  year: 2013
  end-page: 121
  ident: bib0025
  article-title: Medical diagnostics using cloud computing with fuzzylogic and uncertainty factors in mobile devices
  publication-title: Lecture Notes on Software Engineering
– start-page: 77
  year: 2011
  end-page: 83
  ident: bib0030
  article-title: Contrast enhancement of breast MRI images based on fuzzy Type-II, soft computing models in industrial and environmental applications
  publication-title: 6th International Conference Soft Cmputing, vol. 87
– volume: 36
  start-page: 627
  year: 2012
  end-page: 633
  ident: bib0115
  article-title: Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images
  publication-title: Computerized Medical Imaging and Graphics
– volume: 3
  year: 2011
  ident: bib0050
  article-title: Fuzzy clustering based malignant areas detection in noisy breast magnetic resonant (MR) images
  publication-title: International Journal of Academic Research
– volume: 3656
  start-page: 159
  year: 2005
  end-page: 166
  ident: bib0015
  article-title: Type-2 fuzzy image enhancement
  publication-title: Lecture Notes in Computer Science
– volume: 31
  start-page: 236
  year: 2007
  end-page: 247
  ident: bib0010
  article-title: Computer assistance for MR based diagnosis of breast cancer: present and future challenges
  publication-title: Computerized Medical Imaging and Graphics
– volume: 26
  start-page: 945
  year: 2013
  end-page: 950
  ident: bib0120
  article-title: A genetic algorithm model based on artificial neural network for prediction of the axillary lymph node status in breast cancer
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 4
  start-page: 157
  year: 2009
  end-page: 161
  ident: bib0075
  article-title: Segmentation of computed tomography brain images using genetic algorithm
  publication-title: International Journal of Soft Computing
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: bib0105
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib0150
  article-title: An introduction to variable and feature selection
  publication-title: The Journal of Machine Learning Research
– volume: 322
  start-page: 401
  year: 2012
  end-page: 412
  ident: bib0060
  article-title: An enhanced cloud-based view materialization approach for peer-to-peer architecture
  publication-title: Communications in Computer and Information Science
– volume: 36
  start-page: 8204
  year: 2009
  end-page: 8211
  ident: bib0070
  article-title: A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method
  publication-title: Expert Systems with Applications
– start-page: 165
  year: 2003
  end-page: 170
  ident: bib0020
  article-title: MR-Brain Image Segmentation Using Gaussian Multiresolution Analysis and the EM Algorithm
  publication-title: Proceedings of the 5th International Conference on Enterprise Information Systems (ICEIS)
– volume: 10
  start-page: 277
  year: 2012
  end-page: 284
  ident: bib0005
  article-title: Breast cancer MRI diagnosis approach using support vector machine and pulse coupled neural networks
  publication-title: Journal of Applied Logic
– volume: 7076
  start-page: 349
  year: 2011
  end-page: 357
  ident: bib0085
  article-title: A new method for medical image clustering using genetic algorithm
  publication-title: IJCSI International Journal of Computer Science Issues
– volume: 36
  start-page: 8204
  year: 2009
  end-page: 8211
  ident: bib0125
  article-title: A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method
  publication-title: Expert Systems with Applications
– year: 1991
  ident: bib0135
  article-title: The dynamic of collective sorting robot-like ants and ant-like robots
  publication-title: SAB 90-1st Conf. on Simulation of Adaptive Behavior: From Animals to Animats
– volume: 3
  start-page: 159
  year: 1990
  end-page: 168
  ident: bib0140
  article-title: The self-organizing exploratory pattern of the argentine ant
  publication-title: Journal of Insect Behavior
– start-page: 443
  year: 2007
  ident: 10.1016/j.asoc.2013.08.011_bib0055
  article-title: Particle Swarm Optimization for classification of breast cancer data using single and multisurface methods of data separation
  publication-title: IEEE International Conference on Electro/Information Technology
  doi: 10.1109/EIT.2007.4374523
– volume: 3656
  start-page: 159
  year: 2005
  ident: 10.1016/j.asoc.2013.08.011_bib0015
  article-title: Type-2 fuzzy image enhancement
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/11559573_20
– volume: 36
  start-page: 627
  issue: 8
  year: 2012
  ident: 10.1016/j.asoc.2013.08.011_bib0115
  article-title: Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2012.07.004
– volume: 10
  year: 2013
  ident: 10.1016/j.asoc.2013.08.011_bib0080
  article-title: A CAD system for breast cancer diagnosis using modified genetic algorithm optimized artificial neural network
  publication-title: Swarm, Evolutionary, and Memetic Computing
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.asoc.2013.08.011_bib0150
  article-title: An introduction to variable and feature selection
  publication-title: The Journal of Machine Learning Research
– volume: 26
  start-page: 29
  year: 1996
  ident: 10.1016/j.asoc.2013.08.011_bib0105
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B
  doi: 10.1109/3477.484436
– year: 2012
  ident: 10.1016/j.asoc.2013.08.011_bib0035
  article-title: Breast MRI tumour segmentation using modified automatic seeded region growing based on particle swarm optimization image clustering
– volume: 10
  start-page: 277
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2013.08.011_bib0005
  article-title: Breast cancer MRI diagnosis approach using support vector machine and pulse coupled neural networks
  publication-title: Journal of Applied Logic
  doi: 10.1016/j.jal.2012.07.003
– year: 1991
  ident: 10.1016/j.asoc.2013.08.011_bib0135
  article-title: The dynamic of collective sorting robot-like ants and ant-like robots
– ident: 10.1016/j.asoc.2013.08.011_bib0110
  doi: 10.1016/j.asoc.2012.11.022
– volume: 6
  start-page: 155
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2013.08.011_bib0130
  article-title: Intelligence techniques for prostate ultrasound image analysis
  publication-title: International Journal of Hybrid Intelligent Systems
  doi: 10.3233/HIS-2009-0092
– volume: 3
  start-page: 162
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2013.08.011_bib0095
  article-title: An efficient ant algorithm for swarm-based image clustering
  publication-title: Journal of Computer Science
  doi: 10.3844/jcssp.2007.162.167
– year: 1994
  ident: 10.1016/j.asoc.2013.08.011_bib0145
  article-title: Diversity and adaptation in populations of clustering ants
– volume: 31
  start-page: 236
  issue: 4–5
  year: 2007
  ident: 10.1016/j.asoc.2013.08.011_bib0010
  article-title: Computer assistance for MR based diagnosis of breast cancer: present and future challenges
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2007.02.007
– volume: 36
  start-page: 8204
  issue: 4
  year: 2009
  ident: 10.1016/j.asoc.2013.08.011_bib0070
  article-title: A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.10.004
– volume: 7076
  start-page: 349
  year: 2011
  ident: 10.1016/j.asoc.2013.08.011_bib0085
  article-title: A new method for medical image clustering using genetic algorithm
  publication-title: IJCSI International Journal of Computer Science Issues
– start-page: 1556
  year: 2006
  ident: 10.1016/j.asoc.2013.08.011_bib0100
  article-title: Ant colony optimization – artificial ants as a computational intelligence technique
  publication-title: IEEE Computational Intelligence Magazine
– volume: 1
  start-page: 117
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2013.08.011_bib0025
  article-title: Medical diagnostics using cloud computing with fuzzylogic and uncertainty factors in mobile devices
  publication-title: Lecture Notes on Software Engineering
  doi: 10.7763/LNSE.2013.V1.26
– volume: 3
  start-page: 159
  issue: 2
  year: 1990
  ident: 10.1016/j.asoc.2013.08.011_bib0140
  article-title: The self-organizing exploratory pattern of the argentine ant
  publication-title: Journal of Insect Behavior
  doi: 10.1007/BF01417909
– volume: 18
  start-page: 1045
  issue: 13
  year: 2000
  ident: 10.1016/j.asoc.2013.08.011_bib0045
  article-title: Analysis and evolution of hard and fuzzy clustering segmentation techniques in burned patient images
  publication-title: Image and Vision Computing
  doi: 10.1016/S0262-8856(00)00045-7
– volume: 3
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2013.08.011_bib0050
  article-title: Fuzzy clustering based malignant areas detection in noisy breast magnetic resonant (MR) images
  publication-title: International Journal of Academic Research
– volume: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.asoc.2013.08.011_bib0090
  article-title: A genetic algorithm for clustering on image data
  publication-title: International Journal of Information and Mathematical Sciences
– volume: 26
  start-page: 945
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2013.08.011_bib0120
  article-title: A genetic algorithm model based on artificial neural network for prediction of the axillary lymph node status in breast cancer
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2012.10.013
– volume: 322
  start-page: 401
  year: 2012
  ident: 10.1016/j.asoc.2013.08.011_bib0060
  article-title: An enhanced cloud-based view materialization approach for peer-to-peer architecture
  publication-title: Communications in Computer and Information Science
  doi: 10.1007/978-3-642-35326-0_40
– volume: 36
  start-page: 8204
  issue: 4
  year: 2009
  ident: 10.1016/j.asoc.2013.08.011_bib0125
  article-title: A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.10.004
– start-page: 165
  year: 2003
  ident: 10.1016/j.asoc.2013.08.011_bib0020
  article-title: MR-Brain Image Segmentation Using Gaussian Multiresolution Analysis and the EM Algorithm
– volume: 32
  start-page: 447
  year: 1999
  ident: 10.1016/j.asoc.2013.08.011_bib0155
  article-title: Unsupervised texture segmentation using feature distribution
  publication-title: Pattern Recognition
– volume: 4
  start-page: 157
  issue: 4
  year: 2009
  ident: 10.1016/j.asoc.2013.08.011_bib0075
  article-title: Segmentation of computed tomography brain images using genetic algorithm
  publication-title: International Journal of Soft Computing
– volume: 31
  start-page: 651
  year: 2010
  ident: 10.1016/j.asoc.2013.08.011_bib0040
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2009.09.011
– start-page: 77
  year: 2011
  ident: 10.1016/j.asoc.2013.08.011_bib0030
  article-title: Contrast enhancement of breast MRI images based on fuzzy Type-II, soft computing models in industrial and environmental applications
– volume: 7
  start-page: e37018
  issue: 5
  year: 2012
  ident: 10.1016/j.asoc.2013.08.011_bib0065
  article-title: An improved PSO algorithm for generating protective SNP barcodes in breast cancer
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0037018
SSID ssj0016928
Score 2.3286145
Snippet The proposed MRI breast cancer diagnosis is comprised of the following four fundamental building phases: (1) pre-processing phase: In the first phase of the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 62
SubjectTerms Ant Colony Optimization (ACO)
Clustering
Magnetic resonance (MR) images
Neural network classifier
Segmentation
Swarm intelligence
Title MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier
URI https://dx.doi.org/10.1016/j.asoc.2013.08.011
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YENhSatndhjVVG1PCpUqNQtsuO4FJVQtWVgYeR3c5c4CCTUgSmKc5asu_M9ou_uCDmH68_Bs4WeFqoFCYrmnuQi8MKmZQlrRpDm5gDZQdgbsesxH1dIp6yFQVils_2FTc-ttVtpOG425tNp4wEyD8EkwwAYnCTDttuMRTjF4PLjG-YRhDKfr4rEHlK7wpkC46WAAwjvauVtPIPgb-f0w-F0d8iWixRpuzjMLqmk2R7ZLqcwUHcp98nn3bBPNWLLVzRBGS6oKfBz0yV9eseKLFp2DqcIc59QZdQczRwFtnroxwxdppMXV4aUwbKhOdJwpiAip_MC_LKAL9j-Eg6VFeDxJU0w-J5aOP4BGXWvHjs9z01X8BJg2MpjaTMyoVbW-IYLqUJrhc-tCLXUTMvIWr8lrOFJhGmWhMzHpsKqyI-UViD31iGpZq9ZekQo54kwMgJ94JYFxgeyxAoNwTvYi1SGNRKUbI0T13ocJ2DM4hJj9hyjKGIURYxjMYOgRi6-98yLxhtrqXkprfiX-sTgGdbsO_7nvhOyCW-s-BdzSqqrxVt6BtHJStdz9auTjXZneHuPz_5Nb_AFOSnpUA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2woNGltxx5RBWp5DTykbpEdx6WohKotAwsjv5u7xKlAQgys9lmy7s73sL67I-QYnj8HzyYCI3UbEhTDA8VlFIiWYylrxZDmFgDZW9F9ZJd93q-RTlULg7BKb_tLm15Ya7_S9NxsjofD5j1kHpIphgEwOEkmFsgi460YM7DTjznOIxKqGLCK1AGS-8qZEuSlgQWI72oXfTyj6Hfv9M3jXKyRFR8q0rPyNuukluUbZLUaw0D9q9wknzd3PWoQXD6jKQpxQm0JoBtO6dM7lmTRqnU4RZz7gGqrx2jnKPA1QEdm6TQbvPg6pByWLS2ghiMNITkdl-iXCexg_0u4VF6ix6c0xeh76OD6W-Tx4vyh0w38eIUgBY7NApa1YiuMdja0XCotnJMhd1IYZZhRsXNhWzrL0xjzLAWpj8uk03EYa6NB8O1tUs9f82yHUM5TaVUMCsEdi2wIZKmTBqJ3MBiZEg0SVWxNUt97HEdgjJIKZPacoCgSFEWCczGjqEFO5mfGZeeNP6l5Ja3kh_4k4Br-OLf7z3NHZKn7cHOdXPdur_bIMuyw8mNmn9Rnk7fsAEKVmTksVPELX_HpUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI+breast+cancer+diagnosis+hybrid+approach+using+adaptive+ant-based+segmentation+and+multilayer+perceptron+neural+networks+classifier&rft.jtitle=Applied+soft+computing&rft.au=Hassanien%2C+Aboul+Ella&rft.au=Moftah%2C+Hossam+M.&rft.au=Azar%2C+Ahmad+Taher&rft.au=Shoman%2C+Mahmoud&rft.date=2014-01-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=14&rft.spage=62&rft.epage=71&rft_id=info:doi/10.1016%2Fj.asoc.2013.08.011&rft.externalDocID=S1568494613002846
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon