Performance prognosis of FRCM-to-concrete bond strength using ANFIS-based fuzzy algorithm

•Speculation of FRCM-concrete bond strength is crucial in civil engineering.•Experimental studies are time-consuming, costlier, and less reliable to estimate bond strength.•ANFIS-based mathematical model has been developed to predict the FRCM-concrete bond strength.•Developed model is reliable and e...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 216; p. 119497
Main Authors Kumar, Aman, Arora, Harish Chandra, Kumar, Krishna, Garg, Harish
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.04.2023
Subjects
Online AccessGet full text
ISSN0957-4174
DOI10.1016/j.eswa.2022.119497

Cover

Abstract •Speculation of FRCM-concrete bond strength is crucial in civil engineering.•Experimental studies are time-consuming, costlier, and less reliable to estimate bond strength.•ANFIS-based mathematical model has been developed to predict the FRCM-concrete bond strength.•Developed model is reliable and efficient to be used in industries for predicting bond strength. Nowadays, strengthening of reinforced concrete structures with a new class of sustainable materials is the possible solution to retrofit the aged deteriorated structures. It is difficult to predict the capacity of the strengthened (FRP/FRCM) reinforced concrete elements without considering the bond strength. Therefore, the concrete substrate to Fibre-Reinforced Cementitious Matrix (FRCM) bond is a crucial parameter in the strengthening procedures. As it is known, bond strength is dependent on various parameters, which increases the complexity of the FRCM-to-concrete bond. Analytical models cannot provide a high degree of accuracy, as their predictions are only valid for specific datasets. Machine learning algorithms are the best-suited solution to deal with bond strength like complex problems. In this study, curve-fitting, Gaussian Process Regression (GPR) and Adaptive Neuro-Fuzzy Inference System (ANFIS) models have been applied to 336 aggregated datasets. Nine performance matrices have been opted to compare the performance of the developed models. Feature importance analysis has also been used to check the rationality of the model. The parametric analysis has also been done using the 3D-surface plot of the ANFIS model. The R-values of ANFIS, GPR, and curve-fitting models are 0.9895, 0.9882, and 0.9145, respectively. The mean absolute error, root mean square error and Nash-Sutcliffe index of the ANFIS model are 0.9168 kN, 1.4326 kN, and 0.9791, respectively. The mean absolute percentage error of the ANFIS model is 11.19%, which is 8.72% and 76.78% lower than GPR and curve-fitting model, respectively. The error range of the curve-fitting, GPR and ANFIS models are −17.06 kN to 18.04 kN, −4.39 kN to 6.07 kN, and −4.23 kN to 5.19 kN, respectively. Overfitting analysis of the proposed models has been done, and the predicted results show that the curve-fitting model and GPR models are inferior and the ANFIS model is superior based on the selected performance matrices. The overfitting value of ANFIS model is 67.89% and 8.31% lower than curve-fitting and GPR model, respectively. The sensitivity analysis found that the number of layers, the width of the concrete block, and the compressive strength of the concrete had the highest effect on the FRCM-to-concrete bond strength. The findings of the study have the potential to decrease costs and save time by employing an accurate prediction approach instead of expensive and time-consuming testing. The developed model can be easily used by industry experts and FRCM applicators to estimate the bonding strength of FRCM-to-concrete substrate for sustainable designs.
AbstractList •Speculation of FRCM-concrete bond strength is crucial in civil engineering.•Experimental studies are time-consuming, costlier, and less reliable to estimate bond strength.•ANFIS-based mathematical model has been developed to predict the FRCM-concrete bond strength.•Developed model is reliable and efficient to be used in industries for predicting bond strength. Nowadays, strengthening of reinforced concrete structures with a new class of sustainable materials is the possible solution to retrofit the aged deteriorated structures. It is difficult to predict the capacity of the strengthened (FRP/FRCM) reinforced concrete elements without considering the bond strength. Therefore, the concrete substrate to Fibre-Reinforced Cementitious Matrix (FRCM) bond is a crucial parameter in the strengthening procedures. As it is known, bond strength is dependent on various parameters, which increases the complexity of the FRCM-to-concrete bond. Analytical models cannot provide a high degree of accuracy, as their predictions are only valid for specific datasets. Machine learning algorithms are the best-suited solution to deal with bond strength like complex problems. In this study, curve-fitting, Gaussian Process Regression (GPR) and Adaptive Neuro-Fuzzy Inference System (ANFIS) models have been applied to 336 aggregated datasets. Nine performance matrices have been opted to compare the performance of the developed models. Feature importance analysis has also been used to check the rationality of the model. The parametric analysis has also been done using the 3D-surface plot of the ANFIS model. The R-values of ANFIS, GPR, and curve-fitting models are 0.9895, 0.9882, and 0.9145, respectively. The mean absolute error, root mean square error and Nash-Sutcliffe index of the ANFIS model are 0.9168 kN, 1.4326 kN, and 0.9791, respectively. The mean absolute percentage error of the ANFIS model is 11.19%, which is 8.72% and 76.78% lower than GPR and curve-fitting model, respectively. The error range of the curve-fitting, GPR and ANFIS models are −17.06 kN to 18.04 kN, −4.39 kN to 6.07 kN, and −4.23 kN to 5.19 kN, respectively. Overfitting analysis of the proposed models has been done, and the predicted results show that the curve-fitting model and GPR models are inferior and the ANFIS model is superior based on the selected performance matrices. The overfitting value of ANFIS model is 67.89% and 8.31% lower than curve-fitting and GPR model, respectively. The sensitivity analysis found that the number of layers, the width of the concrete block, and the compressive strength of the concrete had the highest effect on the FRCM-to-concrete bond strength. The findings of the study have the potential to decrease costs and save time by employing an accurate prediction approach instead of expensive and time-consuming testing. The developed model can be easily used by industry experts and FRCM applicators to estimate the bonding strength of FRCM-to-concrete substrate for sustainable designs.
ArticleNumber 119497
Author Arora, Harish Chandra
Kumar, Aman
Garg, Harish
Kumar, Krishna
Author_xml – sequence: 1
  givenname: Aman
  surname: Kumar
  fullname: Kumar, Aman
  organization: AcSIR—Academy of Scientific and Innovative Research, Ghaziabad 201002, India
– sequence: 2
  givenname: Harish Chandra
  surname: Arora
  fullname: Arora, Harish Chandra
  organization: AcSIR—Academy of Scientific and Innovative Research, Ghaziabad 201002, India
– sequence: 3
  givenname: Krishna
  surname: Kumar
  fullname: Kumar, Krishna
  organization: Department of Hydro and Renewable Energy, Indian Institute of Technology, Roorkee 247667, India
– sequence: 4
  givenname: Harish
  orcidid: 0000-0001-9099-8422
  surname: Garg
  fullname: Garg, Harish
  email: harishg58iitr@gmail.com, harish.garg@thapar.edu
  organization: School of Mathematics, Thapar Institute of Engineering & Technology (Deemed University) Patiala, 147004 Punjab, India
BookMark eNp90L1uwjAUhmEPVCrQ3kAn30BSO3HiWOqCUGmR6I_6M3SyHPsEjMBGtmkFV18QnTownek50vcOUM95BwjdUJJTQuvbZQ7xR-UFKYqcUsEE76E-ERXPGOXsEg1iXBJCOSG8j75eIXQ-rJXTgDfBz52PNmLf4cnb-ClLPtPe6QAJcOudwTEFcPO0wNto3RyPnifT96xVEQzutvv9DqvV3AebFusrdNGpVYTrvztEn5P7j_FjNnt5mI5Hs0yXhKSMFY2uWFVQ1gCrS6G4Mrwpmak1Y42gnYG2FrRlhnEhyko3tYZKAHSMGw60HKLm9FcHH2OATmqbVLLepaDsSlIij1nkUh6zyGMWecpyoMU_ugl2rcLuPLo7ITiM-rYQZNQWDvmMDaCTNN6e479foICZ
CitedBy_id crossref_primary_10_1002_suco_202400031
crossref_primary_10_1016_j_eswa_2024_124901
crossref_primary_10_3390_app13126955
crossref_primary_10_1080_19648189_2023_2276133
crossref_primary_10_1016_j_istruc_2024_107955
crossref_primary_10_3390_app131810372
crossref_primary_10_3233_JIFS_234415
crossref_primary_10_3390_app14199035
crossref_primary_10_46519_ij3dptdi_1469238
crossref_primary_10_1016_j_rcim_2024_102765
crossref_primary_10_1038_s41598_024_64756_4
crossref_primary_10_1007_s13369_024_08980_0
crossref_primary_10_3390_polym16101367
crossref_primary_10_1016_j_colsurfa_2024_135906
crossref_primary_10_1016_j_engappai_2023_106459
crossref_primary_10_3390_ma17184533
crossref_primary_10_1007_s11356_023_28935_6
crossref_primary_10_1016_j_compstruct_2024_118532
crossref_primary_10_1038_s41598_023_30037_9
crossref_primary_10_1080_07373937_2023_2271557
crossref_primary_10_1155_2023_9715120
crossref_primary_10_1016_j_jobe_2025_111831
crossref_primary_10_1016_j_istruc_2025_108645
crossref_primary_10_3390_buildings14123851
crossref_primary_10_1038_s41598_024_52046_y
crossref_primary_10_1007_s13369_023_08328_0
crossref_primary_10_1016_j_conbuildmat_2024_137840
crossref_primary_10_1016_j_asoc_2024_111956
crossref_primary_10_1016_j_clema_2025_100300
Cites_doi 10.1016/j.conbuildmat.2015.10.045
10.3390/su14020845
10.1002/suco.201900298
10.14359/51686604
10.1016/j.jestch.2019.05.013
10.1016/j.cmpb.2018.05.029
10.1016/j.conbuildmat.2015.10.017
10.2478/fcds-2021-0003
10.31181/rme200101010p
10.1061/(ASCE)EM.1943-7889.0001375
10.1186/s40069-020-00403-2
10.3390/fib9070046
10.1016/j.conbuildmat.2021.124230
10.1080/17486025.2014.921333
10.1016/S0893-6080(99)00067-2
10.1016/j.solener.2019.02.060
10.1155/2019/2987412
10.1016/j.heliyon.2021.e06136
10.1109/ACCESS.2021.3140046
10.1007/s00521-012-1144-6
10.1155/2020/7960987
10.3390/infrastructures4020026
10.1007/s00521-008-0208-0
10.1016/j.conbuildmat.2020.121456
10.1016/j.compstruct.2021.113972
10.3390/math10020231
10.1016/j.seta.2021.101859
10.1061/(ASCE)MT.1943-5533.0000154
10.3390/su14042404
10.1016/j.cemconcomp.2015.07.007
10.1016/j.gsf.2019.12.003
10.1016/j.chemolab.2018.04.016
10.1016/j.compositesb.2012.03.011
10.1016/j.compstruct.2021.115070
10.1016/j.jclepro.2021.130061
10.1016/S1474-6670(17)62005-6
10.1109/21.256541
10.1016/j.conbuildmat.2018.04.216
10.1016/j.cageo.2012.07.001
10.1016/j.jenvman.2018.11.047
10.1007/s40747-022-00686-w
10.1002/best.201200034
10.1017/S0269888998214044
10.1155/2015/868541
10.1016/S0020-7373(75)80002-2
10.1038/s42256-019-0138-9
10.1007/s00366-019-00751-y
10.1016/j.idm.2022.01.004
10.1016/j.conbuildmat.2018.02.163
10.1016/j.compositesb.2016.02.008
10.1016/j.compositesb.2016.05.041
10.1016/j.compositesb.2016.11.005
10.1016/S0950-0618(03)00043-6
10.1016/j.advengsoft.2015.05.007
10.1016/j.measurement.2018.07.003
10.1007/s00521-016-2320-x
10.1016/j.conbuildmat.2019.117266
10.1007/s42452-019-0883-8
10.1016/j.jhazmat.2019.121322
10.3151/jact.12.545
10.3846/13923730.2013.801919
10.1016/j.compstruct.2016.11.068
10.1002/best.200700551
10.1016/j.compgeo.2010.07.012
10.1016/j.engappai.2022.105716
10.1016/j.nanoso.2018.12.001
10.1016/j.compositesb.2017.05.064
10.31181/rme2001021222b
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.119497
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2022_119497
S0957417422025167
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-428c5452148e4639a7ad7834d6c44891fdeb691b4d479935c86ce59eef47d7e13
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Apr 24 23:06:11 EDT 2025
Wed Oct 01 04:45:09 EDT 2025
Tue Dec 03 03:45:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Curve-fitting
FRCM
Machine learning
Bond strength
GPR
ANFIS
Artificial intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-428c5452148e4639a7ad7834d6c44891fdeb691b4d479935c86ce59eef47d7e13
ORCID 0000-0001-9099-8422
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2022_119497
crossref_primary_10_1016_j_eswa_2022_119497
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_119497
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-15
PublicationDateYYYYMMDD 2023-04-15
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kim, Kasabov (b0190) 1999; 12
Shahin (b0325) 2015
Gandomi, Alavi Amir, Mirzahosseini Mohammad, Nejad Fereidoon (b0125) 2011; 23
Teng, Smith, Yao, Chen (b0365) 2003; 17
Yan, Lin (b0390) 2016; 92
Iqbal, Liu, Azim, Zhu, Yang, Javed, Rauf (b0160) 2020; 384
Asefpour Vakilian, Massah (b0035) 2018; 177
Pei, Wei (b0280) 2022; 282
Alade, Bagudu, Oyehan, Rahman, Saleh, Olatunji (b0025) 2018; 163
Yan, Lin, Wang, Azarmi, Sobolev (b0395) 2017; 161
Santos, Cilla, Ribeiro (b0310) 2022; 335
Shavarovskii (b0335) 2020; 2020
Gandomi, Roke (b0120) 2015; 88
Caggegi, Sciuto, Cuomo (b0060) 2018; 129
Sneed, D'Antino, Carloni, Pellegrino (b0340) 2015; 64
Akan, Keskin (b0010) 2019; 1
Kumar, Arora, Kumar, Mohammed, Majumdar, Khamaksorn, Thinnukool (b0205) 2022; 14
Lundberg, Erion, Chen, DeGrave, Prutkin, Nair, Lee (b0240) 2020; 2
D’Antino, Sneed, Carloni, Pellegrino (b0105) 2015; 101
Curbach, Hauptenbuchner, Ortlepp, Weiland (b0090) 2007; 102
Curbach, M., Weiland, S., & Jesse, D. (2006).
Bencardino, Condello, Ashour (b0050) 2017; 110
Sadeghizadeh, Ebrahimi, Heydari, Tahmasebikohyani, Ebrahimi, Sadeghizadeh (b0305) 2019; 232
Çanakcı, Baykasoğlu, Güllü (b0065) 2008; 18
Kumar, Saini (b0220) 2022; 1–11
Goli, Tirkolaee, Sangaiah (b0130) 2020; 35
Jung, Hong, Han, Park, Kim (b0170) 2015; 2015
Kisi, Shiri, Tombul (b0195) 2013; 51
Kubat, M. (1999). Neural networks: A comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7.
Pamučar, Bozanic, Puška, Marinković (b0275) 2022; 5
Cascardi, Micelli (b0070) 2021; 9
Tirkolaee, Goli, Gütmen, Weber, Szwedzka (b0370) 2022
Younis, Ebead (b0400) 2018; 175
D’Ambrisi, Feo, Focacci (b0100) 2013; 44
Mukhtar, Faysal (b0255) 2018; 169
Ghosh, Küfer, Roy, Weber (b0140) 2022; 8
Scavuzzo, Scavuzzo, Campero, Anegagrie, Aramendia, Benito, Periago (b0315) 2022; 7
.
Ehlig, Schladitz, Frenzel, Curbach (b0110) 2012; 107
Ceroni, Bonati, Galimberti, Occhiuzzi (b0075) 2018; 144
Emamgholizadeh, Bahman, Bateni, Ghorbani, Marofpoor, Nielson (b0115) 2017; 28
Awani, Refai, El-Maaddawy (b0040) 2015; 101
Cheng, Huang, Roy (b0085) 2013; 19
Basaran, Kalkan, Bergil, Erdal (b0045) 2021; 268
Mohammadzadeh, Kazemi, Mosavi, Nasseralshariati, Tah (b0250) 2019; 4
Kumar, Saini (b0225) 2022; 50
Sneed, D'Antino, Carloni (b0345) 2014; 111
Mamdani, Assilian (b0245) 1975; 7
Sada, Ikpeseni (b0300) 2021; 7
Su, Zhong, Peng, Li (b0350) 2021; 270
Bozanic, Tešić, Marinković, Milić (b0055) 2021; 2
Kumar, Arora, Mohammed, Kumar, Nedoma (b0210) 2022; 10
Haddad, Haddad (b0150) 2021; 22
Tran, Stitmannaithum, Ueda (b0375) 2014; 12
Zhang, Zhang, Wu, Goh, Lacasse, Liu, Liu (b0405) 2020; 11
Khanmohammadi, Safari, Zandieh, Malmir, Tirkolaee (b0180) 2022
Walther, T., Curbach, M., 2015. Textile reinforced concrete for sewer, rehabilitation. In: Ferro-11, pp. 277–285.
(4), 409-412. 10.1017/S0269888998214044.
Pal, Deswal (b0270) 2010; 37
Senapati, Simic, Saha, Dobrodolac, Rong, Tirkolaee (b0320) 2023; 119
Raoof, Koutas, Bournas (b0295) 2016; 98
Goli, Tirkolaee, Weber (b0135) 2021; 46
Naderpour, Mirrashid, Nagai (b0260) 2020; 36
Alade, Abd Rahman, Saleh (b0015) 2019; 183
Aghabalaei Baghaei, Hadigheh (b0005) 2021; 114576
Golafshani, Behnood, Arashpour (b0145) 2020; 232
Jang (b0165) 1993; 23
Raoof, Bournas (b0290) 2017; 127
Kallner (b0175) 2018
Kim, Lee, Hu, Natarajan, Preethaa, Rathinakumar (b0185) 2022; 10
Chen, Zhang, Han, Wu (b0080) 2021; 302
Kurian, George, Bhat, Aithal, Radhakrishna, S. (b0230) 2006; 6
Alavi, Gandomi, Nejad, Mollahasani, Rashed (b0030) 2013; 23
Kumar, Arora, Kapoor, Mohammed, Kumar, Majumdar, Thinnukool (b0215) 2022; 14
Tayeh, Naja, Shihada, Arafa (b0360) 2019; 2019
Vilela, Oluyemi, Petrovski (b0380) 2020; 3
Alade, Abd Rahman, Saleh (b0020) 2019; 17
Li, Yin, Gao (b0235) 2020; 14
Shahin (b0330) 2015; 10
Takagi, Sugeno (b0355) 1983; 16
Naderpour, Rezazadeh Eidgahee, Fakharian, Rafiean, Kalantari (b0265) 2020; 23
Hollaway (b0155) 1993
Precup, Preitl, Petriu, Bojan-Dragos, Szedlak-Stinean, Roman, Hedrea (b0285) 2020; 1
Kallner (10.1016/j.eswa.2022.119497_b0175) 2018
Yan (10.1016/j.eswa.2022.119497_b0390) 2016; 92
Vilela (10.1016/j.eswa.2022.119497_b0380) 2020; 3
Akan (10.1016/j.eswa.2022.119497_b0010) 2019; 1
10.1016/j.eswa.2022.119497_b0385
Gandomi (10.1016/j.eswa.2022.119497_b0120) 2015; 88
Younis (10.1016/j.eswa.2022.119497_b0400) 2018; 175
Sada (10.1016/j.eswa.2022.119497_b0300) 2021; 7
Goli (10.1016/j.eswa.2022.119497_b0130) 2020; 35
Sneed (10.1016/j.eswa.2022.119497_b0340) 2015; 64
Kumar (10.1016/j.eswa.2022.119497_b0225) 2022; 50
Iqbal (10.1016/j.eswa.2022.119497_b0160) 2020; 384
Naderpour (10.1016/j.eswa.2022.119497_b0260) 2020; 36
Shahin (10.1016/j.eswa.2022.119497_b0325) 2015
Lundberg (10.1016/j.eswa.2022.119497_b0240) 2020; 2
Takagi (10.1016/j.eswa.2022.119497_b0355) 1983; 16
Aghabalaei Baghaei (10.1016/j.eswa.2022.119497_b0005) 2021; 114576
Teng (10.1016/j.eswa.2022.119497_b0365) 2003; 17
Raoof (10.1016/j.eswa.2022.119497_b0295) 2016; 98
Cheng (10.1016/j.eswa.2022.119497_b0085) 2013; 19
Goli (10.1016/j.eswa.2022.119497_b0135) 2021; 46
Pei (10.1016/j.eswa.2022.119497_b0280) 2022; 282
Tirkolaee (10.1016/j.eswa.2022.119497_b0370) 2022
Pal (10.1016/j.eswa.2022.119497_b0270) 2010; 37
Cascardi (10.1016/j.eswa.2022.119497_b0070) 2021; 9
Jung (10.1016/j.eswa.2022.119497_b0170) 2015; 2015
Kumar (10.1016/j.eswa.2022.119497_b0215) 2022; 14
Naderpour (10.1016/j.eswa.2022.119497_b0265) 2020; 23
Alade (10.1016/j.eswa.2022.119497_b0025) 2018; 163
Emamgholizadeh (10.1016/j.eswa.2022.119497_b0115) 2017; 28
Golafshani (10.1016/j.eswa.2022.119497_b0145) 2020; 232
Hollaway (10.1016/j.eswa.2022.119497_b0155) 1993
Kumar (10.1016/j.eswa.2022.119497_b0205) 2022; 14
Bencardino (10.1016/j.eswa.2022.119497_b0050) 2017; 110
Kim (10.1016/j.eswa.2022.119497_b0185) 2022; 10
Caggegi (10.1016/j.eswa.2022.119497_b0060) 2018; 129
Chen (10.1016/j.eswa.2022.119497_b0080) 2021; 302
Basaran (10.1016/j.eswa.2022.119497_b0045) 2021; 268
Curbach (10.1016/j.eswa.2022.119497_b0090) 2007; 102
Kumar (10.1016/j.eswa.2022.119497_b0220) 2022; 1–11
Awani (10.1016/j.eswa.2022.119497_b0040) 2015; 101
Tayeh (10.1016/j.eswa.2022.119497_b0360) 2019; 2019
Mamdani (10.1016/j.eswa.2022.119497_b0245) 1975; 7
D’Ambrisi (10.1016/j.eswa.2022.119497_b0100) 2013; 44
Precup (10.1016/j.eswa.2022.119497_b0285) 2020; 1
Ceroni (10.1016/j.eswa.2022.119497_b0075) 2018; 144
Khanmohammadi (10.1016/j.eswa.2022.119497_b0180) 2022
Mukhtar (10.1016/j.eswa.2022.119497_b0255) 2018; 169
Gandomi (10.1016/j.eswa.2022.119497_b0125) 2011; 23
10.1016/j.eswa.2022.119497_b0200
Bozanic (10.1016/j.eswa.2022.119497_b0055) 2021; 2
Sadeghizadeh (10.1016/j.eswa.2022.119497_b0305) 2019; 232
Zhang (10.1016/j.eswa.2022.119497_b0405) 2020; 11
Raoof (10.1016/j.eswa.2022.119497_b0290) 2017; 127
Senapati (10.1016/j.eswa.2022.119497_b0320) 2023; 119
Li (10.1016/j.eswa.2022.119497_b0235) 2020; 14
Çanakcı (10.1016/j.eswa.2022.119497_b0065) 2008; 18
Mohammadzadeh (10.1016/j.eswa.2022.119497_b0250) 2019; 4
Alade (10.1016/j.eswa.2022.119497_b0015) 2019; 183
Pamučar (10.1016/j.eswa.2022.119497_b0275) 2022; 5
Sneed (10.1016/j.eswa.2022.119497_b0345) 2014; 111
Ehlig (10.1016/j.eswa.2022.119497_b0110) 2012; 107
Tran (10.1016/j.eswa.2022.119497_b0375) 2014; 12
Haddad (10.1016/j.eswa.2022.119497_b0150) 2021; 22
Kurian (10.1016/j.eswa.2022.119497_b0230) 2006; 6
Asefpour Vakilian (10.1016/j.eswa.2022.119497_b0035) 2018; 177
Kim (10.1016/j.eswa.2022.119497_b0190) 1999; 12
Scavuzzo (10.1016/j.eswa.2022.119497_b0315) 2022; 7
Alade (10.1016/j.eswa.2022.119497_b0020) 2019; 17
10.1016/j.eswa.2022.119497_b0095
D’Antino (10.1016/j.eswa.2022.119497_b0105) 2015; 101
Ghosh (10.1016/j.eswa.2022.119497_b0140) 2022; 8
Yan (10.1016/j.eswa.2022.119497_b0395) 2017; 161
Shahin (10.1016/j.eswa.2022.119497_b0330) 2015; 10
Santos (10.1016/j.eswa.2022.119497_b0310) 2022; 335
Shavarovskii (10.1016/j.eswa.2022.119497_b0335) 2020; 2020
Kumar (10.1016/j.eswa.2022.119497_b0210) 2022; 10
Jang (10.1016/j.eswa.2022.119497_b0165) 1993; 23
Kisi (10.1016/j.eswa.2022.119497_b0195) 2013; 51
Su (10.1016/j.eswa.2022.119497_b0350) 2021; 270
Alavi (10.1016/j.eswa.2022.119497_b0030) 2013; 23
References_xml – reference: Kubat, M. (1999). Neural networks: A comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7.
– volume: 7
  start-page: e06136
  year: 2021
  ident: b0300
  article-title: Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance
  publication-title: Heliyon
– volume: 64
  start-page: 37
  year: 2015
  end-page: 48
  ident: b0340
  article-title: A comparison of the bond behavior of PBO-FRCM composites determined by double-lap and single-lap shear tests
  publication-title: Cement and Concrete Composites
– volume: 384
  year: 2020
  ident: b0160
  article-title: Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming
  publication-title: Journal of Hazardous Materials
– volume: 119
  year: 2023
  ident: b0320
  article-title: Intuitionistic fuzzy power Aczel-Alsina model for prioritization of sustainable transportation sharing practices
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 101
  start-page: 838
  year: 2015
  end-page: 850
  ident: b0105
  article-title: Influence of the substrate characteristics on the bond behavior of PBO FRCM-concrete joints
  publication-title: Construction and Building Materials
– volume: 16
  start-page: 55
  year: 1983
  end-page: 60
  ident: b0355
  article-title: Derivation of fuzzy control rules from human operator's control actions
  publication-title: IFAC Proceedings Volumes
– volume: 11
  start-page: 1095
  year: 2020
  end-page: 1106
  ident: b0405
  article-title: State-of-the-art review of soft computing applications in underground excavations
  publication-title: Geoscience Frontiers
– volume: 7
  start-page: 262
  year: 2022
  end-page: 276
  ident: b0315
  article-title: Feature importance: Opening a soil-transmitted helminth machine learning model via SHAP
  publication-title: Infectious Disease Modelling
– volume: 232
  start-page: 342
  year: 2019
  end-page: 353
  ident: b0305
  article-title: Adsorptive removal of Pb (II) by means of hydroxyapatite/chitosan nanocomposite hybrid nanoadsorbent: ANFIS modeling and experimental study
  publication-title: Journal of Environmental Management
– volume: 50
  year: 2022
  ident: b0225
  article-title: Development of correlation to predict the efficiency of a hydro machine under different operating conditions
  publication-title: Sustainable Energy Technologies and Assessments
– volume: 2020
  start-page: 7960987
  year: 2020
  ident: b0335
  article-title: Reduction to a canonical form of a third-order polynomial matrix with one characteristic root by means of semiscalarly equivalent transformations
  publication-title: Journal of Mathematics
– volume: 14
  start-page: 845
  year: 2022
  ident: b0205
  article-title: Prediction of FRCM-concrete bond strength with machine learning approach
  publication-title: Sustainability
– volume: 23
  start-page: 248
  year: 2011
  end-page: 263
  ident: b0125
  article-title: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures
  publication-title: Journal of Materials in Civil Engineering
– volume: 23
  start-page: 382
  year: 2020
  end-page: 391
  ident: b0265
  article-title: A new proposed approach for moment capacity estimation of ferrocement members using group method of data handling
  publication-title: Engineering Science and Technology, an International Journal
– volume: 268
  year: 2021
  ident: b0045
  article-title: Estimation of the FRP-concrete bond strength with code formulations and machine learning algorithms
  publication-title: Composite Structures
– volume: 1
  start-page: 10
  year: 2020
  end-page: 25
  ident: b0285
  article-title: Model-based fuzzy control results for networked control systems
  publication-title: Reports Mechanical Engineering
– volume: 101
  start-page: 39
  year: 2015
  end-page: 49
  ident: b0040
  article-title: Bond characteristics of carbon fabric-reinforced cementitious matrix in double shear tests
  publication-title: Construction and Building Materials
– volume: 3
  start-page: 97
  year: 2020
  end-page: 118
  ident: b0380
  article-title: A holistic approach to assessment of value of information (VOI) with fuzzy data and decision criteria
  publication-title: Decision Making: Applications in Management and Engineering
– volume: 2019
  start-page: 2987412
  year: 2019
  ident: b0360
  article-title: Repairing and strengthening of damaged rc columns using thin concrete jacketing
  publication-title: Advances in Civil Engineering
– volume: 4
  start-page: 26
  year: 2019
  ident: b0250
  article-title: Prediction of compression index of fine-grained soils using a gene expression programming model
  publication-title: Infrastructures
– volume: 23
  start-page: 1771
  year: 2013
  end-page: 1786
  ident: b0030
  article-title: Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems
  publication-title: Neural Computing and Applications
– volume: 1
  start-page: 843
  year: 2019
  ident: b0010
  article-title: The effect of data size of ANFIS and MLR models on prediction of unconfined compression strength of clayey soils
  publication-title: SN Applied Sciences
– volume: 19
  start-page: S202
  year: 2013
  end-page: S211
  ident: b0085
  article-title: Predicting project success in construction using an evolutionary Gaussian process inference model
  publication-title: Journal of Civil Engineering and Management
– volume: 270
  year: 2021
  ident: b0350
  article-title: Selected machine learning approaches for predicting the interfacial bond strength between FRPs and concrete
  publication-title: Construction and Building Materials
– volume: 17
  start-page: 103
  year: 2019
  end-page: 111
  ident: b0020
  article-title: Modeling and prediction of the specific heat capacity of Al2 O3/water nanofluids using hybrid genetic algorithm/support vector regression model
  publication-title: Nano-Structures & Nano-Objects
– volume: 37
  start-page: 942
  year: 2010
  end-page: 947
  ident: b0270
  article-title: Modelling pile capacity using Gaussian process regression
  publication-title: Computers and Geotechnics
– volume: 163
  start-page: 135
  year: 2018
  end-page: 142
  ident: b0025
  article-title: Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm – support vector regression model
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 12
  start-page: 545
  year: 2014
  end-page: 557
  ident: b0375
  article-title: Investigation of the bond behaviour between PBO-FRCM strengthening material and concrete
  publication-title: Journal of Advanced Concrete Technology
– volume: 18
  start-page: 1031
  year: 2008
  ident: b0065
  article-title: Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming
  publication-title: Neural Computing and Applications
– volume: 10
  start-page: 231
  year: 2022
  ident: b0185
  article-title: Ensemble machine learning-based approach for predicting of FRP-concrete interfacial bonding
  publication-title: Mathematics
– volume: 17
  start-page: 447
  year: 2003
  end-page: 462
  ident: b0365
  article-title: Intermediate crack-induced debonding in RC beams and slabs
  publication-title: Construction and Building Materials
– volume: 175
  start-page: 610
  year: 2018
  end-page: 620
  ident: b0400
  article-title: Bond characteristics of different FRCM systems
  publication-title: Construction and Building Materials
– volume: 232
  year: 2020
  ident: b0145
  article-title: Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer
  publication-title: Construction and Building Materials
– reference: Walther, T., Curbach, M., 2015. Textile reinforced concrete for sewer, rehabilitation. In: Ferro-11, pp. 277–285.
– volume: 2
  start-page: 222
  year: 2021
  end-page: 234
  ident: b0055
  article-title: Modeling of neuro-fuzzy system as a support in decision-making processes
  publication-title: Reports Mechanical Engineering
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: b0165
  article-title: ANFIS: Adaptive-network-based fuzzy inference system
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 335
  year: 2022
  ident: b0310
  article-title: Use of asbestos cement tile waste (ACW) as mineralizer in the production of Portland cement with low CO
  publication-title: Journal of Cleaner Production
– volume: 46
  start-page: 27
  year: 2021
  end-page: 42
  ident: b0135
  article-title: An integration of neural network and shuffled frog-leaping algorithm for CNC machining monitoring
  publication-title: Foundations of Computing and Decision Sciences
– volume: 51
  start-page: 108
  year: 2013
  end-page: 117
  ident: b0195
  article-title: Modeling rainfall-runoff process using soft computing techniques
  publication-title: Computers & Geosciences
– volume: 282
  year: 2022
  ident: b0280
  article-title: Prediction of the bond strength of FRP-to-concrete under direct tension by ACO-based ANFIS approach
  publication-title: Composite Structures
– volume: 144
  start-page: 04017144
  year: 2018
  ident: b0075
  article-title: Effects of environmental conditioning on the bond behavior of FRP and FRCM systems applied to concrete elements
  publication-title: Journal of Engineering Mechanics
– volume: 35
  year: 2020
  ident: b0130
  article-title: Hybrid neural network and improved cuckoo optimization algorithm for forecasting thermal comfort index at urban open spaces
  publication-title: Advances in Edge Computing: Massive Parallel Processing and Applications
– volume: 8
  start-page: 4115
  year: 2022
  end-page: 4143
  ident: b0140
  article-title: Carbon mechanism on sustainable multi objective solid transportation problem for waste management in Pythagorean hesitant fuzzy environment
  publication-title: Complex & Intelligent Systems
– year: 2022
  ident: b0370
  article-title: A novel model for sustainable waste collection arc routing problem: Pareto-based algorithms
  publication-title: Annals of Operations Research
– volume: 9
  start-page: 46
  year: 2021
  ident: b0070
  article-title: ANN-based model for the prediction of the bond strength between FRP and concrete
  publication-title: Fibres
– volume: 2015
  year: 2015
  ident: b0170
  article-title: Prediction of flexural capacity of RC beams strengthened in flexure with FRP fabric and cementitious matrix
  publication-title: International Journal of Polymer Science
– start-page: 1
  year: 2022
  end-page: 14
  ident: b0180
  article-title: Development of dynamic balanced scorecard using case-based reasoning method and adaptive neuro-fuzzy inference system
  publication-title: IEEE Transactions on Engineering Management
– volume: 98
  start-page: 350
  year: 2016
  end-page: 361
  ident: b0295
  article-title: Bond between textile-reinforced mortar (TRM) and concrete substrates: experimental investigation
  publication-title: Composites Part B: Engineering
– volume: 14
  start-page: 28
  year: 2020
  ident: b0235
  article-title: Analysis of interface properties between TRC and concrete under chloride attack based on fracture energy
  publication-title: International Journal of Concrete Structures and Materials
– volume: 12
  start-page: 1301
  year: 1999
  end-page: 1319
  ident: b0190
  article-title: HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems
  publication-title: Neural Networks
– volume: 102
  start-page: 353
  year: 2007
  end-page: 361
  ident: b0090
  article-title: Textilbewehrter Beton zur Verstärkung eines Hyparschalentragwerks in Schweinfurt
  publication-title: Beton- und Stahlbetonbau
– volume: 2
  start-page: 56
  year: 2020
  end-page: 67
  ident: b0240
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nature Machine Intelligence
– volume: 7
  start-page: 1
  year: 1975
  end-page: 13
  ident: b0245
  article-title: An experiment in linguistic synthesis with a fuzzy logic controller
  publication-title: International Journal of Man-Machine Studies
– volume: 92
  start-page: 420
  year: 2016
  end-page: 433
  ident: b0390
  article-title: New strategy for anchorage reliability assessment of GFRP bars to concrete using hybrid artificial neural network with genetic algorithm
  publication-title: Composites Part B: Engineering
– volume: 5
  start-page: 135
  year: 2022
  end-page: 153
  ident: b0275
  article-title: Application of neuro-fuzzy system for predicting the success of a company in public procurement
  publication-title: Decision Making: Applications in Management and Engineering
– start-page: 1
  year: 2018
  end-page: 140
  ident: b0175
  article-title: Formulas
  publication-title: Laboratory Statistics
– volume: 302
  year: 2021
  ident: b0080
  article-title: Ensemble learning based approach for FRP-concrete bond strength prediction
  publication-title: Construction and Building Materials
– volume: 22
  start-page: 38
  year: 2021
  end-page: 49
  ident: b0150
  article-title: Predicting fiber-reinforced polymer–concrete bond strength using artificial neural networks: A comparative analysis study
  publication-title: Structural Concrete
– year: 1993
  ident: b0155
  article-title: Polymer composites for civil and structural engineering
– volume: 127
  start-page: 150
  year: 2017
  end-page: 165
  ident: b0290
  article-title: Bond between TRM versus FRP composites and concrete at high temperatures
  publication-title: Composites Part B: Engineering
– volume: 183
  start-page: 74
  year: 2019
  end-page: 82
  ident: b0015
  article-title: Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using support vector regression model optimized with Bayesian algorithm
  publication-title: Solar Energy
– volume: 44
  start-page: 524
  year: 2013
  end-page: 532
  ident: b0100
  article-title: Experimental analysis on bond between PBO-FRCM strengthening materials and concrete
  publication-title: Composites Part B: Engineering
– volume: 169
  start-page: 877
  year: 2018
  end-page: 887
  ident: b0255
  article-title: A review of test methods for studying the FRP-concrete interfacial bond behavior
  publication-title: Construction and Building Materials
– start-page: 37
  year: 2015
  end-page: 57
  ident: b0325
  article-title: Genetic programming for modelling of geotechnical engineering systems
  publication-title: Handbook of Genetic Programming Applications
– volume: 107
  start-page: 777
  year: 2012
  end-page: 785
  ident: b0110
  article-title: Textilbeton – Ausgeführte Projekte im Überblick [10.1002/best.201200034]
  publication-title: Beton- und Stahlbetonbau
– reference: (4), 409-412. 10.1017/S0269888998214044.
– volume: 14
  start-page: 2404
  year: 2022
  ident: b0215
  article-title: Compressive strength prediction of lightweight concrete: Machine learning models
  publication-title: Sustainability
– volume: 161
  start-page: 441
  year: 2017
  end-page: 452
  ident: b0395
  article-title: Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm
  publication-title: Composite Structures
– volume: 88
  start-page: 63
  year: 2015
  end-page: 72
  ident: b0120
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Advances in Engineering Software
– volume: 111
  start-page: 569
  year: 2014
  end-page: 580
  ident: b0345
  article-title: Investigation of bond behavior of polyparaphenylene benzobisoxazole fiber-reinforced cementitious matrix-concrete interface
  publication-title: ACI Materials Journal
– volume: 114576
  year: 2021
  ident: b0005
  article-title: Durability assessment of FRP-to-concrete bonded connections under moisture condition using data-driven machine learning-based approaches
  publication-title: Composite Structures
– reference: .
– volume: 28
  start-page: 207
  year: 2017
  end-page: 216
  ident: b0115
  article-title: Estimation of soil dispersivity using soft computing approaches
  publication-title: Neural Computing and Applications
– volume: 110
  start-page: 62
  year: 2017
  end-page: 71
  ident: b0050
  article-title: Single-lap shear bond tests on Steel Reinforced Geopolymeric Matrix-concrete joints
  publication-title: Composites Part B: Engineering
– volume: 10
  start-page: 3790
  year: 2022
  end-page: 3806
  ident: b0210
  article-title: An optimized neuro-bee algorithm approach to predict the FRP-concrete bond strength of RC beams
  publication-title: IEEE Access
– volume: 177
  start-page: 55
  year: 2018
  end-page: 63
  ident: b0035
  article-title: A fuzzy-based decision making software for enzymatic electrochemical nitrate biosensors
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 6
  start-page: 35
  year: 2006
  end-page: 40
  ident: b0230
  article-title: ANFIS model for the time series prediction of interior daylight illuminance
  publication-title: International Journal on Artificial Intelligence and Machine Learning
– volume: 36
  start-page: 1083
  year: 2020
  end-page: 1100
  ident: b0260
  article-title: An innovative approach for bond strength modeling in FRP strip-to-concrete joints using adaptive neuro–fuzzy inference system
  publication-title: Engineering with Computers
– volume: 129
  start-page: 119
  year: 2018
  end-page: 127
  ident: b0060
  article-title: Experimental study on effective bond length of basalt textile reinforced mortar strengthening system: Contributions of digital image correlation
  publication-title: Measurement
– reference: Curbach, M., Weiland, S., & Jesse, D. (2006).
– volume: 10
  start-page: 109
  year: 2015
  end-page: 125
  ident: b0330
  article-title: Use of evolutionary computing for modelling some complex problems in geotechnical engineering
  publication-title: Geomechanics and Geoengineering
– volume: 1–11
  year: 2022
  ident: b0220
  article-title: Adaptive neuro-fuzzy interface system based performance monitoring technique for hydropower plants
  publication-title: ISH Journal of Hydraulic Engineering
– volume: 101
  start-page: 838
  year: 2015
  ident: 10.1016/j.eswa.2022.119497_b0105
  article-title: Influence of the substrate characteristics on the bond behavior of PBO FRCM-concrete joints
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2015.10.045
– volume: 3
  start-page: 97
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2022.119497_b0380
  article-title: A holistic approach to assessment of value of information (VOI) with fuzzy data and decision criteria
  publication-title: Decision Making: Applications in Management and Engineering
– volume: 14
  start-page: 845
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2022.119497_b0205
  article-title: Prediction of FRCM-concrete bond strength with machine learning approach
  publication-title: Sustainability
  doi: 10.3390/su14020845
– volume: 22
  start-page: 38
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.119497_b0150
  article-title: Predicting fiber-reinforced polymer–concrete bond strength using artificial neural networks: A comparative analysis study
  publication-title: Structural Concrete
  doi: 10.1002/suco.201900298
– volume: 111
  start-page: 569
  year: 2014
  ident: 10.1016/j.eswa.2022.119497_b0345
  article-title: Investigation of bond behavior of polyparaphenylene benzobisoxazole fiber-reinforced cementitious matrix-concrete interface
  publication-title: ACI Materials Journal
  doi: 10.14359/51686604
– start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2022.119497_b0175
  article-title: Formulas
– volume: 23
  start-page: 382
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2022.119497_b0265
  article-title: A new proposed approach for moment capacity estimation of ferrocement members using group method of data handling
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2019.05.013
– volume: 163
  start-page: 135
  year: 2018
  ident: 10.1016/j.eswa.2022.119497_b0025
  article-title: Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm – support vector regression model
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2018.05.029
– volume: 5
  start-page: 135
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2022.119497_b0275
  article-title: Application of neuro-fuzzy system for predicting the success of a company in public procurement
  publication-title: Decision Making: Applications in Management and Engineering
– volume: 101
  start-page: 39
  year: 2015
  ident: 10.1016/j.eswa.2022.119497_b0040
  article-title: Bond characteristics of carbon fabric-reinforced cementitious matrix in double shear tests
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2015.10.017
– volume: 46
  start-page: 27
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.119497_b0135
  article-title: An integration of neural network and shuffled frog-leaping algorithm for CNC machining monitoring
  publication-title: Foundations of Computing and Decision Sciences
  doi: 10.2478/fcds-2021-0003
– volume: 1
  start-page: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.119497_b0285
  article-title: Model-based fuzzy control results for networked control systems
  publication-title: Reports Mechanical Engineering
  doi: 10.31181/rme200101010p
– volume: 144
  start-page: 04017144
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2022.119497_b0075
  article-title: Effects of environmental conditioning on the bond behavior of FRP and FRCM systems applied to concrete elements
  publication-title: Journal of Engineering Mechanics
  doi: 10.1061/(ASCE)EM.1943-7889.0001375
– volume: 35
  issue: 264
  year: 2020
  ident: 10.1016/j.eswa.2022.119497_b0130
  article-title: Hybrid neural network and improved cuckoo optimization algorithm for forecasting thermal comfort index at urban open spaces
  publication-title: Advances in Edge Computing: Massive Parallel Processing and Applications
– year: 1993
  ident: 10.1016/j.eswa.2022.119497_b0155
– volume: 14
  start-page: 28
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.119497_b0235
  article-title: Analysis of interface properties between TRC and concrete under chloride attack based on fracture energy
  publication-title: International Journal of Concrete Structures and Materials
  doi: 10.1186/s40069-020-00403-2
– volume: 9
  start-page: 46
  issue: 7
  year: 2021
  ident: 10.1016/j.eswa.2022.119497_b0070
  article-title: ANN-based model for the prediction of the bond strength between FRP and concrete
  publication-title: Fibres
  doi: 10.3390/fib9070046
– volume: 302
  year: 2021
  ident: 10.1016/j.eswa.2022.119497_b0080
  article-title: Ensemble learning based approach for FRP-concrete bond strength prediction
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2021.124230
– start-page: 37
  year: 2015
  ident: 10.1016/j.eswa.2022.119497_b0325
  article-title: Genetic programming for modelling of geotechnical engineering systems
– volume: 10
  start-page: 109
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2022.119497_b0330
  article-title: Use of evolutionary computing for modelling some complex problems in geotechnical engineering
  publication-title: Geomechanics and Geoengineering
  doi: 10.1080/17486025.2014.921333
– ident: 10.1016/j.eswa.2022.119497_b0385
– volume: 12
  start-page: 1301
  issue: 9
  year: 1999
  ident: 10.1016/j.eswa.2022.119497_b0190
  article-title: HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(99)00067-2
– volume: 183
  start-page: 74
  year: 2019
  ident: 10.1016/j.eswa.2022.119497_b0015
  article-title: Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using support vector regression model optimized with Bayesian algorithm
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2019.02.060
– volume: 2019
  start-page: 2987412
  year: 2019
  ident: 10.1016/j.eswa.2022.119497_b0360
  article-title: Repairing and strengthening of damaged rc columns using thin concrete jacketing
  publication-title: Advances in Civil Engineering
  doi: 10.1155/2019/2987412
– volume: 7
  start-page: e06136
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2022.119497_b0300
  article-title: Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e06136
– volume: 10
  start-page: 3790
  year: 2022
  ident: 10.1016/j.eswa.2022.119497_b0210
  article-title: An optimized neuro-bee algorithm approach to predict the FRP-concrete bond strength of RC beams
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3140046
– volume: 23
  start-page: 1771
  issue: 6
  year: 2013
  ident: 10.1016/j.eswa.2022.119497_b0030
  article-title: Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-012-1144-6
– volume: 2020
  start-page: 7960987
  year: 2020
  ident: 10.1016/j.eswa.2022.119497_b0335
  article-title: Reduction to a canonical form of a third-order polynomial matrix with one characteristic root by means of semiscalarly equivalent transformations
  publication-title: Journal of Mathematics
  doi: 10.1155/2020/7960987
– volume: 4
  start-page: 26
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2022.119497_b0250
  article-title: Prediction of compression index of fine-grained soils using a gene expression programming model
  publication-title: Infrastructures
  doi: 10.3390/infrastructures4020026
– volume: 18
  start-page: 1031
  issue: 8
  year: 2008
  ident: 10.1016/j.eswa.2022.119497_b0065
  article-title: Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-008-0208-0
– volume: 270
  year: 2021
  ident: 10.1016/j.eswa.2022.119497_b0350
  article-title: Selected machine learning approaches for predicting the interfacial bond strength between FRPs and concrete
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2020.121456
– volume: 268
  year: 2021
  ident: 10.1016/j.eswa.2022.119497_b0045
  article-title: Estimation of the FRP-concrete bond strength with code formulations and machine learning algorithms
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2021.113972
– volume: 10
  start-page: 231
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2022.119497_b0185
  article-title: Ensemble machine learning-based approach for predicting of FRP-concrete interfacial bonding
  publication-title: Mathematics
  doi: 10.3390/math10020231
– volume: 50
  year: 2022
  ident: 10.1016/j.eswa.2022.119497_b0225
  article-title: Development of correlation to predict the efficiency of a hydro machine under different operating conditions
  publication-title: Sustainable Energy Technologies and Assessments
  doi: 10.1016/j.seta.2021.101859
– volume: 23
  start-page: 248
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2022.119497_b0125
  article-title: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures
  publication-title: Journal of Materials in Civil Engineering
  doi: 10.1061/(ASCE)MT.1943-5533.0000154
– volume: 14
  start-page: 2404
  issue: 4
  year: 2022
  ident: 10.1016/j.eswa.2022.119497_b0215
  article-title: Compressive strength prediction of lightweight concrete: Machine learning models
  publication-title: Sustainability
  doi: 10.3390/su14042404
– volume: 64
  start-page: 37
  year: 2015
  ident: 10.1016/j.eswa.2022.119497_b0340
  article-title: A comparison of the bond behavior of PBO-FRCM composites determined by double-lap and single-lap shear tests
  publication-title: Cement and Concrete Composites
  doi: 10.1016/j.cemconcomp.2015.07.007
– volume: 11
  start-page: 1095
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2022.119497_b0405
  article-title: State-of-the-art review of soft computing applications in underground excavations
  publication-title: Geoscience Frontiers
  doi: 10.1016/j.gsf.2019.12.003
– volume: 177
  start-page: 55
  year: 2018
  ident: 10.1016/j.eswa.2022.119497_b0035
  article-title: A fuzzy-based decision making software for enzymatic electrochemical nitrate biosensors
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2018.04.016
– volume: 44
  start-page: 524
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2022.119497_b0100
  article-title: Experimental analysis on bond between PBO-FRCM strengthening materials and concrete
  publication-title: Composites Part B: Engineering
  doi: 10.1016/j.compositesb.2012.03.011
– volume: 282
  year: 2022
  ident: 10.1016/j.eswa.2022.119497_b0280
  article-title: Prediction of the bond strength of FRP-to-concrete under direct tension by ACO-based ANFIS approach
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2021.115070
– volume: 335
  year: 2022
  ident: 10.1016/j.eswa.2022.119497_b0310
  article-title: Use of asbestos cement tile waste (ACW) as mineralizer in the production of Portland cement with low CO2 emission and lower energy consumption
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2021.130061
– volume: 16
  start-page: 55
  issue: 13
  year: 1983
  ident: 10.1016/j.eswa.2022.119497_b0355
  article-title: Derivation of fuzzy control rules from human operator's control actions
  publication-title: IFAC Proceedings Volumes
  doi: 10.1016/S1474-6670(17)62005-6
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 10.1016/j.eswa.2022.119497_b0165
  article-title: ANFIS: Adaptive-network-based fuzzy inference system
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/21.256541
– ident: 10.1016/j.eswa.2022.119497_b0095
– volume: 175
  start-page: 610
  year: 2018
  ident: 10.1016/j.eswa.2022.119497_b0400
  article-title: Bond characteristics of different FRCM systems
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2018.04.216
– volume: 51
  start-page: 108
  year: 2013
  ident: 10.1016/j.eswa.2022.119497_b0195
  article-title: Modeling rainfall-runoff process using soft computing techniques
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2012.07.001
– volume: 232
  start-page: 342
  year: 2019
  ident: 10.1016/j.eswa.2022.119497_b0305
  article-title: Adsorptive removal of Pb (II) by means of hydroxyapatite/chitosan nanocomposite hybrid nanoadsorbent: ANFIS modeling and experimental study
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2018.11.047
– volume: 8
  start-page: 4115
  issue: 5
  year: 2022
  ident: 10.1016/j.eswa.2022.119497_b0140
  article-title: Carbon mechanism on sustainable multi objective solid transportation problem for waste management in Pythagorean hesitant fuzzy environment
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-022-00686-w
– volume: 107
  start-page: 777
  issue: 11
  year: 2012
  ident: 10.1016/j.eswa.2022.119497_b0110
  article-title: Textilbeton – Ausgeführte Projekte im Überblick [10.1002/best.201200034]
  publication-title: Beton- und Stahlbetonbau
  doi: 10.1002/best.201200034
– ident: 10.1016/j.eswa.2022.119497_b0200
  doi: 10.1017/S0269888998214044
– volume: 2015
  year: 2015
  ident: 10.1016/j.eswa.2022.119497_b0170
  article-title: Prediction of flexural capacity of RC beams strengthened in flexure with FRP fabric and cementitious matrix
  publication-title: International Journal of Polymer Science
  doi: 10.1155/2015/868541
– volume: 7
  start-page: 1
  issue: 1
  year: 1975
  ident: 10.1016/j.eswa.2022.119497_b0245
  article-title: An experiment in linguistic synthesis with a fuzzy logic controller
  publication-title: International Journal of Man-Machine Studies
  doi: 10.1016/S0020-7373(75)80002-2
– volume: 2
  start-page: 56
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.119497_b0240
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-019-0138-9
– volume: 36
  start-page: 1083
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2022.119497_b0260
  article-title: An innovative approach for bond strength modeling in FRP strip-to-concrete joints using adaptive neuro–fuzzy inference system
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00751-y
– volume: 7
  start-page: 262
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2022.119497_b0315
  article-title: Feature importance: Opening a soil-transmitted helminth machine learning model via SHAP
  publication-title: Infectious Disease Modelling
  doi: 10.1016/j.idm.2022.01.004
– volume: 169
  start-page: 877
  year: 2018
  ident: 10.1016/j.eswa.2022.119497_b0255
  article-title: A review of test methods for studying the FRP-concrete interfacial bond behavior
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2018.02.163
– volume: 92
  start-page: 420
  year: 2016
  ident: 10.1016/j.eswa.2022.119497_b0390
  article-title: New strategy for anchorage reliability assessment of GFRP bars to concrete using hybrid artificial neural network with genetic algorithm
  publication-title: Composites Part B: Engineering
  doi: 10.1016/j.compositesb.2016.02.008
– volume: 98
  start-page: 350
  year: 2016
  ident: 10.1016/j.eswa.2022.119497_b0295
  article-title: Bond between textile-reinforced mortar (TRM) and concrete substrates: experimental investigation
  publication-title: Composites Part B: Engineering
  doi: 10.1016/j.compositesb.2016.05.041
– volume: 6
  start-page: 35
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2022.119497_b0230
  article-title: ANFIS model for the time series prediction of interior daylight illuminance
  publication-title: International Journal on Artificial Intelligence and Machine Learning
– volume: 110
  start-page: 62
  year: 2017
  ident: 10.1016/j.eswa.2022.119497_b0050
  article-title: Single-lap shear bond tests on Steel Reinforced Geopolymeric Matrix-concrete joints
  publication-title: Composites Part B: Engineering
  doi: 10.1016/j.compositesb.2016.11.005
– start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2022.119497_b0180
  article-title: Development of dynamic balanced scorecard using case-based reasoning method and adaptive neuro-fuzzy inference system
  publication-title: IEEE Transactions on Engineering Management
– volume: 17
  start-page: 447
  issue: 6
  year: 2003
  ident: 10.1016/j.eswa.2022.119497_b0365
  article-title: Intermediate crack-induced debonding in RC beams and slabs
  publication-title: Construction and Building Materials
  doi: 10.1016/S0950-0618(03)00043-6
– volume: 88
  start-page: 63
  year: 2015
  ident: 10.1016/j.eswa.2022.119497_b0120
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2015.05.007
– volume: 129
  start-page: 119
  year: 2018
  ident: 10.1016/j.eswa.2022.119497_b0060
  article-title: Experimental study on effective bond length of basalt textile reinforced mortar strengthening system: Contributions of digital image correlation
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.07.003
– volume: 28
  start-page: 207
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.119497_b0115
  article-title: Estimation of soil dispersivity using soft computing approaches
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2320-x
– volume: 232
  year: 2020
  ident: 10.1016/j.eswa.2022.119497_b0145
  article-title: Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2019.117266
– year: 2022
  ident: 10.1016/j.eswa.2022.119497_b0370
  article-title: A novel model for sustainable waste collection arc routing problem: Pareto-based algorithms
  publication-title: Annals of Operations Research
– volume: 1
  start-page: 843
  issue: 8
  year: 2019
  ident: 10.1016/j.eswa.2022.119497_b0010
  article-title: The effect of data size of ANFIS and MLR models on prediction of unconfined compression strength of clayey soils
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-019-0883-8
– volume: 384
  year: 2020
  ident: 10.1016/j.eswa.2022.119497_b0160
  article-title: Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2019.121322
– volume: 12
  start-page: 545
  issue: 12
  year: 2014
  ident: 10.1016/j.eswa.2022.119497_b0375
  article-title: Investigation of the bond behaviour between PBO-FRCM strengthening material and concrete
  publication-title: Journal of Advanced Concrete Technology
  doi: 10.3151/jact.12.545
– volume: 19
  start-page: S202
  year: 2013
  ident: 10.1016/j.eswa.2022.119497_b0085
  article-title: Predicting project success in construction using an evolutionary Gaussian process inference model
  publication-title: Journal of Civil Engineering and Management
  doi: 10.3846/13923730.2013.801919
– volume: 161
  start-page: 441
  year: 2017
  ident: 10.1016/j.eswa.2022.119497_b0395
  article-title: Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2016.11.068
– volume: 102
  start-page: 353
  issue: 6
  year: 2007
  ident: 10.1016/j.eswa.2022.119497_b0090
  article-title: Textilbewehrter Beton zur Verstärkung eines Hyparschalentragwerks in Schweinfurt
  publication-title: Beton- und Stahlbetonbau
  doi: 10.1002/best.200700551
– volume: 37
  start-page: 942
  issue: 7
  year: 2010
  ident: 10.1016/j.eswa.2022.119497_b0270
  article-title: Modelling pile capacity using Gaussian process regression
  publication-title: Computers and Geotechnics
  doi: 10.1016/j.compgeo.2010.07.012
– volume: 114576
  year: 2021
  ident: 10.1016/j.eswa.2022.119497_b0005
  article-title: Durability assessment of FRP-to-concrete bonded connections under moisture condition using data-driven machine learning-based approaches
  publication-title: Composite Structures
– volume: 119
  year: 2023
  ident: 10.1016/j.eswa.2022.119497_b0320
  article-title: Intuitionistic fuzzy power Aczel-Alsina model for prioritization of sustainable transportation sharing practices
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.105716
– volume: 17
  start-page: 103
  year: 2019
  ident: 10.1016/j.eswa.2022.119497_b0020
  article-title: Modeling and prediction of the specific heat capacity of Al2 O3/water nanofluids using hybrid genetic algorithm/support vector regression model
  publication-title: Nano-Structures & Nano-Objects
  doi: 10.1016/j.nanoso.2018.12.001
– volume: 127
  start-page: 150
  year: 2017
  ident: 10.1016/j.eswa.2022.119497_b0290
  article-title: Bond between TRM versus FRP composites and concrete at high temperatures
  publication-title: Composites Part B: Engineering
  doi: 10.1016/j.compositesb.2017.05.064
– volume: 2
  start-page: 222
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.119497_b0055
  article-title: Modeling of neuro-fuzzy system as a support in decision-making processes
  publication-title: Reports Mechanical Engineering
  doi: 10.31181/rme2001021222b
– volume: 1–11
  year: 2022
  ident: 10.1016/j.eswa.2022.119497_b0220
  article-title: Adaptive neuro-fuzzy interface system based performance monitoring technique for hydropower plants
  publication-title: ISH Journal of Hydraulic Engineering
SSID ssj0017007
Score 2.5559366
Snippet •Speculation of FRCM-concrete bond strength is crucial in civil engineering.•Experimental studies are time-consuming, costlier, and less reliable to estimate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119497
SubjectTerms ANFIS
Artificial intelligence
Bond strength
Curve-fitting
FRCM
GPR
Machine learning
Title Performance prognosis of FRCM-to-concrete bond strength using ANFIS-based fuzzy algorithm
URI https://dx.doi.org/10.1016/j.eswa.2022.119497
Volume 216
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2KXrz4LX6WPXiTtSbZZJtjKZZWaRFroZ5CmtmtlZqUNkXswd_uTJNUBenBa9iBMElm3pA37zF2CVU7VAZAgK20wI4Pwg-NI0KQDjjG99ylxEa74zV78q7v9kusXuzCEK0yr_1ZTV9W6_xKJc9mZTIaVboIDrAd4mhnE072aKNcSkUuBtefK5oHyc-pTG9PCTqdL85kHC89eyftIdvGyuFLEn76qzn9aDiNXbadI0Vey25mj5V0vM92ChcGnn-UB-z54Zv7z4luFSez0Ywnhjce622RJgJHXsSGqeaDJAZO2yHxMH3hRHkf8lqn0eoKambAzXyx-ODheJhMR-nL2yHrNW6f6k2RGyaIyLm5SQWOEhF5huOIoyVCj1CFQEYa4EU4hfmWAT3wfGsgQSrEJW5U9WgLS2sjFShtOUdsI05ifcw4mFADtvfIGCMNGIzytasjS1uIyar2CbOKTAVRriZOphbjoKCNvQaU3YCyG2TZPWFXq5hJpqWx9rRbPIDg1xsRYLFfE3f6z7gztkVW8vSnyHLP2UY6nesLBBzpoLx8o8pss9a6b3a-AJ0U1bk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2qHvTit1g_9-BN1ppkk22OUixV2yK2BT2FNLNbK5qUNkX04G93pkn8AOnBa9iBMElm3pA37zF2AlU7VAZAgK20wI4Pwg-NI0KQDjjG99yZxEar7TV68vrevS-xWrELQ7TKvPZnNX1WrfMrlTybldFwWOkgOMB2iKOdTTjZUwtsSbq2ogns7OOL50H6cyoT3FOCjuebMxnJS09eSXzItrF0-JKUn_7qTj86Tn2dreZQkV9kd7PBSjreZGuFDQPPv8ot9nD7Tf7nxLeKk8lwwhPD63e1lkgTgTMvgsNU834SA6f1kHiQPnLivA_4Rbt-1RHUzYCb6fv7Gw-fB8l4mD6-bLNe_bJba4jcMUFEzvl5KnCWiMg0HGccLRF7hCoEctIAL8IxzLcM6L7nW30JUiEwcaOqR2tYWhupQGnL2WGLcRLrXcbBhBqwv0fGGGnAYJSvXR1Z2kJQVrXLzCoyFUS5nDi5WjwHBW_sKaDsBpTdIMtumZ1-xYwyMY25p93iAQS_XokAq_2cuL1_xh2z5Ua31QyaV-2bfbZCvvL028hyD9hiOp7qQ0Qfaf9o9nZ9ArZs104
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+prognosis+of+FRCM-to-concrete+bond+strength+using+ANFIS-based+fuzzy+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Kumar%2C+Aman&rft.au=Arora%2C+Harish+Chandra&rft.au=Kumar%2C+Krishna&rft.au=Garg%2C+Harish&rft.date=2023-04-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=216&rft_id=info:doi/10.1016%2Fj.eswa.2022.119497&rft.externalDocID=S0957417422025167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon