Dynamic colormap visualization integrated with Harris hawks optimization for enhanced lung CT segmentation and diagnostic precision
This study presents a novel method that utilizes Harris Hawks Optimization combined with dynamic colormap visualization to enhance the quality of lung CT scan segmentation. The Harris hawks optimization algorithm is a swarm-based method used to enhance multi-level thresholding for image segmentation...
Saved in:
| Published in | Cluster computing Vol. 28; no. 6; p. 377 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1386-7857 1573-7543 |
| DOI | 10.1007/s10586-025-05220-4 |
Cover
| Abstract | This study presents a novel method that utilizes Harris Hawks Optimization combined with dynamic colormap visualization to enhance the quality of lung CT scan segmentation. The Harris hawks optimization algorithm is a swarm-based method used to enhance multi-level thresholding for image segmentation, hence facilitating the identification of regions of interest (ROIs) in medical images. An analysis of different colormap schemes including Accent, Gray, Hot, Inferno and Jet, was conducted to improve the visualization of segmented images. The experimental results show the efficiency of the HHO algorithm from the segmentation accuracy perspective as compared to the conventional optimization techniques using publicly available datasets from the Cancer Imaging Archive. In particular, the average SSIM was above 98% while the Jaccard Index was more than 90%. The expert evaluation confirms earlier findings that using the HHO algorithm with the Inferno colormap, particularly with four or five thresholds, achieves optimal image clarity and diagnostic value for clinical purposes. In addition, the method provides a promising way to enhance diagnostic precision and treatment strategies for lung diseases, making it highly valuable for pulmonary healthcare, particularly in urgent scenarios such as pandemics. |
|---|---|
| AbstractList | This study presents a novel method that utilizes Harris Hawks Optimization combined with dynamic colormap visualization to enhance the quality of lung CT scan segmentation. The Harris hawks optimization algorithm is a swarm-based method used to enhance multi-level thresholding for image segmentation, hence facilitating the identification of regions of interest (ROIs) in medical images. An analysis of different colormap schemes including Accent, Gray, Hot, Inferno and Jet, was conducted to improve the visualization of segmented images. The experimental results show the efficiency of the HHO algorithm from the segmentation accuracy perspective as compared to the conventional optimization techniques using publicly available datasets from the Cancer Imaging Archive. In particular, the average SSIM was above 98% while the Jaccard Index was more than 90%. The expert evaluation confirms earlier findings that using the HHO algorithm with the Inferno colormap, particularly with four or five thresholds, achieves optimal image clarity and diagnostic value for clinical purposes. In addition, the method provides a promising way to enhance diagnostic precision and treatment strategies for lung diseases, making it highly valuable for pulmonary healthcare, particularly in urgent scenarios such as pandemics. |
| ArticleNumber | 377 |
| Author | Ryalat, Mohammad H. Al-Najdawi, Nijad AlShaqsi, Jamil Al-Betar, Mohammed Azmi Drogham, Osama Alkhawaldeh, Rami S. |
| Author_xml | – sequence: 1 givenname: Osama surname: Drogham fullname: Drogham, Osama email: o.dorgham@bau.edu.jo organization: Prince Abdullah bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University – sequence: 2 givenname: Mohammad H. surname: Ryalat fullname: Ryalat, Mohammad H. organization: Prince Abdullah bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University – sequence: 3 givenname: Nijad surname: Al-Najdawi fullname: Al-Najdawi, Nijad organization: College of Computer and Information Science, Prince Sultan University – sequence: 4 givenname: Rami S. surname: Alkhawaldeh fullname: Alkhawaldeh, Rami S. organization: Department of Computer Information Systems, The University of Jordan, Information Systems Department, Sultan Qaboos University – sequence: 5 givenname: Jamil surname: AlShaqsi fullname: AlShaqsi, Jamil organization: Information Systems Department, Sultan Qaboos University – sequence: 6 givenname: Mohammed Azmi surname: Al-Betar fullname: Al-Betar, Mohammed Azmi organization: Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University |
| BookMark | eNqFkU9v1DAUxC1UJNrCF-BkiXPKc2zH2SPa_pUqcSln68Wxsy4bO9jeVuXKF8dtQL3B6T1pfjNzmBNyFGKwhHxkcMYA1OfMQPZdA61sQLYtNOINOWZS8UZJwY_qz6useqnekZOc7wFgo9rNMfl1_hRw9oaauI9pxoU--HzAvf-JxcdAfSh2SljsSB992dFrTMlnusPH75nGpfj5L-liojbsMJjK7g9hots7mu0021BWAsNIR49TiLnUxiVZ43MV3pO3DvfZfvhzT8m3y4u77XVz-_XqZvvltjEcoDSCu2HoDMPOyE7JTirDBmPQCSYHdCBaFL3jowImR9ePwE3vnEDYSDGA7fkp-bTmLin-ONhc9H08pFArNW9F13Iluv9QbMME6_gz1a6USTHnZJ1ekp8xPWkG-nkSvU6i6yT6ZRItqomvplzhMNn0Gv0P129pnJMz |
| Cites_doi | 10.1016/j.eswa.2019.01.047 10.1016/0734-189X(85)90125-2 10.1007/s00500-017-2794-1 10.1016/j.eswa.2020.113428 10.1016/j.media.2016.05.004 10.1093/jamia/ocy098 10.1063/1.5113654 10.1007/s00521-021-06719-8 10.1117/1.JMI.6.2.020901 10.1118/1.2948349 10.1109/JBHI.2017.2725903 10.1007/s11042-020-10035-z 10.1016/j.media.2010.02.004 10.1109/CYBER.2015.7288151 10.1118/1.3633941 10.1007/s10044-017-0653-4 10.1007/s11042-019-7515-6 10.1007/s13278-020-00660-9 10.1007/978-3-030-33128-3_3 10.1016/j.imu.2020.100375 10.3390/diagnostics9010029 10.1016/j.compbiomed.2012.09.002 10.1016/j.future.2019.02.028 10.1109/ICCSP.2018.8524302 10.1016/j.jksuci.2018.04.007 10.1007/s40998-019-00251-1 10.1016/j.compbiomed.2013.10.028 10.1016/j.media.2017.05.001 10.1016/j.smhl.2022.100304 10.1016/j.asoc.2019.04.002 10.1007/s11548-012-0783-5 10.1109/TMI.2016.2528129 10.1016/j.compbiomed.2012.09.003 10.1016/j.cmpb.2009.07.006 10.1007/s00521-022-08078-4 10.1007/978-981-13-0923-6_7 10.3390/fi11010025 10.1007/978-3-642-10520-3_9 10.1109/IV.2008.24 10.1109/ACCESS.2019.2891673 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Oct 2025 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Oct 2025 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10586-025-05220-4 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| ExternalDocumentID | 10_1007_s10586_025_05220_4 |
| GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 1N0 203 29B 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P9O PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AAIAL AARHV AAYTO AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFGCZ AFKRA AGGDS AGQPQ AHSBF AJBLW ARAPS BDATZ BENPR BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HZ~ IHE K7- N2Q O9- OVD PHGZM PHGZT PQGLB PUEGO RNI RZC RZE RZK TEORI JQ2 |
| ID | FETCH-LOGICAL-c300t-43fbb6c1a6c5675657c1bccaf415baf042a48f3d7015df8d03c8ff4a0954b0e83 |
| IEDL.DBID | AGYKE |
| ISSN | 1386-7857 |
| IngestDate | Sat Sep 06 11:17:48 EDT 2025 Fri Jul 25 09:20:17 EDT 2025 Wed Oct 01 05:25:21 EDT 2025 Thu Sep 04 04:30:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Dynamic colormap visualization Multi-level thresholding Harris hawks optimization (HHO) Medical imaging Lung CT segmentation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-43fbb6c1a6c5675657c1bccaf415baf042a48f3d7015df8d03c8ff4a0954b0e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3219141638 |
| PQPubID | 2043865 |
| ParticipantIDs | proquest_journals_3246237468 proquest_journals_3219141638 crossref_primary_10_1007_s10586_025_05220_4 springer_journals_10_1007_s10586_025_05220_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | S Gite (5220_CR20) 2023; 35 M Fisher (5220_CR9) 2013; 8 MH Ryalat (5220_CR8) 2023; 35 M Ahmadi (5220_CR39) 2019; 78 AA Heidari (5220_CR7) 2019; 97 M Abd Elaziz (5220_CR4) 2019; 125 H Liang (5220_CR41) 2019; 7 LM Pehrson (5220_CR32) 2019; 9 V Verma (5220_CR53) 2020; 10 J Pu (5220_CR13) 2008; 35 A El-Baz (5220_CR16) 2013; 2013 N Ali (5220_CR49) 2019; 11 T Messay (5220_CR14) 2010; 14 Q Dou (5220_CR26) 2016; 35 C Brewer (5220_CR6) 2016 M Tan (5220_CR15) 2011; 38 Q Dou (5220_CR25) 2017; 41 JA Barberà (5220_CR2) 2016 D Cascio (5220_CR11) 2012; 42 5220_CR43 5220_CR44 5220_CR45 5220_CR46 5220_CR48 E Rodríguez-Esparza (5220_CR51) 2020; 155 DRIM Setiadi (5220_CR52) 2021; 80 S Ahuja (5220_CR47) 2022; 7 HH Jo (5220_CR17) 2014; 45 KB Resma (5220_CR42) 2021; 33 HR Roth (5220_CR24) 2018; 36 JN Kapur (5220_CR36) 1985; 29 SMB Netto (5220_CR10) 2012; 42 G Stockman (5220_CR3) 2001 O Dorgham (5220_CR22) 2020; 20 5220_CR33 5220_CR38 N Otsu (5220_CR35) 1975; 11 S Pare (5220_CR37) 2020; 44 M Havaei (5220_CR23) 2017; 35 O Dorgham (5220_CR1) 2019; 11 D Oliva (5220_CR34) 2019; 23 S Kido (5220_CR18) 2020; 1213 S Kido (5220_CR19) 2020; 1213 O Dorgham (5220_CR21) 2022; 26 BN Narayanan (5220_CR27) 2019; 22 H Jiang (5220_CR30) 2017; 22 C Ware (5220_CR5) 2019 R Gruetzemacher (5220_CR29) 2018; 25 F Shaukat (5220_CR31) 2019; 6 S Akram (5220_CR12) 2016; 6 H Gezici (5220_CR50) 2022; 9 JRF Silva Sousa (5220_CR28) 2010; 98 SJ Mousavirad (5220_CR40) 2020; 97 |
| References_xml | – volume: 2013 issue: 1 year: 2013 ident: 5220_CR16 publication-title: Int. J. Biomed. Imaging – volume: 125 start-page: 112 year: 2019 ident: 5220_CR4 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.01.047 – volume-title: Designing Better Maps: A Guide for GIS Users year: 2016 ident: 5220_CR6 – volume: 29 start-page: 273 issue: 3 year: 1985 ident: 5220_CR36 publication-title: Comput. Vis. Graph. Image Process. doi: 10.1016/0734-189X(85)90125-2 – volume: 23 start-page: 431 year: 2019 ident: 5220_CR34 publication-title: Soft Comput. doi: 10.1007/s00500-017-2794-1 – volume: 155 year: 2020 ident: 5220_CR51 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113428 – volume: 35 start-page: 18 year: 2017 ident: 5220_CR23 publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.05.004 – volume: 25 start-page: 1301 issue: 10 year: 2018 ident: 5220_CR29 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocy098 – volume: 11 issue: 6 year: 2019 ident: 5220_CR49 publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.5113654 – volume: 9 start-page: 216 issue: 1 year: 2022 ident: 5220_CR50 publication-title: J. Comput. Des. Eng. – volume: 36 start-page: 63 issue: 2 year: 2018 ident: 5220_CR24 publication-title: Med. Imaging Technol. – volume: 11 start-page: 23 issue: 285–296 year: 1975 ident: 5220_CR35 publication-title: Automatica – volume: 35 start-page: 22839 issue: 31 year: 2023 ident: 5220_CR20 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06719-8 – volume: 6 start-page: 020901 issue: 2 year: 2019 ident: 5220_CR31 publication-title: J. Med. Imaging doi: 10.1117/1.JMI.6.2.020901 – volume-title: Information Visualization: Perception for Design year: 2019 ident: 5220_CR5 – volume: 35 start-page: 3453 issue: 8 year: 2008 ident: 5220_CR13 publication-title: Med. Phys. doi: 10.1118/1.2948349 – volume: 22 start-page: 1227 issue: 4 year: 2017 ident: 5220_CR30 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2725903 – volume: 80 start-page: 8423 issue: 6 year: 2021 ident: 5220_CR52 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-10035-z – volume: 14 start-page: 390 issue: 3 year: 2010 ident: 5220_CR14 publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.02.004 – ident: 5220_CR43 doi: 10.1109/CYBER.2015.7288151 – volume: 38 start-page: 5630 issue: 10 year: 2011 ident: 5220_CR15 publication-title: Med. Phys. doi: 10.1118/1.3633941 – volume: 22 start-page: 559 year: 2019 ident: 5220_CR27 publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-017-0653-4 – volume: 78 start-page: 23003 year: 2019 ident: 5220_CR39 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-7515-6 – volume: 10 start-page: 43 issue: 1 year: 2020 ident: 5220_CR53 publication-title: Soc. Netw. Anal. Min. doi: 10.1007/s13278-020-00660-9 – volume: 1213 start-page: 47 year: 2020 ident: 5220_CR19 publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-030-33128-3_3 – volume: 20 year: 2020 ident: 5220_CR22 publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2020.100375 – volume: 9 start-page: 29 issue: 1 year: 2019 ident: 5220_CR32 publication-title: Diagnostics doi: 10.3390/diagnostics9010029 – volume: 7 year: 2022 ident: 5220_CR47 publication-title: Mach. Learn. Appl. – volume: 42 start-page: 1098 issue: 11 year: 2012 ident: 5220_CR11 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2012.09.002 – volume: 97 start-page: 849 year: 2019 ident: 5220_CR7 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – ident: 5220_CR33 doi: 10.1109/ICCSP.2018.8524302 – volume: 33 start-page: 528 issue: 5 year: 2021 ident: 5220_CR42 publication-title: J. King Saud Univ. Comput. Inf. Sci. doi: 10.1016/j.jksuci.2018.04.007 – volume: 44 start-page: 1 issue: 1 year: 2020 ident: 5220_CR37 publication-title: Iran. J. Sci. Technol. Trans. Electr. Eng. doi: 10.1007/s40998-019-00251-1 – volume-title: Chronic Obstructive Pulmonary Disease (COPD) year: 2016 ident: 5220_CR2 – volume: 45 start-page: 87 year: 2014 ident: 5220_CR17 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2013.10.028 – volume: 41 start-page: 40 year: 2017 ident: 5220_CR25 publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.05.001 – volume: 26 year: 2022 ident: 5220_CR21 publication-title: Smart Health doi: 10.1016/j.smhl.2022.100304 – volume: 97 year: 2020 ident: 5220_CR40 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.04.002 – ident: 5220_CR48 – volume: 8 start-page: 313 year: 2013 ident: 5220_CR9 publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-012-0783-5 – volume: 35 start-page: 1182 issue: 5 year: 2016 ident: 5220_CR26 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528129 – volume: 42 start-page: 1110 issue: 11 year: 2012 ident: 5220_CR10 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2012.09.003 – volume: 98 start-page: 1 issue: 1 year: 2010 ident: 5220_CR28 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2009.07.006 – volume: 35 start-page: 6855 issue: 9 year: 2023 ident: 5220_CR8 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-08078-4 – ident: 5220_CR38 doi: 10.1007/978-981-13-0923-6_7 – volume-title: Computer Vision year: 2001 ident: 5220_CR3 – volume: 1213 start-page: 47 year: 2020 ident: 5220_CR18 publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-030-33128-3_3 – volume: 11 start-page: 25 issue: 1 year: 2019 ident: 5220_CR1 publication-title: Future Internet doi: 10.3390/fi11010025 – ident: 5220_CR44 doi: 10.1007/978-3-642-10520-3_9 – ident: 5220_CR45 – ident: 5220_CR46 doi: 10.1109/IV.2008.24 – volume: 6 start-page: 252 issue: 1 year: 2016 ident: 5220_CR12 publication-title: J. Med. Imaging Health Inform. – volume: 7 start-page: 11258 year: 2019 ident: 5220_CR41 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891673 |
| SSID | ssj0009729 |
| Score | 2.3652565 |
| Snippet | This study presents a novel method that utilizes Harris Hawks Optimization combined with dynamic colormap visualization to enhance the quality of lung CT scan... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 377 |
| SubjectTerms | Accuracy Algorithms Chronic obstructive pulmonary disease Computed tomography Computer Communication Networks Computer Science COVID-19 Data integrity Deep learning Illnesses Image segmentation Lung diseases Medical imaging Medical prognosis Neural networks Operating Systems Optimization Optimization techniques Pneumonia Processor Architectures Respiratory diseases Visualization |
| Title | Dynamic colormap visualization integrated with Harris hawks optimization for enhanced lung CT segmentation and diagnostic precision |
| URI | https://link.springer.com/article/10.1007/s10586-025-05220-4 https://www.proquest.com/docview/3219141638 https://www.proquest.com/docview/3246237468 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: AGYKE dateStart: 19980101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: U2A dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4a5cIF2AABY-gddhtGaWzH6bHqgAqknajETpHt2ICAUDWFSbvuj_OcOOtA49CzrcTxs798ib_3PYCvg9JIN1CaSWMEE6ntM2NtxlLtlRWOq9I2aosf2Xgizq_kVUwKqzu1e3ck2SD1P8luMg-CWckSIg0JEyuw2vht9WB1ePbz4mRhtqua6mR9Tv1VLlVMlvn_VV6_kBYs883BaPO-Od2ASTfSVmZyd_w0N8f29xsTx2UfZRPWIwHFYbtiPsIHV32Cja64A8a9vgV_vre16jHYWhN6T_H5tg4ZmG3eJv71mSgx_MvFsZ4RXuCN_nVX4yMB0UPXk2gxuuqmkRrgPYELji6xdtcPMe2pQl2VWLaaPxoVTmex8M82TE5PLkdjFis2MMuTZM4E98Zktq8zK-lLJJPK9in02hNNMNoTQGiRe14qIiGlz8uE29x7oYnnCZO4nO9Ar3qs3C6gywdmEI4hdcYFAVEuTSjfor3m3ibc7MG3LmzFtDXmKBYWzGF-C5rfopnfQuzBQRfZIm7SuuBpMLcLhPSdZkHcUImMmo-6OC6a37_Z_nLdP8NaGpZCoxA8gN589uS-ENOZm8O4sA9hZZIOXwAj_fgd |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDnBhR-zMgRtYSmM7To9VoSrrqZW4RbZjUwRNq6bAB_DjjLNQQHDg7FES5XlmXuKZN4ScNFMtbFMqKrTmlIemQbUxEQ2Vk4ZbJlNTVFvcRd0-v7oX91VTWF5Xu9dHkkWk_tLsJmJfMCtogKQhoHyeLHoBK6-Y3w9bM6ldWcwmazC0lrGQVavM79f4no5mHPPHsWiRbTprZKWiidAqcV0nczbbIKv1CAaoPHKTvJ-XE-XBi09jjB3D62Pu-yTL7kr4VINIwf9xha6aoFfDQL095TDCcDGsLZG8gs0GRUEAPGMIgHYPcvswrJqTMlBZCmlZmYdPBeNJNZ5ni_Q7F712l1ZzFahhQTClnDmtI9NQkRH4vRAJaRoIkHKYzLVy6MaKx46lEqlC6uI0YCZ2jitkY1wHNmbbZCEbZXaHgI2buukPC1XEOIaLWGg_ZEU5xZwJmN4lp_XrTcalfEYyE0r2YCQIRlKAkfBdclAjkFSulCcs9BJ0njb-scyRwUke4fJZDdps-e-b7f3P_JgsdXu3N8nN5d31PlkO_R4qavoOyMJ08mIPkZtM9VGxFT8ARtndIw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO2JnDtzAIo3tOD1WQFUWIQ5U4hZ5BQQNVVvgA_hxxlkoIDhwtpVEeZ7xSzzvDSH7LauFa0lFhdac8tg0qTYmobHy0nDHpDVFtcVV0u3x81tx-0XFX1S710eSpaYhuDTl46OB9UdfhG8iDcWzgkZIICLKp8kMD0YJuKJ7cXtiuyuLPmVNhrNlKmQlm_n9Gt-3pgnf_HFEWuw8nUUyX1FGaJcYL5Eply-ThbodA1TRuULeT8ru8hCMqDHfDuD1YRQ0k6XSEj6dISyEv6_QVUOMcLhXb48jeMbU0a9nIpEFl98XxQHwhOkAjm9g5O76lVApB5VbsGWVHj4VDIZVq55V0uuc3hx3adVjgRoWRWPKmdc6MU2VGIHfDomQpolgKY8bu1YeQ1rx1DMrkTZYn9qImdR7rpCZcR25lK2RRv6cu3UCLm3pVjg4VAnjmDpSoUPDFeUV8yZieoMc1K83G5RWGtnENDmAkSEYWQFGxjfIdo1AVoXVKGNxsKMLFPKPYY5sTvIEhw9r0CbDf99s83_T98js9Uknuzy7utgic3FYQkV53zZpjIcvbgdpyljvFivxA_2k4V8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+colormap+visualization+integrated+with+Harris+hawks+optimization+for+enhanced+lung+CT+segmentation+and+diagnostic+precision&rft.jtitle=Cluster+computing&rft.au=Drogham%2C+Osama&rft.au=Ryalat%2C+Mohammad+H&rft.au=Al-Najdawi%2C+Nijad&rft.au=Alkhawaldeh%2C+Rami+S&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=6&rft.spage=377&rft_id=info:doi/10.1007%2Fs10586-025-05220-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |