An investigation of the effects of plasma-heating on the resistive-driven filamentation modes

•The effects of plasma heating on the resistive filamentation modes have been studied.•The plasma heating effects are restricted to the J×B pinching and the Nernst effect.•The dispersion relation is derived based on the kinetic theory by Ohm’s law.•The growth rate of the resistive filamentation inst...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of physics (Taipei) Vol. 69; pp. 253 - 262
Main Authors Khanzadeh, H., Mahdavi, M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2021
Subjects
Online AccessGet full text
ISSN0577-9073
DOI10.1016/j.cjph.2020.12.004

Cover

Abstract •The effects of plasma heating on the resistive filamentation modes have been studied.•The plasma heating effects are restricted to the J×B pinching and the Nernst effect.•The dispersion relation is derived based on the kinetic theory by Ohm’s law.•The growth rate of the resistive filamentation instabilities is derived analytically.•Results are investigated in the inertial confinement fusion (ICF) subjects. In the field of fast ignition schemes, it is possible to heat the plasma during the injection of the relativistic electron beams. This might be strongly effective in the self-generated magnetic fields and divergence of the relativistic electron beams in the transport process. In this paper, the effects of plasma heating, J×B pinching, and Nernst (arising from the hot electrons flux) on the resistive filamentation modes in a magnetized anisotropic plasma were investigated. Results showed a significant reduction of the instability growth rate. Findings suggested that the reconnection and convection of the magnetic field lines could change the intensity of the collimation coefficient of the electron beams. In addition, the instability could exist in a safe mode even when the plasma entered an isotropic condition, compared to the temperature anisotropy-driven instabilities, where this could be affected by the relativistic electrons mean velocity.
AbstractList •The effects of plasma heating on the resistive filamentation modes have been studied.•The plasma heating effects are restricted to the J×B pinching and the Nernst effect.•The dispersion relation is derived based on the kinetic theory by Ohm’s law.•The growth rate of the resistive filamentation instabilities is derived analytically.•Results are investigated in the inertial confinement fusion (ICF) subjects. In the field of fast ignition schemes, it is possible to heat the plasma during the injection of the relativistic electron beams. This might be strongly effective in the self-generated magnetic fields and divergence of the relativistic electron beams in the transport process. In this paper, the effects of plasma heating, J×B pinching, and Nernst (arising from the hot electrons flux) on the resistive filamentation modes in a magnetized anisotropic plasma were investigated. Results showed a significant reduction of the instability growth rate. Findings suggested that the reconnection and convection of the magnetic field lines could change the intensity of the collimation coefficient of the electron beams. In addition, the instability could exist in a safe mode even when the plasma entered an isotropic condition, compared to the temperature anisotropy-driven instabilities, where this could be affected by the relativistic electrons mean velocity.
Author Khanzadeh, H.
Mahdavi, M.
Author_xml – sequence: 1
  givenname: H.
  surname: Khanzadeh
  fullname: Khanzadeh, H.
  email: h.khanzadeh@stu.umz.ac.ir
– sequence: 2
  givenname: M.
  surname: Mahdavi
  fullname: Mahdavi, M.
  email: m.mahdavi@umz.ac.ir
BookMark eNp9kL9qwzAQhzWk0CTtC3TyC9g9SXZsQ5cQ-g8CXdqxCFU6JTK2HCQR6NtXxp0yZJF04vcdd9-KLNzokJAHCgUFunnsCtWdjgUDlj5YAVAuyBKqus5bqPktWYXQAbCqrPiSfG9dZt0ZQ7QHGe3ostFk8YgZGoMqhqk89TIMMj9iCrhDljJTwGOwiTpjrn06XWZsLwd0cW4zjBrDHbkxsg94_3-vydfL8-fuLd9_vL7vtvtccYCY87ZkGiopddNwVjYtxUppquWmZUobNJwz4BRbyalhpoSfOr01B90q2Ejka9LMfZUfQ_BohLLzHNFL2wsKYlIjOjGpEZMaQZlIahLKLtCTt4P0v9ehpxnCtNTZohdBWXQKtfXJmtCjvYb_Af6cg4E
CitedBy_id crossref_primary_10_1002_ctpp_202100059
Cites_doi 10.1103/PhysRevLett.53.262
10.1103/PhysRevE.82.056407
10.1103/PhysRevE.84.016402
10.2528/PIERM17052204
10.13182/FST06-A1149
10.1140/epjd/e2014-50141-4
10.1063/1.3514586
10.1063/1.1986988
10.1063/1.1432994
10.1103/PhysRevE.83.036408
10.1007/s10894-015-9971-y
10.1016/j.cjph.2018.08.004
10.1063/1.4883223
10.1103/PhysRevE.58.2471
10.1139/p86-160
10.1103/PhysRevLett.112.105004
10.1063/1.865100
10.1088/0741-3335/28/11/007
10.1103/PhysRevLett.104.205004
10.1063/1.2172362
10.1002/ctpp.201800066
10.1142/9789814529310
ContentType Journal Article
Copyright 2020 The Physical Society of the Republic of China (Taiwan)
Copyright_xml – notice: 2020 The Physical Society of the Republic of China (Taiwan)
DBID AAYXX
CITATION
DOI 10.1016/j.cjph.2020.12.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EndPage 262
ExternalDocumentID 10_1016_j_cjph_2020_12_004
S0577907320303245
GroupedDBID --M
0R~
188
29B
2UF
2WC
5GY
8RM
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AENEX
AFFNX
AFKWA
AFTJW
AGUBO
AIEXJ
AIKHN
AINHJ
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATFKH
AXJTR
BKOJK
CNMHZ
CVCKV
DU5
E3Z
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
M41
M~E
O9-
OK1
P2P
RIG
RNS
ROL
SPC
SPCBC
SSQ
SSZ
T5K
TR2
TUXDW
UZ4
XSB
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
OVT
SSH
ID FETCH-LOGICAL-c300t-3942d05aad88324891e5cd1da692cdfef332031e9a31f2f40b7e9ad30d9c06ae3
IEDL.DBID AIKHN
ISSN 0577-9073
IngestDate Tue Jul 01 04:00:25 EDT 2025
Thu Apr 24 23:04:10 EDT 2025
Fri Feb 23 02:48:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nernst effect
Filamentation
Resistive mode
Fast ignition
Temperature anisotropy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-3942d05aad88324891e5cd1da692cdfef332031e9a31f2f40b7e9ad30d9c06ae3
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_cjph_2020_12_004
crossref_primary_10_1016_j_cjph_2020_12_004
elsevier_sciencedirect_doi_10_1016_j_cjph_2020_12_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationTitle Chinese journal of physics (Taipei)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mahdavi, Khanzadeh (bib0019) 2010
Nishiguchi, Yabe, Haines (bib0015) 1985; 28
Nicola, Feugeas, Regan, Olazabal-Loum, Breil, Dubroca, Morreeuw, Tikhonchuk (bib0005) 2011; 84
Nishiguchi, Yabe, Haines, Psimopoulos, Takewaki (bib0013) 1984; 53
Mahdavi, Khanzadeh (bib0020) 2014; 21
Gremillet, Bonnaud, Amiranoff (bib0009) 2002; 9
Haines (bib0014) 1986; 64
Sentoku, Kruer, Matsuoka, Pukhov (bib0002) 2006; 49
Lundin, Brodin (bib0021) 2010; 82
Mahdavi, Azadboni (bib0026) 2016; 35
Bell, Davies, Guerin (bib0011) 1998; 58
Rawat, Purohit (bib0003) 2019; 59
Cai, Zhu, Chen, Wu, He, Mima (bib0006) 2011; 83
Bret, Gremillet, Dieckmann (bib0007) 2010; 17
Sherlock (bib0018) 2010; 104
Liao, Zhao (bib0010) 2017; 59
G. Velarde, M. Emilio (Eds.), Advances in Laser Interaction with Matter and Inertial Fusion, World Scientific Pub Co Inc, Singapore, 1997.
Hora (bib0022) 2008; 1
Hill, Key, Hatchett, Freeman (bib0027) 2005; 12
Haines (bib0017) 1986; 28
Joglekar, Thomas, Fox, Bhattacharjee (bib0016) 2014; 112
Mahdavi, Azadboni (bib0008) 2014; 68
Hora (bib0024) 2012
Bret, Deutsch (bib0012) 2006; 13
Atzeni, Meyer-ter vehn (bib0001) 2004
Rezapour, Zahed, Mokhtary (bib0004) 2018; 56
Mahdavi, Azadboni (bib0025) 2014; 68
Nicola (10.1016/j.cjph.2020.12.004_bib0005) 2011; 84
Bell (10.1016/j.cjph.2020.12.004_bib0011) 1998; 58
10.1016/j.cjph.2020.12.004_bib0023
Cai (10.1016/j.cjph.2020.12.004_bib0006) 2011; 83
Sentoku (10.1016/j.cjph.2020.12.004_bib0002) 2006; 49
Lundin (10.1016/j.cjph.2020.12.004_bib0021) 2010; 82
Mahdavi (10.1016/j.cjph.2020.12.004_bib0020) 2014; 21
Mahdavi (10.1016/j.cjph.2020.12.004_bib0026) 2016; 35
Rawat (10.1016/j.cjph.2020.12.004_bib0003) 2019; 59
Hora (10.1016/j.cjph.2020.12.004_bib0024) 2012
Haines (10.1016/j.cjph.2020.12.004_bib0014) 1986; 64
Mahdavi (10.1016/j.cjph.2020.12.004_bib0008) 2014; 68
Mahdavi (10.1016/j.cjph.2020.12.004_sbref0019) 2010
Haines (10.1016/j.cjph.2020.12.004_bib0017) 1986; 28
Nishiguchi (10.1016/j.cjph.2020.12.004_bib0015) 1985; 28
Bret (10.1016/j.cjph.2020.12.004_bib0012) 2006; 13
Nishiguchi (10.1016/j.cjph.2020.12.004_bib0013) 1984; 53
Liao (10.1016/j.cjph.2020.12.004_bib0010) 2017; 59
Bret (10.1016/j.cjph.2020.12.004_bib0007) 2010; 17
Joglekar (10.1016/j.cjph.2020.12.004_bib0016) 2014; 112
Mahdavi (10.1016/j.cjph.2020.12.004_bib0025) 2014; 68
Hill (10.1016/j.cjph.2020.12.004_bib0027) 2005; 12
Hora (10.1016/j.cjph.2020.12.004_bib0022) 2008; 1
Atzeni (10.1016/j.cjph.2020.12.004_bib0001) 2004
Rezapour (10.1016/j.cjph.2020.12.004_bib0004) 2018; 56
Sherlock (10.1016/j.cjph.2020.12.004_bib0018) 2010; 104
Gremillet (10.1016/j.cjph.2020.12.004_bib0009) 2002; 9
References_xml – volume: 9
  start-page: 941
  year: 2002
  end-page: 948
  ident: bib0009
  article-title: Filamented transport of laser-generated relativistic electrons penetrating a solid target
  publication-title: Phys. Plasmas
– volume: 35
  start-page: 154
  year: 2016
  end-page: 160
  ident: bib0026
  article-title: The role of the collisions on the Weibel instability growth rate in the fast ignition scenario
  publication-title: J. Fusion Energy
– volume: 104
  start-page: 205004
  year: 2010
  ident: bib0018
  article-title: Generalized ohm’s law for a background plasma in the presence of relativistic charged particles
  publication-title: Phys. Rev. Lett.
– volume: 28
  start-page: 1705
  year: 1986
  ident: bib0017
  article-title: Heat flux effects in ohm’s law
  publication-title: Plasma phys. control. fusion
– volume: 68
  start-page: 260
  year: 2014
  ident: bib0025
  article-title: Resistive collimation of electron beams in relativistic and degenerate plasma
  publication-title: Eur. Phys. J. D
– volume: 28
  start-page: 3683
  year: 1985
  end-page: 3690
  ident: bib0015
  article-title: Nernst effect in laser-produced plasmas
  publication-title: Phys. Fluids
– year: 2010
  ident: bib0019
  article-title: The study of thermal conditions on weibel instability
  publication-title: Advances in High Energy Physics
– volume: 112
  start-page: 105004
  year: 2014
  ident: bib0016
  article-title: Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in ohm’s law
  publication-title: Phys. Rev. Lett.
– volume: 56
  start-page: 1834
  year: 2018
  end-page: 1844
  ident: bib0004
  article-title: Self-focusing and defocusing of cosh gaussian laser beam in the presence of nonlinearity of ponderomotive force and temperature gradient
  publication-title: Chin. J. phys.
– volume: 13
  start-page: 022110
  year: 2006
  ident: bib0012
  article-title: Stabilization of the filamentation instability and the anisotropy of the background plasma
  publication-title: Phys. plasmas
– volume: 21
  start-page: 062708
  year: 2014
  ident: bib0020
  article-title: The weibel instability in a strongly coupled plasma
  publication-title: Phys. Plasmas
– volume: 82
  start-page: 056407
  year: 2010
  ident: bib0021
  article-title: Linearized kinetic theory of spin-1/2 particles in magnetized plasmas
  publication-title: Phys. Rev. E
– volume: 58
  start-page: 2471
  year: 1998
  ident: bib0011
  article-title: Magnetic field in short-pulse high-intensity laser-solid experiments
  publication-title: Phys. Rev. E
– volume: 17
  start-page: 120501
  year: 2010
  ident: bib0007
  article-title: Multidimensional electron beam-plasma instabilities in the relativistic regime
  publication-title: Phys. Plasmas
– volume: 59
  start-page: 103
  year: 2017
  end-page: 109
  ident: bib0010
  article-title: The weakened weibel electromagnetic instability of ultra-intense MeV electron beams in multi-layer solid structure
  publication-title: Progress In Electromagnetics Research
– volume: 83
  start-page: 036408
  year: 2011
  ident: bib0006
  article-title: Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas
  publication-title: Phys. Rev.E
– volume: 64
  start-page: 912
  year: 1986
  end-page: 919
  ident: bib0014
  article-title: Magnetic-field generation in laser fusion and hot-electron transport
  publication-title: Can J Phys
– volume: 68
  start-page: 260
  year: 2014
  ident: bib0008
  article-title: Resistive collimation of electron beams in relativistic and degenerate plasma
  publication-title: Eur. Phys. J. D
– volume: 1
  year: 2008
  ident: bib0022
  article-title: Plasmas at High Temperature and Density: Applications and Implications of Laser-plasma Interaction
– volume: 59
  start-page: 226
  year: 2019
  ident: bib0003
  article-title: Self-ocusing of a cosh-aussian laser beam in magnetized plasma under relativistic-onderomotive regime
  publication-title: Contrib. Plasma. Phys
– year: 2012
  ident: bib0024
  article-title: Laser plasmas and nuclear energy
– volume: 53
  start-page: 262
  year: 1984
  ident: bib0013
  article-title: Convective amplification of magnetic fields in laser-produced plasmas by the nernst effect
  publication-title: Phys. Rev. Lett.
– year: 2004
  ident: bib0001
  article-title: The physics of inertial fusion
– volume: 49
  start-page: 278
  year: 2006
  end-page: 296
  ident: bib0002
  article-title: Laser hole boring and hot electron generation in the fast ignition scheme
  publication-title: Fusion Sci. Technol.
– volume: 12
  start-page: 082304
  year: 2005
  ident: bib0027
  article-title: Beam-weibel filamentation instability in near-term and fast-ignition experiments
  publication-title: Phys. plasmas
– volume: 84
  start-page: 016402
  year: 2011
  ident: bib0005
  article-title: Effect of the plasma-generated magnetic field on relativistic electron transport
  publication-title: Phys. Rev. E
– reference: G. Velarde, M. Emilio (Eds.), Advances in Laser Interaction with Matter and Inertial Fusion, World Scientific Pub Co Inc, Singapore, 1997.
– year: 2012
  ident: 10.1016/j.cjph.2020.12.004_bib0024
– volume: 53
  start-page: 262
  year: 1984
  ident: 10.1016/j.cjph.2020.12.004_bib0013
  article-title: Convective amplification of magnetic fields in laser-produced plasmas by the nernst effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.53.262
– volume: 82
  start-page: 056407
  year: 2010
  ident: 10.1016/j.cjph.2020.12.004_bib0021
  article-title: Linearized kinetic theory of spin-1/2 particles in magnetized plasmas
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.82.056407
– volume: 1
  year: 2008
  ident: 10.1016/j.cjph.2020.12.004_bib0022
– volume: 84
  start-page: 016402
  year: 2011
  ident: 10.1016/j.cjph.2020.12.004_bib0005
  article-title: Effect of the plasma-generated magnetic field on relativistic electron transport
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.016402
– volume: 59
  start-page: 103
  year: 2017
  ident: 10.1016/j.cjph.2020.12.004_bib0010
  article-title: The weakened weibel electromagnetic instability of ultra-intense MeV electron beams in multi-layer solid structure
  publication-title: Progress In Electromagnetics Research
  doi: 10.2528/PIERM17052204
– volume: 49
  start-page: 278
  year: 2006
  ident: 10.1016/j.cjph.2020.12.004_bib0002
  article-title: Laser hole boring and hot electron generation in the fast ignition scheme
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST06-A1149
– volume: 68
  start-page: 260
  year: 2014
  ident: 10.1016/j.cjph.2020.12.004_bib0008
  article-title: Resistive collimation of electron beams in relativistic and degenerate plasma
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2014-50141-4
– volume: 17
  start-page: 120501
  year: 2010
  ident: 10.1016/j.cjph.2020.12.004_bib0007
  article-title: Multidimensional electron beam-plasma instabilities in the relativistic regime
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3514586
– volume: 12
  start-page: 082304
  year: 2005
  ident: 10.1016/j.cjph.2020.12.004_bib0027
  article-title: Beam-weibel filamentation instability in near-term and fast-ignition experiments
  publication-title: Phys. plasmas
  doi: 10.1063/1.1986988
– volume: 9
  start-page: 941
  year: 2002
  ident: 10.1016/j.cjph.2020.12.004_bib0009
  article-title: Filamented transport of laser-generated relativistic electrons penetrating a solid target
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1432994
– volume: 83
  start-page: 036408
  year: 2011
  ident: 10.1016/j.cjph.2020.12.004_bib0006
  article-title: Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas
  publication-title: Phys. Rev.E
  doi: 10.1103/PhysRevE.83.036408
– volume: 35
  start-page: 154
  year: 2016
  ident: 10.1016/j.cjph.2020.12.004_bib0026
  article-title: The role of the collisions on the Weibel instability growth rate in the fast ignition scenario
  publication-title: J. Fusion Energy
  doi: 10.1007/s10894-015-9971-y
– volume: 56
  start-page: 1834
  year: 2018
  ident: 10.1016/j.cjph.2020.12.004_bib0004
  article-title: Self-focusing and defocusing of cosh gaussian laser beam in the presence of nonlinearity of ponderomotive force and temperature gradient
  publication-title: Chin. J. phys.
  doi: 10.1016/j.cjph.2018.08.004
– volume: 21
  start-page: 062708
  year: 2014
  ident: 10.1016/j.cjph.2020.12.004_bib0020
  article-title: The weibel instability in a strongly coupled plasma
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4883223
– volume: 58
  start-page: 2471
  year: 1998
  ident: 10.1016/j.cjph.2020.12.004_bib0011
  article-title: Magnetic field in short-pulse high-intensity laser-solid experiments
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.2471
– volume: 64
  start-page: 912
  year: 1986
  ident: 10.1016/j.cjph.2020.12.004_bib0014
  article-title: Magnetic-field generation in laser fusion and hot-electron transport
  publication-title: Can J Phys
  doi: 10.1139/p86-160
– volume: 112
  start-page: 105004
  year: 2014
  ident: 10.1016/j.cjph.2020.12.004_bib0016
  article-title: Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in ohm’s law
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.105004
– volume: 28
  start-page: 3683
  year: 1985
  ident: 10.1016/j.cjph.2020.12.004_bib0015
  article-title: Nernst effect in laser-produced plasmas
  publication-title: Phys. Fluids
  doi: 10.1063/1.865100
– year: 2004
  ident: 10.1016/j.cjph.2020.12.004_bib0001
– year: 2010
  ident: 10.1016/j.cjph.2020.12.004_sbref0019
  article-title: The study of thermal conditions on weibel instability
  publication-title: Advances in High Energy Physics
– volume: 28
  start-page: 1705
  year: 1986
  ident: 10.1016/j.cjph.2020.12.004_bib0017
  article-title: Heat flux effects in ohm’s law
  publication-title: Plasma phys. control. fusion
  doi: 10.1088/0741-3335/28/11/007
– volume: 104
  start-page: 205004
  year: 2010
  ident: 10.1016/j.cjph.2020.12.004_bib0018
  article-title: Generalized ohm’s law for a background plasma in the presence of relativistic charged particles
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.205004
– volume: 68
  start-page: 260
  year: 2014
  ident: 10.1016/j.cjph.2020.12.004_bib0025
  article-title: Resistive collimation of electron beams in relativistic and degenerate plasma
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2014-50141-4
– volume: 13
  start-page: 022110
  year: 2006
  ident: 10.1016/j.cjph.2020.12.004_bib0012
  article-title: Stabilization of the filamentation instability and the anisotropy of the background plasma
  publication-title: Phys. plasmas
  doi: 10.1063/1.2172362
– volume: 59
  start-page: 226
  year: 2019
  ident: 10.1016/j.cjph.2020.12.004_bib0003
  article-title: Self-ocusing of a cosh-aussian laser beam in magnetized plasma under relativistic-onderomotive regime
  publication-title: Contrib. Plasma. Phys
  doi: 10.1002/ctpp.201800066
– ident: 10.1016/j.cjph.2020.12.004_bib0023
  doi: 10.1142/9789814529310
SSID ssj0025453
Score 2.1988034
Snippet •The effects of plasma heating on the resistive filamentation modes have been studied.•The plasma heating effects are restricted to the J×B pinching and the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 253
SubjectTerms Fast ignition
Filamentation
Nernst effect
Resistive mode
Temperature anisotropy
Title An investigation of the effects of plasma-heating on the resistive-driven filamentation modes
URI https://dx.doi.org/10.1016/j.cjph.2020.12.004
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zQ_AifuL8IgdvUpamadccx3BMxV10sIuENB_QoV3Zpn-_L206FWEHb-vIK-XXl_d-r_klD6EbqWLNE2sDnUGJwoiCKUWJCqjsp1z2tQ6rdm9Pk2Q8ZQ-zeNZCw2YvjJNV-thfx_QqWvt_eh7NXpnnvWdgGn0o7SIKfgq0IN5BHQrZPm2jzuD-cTzZ1F1AEqqF5titVoKB3ztTy7zUvHRrEpRUXwV9v7Y_-elHzhkdoH1PFvGgfp5D1DLFEdqtRJtqdYxeBwXOv8_JWBR4YTEQOuxFGu6yBHb8LgMXciFJYRjjBkCN7eb2pwn00oU7bHPwDL8NqcCuPc7qBE1Hdy_DceDbJQQqImQdRJxRTWIpdQrTlKU8NLHSoZYJp0pbYyMHVWi4jEJLLSNZH37riGiuSCJNdIraxaIwZwhrMHCd1ROpOEuNhRfNeMYV0MWYwW27KGxAEsqfJe5aWryJRjQ2Fw5Y4YAVIRUAbBfdbmzK-iSNraPjBnvxyx8EhPotduf_tLtAe9SpVSo99iVqr5cf5groxjq79u70BZpG1Bw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LawIxEB6sUtpL6ZPaZw69lcVs9qE5ilS0Pi5V8FJCzAOUdhW1_f2drNG2FDz0trvMwPLtZPLNZpIP4EGqRPPU2kCPsUSJqcIhxagKmKzWuKxqHeZyb71-2hrGz6NkVIDGZi-Ma6v0uX-d0_Ns7Z9UPJqV-WRSeUGmUcXSLmIYp0gLkj0oxU7UugilervT6m_rLiQJ-UJz4lYr0cHvnVm3eanp3K1JMJr_FfR6bX_mpx9zTvMYjjxZJPX1-5xAwWSnsJ83barlGbzWMzL5PidjlpGZJUjoiG_ScLdzZMfvMnApFycpgjbOAGtsN7Y_TaAXLt0RO8HI8NuQMuLkcZbnMGw-DRqtwMslBCqidBVEPGaaJlLqGg7TuMZDkygdaplyprQ1NnJQhYbLKLTMxnRcxWsdUc0VTaWJLqCYzTJzCUSjg1NWT6Xicc1Y_NAxH3OFdBERNkkZwg1IQvmzxJ2kxZvYNI1NhQNWOGBFyAQCW4bHrc98fZLGTutkg734FQ8CU_0Ov6t_-t3DQWvQ64puu9-5hkPmOlfy3uwbKK4WH-YWqcdqfOdD6wueEdcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+of+the+effects+of+plasma-heating+on+the+resistive-driven+filamentation+modes&rft.jtitle=Chinese+journal+of+physics+%28Taipei%29&rft.au=Khanzadeh%2C+H.&rft.au=Mahdavi%2C+M.&rft.date=2021-02-01&rft.issn=0577-9073&rft.volume=69&rft.spage=253&rft.epage=262&rft_id=info:doi/10.1016%2Fj.cjph.2020.12.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cjph_2020_12_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0577-9073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0577-9073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0577-9073&client=summon