Numerical investigation and correlations for heat diffusion through planar ablative thermal protection systems
•Heat diffusion through a planar ablative Thermal Protection System is considered.•Landau type coordinate transformation is used to immobilize moving boundary.•Onset time of ablation is captured using an adjustable time step scheme.•Correlations are developed to predict ablated material thickness. I...
Saved in:
Published in | Thermal science and engineering progress Vol. 7; pp. 279 - 287 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2018
|
Online Access | Get full text |
ISSN | 2451-9049 2451-9049 |
DOI | 10.1016/j.tsep.2018.07.008 |
Cover
Abstract | •Heat diffusion through a planar ablative Thermal Protection System is considered.•Landau type coordinate transformation is used to immobilize moving boundary.•Onset time of ablation is captured using an adjustable time step scheme.•Correlations are developed to predict ablated material thickness.
In the present study, heat diffusion through a planar ablative Thermal Protection System (TPS) is numerically investigated by modeling the problem as one-dimensional transient heat conduction equation in Cartesian coordinates subject to the adiabatic back wall and aerodynamic heating on the other surface. The surface exposed to aerodynamic heating undergoes sensible heating until the surface temperature reaches an ablative temperature of the material. Further exposure of the material to heat flux results in material getting ablated. Ablation is modeled as Stefan-type wherein layers of material are immediately removed upon melt after reaching ablative temperature. Boundary immobilization method is used to fix the moving boundary and the governing equations are solved using finite difference scheme in space and Crank-Nicolson semi-implicit scheme in time, after expressing them in non-dimensional form. A FORTRAN code is developed to solve the set of equations using Tri-Diagonal Matrix Algorithm (TDMA). Parametric studies are conducted and new correlations are developed for predicting the amount of material ablated as a function of non-dimensional heat flux, Stefan number and non-dimensional time. Correlations are also developed to predict the non-dimensional time when back-wall that protects the vehicle interiors from extreme heat flux environment attains non-dimensional temperature 0.1. Results show that the developed correlations predict the parameter very well and errors are within acceptable limits. |
---|---|
AbstractList | •Heat diffusion through a planar ablative Thermal Protection System is considered.•Landau type coordinate transformation is used to immobilize moving boundary.•Onset time of ablation is captured using an adjustable time step scheme.•Correlations are developed to predict ablated material thickness.
In the present study, heat diffusion through a planar ablative Thermal Protection System (TPS) is numerically investigated by modeling the problem as one-dimensional transient heat conduction equation in Cartesian coordinates subject to the adiabatic back wall and aerodynamic heating on the other surface. The surface exposed to aerodynamic heating undergoes sensible heating until the surface temperature reaches an ablative temperature of the material. Further exposure of the material to heat flux results in material getting ablated. Ablation is modeled as Stefan-type wherein layers of material are immediately removed upon melt after reaching ablative temperature. Boundary immobilization method is used to fix the moving boundary and the governing equations are solved using finite difference scheme in space and Crank-Nicolson semi-implicit scheme in time, after expressing them in non-dimensional form. A FORTRAN code is developed to solve the set of equations using Tri-Diagonal Matrix Algorithm (TDMA). Parametric studies are conducted and new correlations are developed for predicting the amount of material ablated as a function of non-dimensional heat flux, Stefan number and non-dimensional time. Correlations are also developed to predict the non-dimensional time when back-wall that protects the vehicle interiors from extreme heat flux environment attains non-dimensional temperature 0.1. Results show that the developed correlations predict the parameter very well and errors are within acceptable limits. |
Author | Katte, Subrahmanya S. Kannan, Srinivasa Ramanujam |
Author_xml | – sequence: 1 givenname: Srinivasa Ramanujam orcidid: 0000-0002-0466-2752 surname: Kannan fullname: Kannan, Srinivasa Ramanujam email: sramanujam@iitbbs.ac.in organization: School of Mechanical Sciences, IIT Bhubaneswar, Odisha 752050, India – sequence: 2 givenname: Subrahmanya S. surname: Katte fullname: Katte, Subrahmanya S. organization: Department of Mechanical Engineering, PES Institute of Technology, Bangalore 560100, India |
BookMark | eNp9kMtqwzAQRUVJoWmaH-jKP2BXshVFgm5K6AtCu2nXQpZGiYItG0kJ5O9rJ12ULrKaB3PucO8tmvjOA0L3BBcEE_awK1KEvigx4QVeFhjzKzQt6YLkAlMx-dPfoHmMO4xxueC0EnyK_Me-heC0ajLnDxCT26jkOp8pbzLdhQDNaY6Z7UK2BZUy46zdx_EmbUO332yzvlFehUzV4-0Bhj2EdlDsQ5dAn-TiMSZo4x26tqqJMP-tM_T98vy1esvXn6_vq6d1riuMU06psMANaKoEG_xQblhpmWXVQnOwnHGCS0F1zXFlCLeCEaUqYVhdV0IZXc1QedbVoYsxgJV9cK0KR0mwHEOTOzmGJsfQJF7K4ckA8X-QdunkPgXlmsvo4xmFwdTBQZBRO_AajAtDAtJ07hL-A7zMjgQ |
CitedBy_id | crossref_primary_10_1016_j_tsep_2023_102000 crossref_primary_10_1016_j_tsep_2021_101068 crossref_primary_10_1021_acs_iecr_9b04625 |
Cites_doi | 10.1016/S0020-7225(97)80001-8 10.1016/0017-9310(95)00002-Q 10.2514/3.535 10.2514/3.61045 10.2514/3.8123 10.1016/j.ces.2018.04.008 10.1007/BF01590144 10.1090/qam/33441 10.1016/j.actaastro.2008.09.009 10.1016/S0094-5765(97)00197-5 10.2514/8.8473 10.2514/3.253 10.1016/0017-9310(88)90065-8 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tsep.2018.07.008 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2451-9049 |
EndPage | 287 |
ExternalDocumentID | 10_1016_j_tsep_2018_07_008 S2451904918300866 |
GroupedDBID | --M AACTN AAEDW AAHCO AAIAV AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV AEBSH AFKWA AFTJW AGUBO AHJVU AIEXJ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM OAUVE ROL SPC SPCBC SSR SST SSZ T5K ~G- 0R~ AAQFI AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS |
ID | FETCH-LOGICAL-c300t-449fe8dec4a9600848d62f6f635c8ef86810294cb803d18f961aa39d6bb39adc3 |
IEDL.DBID | AIKHN |
ISSN | 2451-9049 |
IngestDate | Wed Oct 01 04:20:27 EDT 2025 Thu Apr 24 22:53:49 EDT 2025 Fri Feb 23 02:29:24 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-449fe8dec4a9600848d62f6f635c8ef86810294cb803d18f961aa39d6bb39adc3 |
ORCID | 0000-0002-0466-2752 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_tsep_2018_07_008 crossref_citationtrail_10_1016_j_tsep_2018_07_008 elsevier_sciencedirect_doi_10_1016_j_tsep_2018_07_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2018 2018-09-00 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
PublicationDecade | 2010 |
PublicationTitle | Thermal science and engineering progress |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zien (b0040) 1978; 16 Hunter, Kuttler (b0055) 1997; 5 East (b0015) 1991 Swann, Pittman (b0030) 1962 Blackwell, Hogan (b0085) 1994; 8 Citron (b0025) 1960; 27 Potts (b0070) 1983; 21 Goodman (b0035) 1958; 80 Freeman, Talay, Austin (b0010) 1997; 41 Venkateshan, Solaiappan (b0045) 1990; 25 Landau (b0020) 1950; 8 Storti (b0060) 1995; 38 Shah (b0080) 2018; 185 Katte (b0065) 2000 Jany, Bejan (b0075) 1988; 31 Suresh (b0005) 2009; 64 Ledder (b0050) 1997; 35 Storti (10.1016/j.tsep.2018.07.008_b0060) 1995; 38 Katte (10.1016/j.tsep.2018.07.008_b0065) 2000 Citron (10.1016/j.tsep.2018.07.008_b0025) 1960; 27 Venkateshan (10.1016/j.tsep.2018.07.008_b0045) 1990; 25 Blackwell (10.1016/j.tsep.2018.07.008_b0085) 1994; 8 Zien (10.1016/j.tsep.2018.07.008_b0040) 1978; 16 Swann (10.1016/j.tsep.2018.07.008_b0030) 1962 Goodman (10.1016/j.tsep.2018.07.008_b0035) 1958; 80 Landau (10.1016/j.tsep.2018.07.008_b0020) 1950; 8 Shah (10.1016/j.tsep.2018.07.008_b0080) 2018; 185 Freeman (10.1016/j.tsep.2018.07.008_b0010) 1997; 41 Potts (10.1016/j.tsep.2018.07.008_b0070) 1983; 21 Jany (10.1016/j.tsep.2018.07.008_b0075) 1988; 31 Ledder (10.1016/j.tsep.2018.07.008_b0050) 1997; 35 Suresh (10.1016/j.tsep.2018.07.008_b0005) 2009; 64 Hunter (10.1016/j.tsep.2018.07.008_b0055) 1997; 5 East (10.1016/j.tsep.2018.07.008_b0015) 1991 |
References_xml | – volume: 80 start-page: 335 year: 1958 end-page: 342 ident: b0035 article-title: The heat-balance integral and its application to problems involving a change of phase publication-title: Trans. ASME – volume: 31 start-page: 1221 year: 1988 end-page: 1235 ident: b0075 article-title: Scaling theory of melting with natural convection in an enclosure publication-title: Int. J. Heat Mass Transf. – volume: 25 start-page: 141 year: 1990 end-page: 144 ident: b0045 article-title: A general integral method for one dimensional ablation publication-title: Warme- und Stoffubertragung – volume: 21 year: 1983 ident: b0070 article-title: An integral method theorem for heat conduction publication-title: AIAA J. – volume: 27 start-page: 219 year: 1960 end-page: 228 ident: b0025 article-title: Heat conduction in a melting slab publication-title: J. Aero/Space Sci. – volume: 5 start-page: 240 year: 1997 end-page: 242 ident: b0055 article-title: Enthalpy method for ablation-type moving boundary problems publication-title: J. Thermophys Heat Transfer – volume: 8 start-page: 81 year: 1950 end-page: 94 ident: b0020 article-title: Heat conduction in a melting solid publication-title: Q. Appl. Math. – volume: 64 start-page: 395 year: 2009 end-page: 402 ident: b0005 article-title: Roadmap of Indian space transportation publication-title: Acta Astronaut. – volume: 41 start-page: 777 year: 1997 end-page: 790 ident: b0010 article-title: Reusable launch vehicle technology program publication-title: Acta Astronaut. – volume: 16 start-page: 1287 year: 1978 end-page: 1295 ident: b0040 article-title: Integral solutions of ablation problems with time-dependent heat flux publication-title: AIAA J. – volume: 38 start-page: 2843 year: 1995 end-page: 2854 ident: b0060 article-title: Numerical modeling of ablation phenomena as two-phase Stefan problems publication-title: Int. J. Heat Mass Transf. – volume: 8 start-page: 282 year: 1994 end-page: 287 ident: b0085 article-title: One dimensional ablation using landau transformation and finite control volume procedure publication-title: J. Thermophys. Heat Transfer – volume: 185 start-page: 127 year: 2018 end-page: 140 ident: b0080 article-title: General correlation for maximum heat transfer to surfaces submerged in gas-fluidized beds publication-title: Chem. Eng. Sci. – volume: 35 start-page: 819 year: 1997 end-page: 828 ident: b0050 article-title: An integral equation for the planar ablation problem publication-title: Int. J. Eng. Sci. – start-page: 175 year: 1991 end-page: 194 ident: b0015 article-title: Atmospheric Re-entry publication-title: Spacecraft Systems Engineering – year: 1962 ident: b0030 article-title: Numerical Analysis of the Transient Response of Advanced Thermal Protection Systems for Atmospheric Entry – year: 2000 ident: b0065 article-title: An Integrated Thermal Model for Analysis of Thermal Protection System of Space Vehicles – volume: 35 start-page: 819 year: 1997 ident: 10.1016/j.tsep.2018.07.008_b0050 article-title: An integral equation for the planar ablation problem publication-title: Int. J. Eng. Sci. doi: 10.1016/S0020-7225(97)80001-8 – volume: 38 start-page: 2843 year: 1995 ident: 10.1016/j.tsep.2018.07.008_b0060 article-title: Numerical modeling of ablation phenomena as two-phase Stefan problems publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(95)00002-Q – volume: 8 start-page: 282 year: 1994 ident: 10.1016/j.tsep.2018.07.008_b0085 article-title: One dimensional ablation using landau transformation and finite control volume procedure publication-title: J. Thermophys. Heat Transfer doi: 10.2514/3.535 – volume: 16 start-page: 1287 year: 1978 ident: 10.1016/j.tsep.2018.07.008_b0040 article-title: Integral solutions of ablation problems with time-dependent heat flux publication-title: AIAA J. doi: 10.2514/3.61045 – volume: 21 year: 1983 ident: 10.1016/j.tsep.2018.07.008_b0070 article-title: An integral method theorem for heat conduction publication-title: AIAA J. doi: 10.2514/3.8123 – volume: 185 start-page: 127 year: 2018 ident: 10.1016/j.tsep.2018.07.008_b0080 article-title: General correlation for maximum heat transfer to surfaces submerged in gas-fluidized beds publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.04.008 – volume: 25 start-page: 141 year: 1990 ident: 10.1016/j.tsep.2018.07.008_b0045 article-title: A general integral method for one dimensional ablation publication-title: Warme- und Stoffubertragung doi: 10.1007/BF01590144 – year: 2000 ident: 10.1016/j.tsep.2018.07.008_b0065 – volume: 8 start-page: 81 year: 1950 ident: 10.1016/j.tsep.2018.07.008_b0020 article-title: Heat conduction in a melting solid publication-title: Q. Appl. Math. doi: 10.1090/qam/33441 – start-page: 175 year: 1991 ident: 10.1016/j.tsep.2018.07.008_b0015 article-title: Atmospheric Re-entry – volume: 80 start-page: 335 year: 1958 ident: 10.1016/j.tsep.2018.07.008_b0035 article-title: The heat-balance integral and its application to problems involving a change of phase publication-title: Trans. ASME – volume: 64 start-page: 395 year: 2009 ident: 10.1016/j.tsep.2018.07.008_b0005 article-title: Roadmap of Indian space transportation publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2008.09.009 – year: 1962 ident: 10.1016/j.tsep.2018.07.008_b0030 – volume: 41 start-page: 777 year: 1997 ident: 10.1016/j.tsep.2018.07.008_b0010 article-title: Reusable launch vehicle technology program publication-title: Acta Astronaut. doi: 10.1016/S0094-5765(97)00197-5 – volume: 27 start-page: 219 year: 1960 ident: 10.1016/j.tsep.2018.07.008_b0025 article-title: Heat conduction in a melting slab publication-title: J. Aero/Space Sci. doi: 10.2514/8.8473 – volume: 5 start-page: 240 year: 1997 ident: 10.1016/j.tsep.2018.07.008_b0055 article-title: Enthalpy method for ablation-type moving boundary problems publication-title: J. Thermophys Heat Transfer doi: 10.2514/3.253 – volume: 31 start-page: 1221 year: 1988 ident: 10.1016/j.tsep.2018.07.008_b0075 article-title: Scaling theory of melting with natural convection in an enclosure publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(88)90065-8 |
SSID | ssj0002584398 |
Score | 2.0806048 |
Snippet | •Heat diffusion through a planar ablative Thermal Protection System is considered.•Landau type coordinate transformation is used to immobilize moving... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 279 |
Title | Numerical investigation and correlations for heat diffusion through planar ablative thermal protection systems |
URI | https://dx.doi.org/10.1016/j.tsep.2018.07.008 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 2451-9049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002584398 issn: 2451-9049 databaseCode: ACRLP dateStart: 20170301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 2451-9049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002584398 issn: 2451-9049 databaseCode: AIKHN dateStart: 20170301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2451-9049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002584398 issn: 2451-9049 databaseCode: AKRWK dateStart: 20170301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDBZde9kOY0_WvfBhtxGahxOcYykr3cZ62Qq9BSexoSNzS5v8_0mJ03UwetgxwQpBFtInW_oE8BArQXlASM0xwuHSl44MdeiE2uOpy7PUrbv436bRZMZf5uG8A6O2F4bKKq3vb3x67a3tm4HV5mC1WAzefWJGQYCLRknAPDqAno_RHjOw3vD5dTLdHrX4GGSDeiouiTgkY9tnmkqvcqOIudITNY0nDZr8K0TthJ3xCRxbvMiGzS-dQkeZMzjaYRE8BzOtmmuXgi1-WDOWhkmTs4ymb9h6N4YAlZHzZTQWpaJzMmbn9LBVIY1cM5kWNRM4I1z4hV-0PA60tCF93lzAbPz0MZo4doyCk6FiSofzWCuRq4xLTFeIPz-PfB1phBqZUFoQI5kf47YIN8g9oePIkzKI8yhNg1jmWXAJXbM06gqYdqmoIsKQLzAxDFKBaFIRiSDmmVJw3Qev1VySWY5xGnVRJG0x2WdC2k5I24lLV9-iD49bmVXDsLF3ddhuSPLLThIMAXvkrv8pdwOH9NRUld1Ct1xX6g5hSJneWzP7BpSb3Dc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb8IwDLYYHLYdpj019sxht6mij7RKjwgNlQG9DCRuUdomEhMrCMr_X9ymjEkTh13buKocy_6c2J8BXkLJMA_wsTmGWVS4whK-8i1fOTSxaZrYZRf_OA6iKX2f-bMG9OpeGCyrNL6_8umltzZPOkabndV83vlwkRlFA1xtlAjMgyNoUV_75Ca0uoNhFO-OWlwdZL1yKi6KWChj2meqSq9iI5G50mEljScOmvwrRO2Fnf45nBm8SLrVL11AQ-aXcLrHIngFebytrl0WZP7DmrHMicgzkuL0DVPvRjRAJeh8CY5F2eI5GTFzeshqIXKxJiJZlEzgBHHhl_6i4XHApRXp8-Yapv23SS-yzBgFK9WKKSxKQyVZJlMqdLqC_PlZ4KpAaaiRMqkYMpK5od4WZnuZw1QYOEJ4YRYkiReKLPVuoJkvc3kLRNlYVBHokM90YuglTKNJiSSCOs8UjKo2OLXmeGo4xnHUxYLXxWSfHLXNUdvcxqtv1obXncyqYtg4uNqvN4T_shOuQ8ABubt_yj3DcTQZj_hoEA_v4QTfVBVmD9As1lv5qCFJkTwZk_sG-H7fGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+and+correlations+for+heat+diffusion+through+planar+ablative+thermal+protection+systems&rft.jtitle=Thermal+science+and+engineering+progress&rft.au=Kannan%2C+Srinivasa+Ramanujam&rft.au=Katte%2C+Subrahmanya+S.&rft.date=2018-09-01&rft.pub=Elsevier+Ltd&rft.issn=2451-9049&rft.eissn=2451-9049&rft.volume=7&rft.spage=279&rft.epage=287&rft_id=info:doi/10.1016%2Fj.tsep.2018.07.008&rft.externalDocID=S2451904918300866 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9049&client=summon |