An improved collaborative movie recommendation system using computational intelligence

Recommendation systems have become prevalent in recent years as they dealing with the information overload problem by suggesting users the most relevant products from a massive amount of data. For media product, online collaborative movie recommendations make attempts to assist users to access their...

Full description

Saved in:
Bibliographic Details
Published inJournal of visual languages and computing Vol. 25; no. 6; pp. 667 - 675
Main Authors Wang, Zan, Yu, Xue, Feng, Nan, Wang, Zhenhua
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2014
Subjects
Online AccessGet full text
ISSN1045-926X
1095-8533
DOI10.1016/j.jvlc.2014.09.011

Cover

Abstract Recommendation systems have become prevalent in recent years as they dealing with the information overload problem by suggesting users the most relevant products from a massive amount of data. For media product, online collaborative movie recommendations make attempts to assist users to access their preferred movies by capturing precisely similar neighbors among users or movies from their historical common ratings. However, due to the data sparsely, neighbor selecting is getting more difficult with the fast increasing of movies and users. In this paper, a hybrid model-based movie recommendation system which utilizes the improved K-means clustering coupled with genetic algorithms (GAs) to partition transformed user space is proposed. It employs principal component analysis (PCA) data reduction technique to dense the movie population space which could reduce the computation complexity in intelligent movie recom-mendation as well. The experiment results on Movielens dataset indicate that the proposed approach can provide high performance in terms of accuracy, and generate more reliable and personalized movie recommendations when compared with the existing methods. •Proposed an optimized clustering algorithm to partition user profiles.•To represent denser profile vectors by principal component analysis transforming.•Be examined to provide high prediction accuracy and more reliable recommendations.
AbstractList Recommendation systems have become prevalent in recent years as they dealing with the information overload problem by suggesting users the most relevant products from a massive amount of data. For media product, online collaborative movie recommendations make attempts to assist users to access their preferred movies by capturing precisely similar neighbors among users or movies from their historical common ratings. However, due to the data sparsely, neighbor selecting is getting more difficult with the fast increasing of movies and users. In this paper, a hybrid model-based movie recommendation system which utilizes the improved K-means clustering coupled with genetic algorithms (GAs) to partition transformed user space is proposed. It employs principal component analysis (PCA) data reduction technique to dense the movie population space which could reduce the computation complexity in intelligent movie recom-mendation as well. The experiment results on Movielens dataset indicate that the proposed approach can provide high performance in terms of accuracy, and generate more reliable and personalized movie recommendations when compared with the existing methods. •Proposed an optimized clustering algorithm to partition user profiles.•To represent denser profile vectors by principal component analysis transforming.•Be examined to provide high prediction accuracy and more reliable recommendations.
Author Wang, Zan
Wang, Zhenhua
Yu, Xue
Feng, Nan
Author_xml – sequence: 1
  givenname: Zan
  surname: Wang
  fullname: Wang, Zan
  email: wangzan@tju.edu.cn
  organization: School of Computer Software, Tianjin University, Tianjin 300072, China
– sequence: 2
  givenname: Xue
  surname: Yu
  fullname: Yu, Xue
  email: yuki@tju.edu.cn
  organization: College of Management and Economics, Tianjin University, Tianjin 300072, China
– sequence: 3
  givenname: Nan
  surname: Feng
  fullname: Feng, Nan
  email: fengnan@tju.edu.cn
  organization: College of Management and Economics, Tianjin University, Tianjin 300072, China
– sequence: 4
  givenname: Zhenhua
  surname: Wang
  fullname: Wang, Zhenhua
  email: zhw.powersystem@gmail.com
  organization: American Electric Power, Gahanna, OH 43230, United States
BookMark eNp9kMtqwzAQRUVJoUnaH-jKP2B3ZPkhQTch9AWBbtrSnVAkOcjIUpAcQ_6-dt1VF1nNMDNn4J4VWjjvNEL3GDIMuHpos3awMssBFxmwDDC-QksMrExpSchi6osyZXn1fYNWMbYAUFNSLdHXxiWmOwY_aJVIb63Y-yB6M-ik84PRSdDSd512ahx6l8Rz7HWXnKJxh_G-O57634WwiXG9ttYctJP6Fl03wkZ991fX6PP56WP7mu7eX962m10qCUCfEpkTphSVtWBVRTAIxRpQSkJJlS40KSkBKRWlrAZRNXWDCRVNhfdFQUnByBrl818ZfIxBN_wYTCfCmWPgkxne8skMn8xwYHw0M0L0HyTNnKIPwtjL6OOM6jHUqCfwKM0UWJlRVM-VN5fwH5N0g90
CitedBy_id crossref_primary_10_3389_fdata_2023_1281614
crossref_primary_10_1016_j_eij_2016_10_002
crossref_primary_10_1016_j_physa_2022_128105
crossref_primary_10_1007_s00521_020_05482_6
crossref_primary_10_1007_s10844_019_00548_x
crossref_primary_10_1016_j_eswa_2017_11_050
crossref_primary_10_1002_int_22394
crossref_primary_10_29121_ijetmr_v7_i6_2020_709
crossref_primary_10_47164_ijngc_v13i3_845
crossref_primary_10_1108_IJWIS_10_2018_0074
crossref_primary_10_4108_eetsis_vi_1947
crossref_primary_10_1007_s41870_021_00769_w
crossref_primary_10_3389_fnbot_2022_1076338
crossref_primary_10_1007_s11047_016_9540_y
crossref_primary_10_1007_s13198_021_01122_x
crossref_primary_10_1016_j_engappai_2023_107109
crossref_primary_10_3390_s22134904
crossref_primary_10_1016_j_future_2017_08_060
crossref_primary_10_1016_j_eswa_2018_01_015
crossref_primary_10_1016_j_measurement_2016_05_058
crossref_primary_10_1007_s00521_017_3338_4
crossref_primary_10_1080_1206212X_2019_1701798
crossref_primary_10_1186_s40537_015_0037_9
crossref_primary_10_1016_j_eswa_2017_04_027
crossref_primary_10_1111_exsy_12893
crossref_primary_10_1007_s11042_023_17704_9
crossref_primary_10_3390_su10114280
crossref_primary_10_1016_j_techfore_2022_122120
crossref_primary_10_56294_sctconf2024_1118
crossref_primary_10_1007_s40031_021_00584_8
crossref_primary_10_1016_j_eswa_2021_114917
crossref_primary_10_1007_s11042_016_3481_4
crossref_primary_10_1108_DTA_08_2021_0209
crossref_primary_10_1142_S2196888819500192
crossref_primary_10_1371_journal_pone_0204849
crossref_primary_10_3346_jkms_2023_38_e77
crossref_primary_10_1007_s10586_020_03155_6
crossref_primary_10_1142_S0219622020500108
crossref_primary_10_1007_s41060_022_00355_8
crossref_primary_10_1016_j_neucom_2024_128718
crossref_primary_10_1007_s00521_018_3891_5
crossref_primary_10_1080_10447318_2020_1768665
crossref_primary_10_1007_s00500_020_05531_1
crossref_primary_10_3390_electronics11010141
crossref_primary_10_4018_IJWP_2019070101
crossref_primary_10_3390_sym14040793
crossref_primary_10_1016_j_simpat_2015_10_001
crossref_primary_10_1007_s12065_023_00822_6
crossref_primary_10_3390_app13126929
crossref_primary_10_1016_j_is_2020_101670
crossref_primary_10_1016_j_swevo_2017_04_004
crossref_primary_10_1186_s40537_022_00592_5
crossref_primary_10_1038_s41597_024_04196_x
crossref_primary_10_1016_j_jksuci_2020_09_010
crossref_primary_10_3390_sym12020185
crossref_primary_10_1007_s11042_021_10965_2
crossref_primary_10_1007_s12530_019_09296_3
crossref_primary_10_1080_1206212X_2022_2097769
crossref_primary_10_3390_fi12090154
crossref_primary_10_3390_a17060255
crossref_primary_10_1016_j_enbuild_2024_115247
crossref_primary_10_1142_S2196888824400013
crossref_primary_10_1051_matecconf_201822502004
crossref_primary_10_1016_j_ipm_2020_102310
crossref_primary_10_1088_1757_899X_1119_1_012018
Cites_doi 10.1109/FSKD.2010.5569467
10.1016/j.eswa.2006.12.025
10.1023/A:1011419012209
10.1093/ietisy/e90-d.9.1363
10.1109/FSKD.2010.5569294
10.1145/1076034.1076056
10.1145/192844.192905
10.1109/MIC.2003.1167344
10.1007/978-3-642-22200-9_9
10.1016/j.jss.2004.08.031
10.21236/ADA439541
10.1016/j.ins.2003.03.003
10.1145/138859.138867
10.1007/978-3-642-15819-3_60
10.1007/3-540-45490-X_50
10.1109/TKDE.2005.99
10.1109/WI-IAT.2009.85
10.1145/371920.372071
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jvlc.2014.09.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Languages & Literatures
Computer Science
EISSN 1095-8533
EndPage 675
ExternalDocumentID 10_1016_j_jvlc_2014_09_011
S1045926X14000901
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMY
HVGLF
HZ~
IHE
J1W
KOM
LG5
LX9
M3X
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SSS
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-3c239dd8c7a966310ad9f0ddc058de4e35830ccd88970a6f7f138af61b4483493
IEDL.DBID .~1
ISSN 1045-926X
IngestDate Thu Apr 24 23:10:09 EDT 2025
Wed Oct 01 04:05:31 EDT 2025
Fri Feb 23 02:32:37 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords K-means
Movie recommendation
Collaborative filtering
Sparsity data
Genetic algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-3c239dd8c7a966310ad9f0ddc058de4e35830ccd88970a6f7f138af61b4483493
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_jvlc_2014_09_011
crossref_citationtrail_10_1016_j_jvlc_2014_09_011
elsevier_sciencedirect_doi_10_1016_j_jvlc_2014_09_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of visual languages and computing
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References A. Kohrs, B. Merialdo, Clustering for collaborative filtering applications, in: Proceedings of Computational Intelligence for Modeling, Control and Automation (CIMCA), Vienna: IOS Press, 1999, pp. 199–204.
Linden, Smith, York (bib2) 2003; 7
J.S. Breese, D. Heckerman, C. Kadie, Empirical analysis of predictive algorithms for collaborative filtering, in: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Madison, Wisconsin, USA, 1998, pp. 43–52.
Truong, Ishikawa, Honiden (bib15) 2007; E90-D
G. Xue, C. Lin, Q. Yang, et al., Scalable collaborative filtering using cluster-based smoothing, in: Proceedings of the 28th International Conference on ACM SIGIR, Brazil: ACM Press, 2005, pp. 114–121.
Kim, Ahn (bib10) 2008; 34
M. Zhang, N. Hurley, Novel item recommendation by user profile partitioning, in: Proceedings of the International. Conference on Web Intelligence and Intelligent Agent Technology, Washington DC, USA, 2009, pp. 508–515.
B.M. Sarwar, G. Karypis, J. Konstan, J. Riedl, Recommender systems for large-scale e-commerce: scalable neighborhood formation using clustering, in: Proceedings of International Conference on Computer and Information Technology, Dhaka, Bangladesh, 2002.
K. Honda, N. Sugiura, H. Ichihashi, S. Araki, Collaborative filtering using principal component analysis and fuzzy clustering, in: Proceedings of the First Asia-Pacific Conference on Web Intelligence: Research and Development, Maebashi City, Japan, 2001, pp. 394–402.
Liu, Shih (bib20) 2005; 77
Tou, Gonzalez (bib25) 1974
Q. Li, B.M. Kim, Clustering approach for hybrid recommendation system, in: Proceedings of the International Conference on Web Intelligence, Halifax, Canada, 2003, pp. 33–38.
B.M. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation algorithm, in: Proceedings of the 10th International WWW Conference, Hong Kong, 2001, pp. 285–295.
Goldberg, Roeder, Gupta, Perkins (bib14) 2001; 4
P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, J. Riedl, GroupLens: an open architecture for collaborative filtering of netnews, in: Proceedings of ACM 1994 Conference on Computer Supported Cooperative Work, Chapel Hill, 1994, pp. 175–186.
Adomavicius, Tuzhilin (bib1) 2005; 17
Goldberg (bib26) 1989
B.M. Sarwar, G. Karypis, J. Konstan, J. Riedl, Application of dimensionality reduction in recommender system—a case study, in: Proceedings of ACM WebKDD Workshop, Boston, MA, 2000.
Goldberg, Nichols, Oki, Terry (bib12) 1992; 35
Selamat, Omatu (bib23) 2004; 158
O. Georgiou, N. Tsapatsoulis, Improving the scalability of recommender systems by clustering using genetic algorithms, in: Proceedings of the 20th International conference on Artificial Neural Networks, Thessaloniki, Greece, 2010, pp. 442–449.
D. Billsus, M.J. Pazzani, Learning collaborative information filters, in: Proceedings of the 15th International Conference on Machine Learning, Madison, 1998, pp. 46–53.
G. Pitsilis, X.L. Zhang, W. Wang, Clustering recommenders in collaborative filtering using explicit trust information, in: Proceedings of the Fifth International Conference on Trust Management IFIPTM, Denmark, Copenhagen, 2011, pp. 82–97.
J. Wang, N.-Y. Zhang, J. Yin, J, Collaborative filtering recommendation based on fuzzy clustering of user preferences, in: Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, Shandong, 2010, pp. 1946–1950.
Gao, Xing, Zhao (bib8) 2007
C. Huang, J. Yin, J, Effective association clusters filtering to cold-start recommendations, in: Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, Shandong, 2010, pp. 2461–2464.
Han, Kamber (bib24) 2001
10.1016/j.jvlc.2014.09.011_bib16
10.1016/j.jvlc.2014.09.011_bib17
Goldberg (10.1016/j.jvlc.2014.09.011_bib26) 1989
10.1016/j.jvlc.2014.09.011_bib11
Han (10.1016/j.jvlc.2014.09.011_bib24) 2001
Adomavicius (10.1016/j.jvlc.2014.09.011_bib1) 2005; 17
10.1016/j.jvlc.2014.09.011_bib13
10.1016/j.jvlc.2014.09.011_bib9
10.1016/j.jvlc.2014.09.011_bib3
Selamat (10.1016/j.jvlc.2014.09.011_bib23) 2004; 158
10.1016/j.jvlc.2014.09.011_bib4
10.1016/j.jvlc.2014.09.011_bib5
10.1016/j.jvlc.2014.09.011_bib6
10.1016/j.jvlc.2014.09.011_bib7
Tou (10.1016/j.jvlc.2014.09.011_bib25) 1974
10.1016/j.jvlc.2014.09.011_bib18
10.1016/j.jvlc.2014.09.011_bib19
Linden (10.1016/j.jvlc.2014.09.011_bib2) 2003; 7
10.1016/j.jvlc.2014.09.011_bib27
Goldberg (10.1016/j.jvlc.2014.09.011_bib14) 2001; 4
10.1016/j.jvlc.2014.09.011_bib21
10.1016/j.jvlc.2014.09.011_bib22
Liu (10.1016/j.jvlc.2014.09.011_bib20) 2005; 77
Goldberg (10.1016/j.jvlc.2014.09.011_bib12) 1992; 35
Gao (10.1016/j.jvlc.2014.09.011_bib8) 2007
Kim (10.1016/j.jvlc.2014.09.011_bib10) 2008; 34
Truong (10.1016/j.jvlc.2014.09.011_bib15) 2007; E90-D
References_xml – reference: B.M. Sarwar, G. Karypis, J. Konstan, J. Riedl, Application of dimensionality reduction in recommender system—a case study, in: Proceedings of ACM WebKDD Workshop, Boston, MA, 2000.
– reference: P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, J. Riedl, GroupLens: an open architecture for collaborative filtering of netnews, in: Proceedings of ACM 1994 Conference on Computer Supported Cooperative Work, Chapel Hill, 1994, pp. 175–186.
– start-page: 75
  year: 2007
  end-page: 84
  ident: bib8
  article-title: An Effective Algorithm for Dimensional Reduction in Collaborative Filtering, in LNCS 4822
– reference: A. Kohrs, B. Merialdo, Clustering for collaborative filtering applications, in: Proceedings of Computational Intelligence for Modeling, Control and Automation (CIMCA), Vienna: IOS Press, 1999, pp. 199–204.
– volume: 4
  start-page: 133
  year: 2001
  end-page: 151
  ident: bib14
  article-title: Eigentaste: a constant time collaborative filtering algorithm
  publication-title: Inf. Retrieval.
– reference: J.S. Breese, D. Heckerman, C. Kadie, Empirical analysis of predictive algorithms for collaborative filtering, in: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Madison, Wisconsin, USA, 1998, pp. 43–52.
– volume: E90-D
  start-page: 1363
  year: 2007
  end-page: 1373
  ident: bib15
  article-title: Improving accuracy of recommender system by item clustering
  publication-title: IEICE Trans. Inf. Syst.
– volume: 34
  start-page: 1200
  year: 2008
  end-page: 1209
  ident: bib10
  article-title: A recommender system using GA
  publication-title: Expert Syst. Appl.
– volume: 158
  start-page: 69
  year: 2004
  end-page: 88
  ident: bib23
  article-title: Web page feature selection and classification using neural networks
  publication-title: Inf. Sci.
– reference: G. Xue, C. Lin, Q. Yang, et al., Scalable collaborative filtering using cluster-based smoothing, in: Proceedings of the 28th International Conference on ACM SIGIR, Brazil: ACM Press, 2005, pp. 114–121.
– volume: 7
  start-page: 76
  year: 2003
  end-page: 80
  ident: bib2
  article-title: Amazon.com recommendations: item to item collaborative filtering
  publication-title: IEEE Internet Comput.
– reference: C. Huang, J. Yin, J, Effective association clusters filtering to cold-start recommendations, in: Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, Shandong, 2010, pp. 2461–2464.
– year: 1989
  ident: bib26
  article-title: Genetic Algorithms in Search, Optimization, and Machine Learning
– reference: B.M. Sarwar, G. Karypis, J. Konstan, J. Riedl, Recommender systems for large-scale e-commerce: scalable neighborhood formation using clustering, in: Proceedings of International Conference on Computer and Information Technology, Dhaka, Bangladesh, 2002.
– volume: 77
  start-page: 181
  year: 2005
  end-page: 191
  ident: bib20
  article-title: Hybrid approaches to product recommendation base on customer lifetime value and purchase preferences
  publication-title: J. Syst. Softw.
– reference: G. Pitsilis, X.L. Zhang, W. Wang, Clustering recommenders in collaborative filtering using explicit trust information, in: Proceedings of the Fifth International Conference on Trust Management IFIPTM, Denmark, Copenhagen, 2011, pp. 82–97.
– reference: B.M. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation algorithm, in: Proceedings of the 10th International WWW Conference, Hong Kong, 2001, pp. 285–295.
– reference: Q. Li, B.M. Kim, Clustering approach for hybrid recommendation system, in: Proceedings of the International Conference on Web Intelligence, Halifax, Canada, 2003, pp. 33–38.
– reference: M. Zhang, N. Hurley, Novel item recommendation by user profile partitioning, in: Proceedings of the International. Conference on Web Intelligence and Intelligent Agent Technology, Washington DC, USA, 2009, pp. 508–515.
– reference: J. Wang, N.-Y. Zhang, J. Yin, J, Collaborative filtering recommendation based on fuzzy clustering of user preferences, in: Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, Shandong, 2010, pp. 1946–1950.
– volume: 35
  start-page: 61
  year: 1992
  end-page: 70
  ident: bib12
  article-title: Using collaborative filtering to weave an information tapestry
  publication-title: Commun. ACM
– reference: O. Georgiou, N. Tsapatsoulis, Improving the scalability of recommender systems by clustering using genetic algorithms, in: Proceedings of the 20th International conference on Artificial Neural Networks, Thessaloniki, Greece, 2010, pp. 442–449.
– volume: 17
  start-page: 734
  year: 2005
  end-page: 749
  ident: bib1
  article-title: Toward the next generation of recommender system: a survey of the state-of-the-art and possible extensions
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 1974
  ident: bib25
  article-title: Pattern Recognition Principle
– reference: D. Billsus, M.J. Pazzani, Learning collaborative information filters, in: Proceedings of the 15th International Conference on Machine Learning, Madison, 1998, pp. 46–53.
– reference: K. Honda, N. Sugiura, H. Ichihashi, S. Araki, Collaborative filtering using principal component analysis and fuzzy clustering, in: Proceedings of the First Asia-Pacific Conference on Web Intelligence: Research and Development, Maebashi City, Japan, 2001, pp. 394–402.
– year: 2001
  ident: bib24
  article-title: Data Mining: Concepts and Techniques
– year: 1974
  ident: 10.1016/j.jvlc.2014.09.011_bib25
– start-page: 75
  year: 2007
  ident: 10.1016/j.jvlc.2014.09.011_bib8
– ident: 10.1016/j.jvlc.2014.09.011_bib19
  doi: 10.1109/FSKD.2010.5569467
– volume: 34
  start-page: 1200
  issue: 2
  year: 2008
  ident: 10.1016/j.jvlc.2014.09.011_bib10
  article-title: A recommender system using GA K-means clustering in an online shopping market
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.12.025
– volume: 4
  start-page: 133
  issue: 2
  year: 2001
  ident: 10.1016/j.jvlc.2014.09.011_bib14
  article-title: Eigentaste: a constant time collaborative filtering algorithm
  publication-title: Inf. Retrieval.
  doi: 10.1023/A:1011419012209
– volume: E90-D
  start-page: 1363
  issue: 9
  year: 2007
  ident: 10.1016/j.jvlc.2014.09.011_bib15
  article-title: Improving accuracy of recommender system by item clustering
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1093/ietisy/e90-d.9.1363
– ident: 10.1016/j.jvlc.2014.09.011_bib18
  doi: 10.1109/FSKD.2010.5569294
– ident: 10.1016/j.jvlc.2014.09.011_bib7
  doi: 10.1145/1076034.1076056
– ident: 10.1016/j.jvlc.2014.09.011_bib27
  doi: 10.1145/192844.192905
– volume: 7
  start-page: 76
  issue: 1
  year: 2003
  ident: 10.1016/j.jvlc.2014.09.011_bib2
  article-title: Amazon.com recommendations: item to item collaborative filtering
  publication-title: IEEE Internet Comput.
  doi: 10.1109/MIC.2003.1167344
– ident: 10.1016/j.jvlc.2014.09.011_bib6
– ident: 10.1016/j.jvlc.2014.09.011_bib16
  doi: 10.1007/978-3-642-22200-9_9
– volume: 77
  start-page: 181
  issue: 22
  year: 2005
  ident: 10.1016/j.jvlc.2014.09.011_bib20
  article-title: Hybrid approaches to product recommendation base on customer lifetime value and purchase preferences
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2004.08.031
– year: 2001
  ident: 10.1016/j.jvlc.2014.09.011_bib24
– ident: 10.1016/j.jvlc.2014.09.011_bib5
  doi: 10.21236/ADA439541
– volume: 158
  start-page: 69
  year: 2004
  ident: 10.1016/j.jvlc.2014.09.011_bib23
  article-title: Web page feature selection and classification using neural networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2003.03.003
– volume: 35
  start-page: 61
  issue: 12
  year: 1992
  ident: 10.1016/j.jvlc.2014.09.011_bib12
  article-title: Using collaborative filtering to weave an information tapestry
  publication-title: Commun. ACM
  doi: 10.1145/138859.138867
– ident: 10.1016/j.jvlc.2014.09.011_bib21
  doi: 10.1007/978-3-642-15819-3_60
– ident: 10.1016/j.jvlc.2014.09.011_bib22
  doi: 10.1007/3-540-45490-X_50
– ident: 10.1016/j.jvlc.2014.09.011_bib13
– year: 1989
  ident: 10.1016/j.jvlc.2014.09.011_bib26
– ident: 10.1016/j.jvlc.2014.09.011_bib11
– ident: 10.1016/j.jvlc.2014.09.011_bib3
– volume: 17
  start-page: 734
  issue: 6
  year: 2005
  ident: 10.1016/j.jvlc.2014.09.011_bib1
  article-title: Toward the next generation of recommender system: a survey of the state-of-the-art and possible extensions
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.99
– ident: 10.1016/j.jvlc.2014.09.011_bib17
  doi: 10.1109/WI-IAT.2009.85
– ident: 10.1016/j.jvlc.2014.09.011_bib4
  doi: 10.1145/371920.372071
– ident: 10.1016/j.jvlc.2014.09.011_bib9
SSID ssj0007836
Score 2.344513
Snippet Recommendation systems have become prevalent in recent years as they dealing with the information overload problem by suggesting users the most relevant...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 667
SubjectTerms Collaborative filtering
Genetic algorithms
K-means
Movie recommendation
Sparsity data
Title An improved collaborative movie recommendation system using computational intelligence
URI https://dx.doi.org/10.1016/j.jvlc.2014.09.011
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-8533
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007836
  issn: 1045-926X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Freedom Collection
  customDbUrl:
  eissn: 1095-8533
  dateEnd: 20181231
  omitProxy: true
  ssIdentifier: ssj0007836
  issn: 1045-926X
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-8533
  dateEnd: 20181231
  omitProxy: true
  ssIdentifier: ssj0007836
  issn: 1045-926X
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1095-8533
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007836
  issn: 1045-926X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-8533
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007836
  issn: 1045-926X
  databaseCode: AKRWK
  dateStart: 19930301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXrz4gV_4QXowXsxkW7utPRIiQUUuiuHWdG1nIDCIIEf_dtu1Q0wMB49r2q7pe3tfe-_3ALjWfIsCpaWf1gXYwzjhHhUJ8kwZp49IKMPM_NF97sfdAX4cRsMKaJe1MCat0sl-K9MLae1Gmu42m_PRqPmiHYmIhvFQuwjaUChquAz6l-bpu6-fNA9TpWARCSLPzHaFMzbHa7yaGBjDwGKdBsHfymlD4XQOwJ6zFGHLHuYQVFReA_vOaoTum1zoobIxQzlWA6c9F4VcwBvYWwMnL47AWyuHoyKOoPfY4IGVgtOZPgU0DvJ0qlyrJWiBnqHJjn-HoniRix7C0QaY5zEYdO5f213PtVbwBPL9pYdEiKiURCRc-zvaxOOSZr6Uwo-IVFihiCBfCEkITXweZ0kWIMKzOEixiT5SdAKq-SxXZwCasugIcU7iTOI0TEiGhaQ81fuGXIRpHQTlnTLhcMdN-4sJKxPMxszQgRk6MJ8yTYc6uF2vmVvUja2zo5JU7BfvMK0Wtqw7_-e6C7BrnmxSyyWoLj8-1ZU2TZZpo-C9BthpPTx1-9-7YOPG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwED4hGNqlD_qiTw9VlyoiiZ3EGREqghJYChWb5dhJFQQBFcrvr00cRKWqQ1cn50S-y71y9x3Ao5Jb7CRK-ylbQCxCAm6FIsCWbuO0MXWlm-o_uoOh3x2T14k3qUC77IXRZZVG9xc6fautzUrTnGZzmWXNNxVIeKHrT1SIoBwF3cNVI57SyVWotXr97nCnkHWjQgFK4FmawPTOFGVe081MIxk6Bdyp4_xun_ZsTucEjoyziFrF-5xCJcnrcGwcR2Q-y5VaKmczlGt1uIxMInKFnlC0w05encF7K0fZNpWg9tgTg02C5gv1FkjHyPN5YqYtoQLrGekC-Q8ktg8yCUSU7eF5nsO48zJqdy0zXcES2LbXFhYuDqWkIuAq5FFeHpdhakspbI_KhCTYo9gWQlIaBjb30yB1MOWp78REJyBDfAHVfJEnV4B0Z7SHOad-KknsBjQlQoY8Vvu6XLhxA5zyTJkw0ON6AsaMlTVmU6b5wDQfmB0yxYcGPO9olgXwxp93eyWr2A_xYcoy_EF3_U-6BzjojgYRi3rD_g0c6itFjcstVNefX8md8lTW8b2RxG99PuZx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+collaborative+movie+recommendation+system+using+computational+intelligence&rft.jtitle=Journal+of+visual+languages+and+computing&rft.au=Wang%2C+Zan&rft.au=Yu%2C+Xue&rft.au=Feng%2C+Nan&rft.au=Wang%2C+Zhenhua&rft.date=2014-12-01&rft.issn=1045-926X&rft.volume=25&rft.issue=6&rft.spage=667&rft.epage=675&rft_id=info:doi/10.1016%2Fj.jvlc.2014.09.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jvlc_2014_09_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-926X&client=summon