An investigation of the effects of plasma-heating on the resistive-driven filamentation modes
•The effects of plasma heating on the resistive filamentation modes have been studied.•The plasma heating effects are restricted to the J×B pinching and the Nernst effect.•The dispersion relation is derived based on the kinetic theory by Ohm’s law.•The growth rate of the resistive filamentation inst...
Saved in:
Published in | Chinese journal of physics (Taipei) Vol. 69; pp. 253 - 262 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0577-9073 |
DOI | 10.1016/j.cjph.2020.12.004 |
Cover
Abstract | •The effects of plasma heating on the resistive filamentation modes have been studied.•The plasma heating effects are restricted to the J×B pinching and the Nernst effect.•The dispersion relation is derived based on the kinetic theory by Ohm’s law.•The growth rate of the resistive filamentation instabilities is derived analytically.•Results are investigated in the inertial confinement fusion (ICF) subjects.
In the field of fast ignition schemes, it is possible to heat the plasma during the injection of the relativistic electron beams. This might be strongly effective in the self-generated magnetic fields and divergence of the relativistic electron beams in the transport process. In this paper, the effects of plasma heating, J×B pinching, and Nernst (arising from the hot electrons flux) on the resistive filamentation modes in a magnetized anisotropic plasma were investigated. Results showed a significant reduction of the instability growth rate. Findings suggested that the reconnection and convection of the magnetic field lines could change the intensity of the collimation coefficient of the electron beams. In addition, the instability could exist in a safe mode even when the plasma entered an isotropic condition, compared to the temperature anisotropy-driven instabilities, where this could be affected by the relativistic electrons mean velocity. |
---|---|
AbstractList | •The effects of plasma heating on the resistive filamentation modes have been studied.•The plasma heating effects are restricted to the J×B pinching and the Nernst effect.•The dispersion relation is derived based on the kinetic theory by Ohm’s law.•The growth rate of the resistive filamentation instabilities is derived analytically.•Results are investigated in the inertial confinement fusion (ICF) subjects.
In the field of fast ignition schemes, it is possible to heat the plasma during the injection of the relativistic electron beams. This might be strongly effective in the self-generated magnetic fields and divergence of the relativistic electron beams in the transport process. In this paper, the effects of plasma heating, J×B pinching, and Nernst (arising from the hot electrons flux) on the resistive filamentation modes in a magnetized anisotropic plasma were investigated. Results showed a significant reduction of the instability growth rate. Findings suggested that the reconnection and convection of the magnetic field lines could change the intensity of the collimation coefficient of the electron beams. In addition, the instability could exist in a safe mode even when the plasma entered an isotropic condition, compared to the temperature anisotropy-driven instabilities, where this could be affected by the relativistic electrons mean velocity. |
Author | Khanzadeh, H. Mahdavi, M. |
Author_xml | – sequence: 1 givenname: H. surname: Khanzadeh fullname: Khanzadeh, H. email: h.khanzadeh@stu.umz.ac.ir – sequence: 2 givenname: M. surname: Mahdavi fullname: Mahdavi, M. email: m.mahdavi@umz.ac.ir |
BookMark | eNp9kL9qwzAQhzWk0CTtC3TyC9g9SXZsQ5cQ-g8CXdqxCFU6JTK2HCQR6NtXxp0yZJF04vcdd9-KLNzokJAHCgUFunnsCtWdjgUDlj5YAVAuyBKqus5bqPktWYXQAbCqrPiSfG9dZt0ZQ7QHGe3ostFk8YgZGoMqhqk89TIMMj9iCrhDljJTwGOwiTpjrn06XWZsLwd0cW4zjBrDHbkxsg94_3-vydfL8-fuLd9_vL7vtvtccYCY87ZkGiopddNwVjYtxUppquWmZUobNJwz4BRbyalhpoSfOr01B90q2Ejka9LMfZUfQ_BohLLzHNFL2wsKYlIjOjGpEZMaQZlIahLKLtCTt4P0v9ehpxnCtNTZohdBWXQKtfXJmtCjvYb_Af6cg4E |
CitedBy_id | crossref_primary_10_1002_ctpp_202100059 |
Cites_doi | 10.1103/PhysRevLett.53.262 10.1103/PhysRevE.82.056407 10.1103/PhysRevE.84.016402 10.2528/PIERM17052204 10.13182/FST06-A1149 10.1140/epjd/e2014-50141-4 10.1063/1.3514586 10.1063/1.1986988 10.1063/1.1432994 10.1103/PhysRevE.83.036408 10.1007/s10894-015-9971-y 10.1016/j.cjph.2018.08.004 10.1063/1.4883223 10.1103/PhysRevE.58.2471 10.1139/p86-160 10.1103/PhysRevLett.112.105004 10.1063/1.865100 10.1088/0741-3335/28/11/007 10.1103/PhysRevLett.104.205004 10.1063/1.2172362 10.1002/ctpp.201800066 10.1142/9789814529310 |
ContentType | Journal Article |
Copyright | 2020 The Physical Society of the Republic of China (Taiwan) |
Copyright_xml | – notice: 2020 The Physical Society of the Republic of China (Taiwan) |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cjph.2020.12.004 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EndPage | 262 |
ExternalDocumentID | 10_1016_j_cjph_2020_12_004 S0577907320303245 |
GroupedDBID | --M 0R~ 188 29B 2UF 2WC 5GY 8RM AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AAXUO ABMAC ABNEU ABYKQ ACDAQ ACGFS ACRLP ADBBV AEBSH AENEX AFFNX AFKWA AFTJW AGUBO AIEXJ AIKHN AINHJ AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATFKH AXJTR BKOJK CNMHZ CVCKV DU5 E3Z EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM M41 M~E O9- OK1 P2P RIG RNS ROL SPC SPCBC SSQ SSZ T5K TR2 TUXDW UZ4 XSB ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION OVT SSH |
ID | FETCH-LOGICAL-c300t-3942d05aad88324891e5cd1da692cdfef332031e9a31f2f40b7e9ad30d9c06ae3 |
IEDL.DBID | AIKHN |
ISSN | 0577-9073 |
IngestDate | Tue Jul 01 04:00:25 EDT 2025 Thu Apr 24 23:04:10 EDT 2025 Fri Feb 23 02:48:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nernst effect Filamentation Resistive mode Fast ignition Temperature anisotropy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-3942d05aad88324891e5cd1da692cdfef332031e9a31f2f40b7e9ad30d9c06ae3 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cjph_2020_12_004 crossref_primary_10_1016_j_cjph_2020_12_004 elsevier_sciencedirect_doi_10_1016_j_cjph_2020_12_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationTitle | Chinese journal of physics (Taipei) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mahdavi, Khanzadeh (bib0019) 2010 Nishiguchi, Yabe, Haines (bib0015) 1985; 28 Nicola, Feugeas, Regan, Olazabal-Loum, Breil, Dubroca, Morreeuw, Tikhonchuk (bib0005) 2011; 84 Nishiguchi, Yabe, Haines, Psimopoulos, Takewaki (bib0013) 1984; 53 Mahdavi, Khanzadeh (bib0020) 2014; 21 Gremillet, Bonnaud, Amiranoff (bib0009) 2002; 9 Haines (bib0014) 1986; 64 Sentoku, Kruer, Matsuoka, Pukhov (bib0002) 2006; 49 Lundin, Brodin (bib0021) 2010; 82 Mahdavi, Azadboni (bib0026) 2016; 35 Bell, Davies, Guerin (bib0011) 1998; 58 Rawat, Purohit (bib0003) 2019; 59 Cai, Zhu, Chen, Wu, He, Mima (bib0006) 2011; 83 Bret, Gremillet, Dieckmann (bib0007) 2010; 17 Sherlock (bib0018) 2010; 104 Liao, Zhao (bib0010) 2017; 59 G. Velarde, M. Emilio (Eds.), Advances in Laser Interaction with Matter and Inertial Fusion, World Scientific Pub Co Inc, Singapore, 1997. Hora (bib0022) 2008; 1 Hill, Key, Hatchett, Freeman (bib0027) 2005; 12 Haines (bib0017) 1986; 28 Joglekar, Thomas, Fox, Bhattacharjee (bib0016) 2014; 112 Mahdavi, Azadboni (bib0008) 2014; 68 Hora (bib0024) 2012 Bret, Deutsch (bib0012) 2006; 13 Atzeni, Meyer-ter vehn (bib0001) 2004 Rezapour, Zahed, Mokhtary (bib0004) 2018; 56 Mahdavi, Azadboni (bib0025) 2014; 68 Nicola (10.1016/j.cjph.2020.12.004_bib0005) 2011; 84 Bell (10.1016/j.cjph.2020.12.004_bib0011) 1998; 58 10.1016/j.cjph.2020.12.004_bib0023 Cai (10.1016/j.cjph.2020.12.004_bib0006) 2011; 83 Sentoku (10.1016/j.cjph.2020.12.004_bib0002) 2006; 49 Lundin (10.1016/j.cjph.2020.12.004_bib0021) 2010; 82 Mahdavi (10.1016/j.cjph.2020.12.004_bib0020) 2014; 21 Mahdavi (10.1016/j.cjph.2020.12.004_bib0026) 2016; 35 Rawat (10.1016/j.cjph.2020.12.004_bib0003) 2019; 59 Hora (10.1016/j.cjph.2020.12.004_bib0024) 2012 Haines (10.1016/j.cjph.2020.12.004_bib0014) 1986; 64 Mahdavi (10.1016/j.cjph.2020.12.004_bib0008) 2014; 68 Mahdavi (10.1016/j.cjph.2020.12.004_sbref0019) 2010 Haines (10.1016/j.cjph.2020.12.004_bib0017) 1986; 28 Nishiguchi (10.1016/j.cjph.2020.12.004_bib0015) 1985; 28 Bret (10.1016/j.cjph.2020.12.004_bib0012) 2006; 13 Nishiguchi (10.1016/j.cjph.2020.12.004_bib0013) 1984; 53 Liao (10.1016/j.cjph.2020.12.004_bib0010) 2017; 59 Bret (10.1016/j.cjph.2020.12.004_bib0007) 2010; 17 Joglekar (10.1016/j.cjph.2020.12.004_bib0016) 2014; 112 Mahdavi (10.1016/j.cjph.2020.12.004_bib0025) 2014; 68 Hill (10.1016/j.cjph.2020.12.004_bib0027) 2005; 12 Hora (10.1016/j.cjph.2020.12.004_bib0022) 2008; 1 Atzeni (10.1016/j.cjph.2020.12.004_bib0001) 2004 Rezapour (10.1016/j.cjph.2020.12.004_bib0004) 2018; 56 Sherlock (10.1016/j.cjph.2020.12.004_bib0018) 2010; 104 Gremillet (10.1016/j.cjph.2020.12.004_bib0009) 2002; 9 |
References_xml | – volume: 9 start-page: 941 year: 2002 end-page: 948 ident: bib0009 article-title: Filamented transport of laser-generated relativistic electrons penetrating a solid target publication-title: Phys. Plasmas – volume: 35 start-page: 154 year: 2016 end-page: 160 ident: bib0026 article-title: The role of the collisions on the Weibel instability growth rate in the fast ignition scenario publication-title: J. Fusion Energy – volume: 104 start-page: 205004 year: 2010 ident: bib0018 article-title: Generalized ohm’s law for a background plasma in the presence of relativistic charged particles publication-title: Phys. Rev. Lett. – volume: 28 start-page: 1705 year: 1986 ident: bib0017 article-title: Heat flux effects in ohm’s law publication-title: Plasma phys. control. fusion – volume: 68 start-page: 260 year: 2014 ident: bib0025 article-title: Resistive collimation of electron beams in relativistic and degenerate plasma publication-title: Eur. Phys. J. D – volume: 28 start-page: 3683 year: 1985 end-page: 3690 ident: bib0015 article-title: Nernst effect in laser-produced plasmas publication-title: Phys. Fluids – year: 2010 ident: bib0019 article-title: The study of thermal conditions on weibel instability publication-title: Advances in High Energy Physics – volume: 112 start-page: 105004 year: 2014 ident: bib0016 article-title: Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in ohm’s law publication-title: Phys. Rev. Lett. – volume: 56 start-page: 1834 year: 2018 end-page: 1844 ident: bib0004 article-title: Self-focusing and defocusing of cosh gaussian laser beam in the presence of nonlinearity of ponderomotive force and temperature gradient publication-title: Chin. J. phys. – volume: 13 start-page: 022110 year: 2006 ident: bib0012 article-title: Stabilization of the filamentation instability and the anisotropy of the background plasma publication-title: Phys. plasmas – volume: 21 start-page: 062708 year: 2014 ident: bib0020 article-title: The weibel instability in a strongly coupled plasma publication-title: Phys. Plasmas – volume: 82 start-page: 056407 year: 2010 ident: bib0021 article-title: Linearized kinetic theory of spin-1/2 particles in magnetized plasmas publication-title: Phys. Rev. E – volume: 58 start-page: 2471 year: 1998 ident: bib0011 article-title: Magnetic field in short-pulse high-intensity laser-solid experiments publication-title: Phys. Rev. E – volume: 17 start-page: 120501 year: 2010 ident: bib0007 article-title: Multidimensional electron beam-plasma instabilities in the relativistic regime publication-title: Phys. Plasmas – volume: 59 start-page: 103 year: 2017 end-page: 109 ident: bib0010 article-title: The weakened weibel electromagnetic instability of ultra-intense MeV electron beams in multi-layer solid structure publication-title: Progress In Electromagnetics Research – volume: 83 start-page: 036408 year: 2011 ident: bib0006 article-title: Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas publication-title: Phys. Rev.E – volume: 64 start-page: 912 year: 1986 end-page: 919 ident: bib0014 article-title: Magnetic-field generation in laser fusion and hot-electron transport publication-title: Can J Phys – volume: 68 start-page: 260 year: 2014 ident: bib0008 article-title: Resistive collimation of electron beams in relativistic and degenerate plasma publication-title: Eur. Phys. J. D – volume: 1 year: 2008 ident: bib0022 article-title: Plasmas at High Temperature and Density: Applications and Implications of Laser-plasma Interaction – volume: 59 start-page: 226 year: 2019 ident: bib0003 article-title: Self-ocusing of a cosh-aussian laser beam in magnetized plasma under relativistic-onderomotive regime publication-title: Contrib. Plasma. Phys – year: 2012 ident: bib0024 article-title: Laser plasmas and nuclear energy – volume: 53 start-page: 262 year: 1984 ident: bib0013 article-title: Convective amplification of magnetic fields in laser-produced plasmas by the nernst effect publication-title: Phys. Rev. Lett. – year: 2004 ident: bib0001 article-title: The physics of inertial fusion – volume: 49 start-page: 278 year: 2006 end-page: 296 ident: bib0002 article-title: Laser hole boring and hot electron generation in the fast ignition scheme publication-title: Fusion Sci. Technol. – volume: 12 start-page: 082304 year: 2005 ident: bib0027 article-title: Beam-weibel filamentation instability in near-term and fast-ignition experiments publication-title: Phys. plasmas – volume: 84 start-page: 016402 year: 2011 ident: bib0005 article-title: Effect of the plasma-generated magnetic field on relativistic electron transport publication-title: Phys. Rev. E – reference: G. Velarde, M. Emilio (Eds.), Advances in Laser Interaction with Matter and Inertial Fusion, World Scientific Pub Co Inc, Singapore, 1997. – year: 2012 ident: 10.1016/j.cjph.2020.12.004_bib0024 – volume: 53 start-page: 262 year: 1984 ident: 10.1016/j.cjph.2020.12.004_bib0013 article-title: Convective amplification of magnetic fields in laser-produced plasmas by the nernst effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.53.262 – volume: 82 start-page: 056407 year: 2010 ident: 10.1016/j.cjph.2020.12.004_bib0021 article-title: Linearized kinetic theory of spin-1/2 particles in magnetized plasmas publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.056407 – volume: 1 year: 2008 ident: 10.1016/j.cjph.2020.12.004_bib0022 – volume: 84 start-page: 016402 year: 2011 ident: 10.1016/j.cjph.2020.12.004_bib0005 article-title: Effect of the plasma-generated magnetic field on relativistic electron transport publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.016402 – volume: 59 start-page: 103 year: 2017 ident: 10.1016/j.cjph.2020.12.004_bib0010 article-title: The weakened weibel electromagnetic instability of ultra-intense MeV electron beams in multi-layer solid structure publication-title: Progress In Electromagnetics Research doi: 10.2528/PIERM17052204 – volume: 49 start-page: 278 year: 2006 ident: 10.1016/j.cjph.2020.12.004_bib0002 article-title: Laser hole boring and hot electron generation in the fast ignition scheme publication-title: Fusion Sci. Technol. doi: 10.13182/FST06-A1149 – volume: 68 start-page: 260 year: 2014 ident: 10.1016/j.cjph.2020.12.004_bib0008 article-title: Resistive collimation of electron beams in relativistic and degenerate plasma publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2014-50141-4 – volume: 17 start-page: 120501 year: 2010 ident: 10.1016/j.cjph.2020.12.004_bib0007 article-title: Multidimensional electron beam-plasma instabilities in the relativistic regime publication-title: Phys. Plasmas doi: 10.1063/1.3514586 – volume: 12 start-page: 082304 year: 2005 ident: 10.1016/j.cjph.2020.12.004_bib0027 article-title: Beam-weibel filamentation instability in near-term and fast-ignition experiments publication-title: Phys. plasmas doi: 10.1063/1.1986988 – volume: 9 start-page: 941 year: 2002 ident: 10.1016/j.cjph.2020.12.004_bib0009 article-title: Filamented transport of laser-generated relativistic electrons penetrating a solid target publication-title: Phys. Plasmas doi: 10.1063/1.1432994 – volume: 83 start-page: 036408 year: 2011 ident: 10.1016/j.cjph.2020.12.004_bib0006 article-title: Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas publication-title: Phys. Rev.E doi: 10.1103/PhysRevE.83.036408 – volume: 35 start-page: 154 year: 2016 ident: 10.1016/j.cjph.2020.12.004_bib0026 article-title: The role of the collisions on the Weibel instability growth rate in the fast ignition scenario publication-title: J. Fusion Energy doi: 10.1007/s10894-015-9971-y – volume: 56 start-page: 1834 year: 2018 ident: 10.1016/j.cjph.2020.12.004_bib0004 article-title: Self-focusing and defocusing of cosh gaussian laser beam in the presence of nonlinearity of ponderomotive force and temperature gradient publication-title: Chin. J. phys. doi: 10.1016/j.cjph.2018.08.004 – volume: 21 start-page: 062708 year: 2014 ident: 10.1016/j.cjph.2020.12.004_bib0020 article-title: The weibel instability in a strongly coupled plasma publication-title: Phys. Plasmas doi: 10.1063/1.4883223 – volume: 58 start-page: 2471 year: 1998 ident: 10.1016/j.cjph.2020.12.004_bib0011 article-title: Magnetic field in short-pulse high-intensity laser-solid experiments publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.2471 – volume: 64 start-page: 912 year: 1986 ident: 10.1016/j.cjph.2020.12.004_bib0014 article-title: Magnetic-field generation in laser fusion and hot-electron transport publication-title: Can J Phys doi: 10.1139/p86-160 – volume: 112 start-page: 105004 year: 2014 ident: 10.1016/j.cjph.2020.12.004_bib0016 article-title: Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in ohm’s law publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.105004 – volume: 28 start-page: 3683 year: 1985 ident: 10.1016/j.cjph.2020.12.004_bib0015 article-title: Nernst effect in laser-produced plasmas publication-title: Phys. Fluids doi: 10.1063/1.865100 – year: 2004 ident: 10.1016/j.cjph.2020.12.004_bib0001 – year: 2010 ident: 10.1016/j.cjph.2020.12.004_sbref0019 article-title: The study of thermal conditions on weibel instability publication-title: Advances in High Energy Physics – volume: 28 start-page: 1705 year: 1986 ident: 10.1016/j.cjph.2020.12.004_bib0017 article-title: Heat flux effects in ohm’s law publication-title: Plasma phys. control. fusion doi: 10.1088/0741-3335/28/11/007 – volume: 104 start-page: 205004 year: 2010 ident: 10.1016/j.cjph.2020.12.004_bib0018 article-title: Generalized ohm’s law for a background plasma in the presence of relativistic charged particles publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.205004 – volume: 68 start-page: 260 year: 2014 ident: 10.1016/j.cjph.2020.12.004_bib0025 article-title: Resistive collimation of electron beams in relativistic and degenerate plasma publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2014-50141-4 – volume: 13 start-page: 022110 year: 2006 ident: 10.1016/j.cjph.2020.12.004_bib0012 article-title: Stabilization of the filamentation instability and the anisotropy of the background plasma publication-title: Phys. plasmas doi: 10.1063/1.2172362 – volume: 59 start-page: 226 year: 2019 ident: 10.1016/j.cjph.2020.12.004_bib0003 article-title: Self-ocusing of a cosh-aussian laser beam in magnetized plasma under relativistic-onderomotive regime publication-title: Contrib. Plasma. Phys doi: 10.1002/ctpp.201800066 – ident: 10.1016/j.cjph.2020.12.004_bib0023 doi: 10.1142/9789814529310 |
SSID | ssj0025453 |
Score | 2.1988034 |
Snippet | •The effects of plasma heating on the resistive filamentation modes have been studied.•The plasma heating effects are restricted to the J×B pinching and the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 253 |
SubjectTerms | Fast ignition Filamentation Nernst effect Resistive mode Temperature anisotropy |
Title | An investigation of the effects of plasma-heating on the resistive-driven filamentation modes |
URI | https://dx.doi.org/10.1016/j.cjph.2020.12.004 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zQ_AifuL8IgdvUpamadccx3BMxV10sIuENB_QoV3Zpn-_L206FWEHb-vIK-XXl_d-r_klD6EbqWLNE2sDnUGJwoiCKUWJCqjsp1z2tQ6rdm9Pk2Q8ZQ-zeNZCw2YvjJNV-thfx_QqWvt_eh7NXpnnvWdgGn0o7SIKfgq0IN5BHQrZPm2jzuD-cTzZ1F1AEqqF5titVoKB3ztTy7zUvHRrEpRUXwV9v7Y_-elHzhkdoH1PFvGgfp5D1DLFEdqtRJtqdYxeBwXOv8_JWBR4YTEQOuxFGu6yBHb8LgMXciFJYRjjBkCN7eb2pwn00oU7bHPwDL8NqcCuPc7qBE1Hdy_DceDbJQQqImQdRJxRTWIpdQrTlKU8NLHSoZYJp0pbYyMHVWi4jEJLLSNZH37riGiuSCJNdIraxaIwZwhrMHCd1ROpOEuNhRfNeMYV0MWYwW27KGxAEsqfJe5aWryJRjQ2Fw5Y4YAVIRUAbBfdbmzK-iSNraPjBnvxyx8EhPotduf_tLtAe9SpVSo99iVqr5cf5groxjq79u70BZpG1Bw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LawIxEB6sUtpL6ZPaZw69lcVs9qE5ilS0Pi5V8FJCzAOUdhW1_f2drNG2FDz0trvMwPLtZPLNZpIP4EGqRPPU2kCPsUSJqcIhxagKmKzWuKxqHeZyb71-2hrGz6NkVIDGZi-Ma6v0uX-d0_Ns7Z9UPJqV-WRSeUGmUcXSLmIYp0gLkj0oxU7UugilervT6m_rLiQJ-UJz4lYr0cHvnVm3eanp3K1JMJr_FfR6bX_mpx9zTvMYjjxZJPX1-5xAwWSnsJ83barlGbzWMzL5PidjlpGZJUjoiG_ScLdzZMfvMnApFycpgjbOAGtsN7Y_TaAXLt0RO8HI8NuQMuLkcZbnMGw-DRqtwMslBCqidBVEPGaaJlLqGg7TuMZDkygdaplyprQ1NnJQhYbLKLTMxnRcxWsdUc0VTaWJLqCYzTJzCUSjg1NWT6Xicc1Y_NAxH3OFdBERNkkZwg1IQvmzxJ2kxZvYNI1NhQNWOGBFyAQCW4bHrc98fZLGTutkg734FQ8CU_0Ov6t_-t3DQWvQ64puu9-5hkPmOlfy3uwbKK4WH-YWqcdqfOdD6wueEdcA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+of+the+effects+of+plasma-heating+on+the+resistive-driven+filamentation+modes&rft.jtitle=Chinese+journal+of+physics+%28Taipei%29&rft.au=Khanzadeh%2C+H.&rft.au=Mahdavi%2C+M.&rft.date=2021-02-01&rft.issn=0577-9073&rft.volume=69&rft.spage=253&rft.epage=262&rft_id=info:doi/10.1016%2Fj.cjph.2020.12.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cjph_2020_12_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0577-9073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0577-9073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0577-9073&client=summon |