A self-adaptive and gradient-based cuckoo search algorithm for global optimization
The stochastic global optimization (SGO) methods like particle swarm optimization (PSO), genetic algorithm (GA), and cuckoo search (CS) have been widely used in a variety of optimization problems partly because of the ability to find the global optimum. Most existing SGO algorithms are designed for...
Saved in:
| Published in | Applied soft computing Vol. 122; p. 108774 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.06.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 |
| DOI | 10.1016/j.asoc.2022.108774 |
Cover
| Abstract | The stochastic global optimization (SGO) methods like particle swarm optimization (PSO), genetic algorithm (GA), and cuckoo search (CS) have been widely used in a variety of optimization problems partly because of the ability to find the global optimum. Most existing SGO algorithms are designed for gradient-free problems and ignore the gradient information even if the gradient is readily available, resulting in low efficiency and high computational cost. In this paper, we introduce a hybrid self-adaptive gradient-based cuckoo search (HAGCS) to tackle this limitation. HAGCS first takes a gradient-based local random walk to explore the search space, and then uses gradient-based local optimization (GBLO) to find a local minimum near to the current best solution, which is more efficient and precise than standard CS. Additionally, in order to avoid premature convergence potentially being caused by the use of the gradient, we introduce two novel self-adaptation and diversity promotion strategies onto HAGCS. These help HAGCS find proper control parameters and prevent HAGCS from getting stuck at local minima or stationary points. Lastly, we compare HAGCS with PSO, GA, CS, and 5 refinements of CS on 12 benchmark functions. Compared to the other methods, the experiment results show that the proposed method HAGCS has about 2 times faster convergence speed, higher accuracy, and 27.5% higher success rate of finding the global minimum in high-dimension problems. Even when the dimension of the problem is 1000, HAGCS still offers a success rate of 64% to find the global minima accurately.
•The proposed method combines both stochastic and gradient-based optimization.•The self-adaptation strategy expands the range of applications of this method.•The proposed method has a much higher success rate of finding the global minima.•The proposed method converges much more quickly than the reference methods.•The proposed method is useful for large-scale complex optimization problems. |
|---|---|
| AbstractList | The stochastic global optimization (SGO) methods like particle swarm optimization (PSO), genetic algorithm (GA), and cuckoo search (CS) have been widely used in a variety of optimization problems partly because of the ability to find the global optimum. Most existing SGO algorithms are designed for gradient-free problems and ignore the gradient information even if the gradient is readily available, resulting in low efficiency and high computational cost. In this paper, we introduce a hybrid self-adaptive gradient-based cuckoo search (HAGCS) to tackle this limitation. HAGCS first takes a gradient-based local random walk to explore the search space, and then uses gradient-based local optimization (GBLO) to find a local minimum near to the current best solution, which is more efficient and precise than standard CS. Additionally, in order to avoid premature convergence potentially being caused by the use of the gradient, we introduce two novel self-adaptation and diversity promotion strategies onto HAGCS. These help HAGCS find proper control parameters and prevent HAGCS from getting stuck at local minima or stationary points. Lastly, we compare HAGCS with PSO, GA, CS, and 5 refinements of CS on 12 benchmark functions. Compared to the other methods, the experiment results show that the proposed method HAGCS has about 2 times faster convergence speed, higher accuracy, and 27.5% higher success rate of finding the global minimum in high-dimension problems. Even when the dimension of the problem is 1000, HAGCS still offers a success rate of 64% to find the global minima accurately.
•The proposed method combines both stochastic and gradient-based optimization.•The self-adaptation strategy expands the range of applications of this method.•The proposed method has a much higher success rate of finding the global minima.•The proposed method converges much more quickly than the reference methods.•The proposed method is useful for large-scale complex optimization problems. |
| ArticleNumber | 108774 |
| Author | Wang, Yaojun Yao, Mengjie She, Bin Hu, Guangmin Fournier, Aimé |
| Author_xml | – sequence: 1 givenname: Bin orcidid: 0000-0002-5181-5555 surname: She fullname: She, Bin email: shebin3@huawei.com organization: Ascend Lab, Huawei Technologies, Hangzhou 310053, China – sequence: 2 givenname: Aimé orcidid: 0000-0002-5872-8307 surname: Fournier fullname: Fournier, Aimé email: aime.fournier@ucdenver.edu organization: Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver 80204, USA – sequence: 3 givenname: Mengjie surname: Yao fullname: Yao, Mengjie email: celeste.mengjie@gmail.com organization: Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver 80204, USA – sequence: 4 givenname: Yaojun surname: Wang fullname: Wang, Yaojun email: yaojun.wang@uestc.edu.cn organization: School of Resources and Environments, Center for Information Geoscience, UESTC, Chengdu 611731, China – sequence: 5 givenname: Guangmin surname: Hu fullname: Hu, Guangmin email: hgm@uestc.edu.cn organization: School of Resources and Environments, Center for Information Geoscience, UESTC, Chengdu 611731, China |
| BookMark | eNp9kM1KAzEQgINUsK2-gKe8wNZk_7ILXkpRKxQE0XOYTLJt6nZTkljQpze1njz0NMPMfMPMNyGjwQ2GkFvOZpzx-m47g-BwlrM8T4VGiPKCjHkj8qytGz5KeVU3WdmW9RWZhLBlCWrzZkxe5zSYvstAwz7ag6EwaLr2oK0ZYqYgGE3xEz-cS3PgcUOhXztv42ZHO-fpuncKeuoSvLPfEK0brsllB30wN39xSt4fH94Wy2z18vS8mK8yLBiLWamFqXVVQoNY16rCinFRGVWqVuVti4qrotWqwAIKwbtCV6mlNYIQTBhkxZQ0p73oXQjedBJt_L0gerC95Ewe3citPLqRRzfy5Cah-T907-0O_Nd56P4EmfTUwRovAyZLaLT1BqPUzp7DfwAkk4F_ |
| CitedBy_id | crossref_primary_10_3934_math_20221091 crossref_primary_10_1016_j_eswa_2023_121704 crossref_primary_10_1016_j_swevo_2023_101459 crossref_primary_10_3934_era_2024296 crossref_primary_10_1016_j_procs_2022_12_012 crossref_primary_10_3390_app14156802 crossref_primary_10_1016_j_asoc_2023_110513 crossref_primary_10_1007_s44196_023_00322_6 crossref_primary_10_1177_14613484241242737 crossref_primary_10_1016_j_aej_2025_02_046 |
| Cites_doi | 10.1016/j.asoc.2019.105749 10.1007/s00500-010-0644-5 10.1016/j.asoc.2019.105865 10.1016/j.asoc.2020.106443 10.1016/j.asoc.2019.04.028 10.1016/j.asoc.2010.06.017 10.1016/j.asoc.2018.03.004 10.1016/j.chaos.2011.06.004 10.1016/j.asoc.2019.04.016 10.1016/j.cie.2013.08.003 10.1016/j.asoc.2011.05.008 10.1155/2014/493740 10.1016/j.cor.2011.09.026 10.1016/j.asoc.2020.106161 10.1016/j.swevo.2016.03.001 10.1016/j.asoc.2020.106451 10.1016/j.engappai.2017.05.017 10.1109/TEVC.2009.2014613 10.1016/j.asoc.2011.08.037 10.1162/evco.2009.17.3.437 10.1016/j.asoc.2021.107181 10.1016/j.jcp.2007.06.008 10.1016/j.neucom.2011.03.034 10.1007/s00521-016-2464-8 10.1016/j.neucom.2014.04.071 10.1016/j.swevo.2017.09.001 10.1016/j.asoc.2017.02.034 10.1007/s00521-013-1367-1 10.1007/s10489-007-0091-x 10.1016/j.swevo.2014.07.001 10.1016/j.asoc.2019.105720 10.1016/j.aci.2017.09.001 10.1016/j.ins.2014.11.042 10.1016/j.asoc.2018.04.027 10.1016/j.apm.2015.10.052 10.1016/j.neucom.2013.03.074 10.1155/2013/718015 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2022.108774 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2022_108774 S1568494622002010 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-4d7e6d54a8cc66b5c50175eb4b9b299cb1b39db3c3a371f3d5b4bddca7707ec03 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Thu Apr 24 22:56:12 EDT 2025 Wed Oct 29 21:23:13 EDT 2025 Fri Feb 23 02:38:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Self-adaptive Cuckoo search Global optimization Large-scale optimization Gradient-based optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-4d7e6d54a8cc66b5c50175eb4b9b299cb1b39db3c3a371f3d5b4bddca7707ec03 |
| ORCID | 0000-0002-5181-5555 0000-0002-5872-8307 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2022_108774 crossref_primary_10_1016_j_asoc_2022_108774 elsevier_sciencedirect_doi_10_1016_j_asoc_2022_108774 |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 2022-06-00 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kamoona, Patra (b14) 2019; 85 Fister Jr., Fister, Fister (b9) 2013; 4 Kok, Sandrock (b47) 2009; 17 Huang, Ding, Yu, Wang, Lu (b28) 2016; 40 Nocedal, Wright (b36) 2006 Lu, Tang, Sendhoff, Yao (b26) 2014; 146 Abdel-Basset, Hessin, Abdel-Fatah (b32) 2018; 29 Gao, Gao, Zhang, Li (b8) 2021 Ong, Zainuddin (b16) 2019; 80 Nobile, Cazzaniga, Besozzi, Colombo, Mauri, Pasi (b27) 2018; 39 Mlakar, Fister Jr., Fister (b23) 2016; 29 Khademi, Mohammadi, Simon (b37) 2017; 64 Fateen, Bonilla-Petriciolet (b33) 2014; 2014 Hegde, Tsai, Huang, Chandra, Parashar, Fletcher (b48) 2021 Brest, Maučec (b44) 2011; 15 Yang, Miao, Fan, Long, Liu (b13) 2018; 67 Han, Liu (b34) 2014; 137 Brest, Maučec (b43) 2008; 29 Li, Yin (b22) 2015; 298 Tanabe, Fukunaga (b25) 2014 Guo, Li, Li, Sun, Wang, Chen (b10) 2014; 19 Kanagaraj, Ponnambalam, Jawahar (b30) 2013; 66 Zhang, Sanderson (b42) 2009; 13 Ghodrati, Lotfi (b29) 2012 Song, Pan, Chu (b17) 2020; 94 Zuo, Dai, Peng, Wang, Liu, Chen (b5) 2020; 94 Yang, Deb (b6) 2009 Wei, Yu (b24) 2019 Santos, Borges, Santos, Silva, Sales, Costa (b46) 2018; 69 Baskan (b11) 2013; 2013 Kabir, Shahjahan, Murase (b45) 2011; 74 Pavlyukevich (b7) 2007; 226 Li, Bai, Cui, Li, Sun (b18) 2020; 90 Nguyen, Nguyen (b15) 2019; 84 Walton, Hassan, Morgan, Brown (b21) 2011; 44 Kohler, Vellasco, Tanscheit (b3) 2019; 85 Bouamama, Blum, Fages (b4) 2019; 80 Yang, Deb (b12) 2013; 40 Mareli, Twala (b19) 2018; 14 Noel (b35) 2012; 12 Mitchell (b39) 1998 Shehab, Khader, Al-Betar (b31) 2017; 61 Rajabioun (b41) 2011; 11 Yang, Deb (b40) 2014; 24 Bratton, Kennedy (b38) 2007 Valian, Mohanna, Tavakoli (b20) 2011; 1 Yang (b1) 2014 Liang, Leung (b2) 2011; 11 Shehab (10.1016/j.asoc.2022.108774_b31) 2017; 61 Yang (10.1016/j.asoc.2022.108774_b1) 2014 Mlakar (10.1016/j.asoc.2022.108774_b23) 2016; 29 Lu (10.1016/j.asoc.2022.108774_b26) 2014; 146 Mareli (10.1016/j.asoc.2022.108774_b19) 2018; 14 Brest (10.1016/j.asoc.2022.108774_b44) 2011; 15 Song (10.1016/j.asoc.2022.108774_b17) 2020; 94 Wei (10.1016/j.asoc.2022.108774_b24) 2019 Bouamama (10.1016/j.asoc.2022.108774_b4) 2019; 80 Brest (10.1016/j.asoc.2022.108774_b43) 2008; 29 Liang (10.1016/j.asoc.2022.108774_b2) 2011; 11 Mitchell (10.1016/j.asoc.2022.108774_b39) 1998 Baskan (10.1016/j.asoc.2022.108774_b11) 2013; 2013 Khademi (10.1016/j.asoc.2022.108774_b37) 2017; 64 Zuo (10.1016/j.asoc.2022.108774_b5) 2020; 94 Hegde (10.1016/j.asoc.2022.108774_b48) 2021 Yang (10.1016/j.asoc.2022.108774_b40) 2014; 24 Rajabioun (10.1016/j.asoc.2022.108774_b41) 2011; 11 Noel (10.1016/j.asoc.2022.108774_b35) 2012; 12 Pavlyukevich (10.1016/j.asoc.2022.108774_b7) 2007; 226 Yang (10.1016/j.asoc.2022.108774_b13) 2018; 67 Fister Jr. (10.1016/j.asoc.2022.108774_b9) 2013; 4 Kamoona (10.1016/j.asoc.2022.108774_b14) 2019; 85 Huang (10.1016/j.asoc.2022.108774_b28) 2016; 40 Zhang (10.1016/j.asoc.2022.108774_b42) 2009; 13 Li (10.1016/j.asoc.2022.108774_b22) 2015; 298 Ong (10.1016/j.asoc.2022.108774_b16) 2019; 80 Kok (10.1016/j.asoc.2022.108774_b47) 2009; 17 Kohler (10.1016/j.asoc.2022.108774_b3) 2019; 85 Yang (10.1016/j.asoc.2022.108774_b6) 2009 Gao (10.1016/j.asoc.2022.108774_b8) 2021 Abdel-Basset (10.1016/j.asoc.2022.108774_b32) 2018; 29 Ghodrati (10.1016/j.asoc.2022.108774_b29) 2012 Kanagaraj (10.1016/j.asoc.2022.108774_b30) 2013; 66 Walton (10.1016/j.asoc.2022.108774_b21) 2011; 44 Tanabe (10.1016/j.asoc.2022.108774_b25) 2014 Kabir (10.1016/j.asoc.2022.108774_b45) 2011; 74 Bratton (10.1016/j.asoc.2022.108774_b38) 2007 Han (10.1016/j.asoc.2022.108774_b34) 2014; 137 Nocedal (10.1016/j.asoc.2022.108774_b36) 2006 Yang (10.1016/j.asoc.2022.108774_b12) 2013; 40 Santos (10.1016/j.asoc.2022.108774_b46) 2018; 69 Li (10.1016/j.asoc.2022.108774_b18) 2020; 90 Valian (10.1016/j.asoc.2022.108774_b20) 2011; 1 Guo (10.1016/j.asoc.2022.108774_b10) 2014; 19 Nguyen (10.1016/j.asoc.2022.108774_b15) 2019; 84 Nobile (10.1016/j.asoc.2022.108774_b27) 2018; 39 Fateen (10.1016/j.asoc.2022.108774_b33) 2014; 2014 |
| References_xml | – start-page: 1 year: 2019 end-page: 24 ident: b24 article-title: A novel cuckoo search algorithm under adaptive parameter control for global numerical optimization publication-title: Soft Comput. – volume: 226 start-page: 1830 year: 2007 end-page: 1844 ident: b7 article-title: Lévy flights, non-local search and simulated annealing publication-title: J. Comput. Phys. – volume: 4 start-page: 387 year: 2013 end-page: 409 ident: b9 article-title: A comprehensive review of cuckoo search: variants and hybrids publication-title: Int. J. Math. Model. Numer. Optim. – volume: 40 start-page: 3860 year: 2016 end-page: 3875 ident: b28 article-title: Chaos-enhanced cuckoo search optimization algorithms for global optimization publication-title: Appl. Math. Model. – year: 2021 ident: b8 article-title: Adaptive cuckoo algorithm with multiple search strategies publication-title: Appl. Soft Comput. – volume: 39 start-page: 70 year: 2018 end-page: 85 ident: b27 article-title: Fuzzy self-tuning PSO: A settings-free algorithm for global optimization publication-title: Swarm Evol. Comput. – volume: 80 start-page: 672 year: 2019 end-page: 686 ident: b4 article-title: An algorithm based on ant colony optimization for the minimum connected dominating set problem publication-title: Appl. Soft Comput. – volume: 61 start-page: 1041 year: 2017 end-page: 1059 ident: b31 article-title: A survey on applications and variants of the cuckoo search algorithm publication-title: Appl. Soft Comput. – volume: 40 start-page: 1616 year: 2013 end-page: 1624 ident: b12 article-title: Multiobjective cuckoo search for design optimization publication-title: Comput. Oper. Res. – volume: 13 start-page: 945 year: 2009 end-page: 958 ident: b42 article-title: Jade: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. – volume: 14 start-page: 107 year: 2018 end-page: 115 ident: b19 article-title: An adaptive cuckoo search algorithm for optimisation publication-title: Appl. Comput. Inform. – start-page: 1658 year: 2014 end-page: 1665 ident: b25 article-title: Improving the search performance of SHADE using linear population size reduction publication-title: 2014 IEEE Congress on Evolutionary Computation (CEC) – volume: 67 start-page: 48 year: 2018 end-page: 60 ident: b13 article-title: Modified cuckoo search algorithm for the optimal placement of actuators problem publication-title: Appl. Soft Comput. – start-page: 943 year: 2021 end-page: 958 ident: b48 article-title: Mind mappings: Enabling efficient algorithm-accelerator mapping space search publication-title: ASPLOS 2021 – volume: 17 start-page: 437 year: 2009 end-page: 453 ident: b47 article-title: Locating and characterizing the stationary points of the extended rosenbrock function publication-title: Evol. Comput. – volume: 85 year: 2019 ident: b3 article-title: Pso+: A new particle swarm optimization algorithm for constrained problems publication-title: Appl. Soft Comput. – volume: 298 start-page: 80 year: 2015 end-page: 97 ident: b22 article-title: Modified cuckoo search algorithm with self adaptive parameter method publication-title: Inform. Sci. – volume: 80 start-page: 374 year: 2019 end-page: 386 ident: b16 article-title: Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction publication-title: Appl. Soft Comput. – volume: 94 year: 2020 ident: b17 article-title: A parallel compact cuckoo search algorithm for three-dimensional path planning publication-title: Appl. Soft Comput. – volume: 29 start-page: 47 year: 2016 end-page: 72 ident: b23 article-title: Hybrid self-adaptive cuckoo search for global optimization publication-title: Swarm Evol. Comput. – start-page: 120 year: 2007 end-page: 127 ident: b38 article-title: Defining a standard for particle swarm optimization publication-title: 2007 IEEE Swarm Intelligence Symposium – volume: 2014 year: 2014 ident: b33 article-title: Gradient-based cuckoo search for global optimization publication-title: Math. Probl. Eng. – volume: 29 start-page: 345 year: 2018 end-page: 361 ident: b32 article-title: A comprehensive study of cuckoo-inspired algorithms publication-title: Neural Comput. Appl. – volume: 90 year: 2020 ident: b18 article-title: A new secondary decomposition-ensemble approach with cuckoo search optimization for air cargo forecasting publication-title: Appl. Soft Comput. – volume: 44 start-page: 710 year: 2011 end-page: 718 ident: b21 article-title: Modified cuckoo search: a new gradient free optimisation algorithm publication-title: Chaos Solitons Fractals – volume: 74 start-page: 2914 year: 2011 end-page: 2928 ident: b45 article-title: A new local search based hybrid genetic algorithm for feature selection publication-title: Neurocomputing – volume: 146 start-page: 2 year: 2014 end-page: 16 ident: b26 article-title: A new self-adaptation scheme for differential evolution publication-title: Neurocomputing – year: 1998 ident: b39 article-title: An Introduction to Genetic Algorithms – year: 2014 ident: b1 article-title: Nature-Inspired Optimization Algorithms – volume: 94 year: 2020 ident: b5 article-title: A case learning-based differential evolution algorithm for global optimization of interplanetary trajectory design publication-title: Appl. Soft Comput. – volume: 2013 year: 2013 ident: b11 article-title: Determining optimal link capacity expansions in road networks using cuckoo search algorithm with lévy flights publication-title: J. Appl. Math. – volume: 66 start-page: 1115 year: 2013 end-page: 1124 ident: b30 article-title: A hybrid cuckoo search and genetic algorithm for reliability–redundancy allocation problems publication-title: Comput. Ind. Eng. – volume: 12 start-page: 353 year: 2012 end-page: 359 ident: b35 article-title: A new gradient based particle swarm optimization algorithm for accurate computation of global minimum publication-title: Appl. Soft Comput. – volume: 69 start-page: 330 year: 2018 end-page: 343 ident: b46 article-title: A semi-autonomous particle swarm optimizer based on gradient information and diversity control for global optimization publication-title: Appl. Soft Comput. – volume: 29 start-page: 228 year: 2008 end-page: 247 ident: b43 article-title: Population size reduction for the differential evolution algorithm publication-title: Appl. Intell. – volume: 64 start-page: 213 year: 2017 end-page: 231 ident: b37 article-title: Hybrid invasive weed/biogeography-based optimization publication-title: Eng. Appl. Artif. Intell. – volume: 15 start-page: 2157 year: 2011 end-page: 2174 ident: b44 article-title: Self-adaptive differential evolution algorithm using population size reduction and three strategies publication-title: Soft Comput. – year: 2006 ident: b36 article-title: Numerical Optimization – volume: 19 start-page: 52 year: 2014 end-page: 67 ident: b10 article-title: Differential evolution improved with self-adaptive control parameters based on simulated annealing publication-title: Swarm Evol. Comput. – volume: 85 year: 2019 ident: b14 article-title: A novel enhanced cuckoo search algorithm for contrast enhancement of gray scale images publication-title: Appl. Soft Comput. – volume: 24 start-page: 169 year: 2014 end-page: 174 ident: b40 article-title: Cuckoo search: recent advances and applications publication-title: Neural Comput. Appl. – start-page: 89 year: 2012 end-page: 98 ident: b29 article-title: A hybrid CS/PSO algorithm for global optimization publication-title: Asian Conference on Intelligent Information and Database Systems – volume: 84 year: 2019 ident: b15 article-title: An improved cuckoo search algorithm for the problem of electric distribution network reconfiguration publication-title: Appl. Soft Comput. – volume: 1 start-page: 31 year: 2011 end-page: 44 ident: b20 article-title: Improved cuckoo search algorithm for global optimization publication-title: Int. J. Commun. Inf. Technol. – volume: 137 start-page: 234 year: 2014 end-page: 240 ident: b34 article-title: A diversity-guided hybrid particle swarm optimization based on gradient search publication-title: Neurocomputing – volume: 11 start-page: 2017 year: 2011 end-page: 2034 ident: b2 article-title: Genetic algorithm with adaptive elitist-population strategies for multimodal function optimization publication-title: Appl. Soft Comput. – start-page: 210 year: 2009 end-page: 214 ident: b6 article-title: Cuckoo search via Lévy flights publication-title: 2009 World Congress on Nature Biologically Inspired Computing (NaBIC) – volume: 11 start-page: 5508 year: 2011 end-page: 5518 ident: b41 article-title: Cuckoo optimization algorithm publication-title: Appl. Soft Comput. – volume: 85 year: 2019 ident: 10.1016/j.asoc.2022.108774_b14 article-title: A novel enhanced cuckoo search algorithm for contrast enhancement of gray scale images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105749 – volume: 15 start-page: 2157 issue: 11 year: 2011 ident: 10.1016/j.asoc.2022.108774_b44 article-title: Self-adaptive differential evolution algorithm using population size reduction and three strategies publication-title: Soft Comput. doi: 10.1007/s00500-010-0644-5 – volume: 85 year: 2019 ident: 10.1016/j.asoc.2022.108774_b3 article-title: Pso+: A new particle swarm optimization algorithm for constrained problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105865 – volume: 94 year: 2020 ident: 10.1016/j.asoc.2022.108774_b17 article-title: A parallel compact cuckoo search algorithm for three-dimensional path planning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106443 – start-page: 89 year: 2012 ident: 10.1016/j.asoc.2022.108774_b29 article-title: A hybrid CS/PSO algorithm for global optimization – year: 2014 ident: 10.1016/j.asoc.2022.108774_b1 – start-page: 210 year: 2009 ident: 10.1016/j.asoc.2022.108774_b6 article-title: Cuckoo search via Lévy flights – volume: 80 start-page: 672 year: 2019 ident: 10.1016/j.asoc.2022.108774_b4 article-title: An algorithm based on ant colony optimization for the minimum connected dominating set problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.04.028 – volume: 11 start-page: 2017 issue: 2 year: 2011 ident: 10.1016/j.asoc.2022.108774_b2 article-title: Genetic algorithm with adaptive elitist-population strategies for multimodal function optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.06.017 – volume: 67 start-page: 48 year: 2018 ident: 10.1016/j.asoc.2022.108774_b13 article-title: Modified cuckoo search algorithm for the optimal placement of actuators problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.03.004 – volume: 44 start-page: 710 issue: 9 year: 2011 ident: 10.1016/j.asoc.2022.108774_b21 article-title: Modified cuckoo search: a new gradient free optimisation algorithm publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2011.06.004 – volume: 80 start-page: 374 year: 2019 ident: 10.1016/j.asoc.2022.108774_b16 article-title: Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.04.016 – volume: 66 start-page: 1115 issue: 4 year: 2013 ident: 10.1016/j.asoc.2022.108774_b30 article-title: A hybrid cuckoo search and genetic algorithm for reliability–redundancy allocation problems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2013.08.003 – volume: 11 start-page: 5508 issue: 8 year: 2011 ident: 10.1016/j.asoc.2022.108774_b41 article-title: Cuckoo optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.05.008 – volume: 2014 year: 2014 ident: 10.1016/j.asoc.2022.108774_b33 article-title: Gradient-based cuckoo search for global optimization publication-title: Math. Probl. Eng. doi: 10.1155/2014/493740 – volume: 40 start-page: 1616 issue: 6 year: 2013 ident: 10.1016/j.asoc.2022.108774_b12 article-title: Multiobjective cuckoo search for design optimization publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.09.026 – volume: 90 year: 2020 ident: 10.1016/j.asoc.2022.108774_b18 article-title: A new secondary decomposition-ensemble approach with cuckoo search optimization for air cargo forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106161 – volume: 29 start-page: 47 year: 2016 ident: 10.1016/j.asoc.2022.108774_b23 article-title: Hybrid self-adaptive cuckoo search for global optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2016.03.001 – volume: 1 start-page: 31 issue: 1 year: 2011 ident: 10.1016/j.asoc.2022.108774_b20 article-title: Improved cuckoo search algorithm for global optimization publication-title: Int. J. Commun. Inf. Technol. – volume: 94 year: 2020 ident: 10.1016/j.asoc.2022.108774_b5 article-title: A case learning-based differential evolution algorithm for global optimization of interplanetary trajectory design publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106451 – volume: 64 start-page: 213 year: 2017 ident: 10.1016/j.asoc.2022.108774_b37 article-title: Hybrid invasive weed/biogeography-based optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.05.017 – volume: 13 start-page: 945 issue: 5 year: 2009 ident: 10.1016/j.asoc.2022.108774_b42 article-title: Jade: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2014613 – volume: 12 start-page: 353 issue: 1 year: 2012 ident: 10.1016/j.asoc.2022.108774_b35 article-title: A new gradient based particle swarm optimization algorithm for accurate computation of global minimum publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.08.037 – volume: 17 start-page: 437 issue: 3 year: 2009 ident: 10.1016/j.asoc.2022.108774_b47 article-title: Locating and characterizing the stationary points of the extended rosenbrock function publication-title: Evol. Comput. doi: 10.1162/evco.2009.17.3.437 – year: 2021 ident: 10.1016/j.asoc.2022.108774_b8 article-title: Adaptive cuckoo algorithm with multiple search strategies publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107181 – start-page: 943 year: 2021 ident: 10.1016/j.asoc.2022.108774_b48 article-title: Mind mappings: Enabling efficient algorithm-accelerator mapping space search – volume: 226 start-page: 1830 issue: 2 year: 2007 ident: 10.1016/j.asoc.2022.108774_b7 article-title: Lévy flights, non-local search and simulated annealing publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.06.008 – volume: 4 start-page: 387 issue: 4 year: 2013 ident: 10.1016/j.asoc.2022.108774_b9 article-title: A comprehensive review of cuckoo search: variants and hybrids publication-title: Int. J. Math. Model. Numer. Optim. – start-page: 120 year: 2007 ident: 10.1016/j.asoc.2022.108774_b38 article-title: Defining a standard for particle swarm optimization – volume: 74 start-page: 2914 issue: 17 year: 2011 ident: 10.1016/j.asoc.2022.108774_b45 article-title: A new local search based hybrid genetic algorithm for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.03.034 – start-page: 1658 year: 2014 ident: 10.1016/j.asoc.2022.108774_b25 article-title: Improving the search performance of SHADE using linear population size reduction – volume: 29 start-page: 345 issue: 2 year: 2018 ident: 10.1016/j.asoc.2022.108774_b32 article-title: A comprehensive study of cuckoo-inspired algorithms publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2464-8 – volume: 146 start-page: 2 year: 2014 ident: 10.1016/j.asoc.2022.108774_b26 article-title: A new self-adaptation scheme for differential evolution publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.04.071 – start-page: 1 year: 2019 ident: 10.1016/j.asoc.2022.108774_b24 article-title: A novel cuckoo search algorithm under adaptive parameter control for global numerical optimization publication-title: Soft Comput. – volume: 39 start-page: 70 year: 2018 ident: 10.1016/j.asoc.2022.108774_b27 article-title: Fuzzy self-tuning PSO: A settings-free algorithm for global optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.09.001 – volume: 61 start-page: 1041 year: 2017 ident: 10.1016/j.asoc.2022.108774_b31 article-title: A survey on applications and variants of the cuckoo search algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.02.034 – volume: 24 start-page: 169 issue: 1 year: 2014 ident: 10.1016/j.asoc.2022.108774_b40 article-title: Cuckoo search: recent advances and applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1367-1 – volume: 29 start-page: 228 issue: 3 year: 2008 ident: 10.1016/j.asoc.2022.108774_b43 article-title: Population size reduction for the differential evolution algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-007-0091-x – volume: 19 start-page: 52 year: 2014 ident: 10.1016/j.asoc.2022.108774_b10 article-title: Differential evolution improved with self-adaptive control parameters based on simulated annealing publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2014.07.001 – volume: 84 year: 2019 ident: 10.1016/j.asoc.2022.108774_b15 article-title: An improved cuckoo search algorithm for the problem of electric distribution network reconfiguration publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105720 – volume: 14 start-page: 107 issue: 2 year: 2018 ident: 10.1016/j.asoc.2022.108774_b19 article-title: An adaptive cuckoo search algorithm for optimisation publication-title: Appl. Comput. Inform. doi: 10.1016/j.aci.2017.09.001 – volume: 298 start-page: 80 year: 2015 ident: 10.1016/j.asoc.2022.108774_b22 article-title: Modified cuckoo search algorithm with self adaptive parameter method publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.11.042 – year: 1998 ident: 10.1016/j.asoc.2022.108774_b39 – volume: 69 start-page: 330 year: 2018 ident: 10.1016/j.asoc.2022.108774_b46 article-title: A semi-autonomous particle swarm optimizer based on gradient information and diversity control for global optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.027 – year: 2006 ident: 10.1016/j.asoc.2022.108774_b36 – volume: 40 start-page: 3860 issue: 5–6 year: 2016 ident: 10.1016/j.asoc.2022.108774_b28 article-title: Chaos-enhanced cuckoo search optimization algorithms for global optimization publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.10.052 – volume: 137 start-page: 234 year: 2014 ident: 10.1016/j.asoc.2022.108774_b34 article-title: A diversity-guided hybrid particle swarm optimization based on gradient search publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.074 – volume: 2013 year: 2013 ident: 10.1016/j.asoc.2022.108774_b11 article-title: Determining optimal link capacity expansions in road networks using cuckoo search algorithm with lévy flights publication-title: J. Appl. Math. doi: 10.1155/2013/718015 |
| SSID | ssj0016928 |
| Score | 2.4111035 |
| Snippet | The stochastic global optimization (SGO) methods like particle swarm optimization (PSO), genetic algorithm (GA), and cuckoo search (CS) have been widely used... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108774 |
| SubjectTerms | Cuckoo search Global optimization Gradient-based optimization Large-scale optimization Self-adaptive |
| Title | A self-adaptive and gradient-based cuckoo search algorithm for global optimization |
| URI | https://dx.doi.org/10.1016/j.asoc.2022.108774 |
| Volume | 122 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Journals customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFG6IXry4G3EhPXgzlSnThTkSIsGNGJSE26QbiMIMweHqb7elHaKJ4eBpMtO-ZPL1bU2-9x4AV8zIEcUja98SE-RKNZHg3CAmGjY5td7R13E_9Vh3QO6HdFgB7bIWxtEqg-_3Pn3lrcOXekCzPp9M6i_25tEkCWENxzPwZVaEcDfF4OZrTfPALFnNV3WbkdsdCmc8x0tYBOwdsdFwVDvOyd_B6UfA6eyD3ZApwpb_mQNQMdkh2CunMMBglEeg34KfZjpCQou5811QZBqOFysqV4FclNJQLdVHnkOv1lBMx_liUrzNoM1YoW8JAnMrPAtFmcdg0Ll9bXdRmJSAVBxFBSKaG6YpEU2lGJNUUWto1EgiE2njjZJYxomWsYpFzPEo1tQuaa3ssUTcqCg-AVtZnplTACMdGdqM7AkmmEiupWsIRjAXoikNw7gKcAlRqkIbcTfNYpqWfLH31MGaOlhTD2sVXK9l5r6JxsbdtEQ-_aUKqfXyG-TO_il3Dnbcm-d_XYCtYrE0lzbTKGRtpUo1sN1q9x-f3fPuodv7Bk5E098 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYqGGDhRtx4YEOmceIjGasKVKBlACp1i3wVCiWpSrry27FjB4GEGFhjPyn6_E7pe-8BcMaMHFM8tvYtMUGuVRMJzg1iIrbJqfWOvo97cMd6Q3IzoqMW6Da9MI5WGXy_9-m1tw5f2gHN9mwyaT_YyiMlGWGx4xnUbVbLhMbcVWAXH188D8yyesGqu43c9dA540lewkJgi8Q4dlw7zsnv0elbxLnaAGshVYQd_zeboGWKLbDerGGAwSq3wX0HvpvpGAktZs55QVFo-DSvuVwVcmFKQ7VQr2UJvV5DMX0q55Pq-Q3alBX6mSCwtMJvoStzBwyvLh-7PRRWJSCVRFGFiOaGaUpEqhRjkipqLY0aSWQmbcBREssk0zJRiUg4Hiea2iOtlX2XiBsVJbtgqSgLswdgpCND08g-YYaJ5Fq6iWAEcyFSaRjG-wA3EOUqzBF36yymeUMYe8kdrLmDNfew7oPzL5mZn6Lx523aIJ__0IXcuvk_5A7-KXcKVnqPg37ev767PQSr7sSTwY7AUjVfmGObdlTypFarT78i098 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+self-adaptive+and+gradient-based+cuckoo+search+algorithm+for+global+optimization&rft.jtitle=Applied+soft+computing&rft.au=She%2C+Bin&rft.au=Fournier%2C+Aim%C3%A9&rft.au=Yao%2C+Mengjie&rft.au=Wang%2C+Yaojun&rft.date=2022-06-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=122&rft_id=info:doi/10.1016%2Fj.asoc.2022.108774&rft.externalDocID=S1568494622002010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |