A self-adaptive and gradient-based cuckoo search algorithm for global optimization

The stochastic global optimization (SGO) methods like particle swarm optimization (PSO), genetic algorithm (GA), and cuckoo search (CS) have been widely used in a variety of optimization problems partly because of the ability to find the global optimum. Most existing SGO algorithms are designed for...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 122; p. 108774
Main Authors She, Bin, Fournier, Aimé, Yao, Mengjie, Wang, Yaojun, Hu, Guangmin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2022
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2022.108774

Cover

Abstract The stochastic global optimization (SGO) methods like particle swarm optimization (PSO), genetic algorithm (GA), and cuckoo search (CS) have been widely used in a variety of optimization problems partly because of the ability to find the global optimum. Most existing SGO algorithms are designed for gradient-free problems and ignore the gradient information even if the gradient is readily available, resulting in low efficiency and high computational cost. In this paper, we introduce a hybrid self-adaptive gradient-based cuckoo search (HAGCS) to tackle this limitation. HAGCS first takes a gradient-based local random walk to explore the search space, and then uses gradient-based local optimization (GBLO) to find a local minimum near to the current best solution, which is more efficient and precise than standard CS. Additionally, in order to avoid premature convergence potentially being caused by the use of the gradient, we introduce two novel self-adaptation and diversity promotion strategies onto HAGCS. These help HAGCS find proper control parameters and prevent HAGCS from getting stuck at local minima or stationary points. Lastly, we compare HAGCS with PSO, GA, CS, and 5 refinements of CS on 12 benchmark functions. Compared to the other methods, the experiment results show that the proposed method HAGCS has about 2 times faster convergence speed, higher accuracy, and 27.5% higher success rate of finding the global minimum in high-dimension problems. Even when the dimension of the problem is 1000, HAGCS still offers a success rate of 64% to find the global minima accurately. •The proposed method combines both stochastic and gradient-based optimization.•The self-adaptation strategy expands the range of applications of this method.•The proposed method has a much higher success rate of finding the global minima.•The proposed method converges much more quickly than the reference methods.•The proposed method is useful for large-scale complex optimization problems.
AbstractList The stochastic global optimization (SGO) methods like particle swarm optimization (PSO), genetic algorithm (GA), and cuckoo search (CS) have been widely used in a variety of optimization problems partly because of the ability to find the global optimum. Most existing SGO algorithms are designed for gradient-free problems and ignore the gradient information even if the gradient is readily available, resulting in low efficiency and high computational cost. In this paper, we introduce a hybrid self-adaptive gradient-based cuckoo search (HAGCS) to tackle this limitation. HAGCS first takes a gradient-based local random walk to explore the search space, and then uses gradient-based local optimization (GBLO) to find a local minimum near to the current best solution, which is more efficient and precise than standard CS. Additionally, in order to avoid premature convergence potentially being caused by the use of the gradient, we introduce two novel self-adaptation and diversity promotion strategies onto HAGCS. These help HAGCS find proper control parameters and prevent HAGCS from getting stuck at local minima or stationary points. Lastly, we compare HAGCS with PSO, GA, CS, and 5 refinements of CS on 12 benchmark functions. Compared to the other methods, the experiment results show that the proposed method HAGCS has about 2 times faster convergence speed, higher accuracy, and 27.5% higher success rate of finding the global minimum in high-dimension problems. Even when the dimension of the problem is 1000, HAGCS still offers a success rate of 64% to find the global minima accurately. •The proposed method combines both stochastic and gradient-based optimization.•The self-adaptation strategy expands the range of applications of this method.•The proposed method has a much higher success rate of finding the global minima.•The proposed method converges much more quickly than the reference methods.•The proposed method is useful for large-scale complex optimization problems.
ArticleNumber 108774
Author Wang, Yaojun
Yao, Mengjie
She, Bin
Hu, Guangmin
Fournier, Aimé
Author_xml – sequence: 1
  givenname: Bin
  orcidid: 0000-0002-5181-5555
  surname: She
  fullname: She, Bin
  email: shebin3@huawei.com
  organization: Ascend Lab, Huawei Technologies, Hangzhou 310053, China
– sequence: 2
  givenname: Aimé
  orcidid: 0000-0002-5872-8307
  surname: Fournier
  fullname: Fournier, Aimé
  email: aime.fournier@ucdenver.edu
  organization: Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver 80204, USA
– sequence: 3
  givenname: Mengjie
  surname: Yao
  fullname: Yao, Mengjie
  email: celeste.mengjie@gmail.com
  organization: Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver 80204, USA
– sequence: 4
  givenname: Yaojun
  surname: Wang
  fullname: Wang, Yaojun
  email: yaojun.wang@uestc.edu.cn
  organization: School of Resources and Environments, Center for Information Geoscience, UESTC, Chengdu 611731, China
– sequence: 5
  givenname: Guangmin
  surname: Hu
  fullname: Hu, Guangmin
  email: hgm@uestc.edu.cn
  organization: School of Resources and Environments, Center for Information Geoscience, UESTC, Chengdu 611731, China
BookMark eNp9kM1KAzEQgINUsK2-gKe8wNZk_7ILXkpRKxQE0XOYTLJt6nZTkljQpze1njz0NMPMfMPMNyGjwQ2GkFvOZpzx-m47g-BwlrM8T4VGiPKCjHkj8qytGz5KeVU3WdmW9RWZhLBlCWrzZkxe5zSYvstAwz7ag6EwaLr2oK0ZYqYgGE3xEz-cS3PgcUOhXztv42ZHO-fpuncKeuoSvLPfEK0brsllB30wN39xSt4fH94Wy2z18vS8mK8yLBiLWamFqXVVQoNY16rCinFRGVWqVuVti4qrotWqwAIKwbtCV6mlNYIQTBhkxZQ0p73oXQjedBJt_L0gerC95Ewe3citPLqRRzfy5Cah-T907-0O_Nd56P4EmfTUwRovAyZLaLT1BqPUzp7DfwAkk4F_
CitedBy_id crossref_primary_10_3934_math_20221091
crossref_primary_10_1016_j_eswa_2023_121704
crossref_primary_10_1016_j_swevo_2023_101459
crossref_primary_10_3934_era_2024296
crossref_primary_10_1016_j_procs_2022_12_012
crossref_primary_10_3390_app14156802
crossref_primary_10_1016_j_asoc_2023_110513
crossref_primary_10_1007_s44196_023_00322_6
crossref_primary_10_1177_14613484241242737
crossref_primary_10_1016_j_aej_2025_02_046
Cites_doi 10.1016/j.asoc.2019.105749
10.1007/s00500-010-0644-5
10.1016/j.asoc.2019.105865
10.1016/j.asoc.2020.106443
10.1016/j.asoc.2019.04.028
10.1016/j.asoc.2010.06.017
10.1016/j.asoc.2018.03.004
10.1016/j.chaos.2011.06.004
10.1016/j.asoc.2019.04.016
10.1016/j.cie.2013.08.003
10.1016/j.asoc.2011.05.008
10.1155/2014/493740
10.1016/j.cor.2011.09.026
10.1016/j.asoc.2020.106161
10.1016/j.swevo.2016.03.001
10.1016/j.asoc.2020.106451
10.1016/j.engappai.2017.05.017
10.1109/TEVC.2009.2014613
10.1016/j.asoc.2011.08.037
10.1162/evco.2009.17.3.437
10.1016/j.asoc.2021.107181
10.1016/j.jcp.2007.06.008
10.1016/j.neucom.2011.03.034
10.1007/s00521-016-2464-8
10.1016/j.neucom.2014.04.071
10.1016/j.swevo.2017.09.001
10.1016/j.asoc.2017.02.034
10.1007/s00521-013-1367-1
10.1007/s10489-007-0091-x
10.1016/j.swevo.2014.07.001
10.1016/j.asoc.2019.105720
10.1016/j.aci.2017.09.001
10.1016/j.ins.2014.11.042
10.1016/j.asoc.2018.04.027
10.1016/j.apm.2015.10.052
10.1016/j.neucom.2013.03.074
10.1155/2013/718015
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2022.108774
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2022_108774
S1568494622002010
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-4d7e6d54a8cc66b5c50175eb4b9b299cb1b39db3c3a371f3d5b4bddca7707ec03
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:56:12 EDT 2025
Wed Oct 29 21:23:13 EDT 2025
Fri Feb 23 02:38:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Self-adaptive
Cuckoo search
Global optimization
Large-scale optimization
Gradient-based optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-4d7e6d54a8cc66b5c50175eb4b9b299cb1b39db3c3a371f3d5b4bddca7707ec03
ORCID 0000-0002-5181-5555
0000-0002-5872-8307
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2022_108774
crossref_primary_10_1016_j_asoc_2022_108774
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_108774
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kamoona, Patra (b14) 2019; 85
Fister Jr., Fister, Fister (b9) 2013; 4
Kok, Sandrock (b47) 2009; 17
Huang, Ding, Yu, Wang, Lu (b28) 2016; 40
Nocedal, Wright (b36) 2006
Lu, Tang, Sendhoff, Yao (b26) 2014; 146
Abdel-Basset, Hessin, Abdel-Fatah (b32) 2018; 29
Gao, Gao, Zhang, Li (b8) 2021
Ong, Zainuddin (b16) 2019; 80
Nobile, Cazzaniga, Besozzi, Colombo, Mauri, Pasi (b27) 2018; 39
Mlakar, Fister Jr., Fister (b23) 2016; 29
Khademi, Mohammadi, Simon (b37) 2017; 64
Fateen, Bonilla-Petriciolet (b33) 2014; 2014
Hegde, Tsai, Huang, Chandra, Parashar, Fletcher (b48) 2021
Brest, Maučec (b44) 2011; 15
Yang, Miao, Fan, Long, Liu (b13) 2018; 67
Han, Liu (b34) 2014; 137
Brest, Maučec (b43) 2008; 29
Li, Yin (b22) 2015; 298
Tanabe, Fukunaga (b25) 2014
Guo, Li, Li, Sun, Wang, Chen (b10) 2014; 19
Kanagaraj, Ponnambalam, Jawahar (b30) 2013; 66
Zhang, Sanderson (b42) 2009; 13
Ghodrati, Lotfi (b29) 2012
Song, Pan, Chu (b17) 2020; 94
Zuo, Dai, Peng, Wang, Liu, Chen (b5) 2020; 94
Yang, Deb (b6) 2009
Wei, Yu (b24) 2019
Santos, Borges, Santos, Silva, Sales, Costa (b46) 2018; 69
Baskan (b11) 2013; 2013
Kabir, Shahjahan, Murase (b45) 2011; 74
Pavlyukevich (b7) 2007; 226
Li, Bai, Cui, Li, Sun (b18) 2020; 90
Nguyen, Nguyen (b15) 2019; 84
Walton, Hassan, Morgan, Brown (b21) 2011; 44
Kohler, Vellasco, Tanscheit (b3) 2019; 85
Bouamama, Blum, Fages (b4) 2019; 80
Yang, Deb (b12) 2013; 40
Mareli, Twala (b19) 2018; 14
Noel (b35) 2012; 12
Mitchell (b39) 1998
Shehab, Khader, Al-Betar (b31) 2017; 61
Rajabioun (b41) 2011; 11
Yang, Deb (b40) 2014; 24
Bratton, Kennedy (b38) 2007
Valian, Mohanna, Tavakoli (b20) 2011; 1
Yang (b1) 2014
Liang, Leung (b2) 2011; 11
Shehab (10.1016/j.asoc.2022.108774_b31) 2017; 61
Yang (10.1016/j.asoc.2022.108774_b1) 2014
Mlakar (10.1016/j.asoc.2022.108774_b23) 2016; 29
Lu (10.1016/j.asoc.2022.108774_b26) 2014; 146
Mareli (10.1016/j.asoc.2022.108774_b19) 2018; 14
Brest (10.1016/j.asoc.2022.108774_b44) 2011; 15
Song (10.1016/j.asoc.2022.108774_b17) 2020; 94
Wei (10.1016/j.asoc.2022.108774_b24) 2019
Bouamama (10.1016/j.asoc.2022.108774_b4) 2019; 80
Brest (10.1016/j.asoc.2022.108774_b43) 2008; 29
Liang (10.1016/j.asoc.2022.108774_b2) 2011; 11
Mitchell (10.1016/j.asoc.2022.108774_b39) 1998
Baskan (10.1016/j.asoc.2022.108774_b11) 2013; 2013
Khademi (10.1016/j.asoc.2022.108774_b37) 2017; 64
Zuo (10.1016/j.asoc.2022.108774_b5) 2020; 94
Hegde (10.1016/j.asoc.2022.108774_b48) 2021
Yang (10.1016/j.asoc.2022.108774_b40) 2014; 24
Rajabioun (10.1016/j.asoc.2022.108774_b41) 2011; 11
Noel (10.1016/j.asoc.2022.108774_b35) 2012; 12
Pavlyukevich (10.1016/j.asoc.2022.108774_b7) 2007; 226
Yang (10.1016/j.asoc.2022.108774_b13) 2018; 67
Fister Jr. (10.1016/j.asoc.2022.108774_b9) 2013; 4
Kamoona (10.1016/j.asoc.2022.108774_b14) 2019; 85
Huang (10.1016/j.asoc.2022.108774_b28) 2016; 40
Zhang (10.1016/j.asoc.2022.108774_b42) 2009; 13
Li (10.1016/j.asoc.2022.108774_b22) 2015; 298
Ong (10.1016/j.asoc.2022.108774_b16) 2019; 80
Kok (10.1016/j.asoc.2022.108774_b47) 2009; 17
Kohler (10.1016/j.asoc.2022.108774_b3) 2019; 85
Yang (10.1016/j.asoc.2022.108774_b6) 2009
Gao (10.1016/j.asoc.2022.108774_b8) 2021
Abdel-Basset (10.1016/j.asoc.2022.108774_b32) 2018; 29
Ghodrati (10.1016/j.asoc.2022.108774_b29) 2012
Kanagaraj (10.1016/j.asoc.2022.108774_b30) 2013; 66
Walton (10.1016/j.asoc.2022.108774_b21) 2011; 44
Tanabe (10.1016/j.asoc.2022.108774_b25) 2014
Kabir (10.1016/j.asoc.2022.108774_b45) 2011; 74
Bratton (10.1016/j.asoc.2022.108774_b38) 2007
Han (10.1016/j.asoc.2022.108774_b34) 2014; 137
Nocedal (10.1016/j.asoc.2022.108774_b36) 2006
Yang (10.1016/j.asoc.2022.108774_b12) 2013; 40
Santos (10.1016/j.asoc.2022.108774_b46) 2018; 69
Li (10.1016/j.asoc.2022.108774_b18) 2020; 90
Valian (10.1016/j.asoc.2022.108774_b20) 2011; 1
Guo (10.1016/j.asoc.2022.108774_b10) 2014; 19
Nguyen (10.1016/j.asoc.2022.108774_b15) 2019; 84
Nobile (10.1016/j.asoc.2022.108774_b27) 2018; 39
Fateen (10.1016/j.asoc.2022.108774_b33) 2014; 2014
References_xml – start-page: 1
  year: 2019
  end-page: 24
  ident: b24
  article-title: A novel cuckoo search algorithm under adaptive parameter control for global numerical optimization
  publication-title: Soft Comput.
– volume: 226
  start-page: 1830
  year: 2007
  end-page: 1844
  ident: b7
  article-title: Lévy flights, non-local search and simulated annealing
  publication-title: J. Comput. Phys.
– volume: 4
  start-page: 387
  year: 2013
  end-page: 409
  ident: b9
  article-title: A comprehensive review of cuckoo search: variants and hybrids
  publication-title: Int. J. Math. Model. Numer. Optim.
– volume: 40
  start-page: 3860
  year: 2016
  end-page: 3875
  ident: b28
  article-title: Chaos-enhanced cuckoo search optimization algorithms for global optimization
  publication-title: Appl. Math. Model.
– year: 2021
  ident: b8
  article-title: Adaptive cuckoo algorithm with multiple search strategies
  publication-title: Appl. Soft Comput.
– volume: 39
  start-page: 70
  year: 2018
  end-page: 85
  ident: b27
  article-title: Fuzzy self-tuning PSO: A settings-free algorithm for global optimization
  publication-title: Swarm Evol. Comput.
– volume: 80
  start-page: 672
  year: 2019
  end-page: 686
  ident: b4
  article-title: An algorithm based on ant colony optimization for the minimum connected dominating set problem
  publication-title: Appl. Soft Comput.
– volume: 61
  start-page: 1041
  year: 2017
  end-page: 1059
  ident: b31
  article-title: A survey on applications and variants of the cuckoo search algorithm
  publication-title: Appl. Soft Comput.
– volume: 40
  start-page: 1616
  year: 2013
  end-page: 1624
  ident: b12
  article-title: Multiobjective cuckoo search for design optimization
  publication-title: Comput. Oper. Res.
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: b42
  article-title: Jade: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
– volume: 14
  start-page: 107
  year: 2018
  end-page: 115
  ident: b19
  article-title: An adaptive cuckoo search algorithm for optimisation
  publication-title: Appl. Comput. Inform.
– start-page: 1658
  year: 2014
  end-page: 1665
  ident: b25
  article-title: Improving the search performance of SHADE using linear population size reduction
  publication-title: 2014 IEEE Congress on Evolutionary Computation (CEC)
– volume: 67
  start-page: 48
  year: 2018
  end-page: 60
  ident: b13
  article-title: Modified cuckoo search algorithm for the optimal placement of actuators problem
  publication-title: Appl. Soft Comput.
– start-page: 943
  year: 2021
  end-page: 958
  ident: b48
  article-title: Mind mappings: Enabling efficient algorithm-accelerator mapping space search
  publication-title: ASPLOS 2021
– volume: 17
  start-page: 437
  year: 2009
  end-page: 453
  ident: b47
  article-title: Locating and characterizing the stationary points of the extended rosenbrock function
  publication-title: Evol. Comput.
– volume: 85
  year: 2019
  ident: b3
  article-title: Pso+: A new particle swarm optimization algorithm for constrained problems
  publication-title: Appl. Soft Comput.
– volume: 298
  start-page: 80
  year: 2015
  end-page: 97
  ident: b22
  article-title: Modified cuckoo search algorithm with self adaptive parameter method
  publication-title: Inform. Sci.
– volume: 80
  start-page: 374
  year: 2019
  end-page: 386
  ident: b16
  article-title: Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction
  publication-title: Appl. Soft Comput.
– volume: 94
  year: 2020
  ident: b17
  article-title: A parallel compact cuckoo search algorithm for three-dimensional path planning
  publication-title: Appl. Soft Comput.
– volume: 29
  start-page: 47
  year: 2016
  end-page: 72
  ident: b23
  article-title: Hybrid self-adaptive cuckoo search for global optimization
  publication-title: Swarm Evol. Comput.
– start-page: 120
  year: 2007
  end-page: 127
  ident: b38
  article-title: Defining a standard for particle swarm optimization
  publication-title: 2007 IEEE Swarm Intelligence Symposium
– volume: 2014
  year: 2014
  ident: b33
  article-title: Gradient-based cuckoo search for global optimization
  publication-title: Math. Probl. Eng.
– volume: 29
  start-page: 345
  year: 2018
  end-page: 361
  ident: b32
  article-title: A comprehensive study of cuckoo-inspired algorithms
  publication-title: Neural Comput. Appl.
– volume: 90
  year: 2020
  ident: b18
  article-title: A new secondary decomposition-ensemble approach with cuckoo search optimization for air cargo forecasting
  publication-title: Appl. Soft Comput.
– volume: 44
  start-page: 710
  year: 2011
  end-page: 718
  ident: b21
  article-title: Modified cuckoo search: a new gradient free optimisation algorithm
  publication-title: Chaos Solitons Fractals
– volume: 74
  start-page: 2914
  year: 2011
  end-page: 2928
  ident: b45
  article-title: A new local search based hybrid genetic algorithm for feature selection
  publication-title: Neurocomputing
– volume: 146
  start-page: 2
  year: 2014
  end-page: 16
  ident: b26
  article-title: A new self-adaptation scheme for differential evolution
  publication-title: Neurocomputing
– year: 1998
  ident: b39
  article-title: An Introduction to Genetic Algorithms
– year: 2014
  ident: b1
  article-title: Nature-Inspired Optimization Algorithms
– volume: 94
  year: 2020
  ident: b5
  article-title: A case learning-based differential evolution algorithm for global optimization of interplanetary trajectory design
  publication-title: Appl. Soft Comput.
– volume: 2013
  year: 2013
  ident: b11
  article-title: Determining optimal link capacity expansions in road networks using cuckoo search algorithm with lévy flights
  publication-title: J. Appl. Math.
– volume: 66
  start-page: 1115
  year: 2013
  end-page: 1124
  ident: b30
  article-title: A hybrid cuckoo search and genetic algorithm for reliability–redundancy allocation problems
  publication-title: Comput. Ind. Eng.
– volume: 12
  start-page: 353
  year: 2012
  end-page: 359
  ident: b35
  article-title: A new gradient based particle swarm optimization algorithm for accurate computation of global minimum
  publication-title: Appl. Soft Comput.
– volume: 69
  start-page: 330
  year: 2018
  end-page: 343
  ident: b46
  article-title: A semi-autonomous particle swarm optimizer based on gradient information and diversity control for global optimization
  publication-title: Appl. Soft Comput.
– volume: 29
  start-page: 228
  year: 2008
  end-page: 247
  ident: b43
  article-title: Population size reduction for the differential evolution algorithm
  publication-title: Appl. Intell.
– volume: 64
  start-page: 213
  year: 2017
  end-page: 231
  ident: b37
  article-title: Hybrid invasive weed/biogeography-based optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 15
  start-page: 2157
  year: 2011
  end-page: 2174
  ident: b44
  article-title: Self-adaptive differential evolution algorithm using population size reduction and three strategies
  publication-title: Soft Comput.
– year: 2006
  ident: b36
  article-title: Numerical Optimization
– volume: 19
  start-page: 52
  year: 2014
  end-page: 67
  ident: b10
  article-title: Differential evolution improved with self-adaptive control parameters based on simulated annealing
  publication-title: Swarm Evol. Comput.
– volume: 85
  year: 2019
  ident: b14
  article-title: A novel enhanced cuckoo search algorithm for contrast enhancement of gray scale images
  publication-title: Appl. Soft Comput.
– volume: 24
  start-page: 169
  year: 2014
  end-page: 174
  ident: b40
  article-title: Cuckoo search: recent advances and applications
  publication-title: Neural Comput. Appl.
– start-page: 89
  year: 2012
  end-page: 98
  ident: b29
  article-title: A hybrid CS/PSO algorithm for global optimization
  publication-title: Asian Conference on Intelligent Information and Database Systems
– volume: 84
  year: 2019
  ident: b15
  article-title: An improved cuckoo search algorithm for the problem of electric distribution network reconfiguration
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 31
  year: 2011
  end-page: 44
  ident: b20
  article-title: Improved cuckoo search algorithm for global optimization
  publication-title: Int. J. Commun. Inf. Technol.
– volume: 137
  start-page: 234
  year: 2014
  end-page: 240
  ident: b34
  article-title: A diversity-guided hybrid particle swarm optimization based on gradient search
  publication-title: Neurocomputing
– volume: 11
  start-page: 2017
  year: 2011
  end-page: 2034
  ident: b2
  article-title: Genetic algorithm with adaptive elitist-population strategies for multimodal function optimization
  publication-title: Appl. Soft Comput.
– start-page: 210
  year: 2009
  end-page: 214
  ident: b6
  article-title: Cuckoo search via Lévy flights
  publication-title: 2009 World Congress on Nature Biologically Inspired Computing (NaBIC)
– volume: 11
  start-page: 5508
  year: 2011
  end-page: 5518
  ident: b41
  article-title: Cuckoo optimization algorithm
  publication-title: Appl. Soft Comput.
– volume: 85
  year: 2019
  ident: 10.1016/j.asoc.2022.108774_b14
  article-title: A novel enhanced cuckoo search algorithm for contrast enhancement of gray scale images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105749
– volume: 15
  start-page: 2157
  issue: 11
  year: 2011
  ident: 10.1016/j.asoc.2022.108774_b44
  article-title: Self-adaptive differential evolution algorithm using population size reduction and three strategies
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0644-5
– volume: 85
  year: 2019
  ident: 10.1016/j.asoc.2022.108774_b3
  article-title: Pso+: A new particle swarm optimization algorithm for constrained problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105865
– volume: 94
  year: 2020
  ident: 10.1016/j.asoc.2022.108774_b17
  article-title: A parallel compact cuckoo search algorithm for three-dimensional path planning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106443
– start-page: 89
  year: 2012
  ident: 10.1016/j.asoc.2022.108774_b29
  article-title: A hybrid CS/PSO algorithm for global optimization
– year: 2014
  ident: 10.1016/j.asoc.2022.108774_b1
– start-page: 210
  year: 2009
  ident: 10.1016/j.asoc.2022.108774_b6
  article-title: Cuckoo search via Lévy flights
– volume: 80
  start-page: 672
  year: 2019
  ident: 10.1016/j.asoc.2022.108774_b4
  article-title: An algorithm based on ant colony optimization for the minimum connected dominating set problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.04.028
– volume: 11
  start-page: 2017
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2022.108774_b2
  article-title: Genetic algorithm with adaptive elitist-population strategies for multimodal function optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.06.017
– volume: 67
  start-page: 48
  year: 2018
  ident: 10.1016/j.asoc.2022.108774_b13
  article-title: Modified cuckoo search algorithm for the optimal placement of actuators problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.03.004
– volume: 44
  start-page: 710
  issue: 9
  year: 2011
  ident: 10.1016/j.asoc.2022.108774_b21
  article-title: Modified cuckoo search: a new gradient free optimisation algorithm
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2011.06.004
– volume: 80
  start-page: 374
  year: 2019
  ident: 10.1016/j.asoc.2022.108774_b16
  article-title: Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.04.016
– volume: 66
  start-page: 1115
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2022.108774_b30
  article-title: A hybrid cuckoo search and genetic algorithm for reliability–redundancy allocation problems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2013.08.003
– volume: 11
  start-page: 5508
  issue: 8
  year: 2011
  ident: 10.1016/j.asoc.2022.108774_b41
  article-title: Cuckoo optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.05.008
– volume: 2014
  year: 2014
  ident: 10.1016/j.asoc.2022.108774_b33
  article-title: Gradient-based cuckoo search for global optimization
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2014/493740
– volume: 40
  start-page: 1616
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2022.108774_b12
  article-title: Multiobjective cuckoo search for design optimization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.09.026
– volume: 90
  year: 2020
  ident: 10.1016/j.asoc.2022.108774_b18
  article-title: A new secondary decomposition-ensemble approach with cuckoo search optimization for air cargo forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106161
– volume: 29
  start-page: 47
  year: 2016
  ident: 10.1016/j.asoc.2022.108774_b23
  article-title: Hybrid self-adaptive cuckoo search for global optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.03.001
– volume: 1
  start-page: 31
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2022.108774_b20
  article-title: Improved cuckoo search algorithm for global optimization
  publication-title: Int. J. Commun. Inf. Technol.
– volume: 94
  year: 2020
  ident: 10.1016/j.asoc.2022.108774_b5
  article-title: A case learning-based differential evolution algorithm for global optimization of interplanetary trajectory design
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106451
– volume: 64
  start-page: 213
  year: 2017
  ident: 10.1016/j.asoc.2022.108774_b37
  article-title: Hybrid invasive weed/biogeography-based optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.05.017
– volume: 13
  start-page: 945
  issue: 5
  year: 2009
  ident: 10.1016/j.asoc.2022.108774_b42
  article-title: Jade: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
– volume: 12
  start-page: 353
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2022.108774_b35
  article-title: A new gradient based particle swarm optimization algorithm for accurate computation of global minimum
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.08.037
– volume: 17
  start-page: 437
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2022.108774_b47
  article-title: Locating and characterizing the stationary points of the extended rosenbrock function
  publication-title: Evol. Comput.
  doi: 10.1162/evco.2009.17.3.437
– year: 2021
  ident: 10.1016/j.asoc.2022.108774_b8
  article-title: Adaptive cuckoo algorithm with multiple search strategies
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107181
– start-page: 943
  year: 2021
  ident: 10.1016/j.asoc.2022.108774_b48
  article-title: Mind mappings: Enabling efficient algorithm-accelerator mapping space search
– volume: 226
  start-page: 1830
  issue: 2
  year: 2007
  ident: 10.1016/j.asoc.2022.108774_b7
  article-title: Lévy flights, non-local search and simulated annealing
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.06.008
– volume: 4
  start-page: 387
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2022.108774_b9
  article-title: A comprehensive review of cuckoo search: variants and hybrids
  publication-title: Int. J. Math. Model. Numer. Optim.
– start-page: 120
  year: 2007
  ident: 10.1016/j.asoc.2022.108774_b38
  article-title: Defining a standard for particle swarm optimization
– volume: 74
  start-page: 2914
  issue: 17
  year: 2011
  ident: 10.1016/j.asoc.2022.108774_b45
  article-title: A new local search based hybrid genetic algorithm for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.034
– start-page: 1658
  year: 2014
  ident: 10.1016/j.asoc.2022.108774_b25
  article-title: Improving the search performance of SHADE using linear population size reduction
– volume: 29
  start-page: 345
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2022.108774_b32
  article-title: A comprehensive study of cuckoo-inspired algorithms
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2464-8
– volume: 146
  start-page: 2
  year: 2014
  ident: 10.1016/j.asoc.2022.108774_b26
  article-title: A new self-adaptation scheme for differential evolution
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.071
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2022.108774_b24
  article-title: A novel cuckoo search algorithm under adaptive parameter control for global numerical optimization
  publication-title: Soft Comput.
– volume: 39
  start-page: 70
  year: 2018
  ident: 10.1016/j.asoc.2022.108774_b27
  article-title: Fuzzy self-tuning PSO: A settings-free algorithm for global optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.09.001
– volume: 61
  start-page: 1041
  year: 2017
  ident: 10.1016/j.asoc.2022.108774_b31
  article-title: A survey on applications and variants of the cuckoo search algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.02.034
– volume: 24
  start-page: 169
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2022.108774_b40
  article-title: Cuckoo search: recent advances and applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1367-1
– volume: 29
  start-page: 228
  issue: 3
  year: 2008
  ident: 10.1016/j.asoc.2022.108774_b43
  article-title: Population size reduction for the differential evolution algorithm
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-007-0091-x
– volume: 19
  start-page: 52
  year: 2014
  ident: 10.1016/j.asoc.2022.108774_b10
  article-title: Differential evolution improved with self-adaptive control parameters based on simulated annealing
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2014.07.001
– volume: 84
  year: 2019
  ident: 10.1016/j.asoc.2022.108774_b15
  article-title: An improved cuckoo search algorithm for the problem of electric distribution network reconfiguration
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105720
– volume: 14
  start-page: 107
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2022.108774_b19
  article-title: An adaptive cuckoo search algorithm for optimisation
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2017.09.001
– volume: 298
  start-page: 80
  year: 2015
  ident: 10.1016/j.asoc.2022.108774_b22
  article-title: Modified cuckoo search algorithm with self adaptive parameter method
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.11.042
– year: 1998
  ident: 10.1016/j.asoc.2022.108774_b39
– volume: 69
  start-page: 330
  year: 2018
  ident: 10.1016/j.asoc.2022.108774_b46
  article-title: A semi-autonomous particle swarm optimizer based on gradient information and diversity control for global optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.04.027
– year: 2006
  ident: 10.1016/j.asoc.2022.108774_b36
– volume: 40
  start-page: 3860
  issue: 5–6
  year: 2016
  ident: 10.1016/j.asoc.2022.108774_b28
  article-title: Chaos-enhanced cuckoo search optimization algorithms for global optimization
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.10.052
– volume: 137
  start-page: 234
  year: 2014
  ident: 10.1016/j.asoc.2022.108774_b34
  article-title: A diversity-guided hybrid particle swarm optimization based on gradient search
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.074
– volume: 2013
  year: 2013
  ident: 10.1016/j.asoc.2022.108774_b11
  article-title: Determining optimal link capacity expansions in road networks using cuckoo search algorithm with lévy flights
  publication-title: J. Appl. Math.
  doi: 10.1155/2013/718015
SSID ssj0016928
Score 2.4111035
Snippet The stochastic global optimization (SGO) methods like particle swarm optimization (PSO), genetic algorithm (GA), and cuckoo search (CS) have been widely used...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108774
SubjectTerms Cuckoo search
Global optimization
Gradient-based optimization
Large-scale optimization
Self-adaptive
Title A self-adaptive and gradient-based cuckoo search algorithm for global optimization
URI https://dx.doi.org/10.1016/j.asoc.2022.108774
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Journals
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFG6IXry4G3EhPXgzlSnThTkSIsGNGJSE26QbiMIMweHqb7elHaKJ4eBpMtO-ZPL1bU2-9x4AV8zIEcUja98SE-RKNZHg3CAmGjY5td7R13E_9Vh3QO6HdFgB7bIWxtEqg-_3Pn3lrcOXekCzPp9M6i_25tEkCWENxzPwZVaEcDfF4OZrTfPALFnNV3WbkdsdCmc8x0tYBOwdsdFwVDvOyd_B6UfA6eyD3ZApwpb_mQNQMdkh2CunMMBglEeg34KfZjpCQou5811QZBqOFysqV4FclNJQLdVHnkOv1lBMx_liUrzNoM1YoW8JAnMrPAtFmcdg0Ll9bXdRmJSAVBxFBSKaG6YpEU2lGJNUUWto1EgiE2njjZJYxomWsYpFzPEo1tQuaa3ssUTcqCg-AVtZnplTACMdGdqM7AkmmEiupWsIRjAXoikNw7gKcAlRqkIbcTfNYpqWfLH31MGaOlhTD2sVXK9l5r6JxsbdtEQ-_aUKqfXyG-TO_il3Dnbcm-d_XYCtYrE0lzbTKGRtpUo1sN1q9x-f3fPuodv7Bk5E098
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYqGGDhRtx4YEOmceIjGasKVKBlACp1i3wVCiWpSrry27FjB4GEGFhjPyn6_E7pe-8BcMaMHFM8tvYtMUGuVRMJzg1iIrbJqfWOvo97cMd6Q3IzoqMW6Da9MI5WGXy_9-m1tw5f2gHN9mwyaT_YyiMlGWGx4xnUbVbLhMbcVWAXH188D8yyesGqu43c9dA540lewkJgi8Q4dlw7zsnv0elbxLnaAGshVYQd_zeboGWKLbDerGGAwSq3wX0HvpvpGAktZs55QVFo-DSvuVwVcmFKQ7VQr2UJvV5DMX0q55Pq-Q3alBX6mSCwtMJvoStzBwyvLh-7PRRWJSCVRFGFiOaGaUpEqhRjkipqLY0aSWQmbcBREssk0zJRiUg4Hiea2iOtlX2XiBsVJbtgqSgLswdgpCND08g-YYaJ5Fq6iWAEcyFSaRjG-wA3EOUqzBF36yymeUMYe8kdrLmDNfew7oPzL5mZn6Lx523aIJ__0IXcuvk_5A7-KXcKVnqPg37ev767PQSr7sSTwY7AUjVfmGObdlTypFarT78i098
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+self-adaptive+and+gradient-based+cuckoo+search+algorithm+for+global+optimization&rft.jtitle=Applied+soft+computing&rft.au=She%2C+Bin&rft.au=Fournier%2C+Aim%C3%A9&rft.au=Yao%2C+Mengjie&rft.au=Wang%2C+Yaojun&rft.date=2022-06-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=122&rft_id=info:doi/10.1016%2Fj.asoc.2022.108774&rft.externalDocID=S1568494622002010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon