An improved collaborative movie recommendation system using computational intelligence
Recommendation systems have become prevalent in recent years as they dealing with the information overload problem by suggesting users the most relevant products from a massive amount of data. For media product, online collaborative movie recommendations make attempts to assist users to access their...
Saved in:
Published in | Journal of visual languages and computing Vol. 25; no. 6; pp. 667 - 675 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1045-926X 1095-8533 |
DOI | 10.1016/j.jvlc.2014.09.011 |
Cover
Abstract | Recommendation systems have become prevalent in recent years as they dealing with the information overload problem by suggesting users the most relevant products from a massive amount of data. For media product, online collaborative movie recommendations make attempts to assist users to access their preferred movies by capturing precisely similar neighbors among users or movies from their historical common ratings. However, due to the data sparsely, neighbor selecting is getting more difficult with the fast increasing of movies and users. In this paper, a hybrid model-based movie recommendation system which utilizes the improved K-means clustering coupled with genetic algorithms (GAs) to partition transformed user space is proposed. It employs principal component analysis (PCA) data reduction technique to dense the movie population space which could reduce the computation complexity in intelligent movie recom-mendation as well. The experiment results on Movielens dataset indicate that the proposed approach can provide high performance in terms of accuracy, and generate more reliable and personalized movie recommendations when compared with the existing methods.
•Proposed an optimized clustering algorithm to partition user profiles.•To represent denser profile vectors by principal component analysis transforming.•Be examined to provide high prediction accuracy and more reliable recommendations. |
---|---|
AbstractList | Recommendation systems have become prevalent in recent years as they dealing with the information overload problem by suggesting users the most relevant products from a massive amount of data. For media product, online collaborative movie recommendations make attempts to assist users to access their preferred movies by capturing precisely similar neighbors among users or movies from their historical common ratings. However, due to the data sparsely, neighbor selecting is getting more difficult with the fast increasing of movies and users. In this paper, a hybrid model-based movie recommendation system which utilizes the improved K-means clustering coupled with genetic algorithms (GAs) to partition transformed user space is proposed. It employs principal component analysis (PCA) data reduction technique to dense the movie population space which could reduce the computation complexity in intelligent movie recom-mendation as well. The experiment results on Movielens dataset indicate that the proposed approach can provide high performance in terms of accuracy, and generate more reliable and personalized movie recommendations when compared with the existing methods.
•Proposed an optimized clustering algorithm to partition user profiles.•To represent denser profile vectors by principal component analysis transforming.•Be examined to provide high prediction accuracy and more reliable recommendations. |
Author | Wang, Zan Wang, Zhenhua Yu, Xue Feng, Nan |
Author_xml | – sequence: 1 givenname: Zan surname: Wang fullname: Wang, Zan email: wangzan@tju.edu.cn organization: School of Computer Software, Tianjin University, Tianjin 300072, China – sequence: 2 givenname: Xue surname: Yu fullname: Yu, Xue email: yuki@tju.edu.cn organization: College of Management and Economics, Tianjin University, Tianjin 300072, China – sequence: 3 givenname: Nan surname: Feng fullname: Feng, Nan email: fengnan@tju.edu.cn organization: College of Management and Economics, Tianjin University, Tianjin 300072, China – sequence: 4 givenname: Zhenhua surname: Wang fullname: Wang, Zhenhua email: zhw.powersystem@gmail.com organization: American Electric Power, Gahanna, OH 43230, United States |
BookMark | eNp9kMtqwzAQRUVJoUnaH-jKP2B3ZPkhQTch9AWBbtrSnVAkOcjIUpAcQ_6-dt1VF1nNMDNn4J4VWjjvNEL3GDIMuHpos3awMssBFxmwDDC-QksMrExpSchi6osyZXn1fYNWMbYAUFNSLdHXxiWmOwY_aJVIb63Y-yB6M-ik84PRSdDSd512ahx6l8Rz7HWXnKJxh_G-O57634WwiXG9ttYctJP6Fl03wkZ991fX6PP56WP7mu7eX962m10qCUCfEpkTphSVtWBVRTAIxRpQSkJJlS40KSkBKRWlrAZRNXWDCRVNhfdFQUnByBrl818ZfIxBN_wYTCfCmWPgkxne8skMn8xwYHw0M0L0HyTNnKIPwtjL6OOM6jHUqCfwKM0UWJlRVM-VN5fwH5N0g90 |
CitedBy_id | crossref_primary_10_3389_fdata_2023_1281614 crossref_primary_10_1016_j_eij_2016_10_002 crossref_primary_10_1016_j_physa_2022_128105 crossref_primary_10_1007_s00521_020_05482_6 crossref_primary_10_1007_s10844_019_00548_x crossref_primary_10_1016_j_eswa_2017_11_050 crossref_primary_10_1002_int_22394 crossref_primary_10_29121_ijetmr_v7_i6_2020_709 crossref_primary_10_47164_ijngc_v13i3_845 crossref_primary_10_1108_IJWIS_10_2018_0074 crossref_primary_10_4108_eetsis_vi_1947 crossref_primary_10_1007_s41870_021_00769_w crossref_primary_10_3389_fnbot_2022_1076338 crossref_primary_10_1007_s11047_016_9540_y crossref_primary_10_1007_s13198_021_01122_x crossref_primary_10_1016_j_engappai_2023_107109 crossref_primary_10_3390_s22134904 crossref_primary_10_1016_j_future_2017_08_060 crossref_primary_10_1016_j_eswa_2018_01_015 crossref_primary_10_1016_j_measurement_2016_05_058 crossref_primary_10_1007_s00521_017_3338_4 crossref_primary_10_1080_1206212X_2019_1701798 crossref_primary_10_1186_s40537_015_0037_9 crossref_primary_10_1016_j_eswa_2017_04_027 crossref_primary_10_1111_exsy_12893 crossref_primary_10_1007_s11042_023_17704_9 crossref_primary_10_3390_su10114280 crossref_primary_10_1016_j_techfore_2022_122120 crossref_primary_10_56294_sctconf2024_1118 crossref_primary_10_1007_s40031_021_00584_8 crossref_primary_10_1016_j_eswa_2021_114917 crossref_primary_10_1007_s11042_016_3481_4 crossref_primary_10_1108_DTA_08_2021_0209 crossref_primary_10_1142_S2196888819500192 crossref_primary_10_1371_journal_pone_0204849 crossref_primary_10_3346_jkms_2023_38_e77 crossref_primary_10_1007_s10586_020_03155_6 crossref_primary_10_1142_S0219622020500108 crossref_primary_10_1007_s41060_022_00355_8 crossref_primary_10_1016_j_neucom_2024_128718 crossref_primary_10_1007_s00521_018_3891_5 crossref_primary_10_1080_10447318_2020_1768665 crossref_primary_10_1007_s00500_020_05531_1 crossref_primary_10_3390_electronics11010141 crossref_primary_10_4018_IJWP_2019070101 crossref_primary_10_3390_sym14040793 crossref_primary_10_1016_j_simpat_2015_10_001 crossref_primary_10_1007_s12065_023_00822_6 crossref_primary_10_3390_app13126929 crossref_primary_10_1016_j_is_2020_101670 crossref_primary_10_1016_j_swevo_2017_04_004 crossref_primary_10_1186_s40537_022_00592_5 crossref_primary_10_1038_s41597_024_04196_x crossref_primary_10_1016_j_jksuci_2020_09_010 crossref_primary_10_3390_sym12020185 crossref_primary_10_1007_s11042_021_10965_2 crossref_primary_10_1007_s12530_019_09296_3 crossref_primary_10_1080_1206212X_2022_2097769 crossref_primary_10_3390_fi12090154 crossref_primary_10_3390_a17060255 crossref_primary_10_1016_j_enbuild_2024_115247 crossref_primary_10_1142_S2196888824400013 crossref_primary_10_1051_matecconf_201822502004 crossref_primary_10_1016_j_ipm_2020_102310 crossref_primary_10_1088_1757_899X_1119_1_012018 |
Cites_doi | 10.1109/FSKD.2010.5569467 10.1016/j.eswa.2006.12.025 10.1023/A:1011419012209 10.1093/ietisy/e90-d.9.1363 10.1109/FSKD.2010.5569294 10.1145/1076034.1076056 10.1145/192844.192905 10.1109/MIC.2003.1167344 10.1007/978-3-642-22200-9_9 10.1016/j.jss.2004.08.031 10.21236/ADA439541 10.1016/j.ins.2003.03.003 10.1145/138859.138867 10.1007/978-3-642-15819-3_60 10.1007/3-540-45490-X_50 10.1109/TKDE.2005.99 10.1109/WI-IAT.2009.85 10.1145/371920.372071 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jvlc.2014.09.011 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Languages & Literatures Computer Science |
EISSN | 1095-8533 |
EndPage | 675 |
ExternalDocumentID | 10_1016_j_jvlc_2014_09_011 S1045926X14000901 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMY HVGLF HZ~ IHE J1W KOM LG5 LX9 M3X MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SSS SSV SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ~HD |
ID | FETCH-LOGICAL-c300t-3c239dd8c7a966310ad9f0ddc058de4e35830ccd88970a6f7f138af61b4483493 |
IEDL.DBID | .~1 |
ISSN | 1045-926X |
IngestDate | Thu Apr 24 23:10:09 EDT 2025 Wed Oct 01 04:05:31 EDT 2025 Fri Feb 23 02:32:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | K-means Movie recommendation Collaborative filtering Sparsity data Genetic algorithms |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-3c239dd8c7a966310ad9f0ddc058de4e35830ccd88970a6f7f138af61b4483493 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_jvlc_2014_09_011 crossref_citationtrail_10_1016_j_jvlc_2014_09_011 elsevier_sciencedirect_doi_10_1016_j_jvlc_2014_09_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of visual languages and computing |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | A. Kohrs, B. Merialdo, Clustering for collaborative filtering applications, in: Proceedings of Computational Intelligence for Modeling, Control and Automation (CIMCA), Vienna: IOS Press, 1999, pp. 199–204. Linden, Smith, York (bib2) 2003; 7 J.S. Breese, D. Heckerman, C. Kadie, Empirical analysis of predictive algorithms for collaborative filtering, in: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Madison, Wisconsin, USA, 1998, pp. 43–52. Truong, Ishikawa, Honiden (bib15) 2007; E90-D G. Xue, C. Lin, Q. Yang, et al., Scalable collaborative filtering using cluster-based smoothing, in: Proceedings of the 28th International Conference on ACM SIGIR, Brazil: ACM Press, 2005, pp. 114–121. Kim, Ahn (bib10) 2008; 34 M. Zhang, N. Hurley, Novel item recommendation by user profile partitioning, in: Proceedings of the International. Conference on Web Intelligence and Intelligent Agent Technology, Washington DC, USA, 2009, pp. 508–515. B.M. Sarwar, G. Karypis, J. Konstan, J. Riedl, Recommender systems for large-scale e-commerce: scalable neighborhood formation using clustering, in: Proceedings of International Conference on Computer and Information Technology, Dhaka, Bangladesh, 2002. K. Honda, N. Sugiura, H. Ichihashi, S. Araki, Collaborative filtering using principal component analysis and fuzzy clustering, in: Proceedings of the First Asia-Pacific Conference on Web Intelligence: Research and Development, Maebashi City, Japan, 2001, pp. 394–402. Liu, Shih (bib20) 2005; 77 Tou, Gonzalez (bib25) 1974 Q. Li, B.M. Kim, Clustering approach for hybrid recommendation system, in: Proceedings of the International Conference on Web Intelligence, Halifax, Canada, 2003, pp. 33–38. B.M. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation algorithm, in: Proceedings of the 10th International WWW Conference, Hong Kong, 2001, pp. 285–295. Goldberg, Roeder, Gupta, Perkins (bib14) 2001; 4 P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, J. Riedl, GroupLens: an open architecture for collaborative filtering of netnews, in: Proceedings of ACM 1994 Conference on Computer Supported Cooperative Work, Chapel Hill, 1994, pp. 175–186. Adomavicius, Tuzhilin (bib1) 2005; 17 Goldberg (bib26) 1989 B.M. Sarwar, G. Karypis, J. Konstan, J. Riedl, Application of dimensionality reduction in recommender system—a case study, in: Proceedings of ACM WebKDD Workshop, Boston, MA, 2000. Goldberg, Nichols, Oki, Terry (bib12) 1992; 35 Selamat, Omatu (bib23) 2004; 158 O. Georgiou, N. Tsapatsoulis, Improving the scalability of recommender systems by clustering using genetic algorithms, in: Proceedings of the 20th International conference on Artificial Neural Networks, Thessaloniki, Greece, 2010, pp. 442–449. D. Billsus, M.J. Pazzani, Learning collaborative information filters, in: Proceedings of the 15th International Conference on Machine Learning, Madison, 1998, pp. 46–53. G. Pitsilis, X.L. Zhang, W. Wang, Clustering recommenders in collaborative filtering using explicit trust information, in: Proceedings of the Fifth International Conference on Trust Management IFIPTM, Denmark, Copenhagen, 2011, pp. 82–97. J. Wang, N.-Y. Zhang, J. Yin, J, Collaborative filtering recommendation based on fuzzy clustering of user preferences, in: Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, Shandong, 2010, pp. 1946–1950. Gao, Xing, Zhao (bib8) 2007 C. Huang, J. Yin, J, Effective association clusters filtering to cold-start recommendations, in: Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, Shandong, 2010, pp. 2461–2464. Han, Kamber (bib24) 2001 10.1016/j.jvlc.2014.09.011_bib16 10.1016/j.jvlc.2014.09.011_bib17 Goldberg (10.1016/j.jvlc.2014.09.011_bib26) 1989 10.1016/j.jvlc.2014.09.011_bib11 Han (10.1016/j.jvlc.2014.09.011_bib24) 2001 Adomavicius (10.1016/j.jvlc.2014.09.011_bib1) 2005; 17 10.1016/j.jvlc.2014.09.011_bib13 10.1016/j.jvlc.2014.09.011_bib9 10.1016/j.jvlc.2014.09.011_bib3 Selamat (10.1016/j.jvlc.2014.09.011_bib23) 2004; 158 10.1016/j.jvlc.2014.09.011_bib4 10.1016/j.jvlc.2014.09.011_bib5 10.1016/j.jvlc.2014.09.011_bib6 10.1016/j.jvlc.2014.09.011_bib7 Tou (10.1016/j.jvlc.2014.09.011_bib25) 1974 10.1016/j.jvlc.2014.09.011_bib18 10.1016/j.jvlc.2014.09.011_bib19 Linden (10.1016/j.jvlc.2014.09.011_bib2) 2003; 7 10.1016/j.jvlc.2014.09.011_bib27 Goldberg (10.1016/j.jvlc.2014.09.011_bib14) 2001; 4 10.1016/j.jvlc.2014.09.011_bib21 10.1016/j.jvlc.2014.09.011_bib22 Liu (10.1016/j.jvlc.2014.09.011_bib20) 2005; 77 Goldberg (10.1016/j.jvlc.2014.09.011_bib12) 1992; 35 Gao (10.1016/j.jvlc.2014.09.011_bib8) 2007 Kim (10.1016/j.jvlc.2014.09.011_bib10) 2008; 34 Truong (10.1016/j.jvlc.2014.09.011_bib15) 2007; E90-D |
References_xml | – reference: B.M. Sarwar, G. Karypis, J. Konstan, J. Riedl, Application of dimensionality reduction in recommender system—a case study, in: Proceedings of ACM WebKDD Workshop, Boston, MA, 2000. – reference: P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, J. Riedl, GroupLens: an open architecture for collaborative filtering of netnews, in: Proceedings of ACM 1994 Conference on Computer Supported Cooperative Work, Chapel Hill, 1994, pp. 175–186. – start-page: 75 year: 2007 end-page: 84 ident: bib8 article-title: An Effective Algorithm for Dimensional Reduction in Collaborative Filtering, in LNCS 4822 – reference: A. Kohrs, B. Merialdo, Clustering for collaborative filtering applications, in: Proceedings of Computational Intelligence for Modeling, Control and Automation (CIMCA), Vienna: IOS Press, 1999, pp. 199–204. – volume: 4 start-page: 133 year: 2001 end-page: 151 ident: bib14 article-title: Eigentaste: a constant time collaborative filtering algorithm publication-title: Inf. Retrieval. – reference: J.S. Breese, D. Heckerman, C. Kadie, Empirical analysis of predictive algorithms for collaborative filtering, in: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Madison, Wisconsin, USA, 1998, pp. 43–52. – volume: E90-D start-page: 1363 year: 2007 end-page: 1373 ident: bib15 article-title: Improving accuracy of recommender system by item clustering publication-title: IEICE Trans. Inf. Syst. – volume: 34 start-page: 1200 year: 2008 end-page: 1209 ident: bib10 article-title: A recommender system using GA publication-title: Expert Syst. Appl. – volume: 158 start-page: 69 year: 2004 end-page: 88 ident: bib23 article-title: Web page feature selection and classification using neural networks publication-title: Inf. Sci. – reference: G. Xue, C. Lin, Q. Yang, et al., Scalable collaborative filtering using cluster-based smoothing, in: Proceedings of the 28th International Conference on ACM SIGIR, Brazil: ACM Press, 2005, pp. 114–121. – volume: 7 start-page: 76 year: 2003 end-page: 80 ident: bib2 article-title: Amazon.com recommendations: item to item collaborative filtering publication-title: IEEE Internet Comput. – reference: C. Huang, J. Yin, J, Effective association clusters filtering to cold-start recommendations, in: Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, Shandong, 2010, pp. 2461–2464. – year: 1989 ident: bib26 article-title: Genetic Algorithms in Search, Optimization, and Machine Learning – reference: B.M. Sarwar, G. Karypis, J. Konstan, J. Riedl, Recommender systems for large-scale e-commerce: scalable neighborhood formation using clustering, in: Proceedings of International Conference on Computer and Information Technology, Dhaka, Bangladesh, 2002. – volume: 77 start-page: 181 year: 2005 end-page: 191 ident: bib20 article-title: Hybrid approaches to product recommendation base on customer lifetime value and purchase preferences publication-title: J. Syst. Softw. – reference: G. Pitsilis, X.L. Zhang, W. Wang, Clustering recommenders in collaborative filtering using explicit trust information, in: Proceedings of the Fifth International Conference on Trust Management IFIPTM, Denmark, Copenhagen, 2011, pp. 82–97. – reference: B.M. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation algorithm, in: Proceedings of the 10th International WWW Conference, Hong Kong, 2001, pp. 285–295. – reference: Q. Li, B.M. Kim, Clustering approach for hybrid recommendation system, in: Proceedings of the International Conference on Web Intelligence, Halifax, Canada, 2003, pp. 33–38. – reference: M. Zhang, N. Hurley, Novel item recommendation by user profile partitioning, in: Proceedings of the International. Conference on Web Intelligence and Intelligent Agent Technology, Washington DC, USA, 2009, pp. 508–515. – reference: J. Wang, N.-Y. Zhang, J. Yin, J, Collaborative filtering recommendation based on fuzzy clustering of user preferences, in: Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, Shandong, 2010, pp. 1946–1950. – volume: 35 start-page: 61 year: 1992 end-page: 70 ident: bib12 article-title: Using collaborative filtering to weave an information tapestry publication-title: Commun. ACM – reference: O. Georgiou, N. Tsapatsoulis, Improving the scalability of recommender systems by clustering using genetic algorithms, in: Proceedings of the 20th International conference on Artificial Neural Networks, Thessaloniki, Greece, 2010, pp. 442–449. – volume: 17 start-page: 734 year: 2005 end-page: 749 ident: bib1 article-title: Toward the next generation of recommender system: a survey of the state-of-the-art and possible extensions publication-title: IEEE Trans. Knowl. Data Eng. – year: 1974 ident: bib25 article-title: Pattern Recognition Principle – reference: D. Billsus, M.J. Pazzani, Learning collaborative information filters, in: Proceedings of the 15th International Conference on Machine Learning, Madison, 1998, pp. 46–53. – reference: K. Honda, N. Sugiura, H. Ichihashi, S. Araki, Collaborative filtering using principal component analysis and fuzzy clustering, in: Proceedings of the First Asia-Pacific Conference on Web Intelligence: Research and Development, Maebashi City, Japan, 2001, pp. 394–402. – year: 2001 ident: bib24 article-title: Data Mining: Concepts and Techniques – year: 1974 ident: 10.1016/j.jvlc.2014.09.011_bib25 – start-page: 75 year: 2007 ident: 10.1016/j.jvlc.2014.09.011_bib8 – ident: 10.1016/j.jvlc.2014.09.011_bib19 doi: 10.1109/FSKD.2010.5569467 – volume: 34 start-page: 1200 issue: 2 year: 2008 ident: 10.1016/j.jvlc.2014.09.011_bib10 article-title: A recommender system using GA K-means clustering in an online shopping market publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.12.025 – volume: 4 start-page: 133 issue: 2 year: 2001 ident: 10.1016/j.jvlc.2014.09.011_bib14 article-title: Eigentaste: a constant time collaborative filtering algorithm publication-title: Inf. Retrieval. doi: 10.1023/A:1011419012209 – volume: E90-D start-page: 1363 issue: 9 year: 2007 ident: 10.1016/j.jvlc.2014.09.011_bib15 article-title: Improving accuracy of recommender system by item clustering publication-title: IEICE Trans. Inf. Syst. doi: 10.1093/ietisy/e90-d.9.1363 – ident: 10.1016/j.jvlc.2014.09.011_bib18 doi: 10.1109/FSKD.2010.5569294 – ident: 10.1016/j.jvlc.2014.09.011_bib7 doi: 10.1145/1076034.1076056 – ident: 10.1016/j.jvlc.2014.09.011_bib27 doi: 10.1145/192844.192905 – volume: 7 start-page: 76 issue: 1 year: 2003 ident: 10.1016/j.jvlc.2014.09.011_bib2 article-title: Amazon.com recommendations: item to item collaborative filtering publication-title: IEEE Internet Comput. doi: 10.1109/MIC.2003.1167344 – ident: 10.1016/j.jvlc.2014.09.011_bib6 – ident: 10.1016/j.jvlc.2014.09.011_bib16 doi: 10.1007/978-3-642-22200-9_9 – volume: 77 start-page: 181 issue: 22 year: 2005 ident: 10.1016/j.jvlc.2014.09.011_bib20 article-title: Hybrid approaches to product recommendation base on customer lifetime value and purchase preferences publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2004.08.031 – year: 2001 ident: 10.1016/j.jvlc.2014.09.011_bib24 – ident: 10.1016/j.jvlc.2014.09.011_bib5 doi: 10.21236/ADA439541 – volume: 158 start-page: 69 year: 2004 ident: 10.1016/j.jvlc.2014.09.011_bib23 article-title: Web page feature selection and classification using neural networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2003.03.003 – volume: 35 start-page: 61 issue: 12 year: 1992 ident: 10.1016/j.jvlc.2014.09.011_bib12 article-title: Using collaborative filtering to weave an information tapestry publication-title: Commun. ACM doi: 10.1145/138859.138867 – ident: 10.1016/j.jvlc.2014.09.011_bib21 doi: 10.1007/978-3-642-15819-3_60 – ident: 10.1016/j.jvlc.2014.09.011_bib22 doi: 10.1007/3-540-45490-X_50 – ident: 10.1016/j.jvlc.2014.09.011_bib13 – year: 1989 ident: 10.1016/j.jvlc.2014.09.011_bib26 – ident: 10.1016/j.jvlc.2014.09.011_bib11 – ident: 10.1016/j.jvlc.2014.09.011_bib3 – volume: 17 start-page: 734 issue: 6 year: 2005 ident: 10.1016/j.jvlc.2014.09.011_bib1 article-title: Toward the next generation of recommender system: a survey of the state-of-the-art and possible extensions publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.99 – ident: 10.1016/j.jvlc.2014.09.011_bib17 doi: 10.1109/WI-IAT.2009.85 – ident: 10.1016/j.jvlc.2014.09.011_bib4 doi: 10.1145/371920.372071 – ident: 10.1016/j.jvlc.2014.09.011_bib9 |
SSID | ssj0007836 |
Score | 2.344513 |
Snippet | Recommendation systems have become prevalent in recent years as they dealing with the information overload problem by suggesting users the most relevant... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 667 |
SubjectTerms | Collaborative filtering Genetic algorithms K-means Movie recommendation Sparsity data |
Title | An improved collaborative movie recommendation system using computational intelligence |
URI | https://dx.doi.org/10.1016/j.jvlc.2014.09.011 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-8533 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007836 issn: 1045-926X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Freedom Collection customDbUrl: eissn: 1095-8533 dateEnd: 20181231 omitProxy: true ssIdentifier: ssj0007836 issn: 1045-926X databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-8533 dateEnd: 20181231 omitProxy: true ssIdentifier: ssj0007836 issn: 1045-926X databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1095-8533 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007836 issn: 1045-926X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-8533 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007836 issn: 1045-926X databaseCode: AKRWK dateStart: 19930301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXrz4gV_4QXowXsxkW7utPRIiQUUuiuHWdG1nIDCIIEf_dtu1Q0wMB49r2q7pe3tfe-_3ALjWfIsCpaWf1gXYwzjhHhUJ8kwZp49IKMPM_NF97sfdAX4cRsMKaJe1MCat0sl-K9MLae1Gmu42m_PRqPmiHYmIhvFQuwjaUChquAz6l-bpu6-fNA9TpWARCSLPzHaFMzbHa7yaGBjDwGKdBsHfymlD4XQOwJ6zFGHLHuYQVFReA_vOaoTum1zoobIxQzlWA6c9F4VcwBvYWwMnL47AWyuHoyKOoPfY4IGVgtOZPgU0DvJ0qlyrJWiBnqHJjn-HoniRix7C0QaY5zEYdO5f213PtVbwBPL9pYdEiKiURCRc-zvaxOOSZr6Uwo-IVFihiCBfCEkITXweZ0kWIMKzOEixiT5SdAKq-SxXZwCasugIcU7iTOI0TEiGhaQ81fuGXIRpHQTlnTLhcMdN-4sJKxPMxszQgRk6MJ8yTYc6uF2vmVvUja2zo5JU7BfvMK0Wtqw7_-e6C7BrnmxSyyWoLj8-1ZU2TZZpo-C9BthpPTx1-9-7YOPG |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwED4hGNqlD_qiTw9VlyoiiZ3EGREqghJYChWb5dhJFQQBFcrvr00cRKWqQ1cn50S-y71y9x3Ao5Jb7CRK-ylbQCxCAm6FIsCWbuO0MXWlm-o_uoOh3x2T14k3qUC77IXRZZVG9xc6fautzUrTnGZzmWXNNxVIeKHrT1SIoBwF3cNVI57SyVWotXr97nCnkHWjQgFK4FmawPTOFGVe081MIxk6Bdyp4_xun_ZsTucEjoyziFrF-5xCJcnrcGwcR2Q-y5VaKmczlGt1uIxMInKFnlC0w05encF7K0fZNpWg9tgTg02C5gv1FkjHyPN5YqYtoQLrGekC-Q8ktg8yCUSU7eF5nsO48zJqdy0zXcES2LbXFhYuDqWkIuAq5FFeHpdhakspbI_KhCTYo9gWQlIaBjb30yB1MOWp78REJyBDfAHVfJEnV4B0Z7SHOad-KknsBjQlQoY8Vvu6XLhxA5zyTJkw0ON6AsaMlTVmU6b5wDQfmB0yxYcGPO9olgXwxp93eyWr2A_xYcoy_EF3_U-6BzjojgYRi3rD_g0c6itFjcstVNefX8md8lTW8b2RxG99PuZx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+collaborative+movie+recommendation+system+using+computational+intelligence&rft.jtitle=Journal+of+visual+languages+and+computing&rft.au=Wang%2C+Zan&rft.au=Yu%2C+Xue&rft.au=Feng%2C+Nan&rft.au=Wang%2C+Zhenhua&rft.date=2014-12-01&rft.issn=1045-926X&rft.volume=25&rft.issue=6&rft.spage=667&rft.epage=675&rft_id=info:doi/10.1016%2Fj.jvlc.2014.09.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jvlc_2014_09_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-926X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-926X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-926X&client=summon |