Dynamic colormap visualization integrated with Harris hawks optimization for enhanced lung CT segmentation and diagnostic precision

This study presents a novel method that utilizes Harris Hawks Optimization combined with dynamic colormap visualization to enhance the quality of lung CT scan segmentation. The Harris hawks optimization algorithm is a swarm-based method used to enhance multi-level thresholding for image segmentation...

Full description

Saved in:
Bibliographic Details
Published inCluster computing Vol. 28; no. 6; p. 377
Main Authors Drogham, Osama, Ryalat, Mohammad H., Al-Najdawi, Nijad, Alkhawaldeh, Rami S., AlShaqsi, Jamil, Al-Betar, Mohammed Azmi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1386-7857
1573-7543
DOI10.1007/s10586-025-05220-4

Cover

Abstract This study presents a novel method that utilizes Harris Hawks Optimization combined with dynamic colormap visualization to enhance the quality of lung CT scan segmentation. The Harris hawks optimization algorithm is a swarm-based method used to enhance multi-level thresholding for image segmentation, hence facilitating the identification of regions of interest (ROIs) in medical images. An analysis of different colormap schemes including Accent, Gray, Hot, Inferno and Jet, was conducted to improve the visualization of segmented images. The experimental results show the efficiency of the HHO algorithm from the segmentation accuracy perspective as compared to the conventional optimization techniques using publicly available datasets from the Cancer Imaging Archive. In particular, the average SSIM was above 98% while the Jaccard Index was more than 90%. The expert evaluation confirms earlier findings that using the HHO algorithm with the Inferno colormap, particularly with four or five thresholds, achieves optimal image clarity and diagnostic value for clinical purposes. In addition, the method provides a promising way to enhance diagnostic precision and treatment strategies for lung diseases, making it highly valuable for pulmonary healthcare, particularly in urgent scenarios such as pandemics.
AbstractList This study presents a novel method that utilizes Harris Hawks Optimization combined with dynamic colormap visualization to enhance the quality of lung CT scan segmentation. The Harris hawks optimization algorithm is a swarm-based method used to enhance multi-level thresholding for image segmentation, hence facilitating the identification of regions of interest (ROIs) in medical images. An analysis of different colormap schemes including Accent, Gray, Hot, Inferno and Jet, was conducted to improve the visualization of segmented images. The experimental results show the efficiency of the HHO algorithm from the segmentation accuracy perspective as compared to the conventional optimization techniques using publicly available datasets from the Cancer Imaging Archive. In particular, the average SSIM was above 98% while the Jaccard Index was more than 90%. The expert evaluation confirms earlier findings that using the HHO algorithm with the Inferno colormap, particularly with four or five thresholds, achieves optimal image clarity and diagnostic value for clinical purposes. In addition, the method provides a promising way to enhance diagnostic precision and treatment strategies for lung diseases, making it highly valuable for pulmonary healthcare, particularly in urgent scenarios such as pandemics.
ArticleNumber 377
Author Ryalat, Mohammad H.
Al-Najdawi, Nijad
AlShaqsi, Jamil
Al-Betar, Mohammed Azmi
Drogham, Osama
Alkhawaldeh, Rami S.
Author_xml – sequence: 1
  givenname: Osama
  surname: Drogham
  fullname: Drogham, Osama
  email: o.dorgham@bau.edu.jo
  organization: Prince Abdullah bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University
– sequence: 2
  givenname: Mohammad H.
  surname: Ryalat
  fullname: Ryalat, Mohammad H.
  organization: Prince Abdullah bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University
– sequence: 3
  givenname: Nijad
  surname: Al-Najdawi
  fullname: Al-Najdawi, Nijad
  organization: College of Computer and Information Science, Prince Sultan University
– sequence: 4
  givenname: Rami S.
  surname: Alkhawaldeh
  fullname: Alkhawaldeh, Rami S.
  organization: Department of Computer Information Systems, The University of Jordan, Information Systems Department, Sultan Qaboos University
– sequence: 5
  givenname: Jamil
  surname: AlShaqsi
  fullname: AlShaqsi, Jamil
  organization: Information Systems Department, Sultan Qaboos University
– sequence: 6
  givenname: Mohammed Azmi
  surname: Al-Betar
  fullname: Al-Betar, Mohammed Azmi
  organization: Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University
BookMark eNqFkU9v1DAUxC1UJNrCF-BkiXPKc2zH2SPa_pUqcSln68Wxsy4bO9jeVuXKF8dtQL3B6T1pfjNzmBNyFGKwhHxkcMYA1OfMQPZdA61sQLYtNOINOWZS8UZJwY_qz6useqnekZOc7wFgo9rNMfl1_hRw9oaauI9pxoU--HzAvf-JxcdAfSh2SljsSB992dFrTMlnusPH75nGpfj5L-liojbsMJjK7g9hots7mu0021BWAsNIR49TiLnUxiVZ43MV3pO3DvfZfvhzT8m3y4u77XVz-_XqZvvltjEcoDSCu2HoDMPOyE7JTirDBmPQCSYHdCBaFL3jowImR9ePwE3vnEDYSDGA7fkp-bTmLin-ONhc9H08pFArNW9F13Iluv9QbMME6_gz1a6USTHnZJ1ekp8xPWkG-nkSvU6i6yT6ZRItqomvplzhMNn0Gv0P129pnJMz
Cites_doi 10.1016/j.eswa.2019.01.047
10.1016/0734-189X(85)90125-2
10.1007/s00500-017-2794-1
10.1016/j.eswa.2020.113428
10.1016/j.media.2016.05.004
10.1093/jamia/ocy098
10.1063/1.5113654
10.1007/s00521-021-06719-8
10.1117/1.JMI.6.2.020901
10.1118/1.2948349
10.1109/JBHI.2017.2725903
10.1007/s11042-020-10035-z
10.1016/j.media.2010.02.004
10.1109/CYBER.2015.7288151
10.1118/1.3633941
10.1007/s10044-017-0653-4
10.1007/s11042-019-7515-6
10.1007/s13278-020-00660-9
10.1007/978-3-030-33128-3_3
10.1016/j.imu.2020.100375
10.3390/diagnostics9010029
10.1016/j.compbiomed.2012.09.002
10.1016/j.future.2019.02.028
10.1109/ICCSP.2018.8524302
10.1016/j.jksuci.2018.04.007
10.1007/s40998-019-00251-1
10.1016/j.compbiomed.2013.10.028
10.1016/j.media.2017.05.001
10.1016/j.smhl.2022.100304
10.1016/j.asoc.2019.04.002
10.1007/s11548-012-0783-5
10.1109/TMI.2016.2528129
10.1016/j.compbiomed.2012.09.003
10.1016/j.cmpb.2009.07.006
10.1007/s00521-022-08078-4
10.1007/978-981-13-0923-6_7
10.3390/fi11010025
10.1007/978-3-642-10520-3_9
10.1109/IV.2008.24
10.1109/ACCESS.2019.2891673
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Oct 2025
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Oct 2025
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10586-025-05220-4
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
ExternalDocumentID 10_1007_s10586_025_05220_4
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29B
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFDZB
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
AAIAL
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFGCZ
AFKRA
AGGDS
AGQPQ
AHSBF
AJBLW
ARAPS
BDATZ
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
HCIFZ
HZ~
IHE
K7-
N2Q
O9-
OVD
PHGZM
PHGZT
PQGLB
PUEGO
RNI
RZC
RZE
RZK
TEORI
JQ2
ID FETCH-LOGICAL-c300t-43fbb6c1a6c5675657c1bccaf415baf042a48f3d7015df8d03c8ff4a0954b0e83
IEDL.DBID AGYKE
ISSN 1386-7857
IngestDate Sat Sep 06 11:17:48 EDT 2025
Fri Jul 25 09:20:17 EDT 2025
Wed Oct 01 05:25:21 EDT 2025
Thu Sep 04 04:30:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Dynamic colormap visualization
Multi-level thresholding
Harris hawks optimization (HHO)
Medical imaging
Lung CT segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-43fbb6c1a6c5675657c1bccaf415baf042a48f3d7015df8d03c8ff4a0954b0e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3219141638
PQPubID 2043865
ParticipantIDs proquest_journals_3246237468
proquest_journals_3219141638
crossref_primary_10_1007_s10586_025_05220_4
springer_journals_10_1007_s10586_025_05220_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References S Gite (5220_CR20) 2023; 35
M Fisher (5220_CR9) 2013; 8
MH Ryalat (5220_CR8) 2023; 35
M Ahmadi (5220_CR39) 2019; 78
AA Heidari (5220_CR7) 2019; 97
M Abd Elaziz (5220_CR4) 2019; 125
H Liang (5220_CR41) 2019; 7
LM Pehrson (5220_CR32) 2019; 9
V Verma (5220_CR53) 2020; 10
J Pu (5220_CR13) 2008; 35
A El-Baz (5220_CR16) 2013; 2013
N Ali (5220_CR49) 2019; 11
T Messay (5220_CR14) 2010; 14
Q Dou (5220_CR26) 2016; 35
C Brewer (5220_CR6) 2016
M Tan (5220_CR15) 2011; 38
Q Dou (5220_CR25) 2017; 41
JA Barberà (5220_CR2) 2016
D Cascio (5220_CR11) 2012; 42
5220_CR43
5220_CR44
5220_CR45
5220_CR46
5220_CR48
E Rodríguez-Esparza (5220_CR51) 2020; 155
DRIM Setiadi (5220_CR52) 2021; 80
S Ahuja (5220_CR47) 2022; 7
HH Jo (5220_CR17) 2014; 45
KB Resma (5220_CR42) 2021; 33
HR Roth (5220_CR24) 2018; 36
JN Kapur (5220_CR36) 1985; 29
SMB Netto (5220_CR10) 2012; 42
G Stockman (5220_CR3) 2001
O Dorgham (5220_CR22) 2020; 20
5220_CR33
5220_CR38
N Otsu (5220_CR35) 1975; 11
S Pare (5220_CR37) 2020; 44
M Havaei (5220_CR23) 2017; 35
O Dorgham (5220_CR1) 2019; 11
D Oliva (5220_CR34) 2019; 23
S Kido (5220_CR18) 2020; 1213
S Kido (5220_CR19) 2020; 1213
O Dorgham (5220_CR21) 2022; 26
BN Narayanan (5220_CR27) 2019; 22
H Jiang (5220_CR30) 2017; 22
C Ware (5220_CR5) 2019
R Gruetzemacher (5220_CR29) 2018; 25
F Shaukat (5220_CR31) 2019; 6
S Akram (5220_CR12) 2016; 6
H Gezici (5220_CR50) 2022; 9
JRF Silva Sousa (5220_CR28) 2010; 98
SJ Mousavirad (5220_CR40) 2020; 97
References_xml – volume: 2013
  issue: 1
  year: 2013
  ident: 5220_CR16
  publication-title: Int. J. Biomed. Imaging
– volume: 125
  start-page: 112
  year: 2019
  ident: 5220_CR4
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.01.047
– volume-title: Designing Better Maps: A Guide for GIS Users
  year: 2016
  ident: 5220_CR6
– volume: 29
  start-page: 273
  issue: 3
  year: 1985
  ident: 5220_CR36
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/0734-189X(85)90125-2
– volume: 23
  start-page: 431
  year: 2019
  ident: 5220_CR34
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2794-1
– volume: 155
  year: 2020
  ident: 5220_CR51
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113428
– volume: 35
  start-page: 18
  year: 2017
  ident: 5220_CR23
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.05.004
– volume: 25
  start-page: 1301
  issue: 10
  year: 2018
  ident: 5220_CR29
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocy098
– volume: 11
  issue: 6
  year: 2019
  ident: 5220_CR49
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.5113654
– volume: 9
  start-page: 216
  issue: 1
  year: 2022
  ident: 5220_CR50
  publication-title: J. Comput. Des. Eng.
– volume: 36
  start-page: 63
  issue: 2
  year: 2018
  ident: 5220_CR24
  publication-title: Med. Imaging Technol.
– volume: 11
  start-page: 23
  issue: 285–296
  year: 1975
  ident: 5220_CR35
  publication-title: Automatica
– volume: 35
  start-page: 22839
  issue: 31
  year: 2023
  ident: 5220_CR20
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06719-8
– volume: 6
  start-page: 020901
  issue: 2
  year: 2019
  ident: 5220_CR31
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.6.2.020901
– volume-title: Information Visualization: Perception for Design
  year: 2019
  ident: 5220_CR5
– volume: 35
  start-page: 3453
  issue: 8
  year: 2008
  ident: 5220_CR13
  publication-title: Med. Phys.
  doi: 10.1118/1.2948349
– volume: 22
  start-page: 1227
  issue: 4
  year: 2017
  ident: 5220_CR30
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2725903
– volume: 80
  start-page: 8423
  issue: 6
  year: 2021
  ident: 5220_CR52
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-10035-z
– volume: 14
  start-page: 390
  issue: 3
  year: 2010
  ident: 5220_CR14
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.02.004
– ident: 5220_CR43
  doi: 10.1109/CYBER.2015.7288151
– volume: 38
  start-page: 5630
  issue: 10
  year: 2011
  ident: 5220_CR15
  publication-title: Med. Phys.
  doi: 10.1118/1.3633941
– volume: 22
  start-page: 559
  year: 2019
  ident: 5220_CR27
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-017-0653-4
– volume: 78
  start-page: 23003
  year: 2019
  ident: 5220_CR39
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-7515-6
– volume: 10
  start-page: 43
  issue: 1
  year: 2020
  ident: 5220_CR53
  publication-title: Soc. Netw. Anal. Min.
  doi: 10.1007/s13278-020-00660-9
– volume: 1213
  start-page: 47
  year: 2020
  ident: 5220_CR19
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-030-33128-3_3
– volume: 20
  year: 2020
  ident: 5220_CR22
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2020.100375
– volume: 9
  start-page: 29
  issue: 1
  year: 2019
  ident: 5220_CR32
  publication-title: Diagnostics
  doi: 10.3390/diagnostics9010029
– volume: 7
  year: 2022
  ident: 5220_CR47
  publication-title: Mach. Learn. Appl.
– volume: 42
  start-page: 1098
  issue: 11
  year: 2012
  ident: 5220_CR11
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2012.09.002
– volume: 97
  start-page: 849
  year: 2019
  ident: 5220_CR7
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– ident: 5220_CR33
  doi: 10.1109/ICCSP.2018.8524302
– volume: 33
  start-page: 528
  issue: 5
  year: 2021
  ident: 5220_CR42
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2018.04.007
– volume: 44
  start-page: 1
  issue: 1
  year: 2020
  ident: 5220_CR37
  publication-title: Iran. J. Sci. Technol. Trans. Electr. Eng.
  doi: 10.1007/s40998-019-00251-1
– volume-title: Chronic Obstructive Pulmonary Disease (COPD)
  year: 2016
  ident: 5220_CR2
– volume: 45
  start-page: 87
  year: 2014
  ident: 5220_CR17
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.10.028
– volume: 41
  start-page: 40
  year: 2017
  ident: 5220_CR25
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.05.001
– volume: 26
  year: 2022
  ident: 5220_CR21
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2022.100304
– volume: 97
  year: 2020
  ident: 5220_CR40
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.04.002
– ident: 5220_CR48
– volume: 8
  start-page: 313
  year: 2013
  ident: 5220_CR9
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-012-0783-5
– volume: 35
  start-page: 1182
  issue: 5
  year: 2016
  ident: 5220_CR26
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528129
– volume: 42
  start-page: 1110
  issue: 11
  year: 2012
  ident: 5220_CR10
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2012.09.003
– volume: 98
  start-page: 1
  issue: 1
  year: 2010
  ident: 5220_CR28
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2009.07.006
– volume: 35
  start-page: 6855
  issue: 9
  year: 2023
  ident: 5220_CR8
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-08078-4
– ident: 5220_CR38
  doi: 10.1007/978-981-13-0923-6_7
– volume-title: Computer Vision
  year: 2001
  ident: 5220_CR3
– volume: 1213
  start-page: 47
  year: 2020
  ident: 5220_CR18
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-030-33128-3_3
– volume: 11
  start-page: 25
  issue: 1
  year: 2019
  ident: 5220_CR1
  publication-title: Future Internet
  doi: 10.3390/fi11010025
– ident: 5220_CR44
  doi: 10.1007/978-3-642-10520-3_9
– ident: 5220_CR45
– ident: 5220_CR46
  doi: 10.1109/IV.2008.24
– volume: 6
  start-page: 252
  issue: 1
  year: 2016
  ident: 5220_CR12
  publication-title: J. Med. Imaging Health Inform.
– volume: 7
  start-page: 11258
  year: 2019
  ident: 5220_CR41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891673
SSID ssj0009729
Score 2.3652565
Snippet This study presents a novel method that utilizes Harris Hawks Optimization combined with dynamic colormap visualization to enhance the quality of lung CT scan...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 377
SubjectTerms Accuracy
Algorithms
Chronic obstructive pulmonary disease
Computed tomography
Computer Communication Networks
Computer Science
COVID-19
Data integrity
Deep learning
Illnesses
Image segmentation
Lung diseases
Medical imaging
Medical prognosis
Neural networks
Operating Systems
Optimization
Optimization techniques
Pneumonia
Processor Architectures
Respiratory diseases
Visualization
Title Dynamic colormap visualization integrated with Harris hawks optimization for enhanced lung CT segmentation and diagnostic precision
URI https://link.springer.com/article/10.1007/s10586-025-05220-4
https://www.proquest.com/docview/3219141638
https://www.proquest.com/docview/3246237468
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: U2A
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4a5cIF2AABY-gddhtGaWzH6bHqgAqknajETpHt2ICAUDWFSbvuj_OcOOtA49CzrcTxs798ib_3PYCvg9JIN1CaSWMEE6ntM2NtxlLtlRWOq9I2aosf2Xgizq_kVUwKqzu1e3ck2SD1P8luMg-CWckSIg0JEyuw2vht9WB1ePbz4mRhtqua6mR9Tv1VLlVMlvn_VV6_kBYs883BaPO-Od2ASTfSVmZyd_w0N8f29xsTx2UfZRPWIwHFYbtiPsIHV32Cja64A8a9vgV_vre16jHYWhN6T_H5tg4ZmG3eJv71mSgx_MvFsZ4RXuCN_nVX4yMB0UPXk2gxuuqmkRrgPYELji6xdtcPMe2pQl2VWLaaPxoVTmex8M82TE5PLkdjFis2MMuTZM4E98Zktq8zK-lLJJPK9in02hNNMNoTQGiRe14qIiGlz8uE29x7oYnnCZO4nO9Ar3qs3C6gywdmEI4hdcYFAVEuTSjfor3m3ibc7MG3LmzFtDXmKBYWzGF-C5rfopnfQuzBQRfZIm7SuuBpMLcLhPSdZkHcUImMmo-6OC6a37_Z_nLdP8NaGpZCoxA8gN589uS-ENOZm8O4sA9hZZIOXwAj_fgd
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDnBhR-zMgRtYSmM7To9VoSrrqZW4RbZjUwRNq6bAB_DjjLNQQHDg7FES5XlmXuKZN4ScNFMtbFMqKrTmlIemQbUxEQ2Vk4ZbJlNTVFvcRd0-v7oX91VTWF5Xu9dHkkWk_tLsJmJfMCtogKQhoHyeLHoBK6-Y3w9bM6ldWcwmazC0lrGQVavM79f4no5mHPPHsWiRbTprZKWiidAqcV0nczbbIKv1CAaoPHKTvJ-XE-XBi09jjB3D62Pu-yTL7kr4VINIwf9xha6aoFfDQL095TDCcDGsLZG8gs0GRUEAPGMIgHYPcvswrJqTMlBZCmlZmYdPBeNJNZ5ni_Q7F712l1ZzFahhQTClnDmtI9NQkRH4vRAJaRoIkHKYzLVy6MaKx46lEqlC6uI0YCZ2jitkY1wHNmbbZCEbZXaHgI2buukPC1XEOIaLWGg_ZEU5xZwJmN4lp_XrTcalfEYyE0r2YCQIRlKAkfBdclAjkFSulCcs9BJ0njb-scyRwUke4fJZDdps-e-b7f3P_JgsdXu3N8nN5d31PlkO_R4qavoOyMJ08mIPkZtM9VGxFT8ARtndIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO2JnDtzAIo3tOD1WQFUWIQ5U4hZ5BQQNVVvgA_hxxlkoIDhwtpVEeZ7xSzzvDSH7LauFa0lFhdac8tg0qTYmobHy0nDHpDVFtcVV0u3x81tx-0XFX1S710eSpaYhuDTl46OB9UdfhG8iDcWzgkZIICLKp8kMD0YJuKJ7cXtiuyuLPmVNhrNlKmQlm_n9Gt-3pgnf_HFEWuw8nUUyX1FGaJcYL5Eply-ThbodA1TRuULeT8ru8hCMqDHfDuD1YRQ0k6XSEj6dISyEv6_QVUOMcLhXb48jeMbU0a9nIpEFl98XxQHwhOkAjm9g5O76lVApB5VbsGWVHj4VDIZVq55V0uuc3hx3adVjgRoWRWPKmdc6MU2VGIHfDomQpolgKY8bu1YeQ1rx1DMrkTZYn9qImdR7rpCZcR25lK2RRv6cu3UCLm3pVjg4VAnjmDpSoUPDFeUV8yZieoMc1K83G5RWGtnENDmAkSEYWQFGxjfIdo1AVoXVKGNxsKMLFPKPYY5sTvIEhw9r0CbDf99s83_T98js9Uknuzy7utgic3FYQkV53zZpjIcvbgdpyljvFivxA_2k4V8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+colormap+visualization+integrated+with+Harris+hawks+optimization+for+enhanced+lung+CT+segmentation+and+diagnostic+precision&rft.jtitle=Cluster+computing&rft.au=Drogham%2C+Osama&rft.au=Ryalat%2C+Mohammad+H&rft.au=Al-Najdawi%2C+Nijad&rft.au=Alkhawaldeh%2C+Rami+S&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=6&rft.spage=377&rft_id=info:doi/10.1007%2Fs10586-025-05220-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon