Relevant 3D local binary pattern based features from fused feature descriptor for differential diagnosis of Parkinson’s disease using structural MRI
•Proposed fused feature descriptor captures better interrelation among GM, WM & CSF.•Analyzed 118 regions covering 116 regions according to AAL & 2 regions covering SN.•Captured changes in structural and statistical information, due to PD, using 3D LBP.•Obtained a minimal set of salient and...
Saved in:
Published in | Biomedical signal processing and control Vol. 34; pp. 134 - 143 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 |
DOI | 10.1016/j.bspc.2017.01.007 |
Cover
Abstract | •Proposed fused feature descriptor captures better interrelation among GM, WM & CSF.•Analyzed 118 regions covering 116 regions according to AAL & 2 regions covering SN.•Captured changes in structural and statistical information, due to PD, using 3D LBP.•Obtained a minimal set of salient and uncorrelated features using t-test & mRMR.•Obtained 95% classification accuracy & identified potential imaging biomarkers.
Computer-aided diagnosis (CAD) of Parkinson’s disease (PD) using structural magnetic resonance imaging is an emerging research field for the pattern recognition community. The existing research works have utilized gray matter, white matter and cerebrospinal fluid tissues individually for diagnosis of PD and have ignored the intercorrelation among the three tissues. Thus, there is a need to define a fused feature descriptor (FFD) which can capture information and intercorrelation of all the three tissues simultaneously, and to further enhance the performance of CAD. The present study proposes a simple and efficient FFD, in terms of all the three tissues, for CAD of PD. Each brain volume is represented in terms of the FFD. Then each fused volume is segmented into 118 brain regions. Thereafter, features extraction is carried out from each brain region using 3D local binary pattern. Then, a set of discriminating and uncorrelated features are identified using t-test in conjunction with minimum redundancy maximum relevance feature selection method. Finally, support vector machine is utilized to build a decision model. Volumetric 3D T1-weighted magnetic resonance imaging dataset (age & gender matched 30 PD and 30 healthy subjects) is acquired using 1.5T machine and is utilized to investigate the efficacy of the proposed method. The classification accuracy of 95% is achieved using leave-one-out cross-validation scheme which is superior to the existing methods. Regions namely Hippocampus_R, Cingulum_Mid_L, Frontal_Inf_Tri_L, Precentral_R, Precentral_L, Frontal_Mid_L, Frontal_Mid_Orb_L, Cingulum_Ant_L and Hippocampus_L, are observed to be the most discriminative regions for diagnosis of PD. The notable performance of the proposed method suggests that instead of studying the three tissues independently, their intercorrelation should also be considered. Further, the proposed method may be employed as a diagnostic tool for diagnosis of PD. |
---|---|
AbstractList | •Proposed fused feature descriptor captures better interrelation among GM, WM & CSF.•Analyzed 118 regions covering 116 regions according to AAL & 2 regions covering SN.•Captured changes in structural and statistical information, due to PD, using 3D LBP.•Obtained a minimal set of salient and uncorrelated features using t-test & mRMR.•Obtained 95% classification accuracy & identified potential imaging biomarkers.
Computer-aided diagnosis (CAD) of Parkinson’s disease (PD) using structural magnetic resonance imaging is an emerging research field for the pattern recognition community. The existing research works have utilized gray matter, white matter and cerebrospinal fluid tissues individually for diagnosis of PD and have ignored the intercorrelation among the three tissues. Thus, there is a need to define a fused feature descriptor (FFD) which can capture information and intercorrelation of all the three tissues simultaneously, and to further enhance the performance of CAD. The present study proposes a simple and efficient FFD, in terms of all the three tissues, for CAD of PD. Each brain volume is represented in terms of the FFD. Then each fused volume is segmented into 118 brain regions. Thereafter, features extraction is carried out from each brain region using 3D local binary pattern. Then, a set of discriminating and uncorrelated features are identified using t-test in conjunction with minimum redundancy maximum relevance feature selection method. Finally, support vector machine is utilized to build a decision model. Volumetric 3D T1-weighted magnetic resonance imaging dataset (age & gender matched 30 PD and 30 healthy subjects) is acquired using 1.5T machine and is utilized to investigate the efficacy of the proposed method. The classification accuracy of 95% is achieved using leave-one-out cross-validation scheme which is superior to the existing methods. Regions namely Hippocampus_R, Cingulum_Mid_L, Frontal_Inf_Tri_L, Precentral_R, Precentral_L, Frontal_Mid_L, Frontal_Mid_Orb_L, Cingulum_Ant_L and Hippocampus_L, are observed to be the most discriminative regions for diagnosis of PD. The notable performance of the proposed method suggests that instead of studying the three tissues independently, their intercorrelation should also be considered. Further, the proposed method may be employed as a diagnostic tool for diagnosis of PD. |
Author | Juneja, Akanksha Behari, Madhuri Gudwani, Sunita Agrawal, R.K. Kumaran, S. Senthil Rana, Bharti Saxena, Mohit |
Author_xml | – sequence: 1 givenname: Bharti surname: Rana fullname: Rana, Bharti email: bhartirana.jnu@gmail.com, bhartirana.it@gmail.com organization: School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India – sequence: 2 givenname: Akanksha surname: Juneja fullname: Juneja, Akanksha email: akankshajuneja.jnu@gmail.com organization: School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India – sequence: 3 givenname: Mohit surname: Saxena fullname: Saxena, Mohit organization: Department of Neurology, All India Institute of Medical Sciences, New Delhi, Delhi, India – sequence: 4 givenname: Sunita surname: Gudwani fullname: Gudwani, Sunita organization: Department of NMR, All India Institute of Medical Sciences, New Delhi, Delhi, India – sequence: 5 givenname: S. Senthil surname: Kumaran fullname: Kumaran, S. Senthil organization: Department of NMR, All India Institute of Medical Sciences, New Delhi, Delhi, India – sequence: 6 givenname: Madhuri surname: Behari fullname: Behari, Madhuri organization: Department of Neurology, All India Institute of Medical Sciences, New Delhi, Delhi, India – sequence: 7 givenname: R.K. surname: Agrawal fullname: Agrawal, R.K. email: rkajnu@gmail.com organization: School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India |
BookMark | eNp9kM9KAzEQh3NQsK2-gKe8QNekSbu74EXqX6goRc8hm0wkdU1KJi148ykEX88nMUUP4sHDMDAz3wfzG5K9EAMQcsxZxRmfnayqDtemmjBeV4xXjNV7ZMBrORs3rJUHZIi4Ykw2NZcD8r6EHrY6ZCrOaR-N7mnng06vdK1zhhRopxEsdaDzJgFSl-ILdZtfM2oBTfLrHBN1pax3DhKE7IvMev0UInqk0dF7nZ59wBg-3z6wrBCKm27QhyeKOW1M0RXmdnlzSPad7hGOfvqIPF5ePMyvx4u7q5v52WJsBGN5LCaaCWentZ10YFzdOKcb1rXQdppzDcJ2kjXlZjqVQmremkYKMWudrG0HtRAjMvn2mhQREzi1Tv6lvK84U7s01Urt0lS7NBXjqqRZoOYPZHzW2ceQk_b9_-jpNwrlqa2HpNB4CAasT2CystH_h38BsSGZ_w |
CitedBy_id | crossref_primary_10_1016_j_jneumeth_2018_08_017 crossref_primary_10_1002_int_23046 crossref_primary_10_1016_j_bspc_2024_107142 crossref_primary_10_1007_s11390_021_0801_6 crossref_primary_10_1016_j_neucom_2020_03_058 crossref_primary_10_1016_j_neuri_2022_100100 crossref_primary_10_4103_abr_abr_254_21 crossref_primary_10_1016_j_cmpb_2022_107030 crossref_primary_10_3389_fncom_2021_735991 crossref_primary_10_1109_ACCESS_2019_2915519 crossref_primary_10_1109_ACCESS_2020_2971225 crossref_primary_10_1007_s11042_023_15302_3 crossref_primary_10_1088_2057_1976_ac8c9a |
Cites_doi | 10.1002/mds.20640 10.1136/jnnp.2007.131045 10.1016/j.eswa.2015.01.062 10.1001/archneur.62.2.281 10.1016/0031-3203(95)00067-4 10.1136/jnnp.2003.031237 10.1016/j.eswa.2013.07.073 10.1002/mds.25361 10.1002/mds.23722 10.1136/jnnp.51.6.745 10.1145/1961189.1961199 10.1212/WNL.17.5.427 10.1016/j.jneumeth.2013.11.016 10.1007/s12021-013-9204-3 10.1002/hbm.21161 10.1002/mds.20959 10.1001/archneur.1994.00540210046012 10.1109/TPAMI.2005.159 10.1002/ima.22141 10.1016/S1053-8119(03)00169-1 10.1006/nimg.2001.0978 10.1002/mds.10444 10.1016/0022-3956(75)90026-6 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2017.01.007 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 143 |
ExternalDocumentID | 10_1016_j_bspc_2017_01_007 S1746809417300058 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AAYXX ACLOT CITATION EFLBG ~HD |
ID | FETCH-LOGICAL-c300t-32a03fd57d2becf78ffa80b9e9ba11ae3db408a0355434a19c843369f47dbe733 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Wed Oct 01 05:44:49 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 Sat Aug 16 17:00:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Minimum redundancy maximum relevance Parkinson's disease Fused feature descriptor Magnetic resonance imaging 3D local binary pattern Computer-aided diagnosis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-32a03fd57d2becf78ffa80b9e9ba11ae3db408a0355434a19c843369f47dbe733 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2017_01_007 crossref_citationtrail_10_1016_j_bspc_2017_01_007 elsevier_sciencedirect_doi_10_1016_j_bspc_2017_01_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2017 2017-04-00 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: April 2017 |
PublicationDecade | 2010 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wellcome-Trust-Centre-for-Neuroimaging (bib0085) 2009 Folstein, Folstein, McHugh (bib0010) 1975; 12 Vapnik (bib0115) 1995 Machado, Rezai, Kopell, Gross, Sharan, Benabid (bib0025) 2006; 14 Teune, Renken, Mudali, Jong, Dierckx, Roerdink, Leenders (bib0070) 2013; 28 Gibb, Lees (bib0080) 1988; 51 Rana, Juneja, Saxena, Gudwani, Senthil, Agrawal, Behari (bib0055) 2015; 42 Chang, Lin (bib0120) 2011; 2 Pfefferbaum, Mathalon, Sullivan, Rawles, Zipursky, Lim (bib0075) 1994; 51 Focke, Helms, Scheewe, Pantel, Bachmann, Dechent, Ebentheuer, Mohr, Paulus, Trenkwalder (bib0040) 2011; 32 Maldjian, Laurienti, Kraft, Burdette (bib0090) 2003; 19 Peng, Long, Ding (bib0110) 2005; 27 Mwangi, Tian, Soares (bib0065) 2014; 12 Fahn, Elton, M. o. t. U. D. C (bib0005) 1987; vol. 2 Santos, Campos, Guimaraes, Piccinin, Azevedo, Piovesana, Amato-Filho, Lopes-Cendes, Cendes, D'Abreu (bib0140) 2013; 28 Brück, Kurki, Kaasinen, Vahlberg, Rinne (bib0130) 2004; 75 Camicioli, Moore, Kinney, Corbridge, Glassberg, Kaye (bib0125) 2003; 18 Jankovic (bib0020) 2008; 79 Bellman (bib0105) 1961 Xia, Wang, Tian, Ding, Wei, Huang, Wang, Zhao, Gu, Tang (bib0145) 2013; 8 Babu, Suresh, Mahanand (bib0050) 2014; 41 Summerfield, Junqué, Tolosa, Salgado-Pineda, Gómez-Ansón, Martí, Pastor, Ramírez-Ruíz, Mercader (bib0135) 2005; 62 Ojala, Pietikainen, Harwood (bib0100) 1996; 29 Schwarz, Timothy, Vamsi, Morgan, Bajaj, Auer (bib0035) 2011; 26 Ojala, Garriga (bib0150) 2010; 11 Rana, Juneja, Saxena, Gudwani, Senthil, Behari, Agrawal (bib0060) 2015; 25 Hoehn, Yahr (bib0015) 1967; 17 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0095) 2002; 15 Salvatore, Cerasa, Castiglioni, Gallivanone, Augimeri, Lopez, Arabia, Morellie, Gilardic, Quattrone (bib0045) 2014; 222 Post, Merkus, de Bie, de Haan, Speelman (bib0030) 2005; 20 Machado (10.1016/j.bspc.2017.01.007_bib0025) 2006; 14 Peng (10.1016/j.bspc.2017.01.007_bib0110) 2005; 27 Post (10.1016/j.bspc.2017.01.007_bib0030) 2005; 20 Rana (10.1016/j.bspc.2017.01.007_bib0055) 2015; 42 Mwangi (10.1016/j.bspc.2017.01.007_bib0065) 2014; 12 Chang (10.1016/j.bspc.2017.01.007_bib0120) 2011; 2 Schwarz (10.1016/j.bspc.2017.01.007_bib0035) 2011; 26 Jankovic (10.1016/j.bspc.2017.01.007_bib0020) 2008; 79 Summerfield (10.1016/j.bspc.2017.01.007_bib0135) 2005; 62 Vapnik (10.1016/j.bspc.2017.01.007_bib0115) 1995 Ojala (10.1016/j.bspc.2017.01.007_bib0150) 2010; 11 Rana (10.1016/j.bspc.2017.01.007_bib0060) 2015; 25 Ojala (10.1016/j.bspc.2017.01.007_bib0100) 1996; 29 Pfefferbaum (10.1016/j.bspc.2017.01.007_bib0075) 1994; 51 Tzourio-Mazoyer (10.1016/j.bspc.2017.01.007_bib0095) 2002; 15 Babu (10.1016/j.bspc.2017.01.007_bib0050) 2014; 41 Santos (10.1016/j.bspc.2017.01.007_bib0140) 2013; 28 Salvatore (10.1016/j.bspc.2017.01.007_bib0045) 2014; 222 Bellman (10.1016/j.bspc.2017.01.007_bib0105) 1961 Xia (10.1016/j.bspc.2017.01.007_bib0145) 2013; 8 Brück (10.1016/j.bspc.2017.01.007_bib0130) 2004; 75 Camicioli (10.1016/j.bspc.2017.01.007_bib0125) 2003; 18 Folstein (10.1016/j.bspc.2017.01.007_bib0010) 1975; 12 Hoehn (10.1016/j.bspc.2017.01.007_bib0015) 1967; 17 Wellcome-Trust-Centre-for-Neuroimaging (10.1016/j.bspc.2017.01.007_bib0085) 2009 Fahn (10.1016/j.bspc.2017.01.007_bib0005) 1987; vol. 2 Focke (10.1016/j.bspc.2017.01.007_bib0040) 2011; 32 Maldjian (10.1016/j.bspc.2017.01.007_bib0090) 2003; 19 Gibb (10.1016/j.bspc.2017.01.007_bib0080) 1988; 51 Teune (10.1016/j.bspc.2017.01.007_bib0070) 2013; 28 |
References_xml | – volume: 32 start-page: 1905 year: 2011 end-page: 1915 ident: bib0040 article-title: Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic parkinson syndrome and healthy controls publication-title: Hum. Brain Mapp. – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: bib0110 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 1995 ident: bib0115 article-title: The Nature of Statistical Learning Theory – volume: vol. 2 year: 1987 ident: bib0005 article-title: Unified Parkinson's disease and scale publication-title: Recent Developments in Parkinson’s Disease – volume: 51 start-page: 874 year: 1994 end-page: 887 ident: bib0075 article-title: A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood publication-title: Arch. Neurol. – volume: 62 start-page: 281 year: 2005 end-page: 285 ident: bib0135 article-title: Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study publication-title: Arch. Neurol. – volume: 26 start-page: 1633 year: 2011 end-page: 1638 ident: bib0035 article-title: T1-weighted MRI shows stage-dependent substantia nigra signal loss in Parkinson’s disease publication-title: Mov. Disord. – volume: 28 start-page: 547 year: 2013 end-page: 551 ident: bib0070 article-title: Validation of parkinsonian disease-related metabolic brain patterns publication-title: Mov. Disord. – volume: 12 start-page: 189 year: 1975 end-page: 198 ident: bib0010 article-title: Mini-mental state. A practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr. Res. – volume: 51 start-page: 745 year: 1988 end-page: 752 ident: bib0080 article-title: The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 18 start-page: 784 year: 2003 end-page: 790 ident: bib0125 article-title: Parkinson’s disease is associated with hippocampal atrophy publication-title: Mov. Disord. – volume: 28 start-page: 112 year: 2013 ident: bib0140 article-title: Whole brain voxel based morphometry analysis in idiopathic Parkinson's disease [abstract] publication-title: Mov. Disord. – volume: 41 start-page: 478 year: 2014 end-page: 488 ident: bib0050 article-title: A novel PBL-McRBFN-RFE approach for identification of critical brain regions responsible for Parkinson’s disease publication-title: Expert Syst. Appl. – volume: 19 start-page: 1233 year: 2003 end-page: 1239 ident: bib0090 article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets publication-title: Neuroimage – volume: 2 start-page: 27:1 year: 2011 end-page: 27:27 ident: bib0120 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – volume: 14 start-page: S247 year: 2006 end-page: S258 ident: bib0025 article-title: Deep brain stimulation for Parkinson's disease: surgical technique and perioperative management publication-title: Mov. Disord. – volume: 29 start-page: 51 year: 1996 end-page: 59 ident: bib0100 article-title: A comparative study of texture measures with classification based on feature distributions publication-title: Pattern Recognit. – year: 2009 ident: bib0085 article-title: SPM8 – Statistical Parametric Mapping – volume: 222 start-page: 230 year: 2014 end-page: 237 ident: bib0045 article-title: Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and Progressive Supranuclear Palsy publication-title: J. Neurosci. Methods – volume: 75 start-page: 1467 year: 2004 end-page: 1469 ident: bib0130 article-title: Hippocampal and prefrontal atrophy in patients with early non-demented Parkinson’s disease is related to cognitive impairment publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 12 start-page: 229 year: 2014 end-page: 244 ident: bib0065 article-title: A review of feature reduction techniques in neuroimaging publication-title: Neuroinformatics – volume: 42 start-page: 4506 year: 2015 end-page: 4516 ident: bib0055 article-title: Regions-of-interest based automated diagnosis of Parkinson’s disease using T1-weighted MRI publication-title: Expert Syst. Appl. – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bib0095 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – volume: 20 start-page: 1577 year: 2005 end-page: 1584 ident: bib0030 article-title: Unified Parkinson’s disease rating scale motor examination: are ratings of nurses, residents in neurology, and movement disorders specialists interchangeable? publication-title: Mov. Disord. – volume: 17 start-page: 427 year: 1967 end-page: 442 ident: bib0015 article-title: Parkinsonism: onset, progression, and mortality publication-title: Neurology – volume: 25 start-page: 245 year: 2015 end-page: 255 ident: bib0060 article-title: Graph-theory-based spectral feature selection for computer aided diagnosis of Parkinson's disease using T1-weighted MRI publication-title: Int. J. Imaging Syst. Technol. – year: 1961 ident: bib0105 article-title: Adaptive Control Processes: A Guided Tour – volume: 11 start-page: 1833 year: 2010 end-page: 1863 ident: bib0150 article-title: Permutation tests for studying classifier performance publication-title: J. Mach. Learn. Res. – volume: 8 start-page: 2557 year: 2013 end-page: 2565 ident: bib0145 article-title: Magnetic resonance morphometry of the loss of gray matter volume in Parkinson's disease patients publication-title: Neural Regener. Res. – volume: 79 start-page: 368 year: 2008 end-page: 376 ident: bib0020 article-title: Parkinson’s disease: clinical features and diagnosis publication-title: J. Neurol. Neurosurg. Psychiatry – year: 1961 ident: 10.1016/j.bspc.2017.01.007_bib0105 – volume: 20 start-page: 1577 issue: 12 year: 2005 ident: 10.1016/j.bspc.2017.01.007_bib0030 article-title: Unified Parkinson’s disease rating scale motor examination: are ratings of nurses, residents in neurology, and movement disorders specialists interchangeable? publication-title: Mov. Disord. doi: 10.1002/mds.20640 – volume: 79 start-page: 368 issue: 4 year: 2008 ident: 10.1016/j.bspc.2017.01.007_bib0020 article-title: Parkinson’s disease: clinical features and diagnosis publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2007.131045 – volume: 42 start-page: 4506 issue: 9 year: 2015 ident: 10.1016/j.bspc.2017.01.007_bib0055 article-title: Regions-of-interest based automated diagnosis of Parkinson’s disease using T1-weighted MRI publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.01.062 – volume: 62 start-page: 281 issue: 2 year: 2005 ident: 10.1016/j.bspc.2017.01.007_bib0135 article-title: Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study publication-title: Arch. Neurol. doi: 10.1001/archneur.62.2.281 – volume: 29 start-page: 51 year: 1996 ident: 10.1016/j.bspc.2017.01.007_bib0100 article-title: A comparative study of texture measures with classification based on feature distributions publication-title: Pattern Recognit. doi: 10.1016/0031-3203(95)00067-4 – year: 1995 ident: 10.1016/j.bspc.2017.01.007_bib0115 – volume: 75 start-page: 1467 year: 2004 ident: 10.1016/j.bspc.2017.01.007_bib0130 article-title: Hippocampal and prefrontal atrophy in patients with early non-demented Parkinson’s disease is related to cognitive impairment publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2003.031237 – volume: 8 start-page: 2557 issue: 27 year: 2013 ident: 10.1016/j.bspc.2017.01.007_bib0145 article-title: Magnetic resonance morphometry of the loss of gray matter volume in Parkinson's disease patients publication-title: Neural Regener. Res. – volume: 41 start-page: 478 issue: 2 year: 2014 ident: 10.1016/j.bspc.2017.01.007_bib0050 article-title: A novel PBL-McRBFN-RFE approach for identification of critical brain regions responsible for Parkinson’s disease publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.07.073 – volume: 28 start-page: 112 issue: Suppl. 1 year: 2013 ident: 10.1016/j.bspc.2017.01.007_bib0140 article-title: Whole brain voxel based morphometry analysis in idiopathic Parkinson's disease [abstract] publication-title: Mov. Disord. – volume: 28 start-page: 547 issue: 4 year: 2013 ident: 10.1016/j.bspc.2017.01.007_bib0070 article-title: Validation of parkinsonian disease-related metabolic brain patterns publication-title: Mov. Disord. doi: 10.1002/mds.25361 – volume: 26 start-page: 1633 issue: 9 year: 2011 ident: 10.1016/j.bspc.2017.01.007_bib0035 article-title: T1-weighted MRI shows stage-dependent substantia nigra signal loss in Parkinson’s disease publication-title: Mov. Disord. doi: 10.1002/mds.23722 – volume: vol. 2 year: 1987 ident: 10.1016/j.bspc.2017.01.007_bib0005 article-title: Unified Parkinson's disease and scale – volume: 51 start-page: 745 year: 1988 ident: 10.1016/j.bspc.2017.01.007_bib0080 article-title: The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.51.6.745 – volume: 2 start-page: 27:1 issue: 3 year: 2011 ident: 10.1016/j.bspc.2017.01.007_bib0120 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 17 start-page: 427 issue: 5 year: 1967 ident: 10.1016/j.bspc.2017.01.007_bib0015 article-title: Parkinsonism: onset, progression, and mortality publication-title: Neurology doi: 10.1212/WNL.17.5.427 – volume: 11 start-page: 1833 year: 2010 ident: 10.1016/j.bspc.2017.01.007_bib0150 article-title: Permutation tests for studying classifier performance publication-title: J. Mach. Learn. Res. – volume: 222 start-page: 230 year: 2014 ident: 10.1016/j.bspc.2017.01.007_bib0045 article-title: Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and Progressive Supranuclear Palsy publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2013.11.016 – volume: 12 start-page: 229 issue: 2 year: 2014 ident: 10.1016/j.bspc.2017.01.007_bib0065 article-title: A review of feature reduction techniques in neuroimaging publication-title: Neuroinformatics doi: 10.1007/s12021-013-9204-3 – volume: 32 start-page: 1905 issue: 11 year: 2011 ident: 10.1016/j.bspc.2017.01.007_bib0040 article-title: Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic parkinson syndrome and healthy controls publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21161 – volume: 14 start-page: S247 year: 2006 ident: 10.1016/j.bspc.2017.01.007_bib0025 article-title: Deep brain stimulation for Parkinson's disease: surgical technique and perioperative management publication-title: Mov. Disord. doi: 10.1002/mds.20959 – volume: 51 start-page: 874 issue: 9 year: 1994 ident: 10.1016/j.bspc.2017.01.007_bib0075 article-title: A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood publication-title: Arch. Neurol. doi: 10.1001/archneur.1994.00540210046012 – year: 2009 ident: 10.1016/j.bspc.2017.01.007_bib0085 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10.1016/j.bspc.2017.01.007_bib0110 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 25 start-page: 245 issue: 3 year: 2015 ident: 10.1016/j.bspc.2017.01.007_bib0060 article-title: Graph-theory-based spectral feature selection for computer aided diagnosis of Parkinson's disease using T1-weighted MRI publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22141 – volume: 19 start-page: 1233 issue: 3 year: 2003 ident: 10.1016/j.bspc.2017.01.007_bib0090 article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00169-1 – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.bspc.2017.01.007_bib0095 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 18 start-page: 784 issue: 7 year: 2003 ident: 10.1016/j.bspc.2017.01.007_bib0125 article-title: Parkinson’s disease is associated with hippocampal atrophy publication-title: Mov. Disord. doi: 10.1002/mds.10444 – volume: 12 start-page: 189 issue: 3 year: 1975 ident: 10.1016/j.bspc.2017.01.007_bib0010 article-title: Mini-mental state. A practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr. Res. doi: 10.1016/0022-3956(75)90026-6 |
SSID | ssj0048714 |
Score | 2.2467415 |
Snippet | •Proposed fused feature descriptor captures better interrelation among GM, WM & CSF.•Analyzed 118 regions covering 116 regions according to AAL & 2 regions... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 134 |
SubjectTerms | 3D local binary pattern Computer-aided diagnosis Fused feature descriptor Magnetic resonance imaging Minimum redundancy maximum relevance Parkinson's disease |
Title | Relevant 3D local binary pattern based features from fused feature descriptor for differential diagnosis of Parkinson’s disease using structural MRI |
URI | https://dx.doi.org/10.1016/j.bspc.2017.01.007 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0048714 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0048714 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0048714 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0048714 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPvFZ5uBNYrPdzetYqqVV2kNV8Bay2V2pSFtsvYq_QvDv-Uuc2SSlgvTgMcvuEmY2M1-S-b5h7DxUCDMCE3u-sdKTTRNgHBTCQzCQi6YQkTD0Qb8_CLsP8uYxeKyxdsWFobLKMvYXMd1F63KkUVqzMR2NGneIpcMY3044Sa77ARF-Sf0Lz_Tl-6LMA_G40_emyR7NLokzRY2Xmk1JxpBHTrqTWsr-lZyWEk5nm22VSBFaxc3ssJoZ77LNJf3APfY5JHY42gbEFbisBMrxa2HqZDPHQElKgzVOvnMGRCYB-7Y0BtoUgWPyCohfoWqYgg_-C164OrzRDCYWiB_tqGLfH18zKH_sANXNP0GhQksKHtAf9vbZQ-f6vt31ykYLXo6mm3uimfnC6iDSTXSpjWJrs9hXiUlUxnlmhFbSj3FOQETUjCd5LIUIEysjrUwkxAFbG0_G5pBBzAOtE9zNci2tiRIjM5UrhFGaS9zviPHKwmleqpBTM4yXtCo3e07JKyl5JfV5il45YheLNdNCg2Pl7KByXPrrJKWYJFasO_7nuhO2QVdFNc8pW0ODmzMEKnNVdyexztZbvdvu4AfoAOuk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3R5dD2UJXSCigtc-gNRRuv7U1yRHxot7B7oCBxs-LYrhah3RVL7_0Vlfh7_SWdcZxqkSoOPcbxRNGMM_OSzHsG-DK0BDO0L7PcB5WpgdeUB6XMCAw0ciBlIT1_0J9Mh6Nr9fVG32zAcceF4bbKlPvbnB6zdRrpJ2_2l7NZ_xth6WFJbyeCJddzXb6ATaUpJ_dg82h8Ppp2CZkgeZT45vkZGyTuTNvmZVdLVjIURVTv5F1l_1Wf1mrO2Vt4k8AiHrX3swUbfv4OXq9JCG7Dr0smiJN7UJ5gLExoI8UWl1E5c45cpxwGHxU8V8h8Egw_1sbQ-TZ3LO6RICx2e6bQs39HB7EVb7bCRUCmSEe22O-fjytM_3aQW-e_YytEyyIeOLkcv4frs9Or41GW9lrIGvLeQyYHdS6D04UbUFRDUYZQl7mtfGVrIWovnVV5SXM0c1FrUTWlknJYBVU46wspP0Bvvpj7HcBSaOcquloQTgVfVF7VtrGEpJxQdL1dEJ2HTZOEyHk_jDvTdZzdGo6K4aiYXBiKyi4c_rVZtjIcz87WXeDMk8VkqE48Y7f3n3YH8HJ0NbkwF-Pp-Ud4xWfa5p596JHz_SfCLQ_2c1qXfwDj5-5P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relevant+3D+local+binary+pattern+based+features+from+fused+feature+descriptor+for+differential+diagnosis+of+Parkinson%E2%80%99s+disease+using+structural+MRI&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Rana%2C+Bharti&rft.au=Juneja%2C+Akanksha&rft.au=Saxena%2C+Mohit&rft.au=Gudwani%2C+Sunita&rft.date=2017-04-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=34&rft.spage=134&rft.epage=143&rft_id=info:doi/10.1016%2Fj.bspc.2017.01.007&rft.externalDocID=S1746809417300058 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |