Performance prognosis of FRCM-to-concrete bond strength using ANFIS-based fuzzy algorithm
•Speculation of FRCM-concrete bond strength is crucial in civil engineering.•Experimental studies are time-consuming, costlier, and less reliable to estimate bond strength.•ANFIS-based mathematical model has been developed to predict the FRCM-concrete bond strength.•Developed model is reliable and e...
Saved in:
| Published in | Expert systems with applications Vol. 216; p. 119497 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.04.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 |
| DOI | 10.1016/j.eswa.2022.119497 |
Cover
| Abstract | •Speculation of FRCM-concrete bond strength is crucial in civil engineering.•Experimental studies are time-consuming, costlier, and less reliable to estimate bond strength.•ANFIS-based mathematical model has been developed to predict the FRCM-concrete bond strength.•Developed model is reliable and efficient to be used in industries for predicting bond strength.
Nowadays, strengthening of reinforced concrete structures with a new class of sustainable materials is the possible solution to retrofit the aged deteriorated structures. It is difficult to predict the capacity of the strengthened (FRP/FRCM) reinforced concrete elements without considering the bond strength. Therefore, the concrete substrate to Fibre-Reinforced Cementitious Matrix (FRCM) bond is a crucial parameter in the strengthening procedures. As it is known, bond strength is dependent on various parameters, which increases the complexity of the FRCM-to-concrete bond. Analytical models cannot provide a high degree of accuracy, as their predictions are only valid for specific datasets. Machine learning algorithms are the best-suited solution to deal with bond strength like complex problems. In this study, curve-fitting, Gaussian Process Regression (GPR) and Adaptive Neuro-Fuzzy Inference System (ANFIS) models have been applied to 336 aggregated datasets. Nine performance matrices have been opted to compare the performance of the developed models. Feature importance analysis has also been used to check the rationality of the model. The parametric analysis has also been done using the 3D-surface plot of the ANFIS model. The R-values of ANFIS, GPR, and curve-fitting models are 0.9895, 0.9882, and 0.9145, respectively. The mean absolute error, root mean square error and Nash-Sutcliffe index of the ANFIS model are 0.9168 kN, 1.4326 kN, and 0.9791, respectively. The mean absolute percentage error of the ANFIS model is 11.19%, which is 8.72% and 76.78% lower than GPR and curve-fitting model, respectively. The error range of the curve-fitting, GPR and ANFIS models are −17.06 kN to 18.04 kN, −4.39 kN to 6.07 kN, and −4.23 kN to 5.19 kN, respectively. Overfitting analysis of the proposed models has been done, and the predicted results show that the curve-fitting model and GPR models are inferior and the ANFIS model is superior based on the selected performance matrices. The overfitting value of ANFIS model is 67.89% and 8.31% lower than curve-fitting and GPR model, respectively. The sensitivity analysis found that the number of layers, the width of the concrete block, and the compressive strength of the concrete had the highest effect on the FRCM-to-concrete bond strength. The findings of the study have the potential to decrease costs and save time by employing an accurate prediction approach instead of expensive and time-consuming testing. The developed model can be easily used by industry experts and FRCM applicators to estimate the bonding strength of FRCM-to-concrete substrate for sustainable designs. |
|---|---|
| AbstractList | •Speculation of FRCM-concrete bond strength is crucial in civil engineering.•Experimental studies are time-consuming, costlier, and less reliable to estimate bond strength.•ANFIS-based mathematical model has been developed to predict the FRCM-concrete bond strength.•Developed model is reliable and efficient to be used in industries for predicting bond strength.
Nowadays, strengthening of reinforced concrete structures with a new class of sustainable materials is the possible solution to retrofit the aged deteriorated structures. It is difficult to predict the capacity of the strengthened (FRP/FRCM) reinforced concrete elements without considering the bond strength. Therefore, the concrete substrate to Fibre-Reinforced Cementitious Matrix (FRCM) bond is a crucial parameter in the strengthening procedures. As it is known, bond strength is dependent on various parameters, which increases the complexity of the FRCM-to-concrete bond. Analytical models cannot provide a high degree of accuracy, as their predictions are only valid for specific datasets. Machine learning algorithms are the best-suited solution to deal with bond strength like complex problems. In this study, curve-fitting, Gaussian Process Regression (GPR) and Adaptive Neuro-Fuzzy Inference System (ANFIS) models have been applied to 336 aggregated datasets. Nine performance matrices have been opted to compare the performance of the developed models. Feature importance analysis has also been used to check the rationality of the model. The parametric analysis has also been done using the 3D-surface plot of the ANFIS model. The R-values of ANFIS, GPR, and curve-fitting models are 0.9895, 0.9882, and 0.9145, respectively. The mean absolute error, root mean square error and Nash-Sutcliffe index of the ANFIS model are 0.9168 kN, 1.4326 kN, and 0.9791, respectively. The mean absolute percentage error of the ANFIS model is 11.19%, which is 8.72% and 76.78% lower than GPR and curve-fitting model, respectively. The error range of the curve-fitting, GPR and ANFIS models are −17.06 kN to 18.04 kN, −4.39 kN to 6.07 kN, and −4.23 kN to 5.19 kN, respectively. Overfitting analysis of the proposed models has been done, and the predicted results show that the curve-fitting model and GPR models are inferior and the ANFIS model is superior based on the selected performance matrices. The overfitting value of ANFIS model is 67.89% and 8.31% lower than curve-fitting and GPR model, respectively. The sensitivity analysis found that the number of layers, the width of the concrete block, and the compressive strength of the concrete had the highest effect on the FRCM-to-concrete bond strength. The findings of the study have the potential to decrease costs and save time by employing an accurate prediction approach instead of expensive and time-consuming testing. The developed model can be easily used by industry experts and FRCM applicators to estimate the bonding strength of FRCM-to-concrete substrate for sustainable designs. |
| ArticleNumber | 119497 |
| Author | Arora, Harish Chandra Kumar, Aman Garg, Harish Kumar, Krishna |
| Author_xml | – sequence: 1 givenname: Aman surname: Kumar fullname: Kumar, Aman organization: AcSIR—Academy of Scientific and Innovative Research, Ghaziabad 201002, India – sequence: 2 givenname: Harish Chandra surname: Arora fullname: Arora, Harish Chandra organization: AcSIR—Academy of Scientific and Innovative Research, Ghaziabad 201002, India – sequence: 3 givenname: Krishna surname: Kumar fullname: Kumar, Krishna organization: Department of Hydro and Renewable Energy, Indian Institute of Technology, Roorkee 247667, India – sequence: 4 givenname: Harish orcidid: 0000-0001-9099-8422 surname: Garg fullname: Garg, Harish email: harishg58iitr@gmail.com, harish.garg@thapar.edu organization: School of Mathematics, Thapar Institute of Engineering & Technology (Deemed University) Patiala, 147004 Punjab, India |
| BookMark | eNp90L1uwjAUhmEPVCrQ3kAn30BSO3HiWOqCUGmR6I_6M3SyHPsEjMBGtmkFV18QnTownek50vcOUM95BwjdUJJTQuvbZQ7xR-UFKYqcUsEE76E-ERXPGOXsEg1iXBJCOSG8j75eIXQ-rJXTgDfBz52PNmLf4cnb-ClLPtPe6QAJcOudwTEFcPO0wNto3RyPnifT96xVEQzutvv9DqvV3AebFusrdNGpVYTrvztEn5P7j_FjNnt5mI5Hs0yXhKSMFY2uWFVQ1gCrS6G4Mrwpmak1Y42gnYG2FrRlhnEhyko3tYZKAHSMGw60HKLm9FcHH2OATmqbVLLepaDsSlIij1nkUh6zyGMWecpyoMU_ugl2rcLuPLo7ITiM-rYQZNQWDvmMDaCTNN6e479foICZ |
| CitedBy_id | crossref_primary_10_1002_suco_202400031 crossref_primary_10_1016_j_eswa_2024_124901 crossref_primary_10_3390_app13126955 crossref_primary_10_1080_19648189_2023_2276133 crossref_primary_10_1016_j_istruc_2024_107955 crossref_primary_10_3390_app131810372 crossref_primary_10_3233_JIFS_234415 crossref_primary_10_3390_app14199035 crossref_primary_10_46519_ij3dptdi_1469238 crossref_primary_10_1016_j_rcim_2024_102765 crossref_primary_10_1038_s41598_024_64756_4 crossref_primary_10_1007_s13369_024_08980_0 crossref_primary_10_3390_polym16101367 crossref_primary_10_1016_j_colsurfa_2024_135906 crossref_primary_10_1016_j_engappai_2023_106459 crossref_primary_10_3390_ma17184533 crossref_primary_10_1007_s11356_023_28935_6 crossref_primary_10_1016_j_compstruct_2024_118532 crossref_primary_10_1038_s41598_023_30037_9 crossref_primary_10_1080_07373937_2023_2271557 crossref_primary_10_1155_2023_9715120 crossref_primary_10_1016_j_jobe_2025_111831 crossref_primary_10_1016_j_istruc_2025_108645 crossref_primary_10_3390_buildings14123851 crossref_primary_10_1038_s41598_024_52046_y crossref_primary_10_1007_s13369_023_08328_0 crossref_primary_10_1016_j_conbuildmat_2024_137840 crossref_primary_10_1016_j_asoc_2024_111956 crossref_primary_10_1016_j_clema_2025_100300 |
| Cites_doi | 10.1016/j.conbuildmat.2015.10.045 10.3390/su14020845 10.1002/suco.201900298 10.14359/51686604 10.1016/j.jestch.2019.05.013 10.1016/j.cmpb.2018.05.029 10.1016/j.conbuildmat.2015.10.017 10.2478/fcds-2021-0003 10.31181/rme200101010p 10.1061/(ASCE)EM.1943-7889.0001375 10.1186/s40069-020-00403-2 10.3390/fib9070046 10.1016/j.conbuildmat.2021.124230 10.1080/17486025.2014.921333 10.1016/S0893-6080(99)00067-2 10.1016/j.solener.2019.02.060 10.1155/2019/2987412 10.1016/j.heliyon.2021.e06136 10.1109/ACCESS.2021.3140046 10.1007/s00521-012-1144-6 10.1155/2020/7960987 10.3390/infrastructures4020026 10.1007/s00521-008-0208-0 10.1016/j.conbuildmat.2020.121456 10.1016/j.compstruct.2021.113972 10.3390/math10020231 10.1016/j.seta.2021.101859 10.1061/(ASCE)MT.1943-5533.0000154 10.3390/su14042404 10.1016/j.cemconcomp.2015.07.007 10.1016/j.gsf.2019.12.003 10.1016/j.chemolab.2018.04.016 10.1016/j.compositesb.2012.03.011 10.1016/j.compstruct.2021.115070 10.1016/j.jclepro.2021.130061 10.1016/S1474-6670(17)62005-6 10.1109/21.256541 10.1016/j.conbuildmat.2018.04.216 10.1016/j.cageo.2012.07.001 10.1016/j.jenvman.2018.11.047 10.1007/s40747-022-00686-w 10.1002/best.201200034 10.1017/S0269888998214044 10.1155/2015/868541 10.1016/S0020-7373(75)80002-2 10.1038/s42256-019-0138-9 10.1007/s00366-019-00751-y 10.1016/j.idm.2022.01.004 10.1016/j.conbuildmat.2018.02.163 10.1016/j.compositesb.2016.02.008 10.1016/j.compositesb.2016.05.041 10.1016/j.compositesb.2016.11.005 10.1016/S0950-0618(03)00043-6 10.1016/j.advengsoft.2015.05.007 10.1016/j.measurement.2018.07.003 10.1007/s00521-016-2320-x 10.1016/j.conbuildmat.2019.117266 10.1007/s42452-019-0883-8 10.1016/j.jhazmat.2019.121322 10.3151/jact.12.545 10.3846/13923730.2013.801919 10.1016/j.compstruct.2016.11.068 10.1002/best.200700551 10.1016/j.compgeo.2010.07.012 10.1016/j.engappai.2022.105716 10.1016/j.nanoso.2018.12.001 10.1016/j.compositesb.2017.05.064 10.31181/rme2001021222b |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2022.119497 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_eswa_2022_119497 S0957417422025167 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c300t-428c5452148e4639a7ad7834d6c44891fdeb691b4d479935c86ce59eef47d7e13 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Thu Apr 24 23:06:11 EDT 2025 Wed Oct 01 04:45:09 EDT 2025 Tue Dec 03 03:45:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Curve-fitting FRCM Machine learning Bond strength GPR ANFIS Artificial intelligence |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-428c5452148e4639a7ad7834d6c44891fdeb691b4d479935c86ce59eef47d7e13 |
| ORCID | 0000-0001-9099-8422 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2022_119497 crossref_primary_10_1016_j_eswa_2022_119497 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_119497 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-15 |
| PublicationDateYYYYMMDD | 2023-04-15 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kim, Kasabov (b0190) 1999; 12 Shahin (b0325) 2015 Gandomi, Alavi Amir, Mirzahosseini Mohammad, Nejad Fereidoon (b0125) 2011; 23 Teng, Smith, Yao, Chen (b0365) 2003; 17 Yan, Lin (b0390) 2016; 92 Iqbal, Liu, Azim, Zhu, Yang, Javed, Rauf (b0160) 2020; 384 Asefpour Vakilian, Massah (b0035) 2018; 177 Pei, Wei (b0280) 2022; 282 Alade, Bagudu, Oyehan, Rahman, Saleh, Olatunji (b0025) 2018; 163 Yan, Lin, Wang, Azarmi, Sobolev (b0395) 2017; 161 Santos, Cilla, Ribeiro (b0310) 2022; 335 Shavarovskii (b0335) 2020; 2020 Gandomi, Roke (b0120) 2015; 88 Caggegi, Sciuto, Cuomo (b0060) 2018; 129 Sneed, D'Antino, Carloni, Pellegrino (b0340) 2015; 64 Akan, Keskin (b0010) 2019; 1 Kumar, Arora, Kumar, Mohammed, Majumdar, Khamaksorn, Thinnukool (b0205) 2022; 14 Lundberg, Erion, Chen, DeGrave, Prutkin, Nair, Lee (b0240) 2020; 2 D’Antino, Sneed, Carloni, Pellegrino (b0105) 2015; 101 Curbach, Hauptenbuchner, Ortlepp, Weiland (b0090) 2007; 102 Curbach, M., Weiland, S., & Jesse, D. (2006). Bencardino, Condello, Ashour (b0050) 2017; 110 Sadeghizadeh, Ebrahimi, Heydari, Tahmasebikohyani, Ebrahimi, Sadeghizadeh (b0305) 2019; 232 Çanakcı, Baykasoğlu, Güllü (b0065) 2008; 18 Kumar, Saini (b0220) 2022; 1–11 Goli, Tirkolaee, Sangaiah (b0130) 2020; 35 Jung, Hong, Han, Park, Kim (b0170) 2015; 2015 Kisi, Shiri, Tombul (b0195) 2013; 51 Kubat, M. (1999). Neural networks: A comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7. Pamučar, Bozanic, Puška, Marinković (b0275) 2022; 5 Cascardi, Micelli (b0070) 2021; 9 Tirkolaee, Goli, Gütmen, Weber, Szwedzka (b0370) 2022 Younis, Ebead (b0400) 2018; 175 D’Ambrisi, Feo, Focacci (b0100) 2013; 44 Mukhtar, Faysal (b0255) 2018; 169 Ghosh, Küfer, Roy, Weber (b0140) 2022; 8 Scavuzzo, Scavuzzo, Campero, Anegagrie, Aramendia, Benito, Periago (b0315) 2022; 7 . Ehlig, Schladitz, Frenzel, Curbach (b0110) 2012; 107 Ceroni, Bonati, Galimberti, Occhiuzzi (b0075) 2018; 144 Emamgholizadeh, Bahman, Bateni, Ghorbani, Marofpoor, Nielson (b0115) 2017; 28 Awani, Refai, El-Maaddawy (b0040) 2015; 101 Cheng, Huang, Roy (b0085) 2013; 19 Basaran, Kalkan, Bergil, Erdal (b0045) 2021; 268 Mohammadzadeh, Kazemi, Mosavi, Nasseralshariati, Tah (b0250) 2019; 4 Kumar, Saini (b0225) 2022; 50 Sneed, D'Antino, Carloni (b0345) 2014; 111 Mamdani, Assilian (b0245) 1975; 7 Sada, Ikpeseni (b0300) 2021; 7 Su, Zhong, Peng, Li (b0350) 2021; 270 Bozanic, Tešić, Marinković, Milić (b0055) 2021; 2 Kumar, Arora, Mohammed, Kumar, Nedoma (b0210) 2022; 10 Haddad, Haddad (b0150) 2021; 22 Tran, Stitmannaithum, Ueda (b0375) 2014; 12 Zhang, Zhang, Wu, Goh, Lacasse, Liu, Liu (b0405) 2020; 11 Khanmohammadi, Safari, Zandieh, Malmir, Tirkolaee (b0180) 2022 Walther, T., Curbach, M., 2015. Textile reinforced concrete for sewer, rehabilitation. In: Ferro-11, pp. 277–285. (4), 409-412. 10.1017/S0269888998214044. Pal, Deswal (b0270) 2010; 37 Senapati, Simic, Saha, Dobrodolac, Rong, Tirkolaee (b0320) 2023; 119 Raoof, Koutas, Bournas (b0295) 2016; 98 Goli, Tirkolaee, Weber (b0135) 2021; 46 Naderpour, Mirrashid, Nagai (b0260) 2020; 36 Alade, Abd Rahman, Saleh (b0015) 2019; 183 Aghabalaei Baghaei, Hadigheh (b0005) 2021; 114576 Golafshani, Behnood, Arashpour (b0145) 2020; 232 Jang (b0165) 1993; 23 Raoof, Bournas (b0290) 2017; 127 Kallner (b0175) 2018 Kim, Lee, Hu, Natarajan, Preethaa, Rathinakumar (b0185) 2022; 10 Chen, Zhang, Han, Wu (b0080) 2021; 302 Kurian, George, Bhat, Aithal, Radhakrishna, S. (b0230) 2006; 6 Alavi, Gandomi, Nejad, Mollahasani, Rashed (b0030) 2013; 23 Kumar, Arora, Kapoor, Mohammed, Kumar, Majumdar, Thinnukool (b0215) 2022; 14 Tayeh, Naja, Shihada, Arafa (b0360) 2019; 2019 Vilela, Oluyemi, Petrovski (b0380) 2020; 3 Alade, Abd Rahman, Saleh (b0020) 2019; 17 Li, Yin, Gao (b0235) 2020; 14 Shahin (b0330) 2015; 10 Takagi, Sugeno (b0355) 1983; 16 Naderpour, Rezazadeh Eidgahee, Fakharian, Rafiean, Kalantari (b0265) 2020; 23 Hollaway (b0155) 1993 Precup, Preitl, Petriu, Bojan-Dragos, Szedlak-Stinean, Roman, Hedrea (b0285) 2020; 1 Kallner (10.1016/j.eswa.2022.119497_b0175) 2018 Yan (10.1016/j.eswa.2022.119497_b0390) 2016; 92 Vilela (10.1016/j.eswa.2022.119497_b0380) 2020; 3 Akan (10.1016/j.eswa.2022.119497_b0010) 2019; 1 10.1016/j.eswa.2022.119497_b0385 Gandomi (10.1016/j.eswa.2022.119497_b0120) 2015; 88 Younis (10.1016/j.eswa.2022.119497_b0400) 2018; 175 Sada (10.1016/j.eswa.2022.119497_b0300) 2021; 7 Goli (10.1016/j.eswa.2022.119497_b0130) 2020; 35 Sneed (10.1016/j.eswa.2022.119497_b0340) 2015; 64 Kumar (10.1016/j.eswa.2022.119497_b0225) 2022; 50 Iqbal (10.1016/j.eswa.2022.119497_b0160) 2020; 384 Naderpour (10.1016/j.eswa.2022.119497_b0260) 2020; 36 Shahin (10.1016/j.eswa.2022.119497_b0325) 2015 Lundberg (10.1016/j.eswa.2022.119497_b0240) 2020; 2 Takagi (10.1016/j.eswa.2022.119497_b0355) 1983; 16 Aghabalaei Baghaei (10.1016/j.eswa.2022.119497_b0005) 2021; 114576 Teng (10.1016/j.eswa.2022.119497_b0365) 2003; 17 Raoof (10.1016/j.eswa.2022.119497_b0295) 2016; 98 Cheng (10.1016/j.eswa.2022.119497_b0085) 2013; 19 Goli (10.1016/j.eswa.2022.119497_b0135) 2021; 46 Pei (10.1016/j.eswa.2022.119497_b0280) 2022; 282 Tirkolaee (10.1016/j.eswa.2022.119497_b0370) 2022 Pal (10.1016/j.eswa.2022.119497_b0270) 2010; 37 Cascardi (10.1016/j.eswa.2022.119497_b0070) 2021; 9 Jung (10.1016/j.eswa.2022.119497_b0170) 2015; 2015 Kumar (10.1016/j.eswa.2022.119497_b0215) 2022; 14 Naderpour (10.1016/j.eswa.2022.119497_b0265) 2020; 23 Alade (10.1016/j.eswa.2022.119497_b0025) 2018; 163 Emamgholizadeh (10.1016/j.eswa.2022.119497_b0115) 2017; 28 Golafshani (10.1016/j.eswa.2022.119497_b0145) 2020; 232 Hollaway (10.1016/j.eswa.2022.119497_b0155) 1993 Kumar (10.1016/j.eswa.2022.119497_b0205) 2022; 14 Bencardino (10.1016/j.eswa.2022.119497_b0050) 2017; 110 Kim (10.1016/j.eswa.2022.119497_b0185) 2022; 10 Caggegi (10.1016/j.eswa.2022.119497_b0060) 2018; 129 Chen (10.1016/j.eswa.2022.119497_b0080) 2021; 302 Basaran (10.1016/j.eswa.2022.119497_b0045) 2021; 268 Curbach (10.1016/j.eswa.2022.119497_b0090) 2007; 102 Kumar (10.1016/j.eswa.2022.119497_b0220) 2022; 1–11 Awani (10.1016/j.eswa.2022.119497_b0040) 2015; 101 Tayeh (10.1016/j.eswa.2022.119497_b0360) 2019; 2019 Mamdani (10.1016/j.eswa.2022.119497_b0245) 1975; 7 D’Ambrisi (10.1016/j.eswa.2022.119497_b0100) 2013; 44 Precup (10.1016/j.eswa.2022.119497_b0285) 2020; 1 Ceroni (10.1016/j.eswa.2022.119497_b0075) 2018; 144 Khanmohammadi (10.1016/j.eswa.2022.119497_b0180) 2022 Mukhtar (10.1016/j.eswa.2022.119497_b0255) 2018; 169 Gandomi (10.1016/j.eswa.2022.119497_b0125) 2011; 23 10.1016/j.eswa.2022.119497_b0200 Bozanic (10.1016/j.eswa.2022.119497_b0055) 2021; 2 Sadeghizadeh (10.1016/j.eswa.2022.119497_b0305) 2019; 232 Zhang (10.1016/j.eswa.2022.119497_b0405) 2020; 11 Raoof (10.1016/j.eswa.2022.119497_b0290) 2017; 127 Senapati (10.1016/j.eswa.2022.119497_b0320) 2023; 119 Li (10.1016/j.eswa.2022.119497_b0235) 2020; 14 Çanakcı (10.1016/j.eswa.2022.119497_b0065) 2008; 18 Mohammadzadeh (10.1016/j.eswa.2022.119497_b0250) 2019; 4 Alade (10.1016/j.eswa.2022.119497_b0015) 2019; 183 Pamučar (10.1016/j.eswa.2022.119497_b0275) 2022; 5 Sneed (10.1016/j.eswa.2022.119497_b0345) 2014; 111 Ehlig (10.1016/j.eswa.2022.119497_b0110) 2012; 107 Tran (10.1016/j.eswa.2022.119497_b0375) 2014; 12 Haddad (10.1016/j.eswa.2022.119497_b0150) 2021; 22 Kurian (10.1016/j.eswa.2022.119497_b0230) 2006; 6 Asefpour Vakilian (10.1016/j.eswa.2022.119497_b0035) 2018; 177 Kim (10.1016/j.eswa.2022.119497_b0190) 1999; 12 Scavuzzo (10.1016/j.eswa.2022.119497_b0315) 2022; 7 Alade (10.1016/j.eswa.2022.119497_b0020) 2019; 17 10.1016/j.eswa.2022.119497_b0095 D’Antino (10.1016/j.eswa.2022.119497_b0105) 2015; 101 Ghosh (10.1016/j.eswa.2022.119497_b0140) 2022; 8 Yan (10.1016/j.eswa.2022.119497_b0395) 2017; 161 Shahin (10.1016/j.eswa.2022.119497_b0330) 2015; 10 Santos (10.1016/j.eswa.2022.119497_b0310) 2022; 335 Shavarovskii (10.1016/j.eswa.2022.119497_b0335) 2020; 2020 Kumar (10.1016/j.eswa.2022.119497_b0210) 2022; 10 Jang (10.1016/j.eswa.2022.119497_b0165) 1993; 23 Kisi (10.1016/j.eswa.2022.119497_b0195) 2013; 51 Su (10.1016/j.eswa.2022.119497_b0350) 2021; 270 Alavi (10.1016/j.eswa.2022.119497_b0030) 2013; 23 |
| References_xml | – reference: Kubat, M. (1999). Neural networks: A comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7. – volume: 7 start-page: e06136 year: 2021 ident: b0300 article-title: Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance publication-title: Heliyon – volume: 64 start-page: 37 year: 2015 end-page: 48 ident: b0340 article-title: A comparison of the bond behavior of PBO-FRCM composites determined by double-lap and single-lap shear tests publication-title: Cement and Concrete Composites – volume: 384 year: 2020 ident: b0160 article-title: Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming publication-title: Journal of Hazardous Materials – volume: 119 year: 2023 ident: b0320 article-title: Intuitionistic fuzzy power Aczel-Alsina model for prioritization of sustainable transportation sharing practices publication-title: Engineering Applications of Artificial Intelligence – volume: 101 start-page: 838 year: 2015 end-page: 850 ident: b0105 article-title: Influence of the substrate characteristics on the bond behavior of PBO FRCM-concrete joints publication-title: Construction and Building Materials – volume: 16 start-page: 55 year: 1983 end-page: 60 ident: b0355 article-title: Derivation of fuzzy control rules from human operator's control actions publication-title: IFAC Proceedings Volumes – volume: 11 start-page: 1095 year: 2020 end-page: 1106 ident: b0405 article-title: State-of-the-art review of soft computing applications in underground excavations publication-title: Geoscience Frontiers – volume: 7 start-page: 262 year: 2022 end-page: 276 ident: b0315 article-title: Feature importance: Opening a soil-transmitted helminth machine learning model via SHAP publication-title: Infectious Disease Modelling – volume: 232 start-page: 342 year: 2019 end-page: 353 ident: b0305 article-title: Adsorptive removal of Pb (II) by means of hydroxyapatite/chitosan nanocomposite hybrid nanoadsorbent: ANFIS modeling and experimental study publication-title: Journal of Environmental Management – volume: 50 year: 2022 ident: b0225 article-title: Development of correlation to predict the efficiency of a hydro machine under different operating conditions publication-title: Sustainable Energy Technologies and Assessments – volume: 2020 start-page: 7960987 year: 2020 ident: b0335 article-title: Reduction to a canonical form of a third-order polynomial matrix with one characteristic root by means of semiscalarly equivalent transformations publication-title: Journal of Mathematics – volume: 14 start-page: 845 year: 2022 ident: b0205 article-title: Prediction of FRCM-concrete bond strength with machine learning approach publication-title: Sustainability – volume: 23 start-page: 248 year: 2011 end-page: 263 ident: b0125 article-title: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures publication-title: Journal of Materials in Civil Engineering – volume: 23 start-page: 382 year: 2020 end-page: 391 ident: b0265 article-title: A new proposed approach for moment capacity estimation of ferrocement members using group method of data handling publication-title: Engineering Science and Technology, an International Journal – volume: 268 year: 2021 ident: b0045 article-title: Estimation of the FRP-concrete bond strength with code formulations and machine learning algorithms publication-title: Composite Structures – volume: 1 start-page: 10 year: 2020 end-page: 25 ident: b0285 article-title: Model-based fuzzy control results for networked control systems publication-title: Reports Mechanical Engineering – volume: 101 start-page: 39 year: 2015 end-page: 49 ident: b0040 article-title: Bond characteristics of carbon fabric-reinforced cementitious matrix in double shear tests publication-title: Construction and Building Materials – volume: 3 start-page: 97 year: 2020 end-page: 118 ident: b0380 article-title: A holistic approach to assessment of value of information (VOI) with fuzzy data and decision criteria publication-title: Decision Making: Applications in Management and Engineering – volume: 2019 start-page: 2987412 year: 2019 ident: b0360 article-title: Repairing and strengthening of damaged rc columns using thin concrete jacketing publication-title: Advances in Civil Engineering – volume: 4 start-page: 26 year: 2019 ident: b0250 article-title: Prediction of compression index of fine-grained soils using a gene expression programming model publication-title: Infrastructures – volume: 23 start-page: 1771 year: 2013 end-page: 1786 ident: b0030 article-title: Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems publication-title: Neural Computing and Applications – volume: 1 start-page: 843 year: 2019 ident: b0010 article-title: The effect of data size of ANFIS and MLR models on prediction of unconfined compression strength of clayey soils publication-title: SN Applied Sciences – volume: 19 start-page: S202 year: 2013 end-page: S211 ident: b0085 article-title: Predicting project success in construction using an evolutionary Gaussian process inference model publication-title: Journal of Civil Engineering and Management – volume: 270 year: 2021 ident: b0350 article-title: Selected machine learning approaches for predicting the interfacial bond strength between FRPs and concrete publication-title: Construction and Building Materials – volume: 17 start-page: 103 year: 2019 end-page: 111 ident: b0020 article-title: Modeling and prediction of the specific heat capacity of Al2 O3/water nanofluids using hybrid genetic algorithm/support vector regression model publication-title: Nano-Structures & Nano-Objects – volume: 37 start-page: 942 year: 2010 end-page: 947 ident: b0270 article-title: Modelling pile capacity using Gaussian process regression publication-title: Computers and Geotechnics – volume: 163 start-page: 135 year: 2018 end-page: 142 ident: b0025 article-title: Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm – support vector regression model publication-title: Computer Methods and Programs in Biomedicine – volume: 12 start-page: 545 year: 2014 end-page: 557 ident: b0375 article-title: Investigation of the bond behaviour between PBO-FRCM strengthening material and concrete publication-title: Journal of Advanced Concrete Technology – volume: 18 start-page: 1031 year: 2008 ident: b0065 article-title: Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming publication-title: Neural Computing and Applications – volume: 10 start-page: 231 year: 2022 ident: b0185 article-title: Ensemble machine learning-based approach for predicting of FRP-concrete interfacial bonding publication-title: Mathematics – volume: 17 start-page: 447 year: 2003 end-page: 462 ident: b0365 article-title: Intermediate crack-induced debonding in RC beams and slabs publication-title: Construction and Building Materials – volume: 175 start-page: 610 year: 2018 end-page: 620 ident: b0400 article-title: Bond characteristics of different FRCM systems publication-title: Construction and Building Materials – volume: 232 year: 2020 ident: b0145 article-title: Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer publication-title: Construction and Building Materials – reference: Walther, T., Curbach, M., 2015. Textile reinforced concrete for sewer, rehabilitation. In: Ferro-11, pp. 277–285. – volume: 2 start-page: 222 year: 2021 end-page: 234 ident: b0055 article-title: Modeling of neuro-fuzzy system as a support in decision-making processes publication-title: Reports Mechanical Engineering – volume: 23 start-page: 665 year: 1993 end-page: 685 ident: b0165 article-title: ANFIS: Adaptive-network-based fuzzy inference system publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 335 year: 2022 ident: b0310 article-title: Use of asbestos cement tile waste (ACW) as mineralizer in the production of Portland cement with low CO publication-title: Journal of Cleaner Production – volume: 46 start-page: 27 year: 2021 end-page: 42 ident: b0135 article-title: An integration of neural network and shuffled frog-leaping algorithm for CNC machining monitoring publication-title: Foundations of Computing and Decision Sciences – volume: 51 start-page: 108 year: 2013 end-page: 117 ident: b0195 article-title: Modeling rainfall-runoff process using soft computing techniques publication-title: Computers & Geosciences – volume: 282 year: 2022 ident: b0280 article-title: Prediction of the bond strength of FRP-to-concrete under direct tension by ACO-based ANFIS approach publication-title: Composite Structures – volume: 144 start-page: 04017144 year: 2018 ident: b0075 article-title: Effects of environmental conditioning on the bond behavior of FRP and FRCM systems applied to concrete elements publication-title: Journal of Engineering Mechanics – volume: 35 year: 2020 ident: b0130 article-title: Hybrid neural network and improved cuckoo optimization algorithm for forecasting thermal comfort index at urban open spaces publication-title: Advances in Edge Computing: Massive Parallel Processing and Applications – volume: 8 start-page: 4115 year: 2022 end-page: 4143 ident: b0140 article-title: Carbon mechanism on sustainable multi objective solid transportation problem for waste management in Pythagorean hesitant fuzzy environment publication-title: Complex & Intelligent Systems – year: 2022 ident: b0370 article-title: A novel model for sustainable waste collection arc routing problem: Pareto-based algorithms publication-title: Annals of Operations Research – volume: 9 start-page: 46 year: 2021 ident: b0070 article-title: ANN-based model for the prediction of the bond strength between FRP and concrete publication-title: Fibres – volume: 2015 year: 2015 ident: b0170 article-title: Prediction of flexural capacity of RC beams strengthened in flexure with FRP fabric and cementitious matrix publication-title: International Journal of Polymer Science – start-page: 1 year: 2022 end-page: 14 ident: b0180 article-title: Development of dynamic balanced scorecard using case-based reasoning method and adaptive neuro-fuzzy inference system publication-title: IEEE Transactions on Engineering Management – volume: 98 start-page: 350 year: 2016 end-page: 361 ident: b0295 article-title: Bond between textile-reinforced mortar (TRM) and concrete substrates: experimental investigation publication-title: Composites Part B: Engineering – volume: 14 start-page: 28 year: 2020 ident: b0235 article-title: Analysis of interface properties between TRC and concrete under chloride attack based on fracture energy publication-title: International Journal of Concrete Structures and Materials – volume: 12 start-page: 1301 year: 1999 end-page: 1319 ident: b0190 article-title: HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems publication-title: Neural Networks – volume: 102 start-page: 353 year: 2007 end-page: 361 ident: b0090 article-title: Textilbewehrter Beton zur Verstärkung eines Hyparschalentragwerks in Schweinfurt publication-title: Beton- und Stahlbetonbau – volume: 2 start-page: 56 year: 2020 end-page: 67 ident: b0240 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nature Machine Intelligence – volume: 7 start-page: 1 year: 1975 end-page: 13 ident: b0245 article-title: An experiment in linguistic synthesis with a fuzzy logic controller publication-title: International Journal of Man-Machine Studies – volume: 92 start-page: 420 year: 2016 end-page: 433 ident: b0390 article-title: New strategy for anchorage reliability assessment of GFRP bars to concrete using hybrid artificial neural network with genetic algorithm publication-title: Composites Part B: Engineering – volume: 5 start-page: 135 year: 2022 end-page: 153 ident: b0275 article-title: Application of neuro-fuzzy system for predicting the success of a company in public procurement publication-title: Decision Making: Applications in Management and Engineering – start-page: 1 year: 2018 end-page: 140 ident: b0175 article-title: Formulas publication-title: Laboratory Statistics – volume: 302 year: 2021 ident: b0080 article-title: Ensemble learning based approach for FRP-concrete bond strength prediction publication-title: Construction and Building Materials – volume: 22 start-page: 38 year: 2021 end-page: 49 ident: b0150 article-title: Predicting fiber-reinforced polymer–concrete bond strength using artificial neural networks: A comparative analysis study publication-title: Structural Concrete – year: 1993 ident: b0155 article-title: Polymer composites for civil and structural engineering – volume: 127 start-page: 150 year: 2017 end-page: 165 ident: b0290 article-title: Bond between TRM versus FRP composites and concrete at high temperatures publication-title: Composites Part B: Engineering – volume: 183 start-page: 74 year: 2019 end-page: 82 ident: b0015 article-title: Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using support vector regression model optimized with Bayesian algorithm publication-title: Solar Energy – volume: 44 start-page: 524 year: 2013 end-page: 532 ident: b0100 article-title: Experimental analysis on bond between PBO-FRCM strengthening materials and concrete publication-title: Composites Part B: Engineering – volume: 169 start-page: 877 year: 2018 end-page: 887 ident: b0255 article-title: A review of test methods for studying the FRP-concrete interfacial bond behavior publication-title: Construction and Building Materials – start-page: 37 year: 2015 end-page: 57 ident: b0325 article-title: Genetic programming for modelling of geotechnical engineering systems publication-title: Handbook of Genetic Programming Applications – volume: 107 start-page: 777 year: 2012 end-page: 785 ident: b0110 article-title: Textilbeton – Ausgeführte Projekte im Überblick [10.1002/best.201200034] publication-title: Beton- und Stahlbetonbau – reference: (4), 409-412. 10.1017/S0269888998214044. – volume: 14 start-page: 2404 year: 2022 ident: b0215 article-title: Compressive strength prediction of lightweight concrete: Machine learning models publication-title: Sustainability – volume: 161 start-page: 441 year: 2017 end-page: 452 ident: b0395 article-title: Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm publication-title: Composite Structures – volume: 88 start-page: 63 year: 2015 end-page: 72 ident: b0120 article-title: Assessment of artificial neural network and genetic programming as predictive tools publication-title: Advances in Engineering Software – volume: 111 start-page: 569 year: 2014 end-page: 580 ident: b0345 article-title: Investigation of bond behavior of polyparaphenylene benzobisoxazole fiber-reinforced cementitious matrix-concrete interface publication-title: ACI Materials Journal – volume: 114576 year: 2021 ident: b0005 article-title: Durability assessment of FRP-to-concrete bonded connections under moisture condition using data-driven machine learning-based approaches publication-title: Composite Structures – reference: . – volume: 28 start-page: 207 year: 2017 end-page: 216 ident: b0115 article-title: Estimation of soil dispersivity using soft computing approaches publication-title: Neural Computing and Applications – volume: 110 start-page: 62 year: 2017 end-page: 71 ident: b0050 article-title: Single-lap shear bond tests on Steel Reinforced Geopolymeric Matrix-concrete joints publication-title: Composites Part B: Engineering – volume: 10 start-page: 3790 year: 2022 end-page: 3806 ident: b0210 article-title: An optimized neuro-bee algorithm approach to predict the FRP-concrete bond strength of RC beams publication-title: IEEE Access – volume: 177 start-page: 55 year: 2018 end-page: 63 ident: b0035 article-title: A fuzzy-based decision making software for enzymatic electrochemical nitrate biosensors publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 6 start-page: 35 year: 2006 end-page: 40 ident: b0230 article-title: ANFIS model for the time series prediction of interior daylight illuminance publication-title: International Journal on Artificial Intelligence and Machine Learning – volume: 36 start-page: 1083 year: 2020 end-page: 1100 ident: b0260 article-title: An innovative approach for bond strength modeling in FRP strip-to-concrete joints using adaptive neuro–fuzzy inference system publication-title: Engineering with Computers – volume: 129 start-page: 119 year: 2018 end-page: 127 ident: b0060 article-title: Experimental study on effective bond length of basalt textile reinforced mortar strengthening system: Contributions of digital image correlation publication-title: Measurement – reference: Curbach, M., Weiland, S., & Jesse, D. (2006). – volume: 10 start-page: 109 year: 2015 end-page: 125 ident: b0330 article-title: Use of evolutionary computing for modelling some complex problems in geotechnical engineering publication-title: Geomechanics and Geoengineering – volume: 1–11 year: 2022 ident: b0220 article-title: Adaptive neuro-fuzzy interface system based performance monitoring technique for hydropower plants publication-title: ISH Journal of Hydraulic Engineering – volume: 101 start-page: 838 year: 2015 ident: 10.1016/j.eswa.2022.119497_b0105 article-title: Influence of the substrate characteristics on the bond behavior of PBO FRCM-concrete joints publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2015.10.045 – volume: 3 start-page: 97 issue: 2 year: 2020 ident: 10.1016/j.eswa.2022.119497_b0380 article-title: A holistic approach to assessment of value of information (VOI) with fuzzy data and decision criteria publication-title: Decision Making: Applications in Management and Engineering – volume: 14 start-page: 845 issue: 2 year: 2022 ident: 10.1016/j.eswa.2022.119497_b0205 article-title: Prediction of FRCM-concrete bond strength with machine learning approach publication-title: Sustainability doi: 10.3390/su14020845 – volume: 22 start-page: 38 issue: 1 year: 2021 ident: 10.1016/j.eswa.2022.119497_b0150 article-title: Predicting fiber-reinforced polymer–concrete bond strength using artificial neural networks: A comparative analysis study publication-title: Structural Concrete doi: 10.1002/suco.201900298 – volume: 111 start-page: 569 year: 2014 ident: 10.1016/j.eswa.2022.119497_b0345 article-title: Investigation of bond behavior of polyparaphenylene benzobisoxazole fiber-reinforced cementitious matrix-concrete interface publication-title: ACI Materials Journal doi: 10.14359/51686604 – start-page: 1 year: 2018 ident: 10.1016/j.eswa.2022.119497_b0175 article-title: Formulas – volume: 23 start-page: 382 issue: 2 year: 2020 ident: 10.1016/j.eswa.2022.119497_b0265 article-title: A new proposed approach for moment capacity estimation of ferrocement members using group method of data handling publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2019.05.013 – volume: 163 start-page: 135 year: 2018 ident: 10.1016/j.eswa.2022.119497_b0025 article-title: Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm – support vector regression model publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2018.05.029 – volume: 5 start-page: 135 issue: 1 year: 2022 ident: 10.1016/j.eswa.2022.119497_b0275 article-title: Application of neuro-fuzzy system for predicting the success of a company in public procurement publication-title: Decision Making: Applications in Management and Engineering – volume: 101 start-page: 39 year: 2015 ident: 10.1016/j.eswa.2022.119497_b0040 article-title: Bond characteristics of carbon fabric-reinforced cementitious matrix in double shear tests publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2015.10.017 – volume: 46 start-page: 27 issue: 1 year: 2021 ident: 10.1016/j.eswa.2022.119497_b0135 article-title: An integration of neural network and shuffled frog-leaping algorithm for CNC machining monitoring publication-title: Foundations of Computing and Decision Sciences doi: 10.2478/fcds-2021-0003 – volume: 1 start-page: 10 issue: 1 year: 2020 ident: 10.1016/j.eswa.2022.119497_b0285 article-title: Model-based fuzzy control results for networked control systems publication-title: Reports Mechanical Engineering doi: 10.31181/rme200101010p – volume: 144 start-page: 04017144 issue: 1 year: 2018 ident: 10.1016/j.eswa.2022.119497_b0075 article-title: Effects of environmental conditioning on the bond behavior of FRP and FRCM systems applied to concrete elements publication-title: Journal of Engineering Mechanics doi: 10.1061/(ASCE)EM.1943-7889.0001375 – volume: 35 issue: 264 year: 2020 ident: 10.1016/j.eswa.2022.119497_b0130 article-title: Hybrid neural network and improved cuckoo optimization algorithm for forecasting thermal comfort index at urban open spaces publication-title: Advances in Edge Computing: Massive Parallel Processing and Applications – year: 1993 ident: 10.1016/j.eswa.2022.119497_b0155 – volume: 14 start-page: 28 issue: 1 year: 2020 ident: 10.1016/j.eswa.2022.119497_b0235 article-title: Analysis of interface properties between TRC and concrete under chloride attack based on fracture energy publication-title: International Journal of Concrete Structures and Materials doi: 10.1186/s40069-020-00403-2 – volume: 9 start-page: 46 issue: 7 year: 2021 ident: 10.1016/j.eswa.2022.119497_b0070 article-title: ANN-based model for the prediction of the bond strength between FRP and concrete publication-title: Fibres doi: 10.3390/fib9070046 – volume: 302 year: 2021 ident: 10.1016/j.eswa.2022.119497_b0080 article-title: Ensemble learning based approach for FRP-concrete bond strength prediction publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2021.124230 – start-page: 37 year: 2015 ident: 10.1016/j.eswa.2022.119497_b0325 article-title: Genetic programming for modelling of geotechnical engineering systems – volume: 10 start-page: 109 issue: 2 year: 2015 ident: 10.1016/j.eswa.2022.119497_b0330 article-title: Use of evolutionary computing for modelling some complex problems in geotechnical engineering publication-title: Geomechanics and Geoengineering doi: 10.1080/17486025.2014.921333 – ident: 10.1016/j.eswa.2022.119497_b0385 – volume: 12 start-page: 1301 issue: 9 year: 1999 ident: 10.1016/j.eswa.2022.119497_b0190 article-title: HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems publication-title: Neural Networks doi: 10.1016/S0893-6080(99)00067-2 – volume: 183 start-page: 74 year: 2019 ident: 10.1016/j.eswa.2022.119497_b0015 article-title: Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using support vector regression model optimized with Bayesian algorithm publication-title: Solar Energy doi: 10.1016/j.solener.2019.02.060 – volume: 2019 start-page: 2987412 year: 2019 ident: 10.1016/j.eswa.2022.119497_b0360 article-title: Repairing and strengthening of damaged rc columns using thin concrete jacketing publication-title: Advances in Civil Engineering doi: 10.1155/2019/2987412 – volume: 7 start-page: e06136 issue: 2 year: 2021 ident: 10.1016/j.eswa.2022.119497_b0300 article-title: Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e06136 – volume: 10 start-page: 3790 year: 2022 ident: 10.1016/j.eswa.2022.119497_b0210 article-title: An optimized neuro-bee algorithm approach to predict the FRP-concrete bond strength of RC beams publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3140046 – volume: 23 start-page: 1771 issue: 6 year: 2013 ident: 10.1016/j.eswa.2022.119497_b0030 article-title: Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems publication-title: Neural Computing and Applications doi: 10.1007/s00521-012-1144-6 – volume: 2020 start-page: 7960987 year: 2020 ident: 10.1016/j.eswa.2022.119497_b0335 article-title: Reduction to a canonical form of a third-order polynomial matrix with one characteristic root by means of semiscalarly equivalent transformations publication-title: Journal of Mathematics doi: 10.1155/2020/7960987 – volume: 4 start-page: 26 issue: 2 year: 2019 ident: 10.1016/j.eswa.2022.119497_b0250 article-title: Prediction of compression index of fine-grained soils using a gene expression programming model publication-title: Infrastructures doi: 10.3390/infrastructures4020026 – volume: 18 start-page: 1031 issue: 8 year: 2008 ident: 10.1016/j.eswa.2022.119497_b0065 article-title: Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming publication-title: Neural Computing and Applications doi: 10.1007/s00521-008-0208-0 – volume: 270 year: 2021 ident: 10.1016/j.eswa.2022.119497_b0350 article-title: Selected machine learning approaches for predicting the interfacial bond strength between FRPs and concrete publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2020.121456 – volume: 268 year: 2021 ident: 10.1016/j.eswa.2022.119497_b0045 article-title: Estimation of the FRP-concrete bond strength with code formulations and machine learning algorithms publication-title: Composite Structures doi: 10.1016/j.compstruct.2021.113972 – volume: 10 start-page: 231 issue: 2 year: 2022 ident: 10.1016/j.eswa.2022.119497_b0185 article-title: Ensemble machine learning-based approach for predicting of FRP-concrete interfacial bonding publication-title: Mathematics doi: 10.3390/math10020231 – volume: 50 year: 2022 ident: 10.1016/j.eswa.2022.119497_b0225 article-title: Development of correlation to predict the efficiency of a hydro machine under different operating conditions publication-title: Sustainable Energy Technologies and Assessments doi: 10.1016/j.seta.2021.101859 – volume: 23 start-page: 248 issue: 3 year: 2011 ident: 10.1016/j.eswa.2022.119497_b0125 article-title: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures publication-title: Journal of Materials in Civil Engineering doi: 10.1061/(ASCE)MT.1943-5533.0000154 – volume: 14 start-page: 2404 issue: 4 year: 2022 ident: 10.1016/j.eswa.2022.119497_b0215 article-title: Compressive strength prediction of lightweight concrete: Machine learning models publication-title: Sustainability doi: 10.3390/su14042404 – volume: 64 start-page: 37 year: 2015 ident: 10.1016/j.eswa.2022.119497_b0340 article-title: A comparison of the bond behavior of PBO-FRCM composites determined by double-lap and single-lap shear tests publication-title: Cement and Concrete Composites doi: 10.1016/j.cemconcomp.2015.07.007 – volume: 11 start-page: 1095 issue: 4 year: 2020 ident: 10.1016/j.eswa.2022.119497_b0405 article-title: State-of-the-art review of soft computing applications in underground excavations publication-title: Geoscience Frontiers doi: 10.1016/j.gsf.2019.12.003 – volume: 177 start-page: 55 year: 2018 ident: 10.1016/j.eswa.2022.119497_b0035 article-title: A fuzzy-based decision making software for enzymatic electrochemical nitrate biosensors publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2018.04.016 – volume: 44 start-page: 524 issue: 1 year: 2013 ident: 10.1016/j.eswa.2022.119497_b0100 article-title: Experimental analysis on bond between PBO-FRCM strengthening materials and concrete publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2012.03.011 – volume: 282 year: 2022 ident: 10.1016/j.eswa.2022.119497_b0280 article-title: Prediction of the bond strength of FRP-to-concrete under direct tension by ACO-based ANFIS approach publication-title: Composite Structures doi: 10.1016/j.compstruct.2021.115070 – volume: 335 year: 2022 ident: 10.1016/j.eswa.2022.119497_b0310 article-title: Use of asbestos cement tile waste (ACW) as mineralizer in the production of Portland cement with low CO2 emission and lower energy consumption publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2021.130061 – volume: 16 start-page: 55 issue: 13 year: 1983 ident: 10.1016/j.eswa.2022.119497_b0355 article-title: Derivation of fuzzy control rules from human operator's control actions publication-title: IFAC Proceedings Volumes doi: 10.1016/S1474-6670(17)62005-6 – volume: 23 start-page: 665 issue: 3 year: 1993 ident: 10.1016/j.eswa.2022.119497_b0165 article-title: ANFIS: Adaptive-network-based fuzzy inference system publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/21.256541 – ident: 10.1016/j.eswa.2022.119497_b0095 – volume: 175 start-page: 610 year: 2018 ident: 10.1016/j.eswa.2022.119497_b0400 article-title: Bond characteristics of different FRCM systems publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2018.04.216 – volume: 51 start-page: 108 year: 2013 ident: 10.1016/j.eswa.2022.119497_b0195 article-title: Modeling rainfall-runoff process using soft computing techniques publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2012.07.001 – volume: 232 start-page: 342 year: 2019 ident: 10.1016/j.eswa.2022.119497_b0305 article-title: Adsorptive removal of Pb (II) by means of hydroxyapatite/chitosan nanocomposite hybrid nanoadsorbent: ANFIS modeling and experimental study publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2018.11.047 – volume: 8 start-page: 4115 issue: 5 year: 2022 ident: 10.1016/j.eswa.2022.119497_b0140 article-title: Carbon mechanism on sustainable multi objective solid transportation problem for waste management in Pythagorean hesitant fuzzy environment publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-022-00686-w – volume: 107 start-page: 777 issue: 11 year: 2012 ident: 10.1016/j.eswa.2022.119497_b0110 article-title: Textilbeton – Ausgeführte Projekte im Überblick [10.1002/best.201200034] publication-title: Beton- und Stahlbetonbau doi: 10.1002/best.201200034 – ident: 10.1016/j.eswa.2022.119497_b0200 doi: 10.1017/S0269888998214044 – volume: 2015 year: 2015 ident: 10.1016/j.eswa.2022.119497_b0170 article-title: Prediction of flexural capacity of RC beams strengthened in flexure with FRP fabric and cementitious matrix publication-title: International Journal of Polymer Science doi: 10.1155/2015/868541 – volume: 7 start-page: 1 issue: 1 year: 1975 ident: 10.1016/j.eswa.2022.119497_b0245 article-title: An experiment in linguistic synthesis with a fuzzy logic controller publication-title: International Journal of Man-Machine Studies doi: 10.1016/S0020-7373(75)80002-2 – volume: 2 start-page: 56 issue: 1 year: 2020 ident: 10.1016/j.eswa.2022.119497_b0240 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nature Machine Intelligence doi: 10.1038/s42256-019-0138-9 – volume: 36 start-page: 1083 issue: 3 year: 2020 ident: 10.1016/j.eswa.2022.119497_b0260 article-title: An innovative approach for bond strength modeling in FRP strip-to-concrete joints using adaptive neuro–fuzzy inference system publication-title: Engineering with Computers doi: 10.1007/s00366-019-00751-y – volume: 7 start-page: 262 issue: 1 year: 2022 ident: 10.1016/j.eswa.2022.119497_b0315 article-title: Feature importance: Opening a soil-transmitted helminth machine learning model via SHAP publication-title: Infectious Disease Modelling doi: 10.1016/j.idm.2022.01.004 – volume: 169 start-page: 877 year: 2018 ident: 10.1016/j.eswa.2022.119497_b0255 article-title: A review of test methods for studying the FRP-concrete interfacial bond behavior publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2018.02.163 – volume: 92 start-page: 420 year: 2016 ident: 10.1016/j.eswa.2022.119497_b0390 article-title: New strategy for anchorage reliability assessment of GFRP bars to concrete using hybrid artificial neural network with genetic algorithm publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2016.02.008 – volume: 98 start-page: 350 year: 2016 ident: 10.1016/j.eswa.2022.119497_b0295 article-title: Bond between textile-reinforced mortar (TRM) and concrete substrates: experimental investigation publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2016.05.041 – volume: 6 start-page: 35 issue: 3 year: 2006 ident: 10.1016/j.eswa.2022.119497_b0230 article-title: ANFIS model for the time series prediction of interior daylight illuminance publication-title: International Journal on Artificial Intelligence and Machine Learning – volume: 110 start-page: 62 year: 2017 ident: 10.1016/j.eswa.2022.119497_b0050 article-title: Single-lap shear bond tests on Steel Reinforced Geopolymeric Matrix-concrete joints publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2016.11.005 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2022.119497_b0180 article-title: Development of dynamic balanced scorecard using case-based reasoning method and adaptive neuro-fuzzy inference system publication-title: IEEE Transactions on Engineering Management – volume: 17 start-page: 447 issue: 6 year: 2003 ident: 10.1016/j.eswa.2022.119497_b0365 article-title: Intermediate crack-induced debonding in RC beams and slabs publication-title: Construction and Building Materials doi: 10.1016/S0950-0618(03)00043-6 – volume: 88 start-page: 63 year: 2015 ident: 10.1016/j.eswa.2022.119497_b0120 article-title: Assessment of artificial neural network and genetic programming as predictive tools publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2015.05.007 – volume: 129 start-page: 119 year: 2018 ident: 10.1016/j.eswa.2022.119497_b0060 article-title: Experimental study on effective bond length of basalt textile reinforced mortar strengthening system: Contributions of digital image correlation publication-title: Measurement doi: 10.1016/j.measurement.2018.07.003 – volume: 28 start-page: 207 issue: 1 year: 2017 ident: 10.1016/j.eswa.2022.119497_b0115 article-title: Estimation of soil dispersivity using soft computing approaches publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2320-x – volume: 232 year: 2020 ident: 10.1016/j.eswa.2022.119497_b0145 article-title: Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2019.117266 – year: 2022 ident: 10.1016/j.eswa.2022.119497_b0370 article-title: A novel model for sustainable waste collection arc routing problem: Pareto-based algorithms publication-title: Annals of Operations Research – volume: 1 start-page: 843 issue: 8 year: 2019 ident: 10.1016/j.eswa.2022.119497_b0010 article-title: The effect of data size of ANFIS and MLR models on prediction of unconfined compression strength of clayey soils publication-title: SN Applied Sciences doi: 10.1007/s42452-019-0883-8 – volume: 384 year: 2020 ident: 10.1016/j.eswa.2022.119497_b0160 article-title: Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2019.121322 – volume: 12 start-page: 545 issue: 12 year: 2014 ident: 10.1016/j.eswa.2022.119497_b0375 article-title: Investigation of the bond behaviour between PBO-FRCM strengthening material and concrete publication-title: Journal of Advanced Concrete Technology doi: 10.3151/jact.12.545 – volume: 19 start-page: S202 year: 2013 ident: 10.1016/j.eswa.2022.119497_b0085 article-title: Predicting project success in construction using an evolutionary Gaussian process inference model publication-title: Journal of Civil Engineering and Management doi: 10.3846/13923730.2013.801919 – volume: 161 start-page: 441 year: 2017 ident: 10.1016/j.eswa.2022.119497_b0395 article-title: Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm publication-title: Composite Structures doi: 10.1016/j.compstruct.2016.11.068 – volume: 102 start-page: 353 issue: 6 year: 2007 ident: 10.1016/j.eswa.2022.119497_b0090 article-title: Textilbewehrter Beton zur Verstärkung eines Hyparschalentragwerks in Schweinfurt publication-title: Beton- und Stahlbetonbau doi: 10.1002/best.200700551 – volume: 37 start-page: 942 issue: 7 year: 2010 ident: 10.1016/j.eswa.2022.119497_b0270 article-title: Modelling pile capacity using Gaussian process regression publication-title: Computers and Geotechnics doi: 10.1016/j.compgeo.2010.07.012 – volume: 114576 year: 2021 ident: 10.1016/j.eswa.2022.119497_b0005 article-title: Durability assessment of FRP-to-concrete bonded connections under moisture condition using data-driven machine learning-based approaches publication-title: Composite Structures – volume: 119 year: 2023 ident: 10.1016/j.eswa.2022.119497_b0320 article-title: Intuitionistic fuzzy power Aczel-Alsina model for prioritization of sustainable transportation sharing practices publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2022.105716 – volume: 17 start-page: 103 year: 2019 ident: 10.1016/j.eswa.2022.119497_b0020 article-title: Modeling and prediction of the specific heat capacity of Al2 O3/water nanofluids using hybrid genetic algorithm/support vector regression model publication-title: Nano-Structures & Nano-Objects doi: 10.1016/j.nanoso.2018.12.001 – volume: 127 start-page: 150 year: 2017 ident: 10.1016/j.eswa.2022.119497_b0290 article-title: Bond between TRM versus FRP composites and concrete at high temperatures publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2017.05.064 – volume: 2 start-page: 222 issue: 1 year: 2021 ident: 10.1016/j.eswa.2022.119497_b0055 article-title: Modeling of neuro-fuzzy system as a support in decision-making processes publication-title: Reports Mechanical Engineering doi: 10.31181/rme2001021222b – volume: 1–11 year: 2022 ident: 10.1016/j.eswa.2022.119497_b0220 article-title: Adaptive neuro-fuzzy interface system based performance monitoring technique for hydropower plants publication-title: ISH Journal of Hydraulic Engineering |
| SSID | ssj0017007 |
| Score | 2.5559366 |
| Snippet | •Speculation of FRCM-concrete bond strength is crucial in civil engineering.•Experimental studies are time-consuming, costlier, and less reliable to estimate... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 119497 |
| SubjectTerms | ANFIS Artificial intelligence Bond strength Curve-fitting FRCM GPR Machine learning |
| Title | Performance prognosis of FRCM-to-concrete bond strength using ANFIS-based fuzzy algorithm |
| URI | https://dx.doi.org/10.1016/j.eswa.2022.119497 |
| Volume | 216 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2KXrz4LX6WPXiTtSbZZJtjKZZWaRFroZ5CmtmtlZqUNkXswd_uTJNUBenBa9iBMElm3pA37zF2CVU7VAZAgK20wI4Pwg-NI0KQDjjG99ylxEa74zV78q7v9kusXuzCEK0yr_1ZTV9W6_xKJc9mZTIaVboIDrAd4mhnE072aKNcSkUuBtefK5oHyc-pTG9PCTqdL85kHC89eyftIdvGyuFLEn76qzn9aDiNXbadI0Vey25mj5V0vM92ChcGnn-UB-z54Zv7z4luFSez0Ywnhjce622RJgJHXsSGqeaDJAZO2yHxMH3hRHkf8lqn0eoKambAzXyx-ODheJhMR-nL2yHrNW6f6k2RGyaIyLm5SQWOEhF5huOIoyVCj1CFQEYa4EU4hfmWAT3wfGsgQSrEJW5U9WgLS2sjFShtOUdsI05ifcw4mFADtvfIGCMNGIzytasjS1uIyar2CbOKTAVRriZOphbjoKCNvQaU3YCyG2TZPWFXq5hJpqWx9rRbPIDg1xsRYLFfE3f6z7gztkVW8vSnyHLP2UY6nesLBBzpoLx8o8pss9a6b3a-AJ0U1bk |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2qHvTit1g_9-BN1ppkk22OUixV2yK2BT2FNLNbK5qUNkX04G93pkn8AOnBa9iBMElm3pA37zF2AlU7VAZAgK20wI4Pwg-NI0KQDjjG99yZxEar7TV68vrevS-xWrELQ7TKvPZnNX1WrfMrlTybldFwWOkgOMB2iKOdTTjZUwtsSbq2ogns7OOL50H6cyoT3FOCjuebMxnJS09eSXzItrF0-JKUn_7qTj86Tn2dreZQkV9kd7PBSjreZGuFDQPPv8ot9nD7Tf7nxLeKk8lwwhPD63e1lkgTgTMvgsNU834SA6f1kHiQPnLivA_4Rbt-1RHUzYCb6fv7Gw-fB8l4mD6-bLNe_bJba4jcMUFEzvl5KnCWiMg0HGccLRF7hCoEctIAL8IxzLcM6L7nW30JUiEwcaOqR2tYWhupQGnL2WGLcRLrXcbBhBqwv0fGGGnAYJSvXR1Z2kJQVrXLzCoyFUS5nDi5WjwHBW_sKaDsBpTdIMtumZ1-xYwyMY25p93iAQS_XokAq_2cuL1_xh2z5Ua31QyaV-2bfbZCvvL028hyD9hiOp7qQ0Qfaf9o9nZ9ArZs104 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+prognosis+of+FRCM-to-concrete+bond+strength+using+ANFIS-based+fuzzy+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Kumar%2C+Aman&rft.au=Arora%2C+Harish+Chandra&rft.au=Kumar%2C+Krishna&rft.au=Garg%2C+Harish&rft.date=2023-04-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=216&rft_id=info:doi/10.1016%2Fj.eswa.2022.119497&rft.externalDocID=S0957417422025167 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |