STFGCN: Spatial–temporal fusion graph convolutional network for traffic prediction

Accurate traffic prediction plays a crucial role in improving traffic conditions and optimizing road utilization. Effectively capturing the multi-scale temporal dependencies and dynamic spatial dependencies is crucial for accurate traffic prediction. These features can effectively reflect complex dy...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 255; p. 124648
Main Authors Li, Hao, Liu, Jie, Han, Shiyuan, Zhou, Jin, Zhang, Tong, Philip Chen, C.L.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2024
Subjects
Online AccessGet full text
ISSN0957-4174
DOI10.1016/j.eswa.2024.124648

Cover

Abstract Accurate traffic prediction plays a crucial role in improving traffic conditions and optimizing road utilization. Effectively capturing the multi-scale temporal dependencies and dynamic spatial dependencies is crucial for accurate traffic prediction. These features can effectively reflect complex dynamic spatial–temporal processes, which have not been comprehensively addressed in most existing research work. Motivated by this issue, the primary contribution of this paper lies in proposing a novel Spatial–Temporal Fusion Graph Neural Network (STFGCN) for accurate traffic prediction, achieved by extracting multi-scale temporal dependencies from multiple semantic environments and constructing a dynamic adaptive graph to model spatial dependencies based on temporal characteristics. Specifically, to capture the multi-scale dynamic temporal dependencies effectively, a Multi-Scale Fusion Convolution (MSFC) module is designed, in which the temporal dependencies are extracted from multiple textual environments by utilizing multi-scale convolution. In order to model dynamic spatial dependencies, a Spatial Adaptive Fusion Convolution (SAFC) module is designed by combining the recent coherence and periodicity to infer dynamic graphs, which are then fused to model dynamic spatial dependencies. Extensive experimental results on five real-world datasets demonstrate that the proposed STFGCN has superior performance. Specifically, compared with the state-of-the-art baselines, STFGCN reduced 1.2% to 16.4% in RMSE measure. [Display omitted] •Deep learning model to predict traffic status on large-scale road networks.•Extracting multi-scale temporal dependencies from multiple semantic environments.•Constructing a dynamic adaptive graph to model spatial dependencies based on temporal characteristics.•Extensive experiments demonstrate the effectiveness of the proposed model.
AbstractList Accurate traffic prediction plays a crucial role in improving traffic conditions and optimizing road utilization. Effectively capturing the multi-scale temporal dependencies and dynamic spatial dependencies is crucial for accurate traffic prediction. These features can effectively reflect complex dynamic spatial–temporal processes, which have not been comprehensively addressed in most existing research work. Motivated by this issue, the primary contribution of this paper lies in proposing a novel Spatial–Temporal Fusion Graph Neural Network (STFGCN) for accurate traffic prediction, achieved by extracting multi-scale temporal dependencies from multiple semantic environments and constructing a dynamic adaptive graph to model spatial dependencies based on temporal characteristics. Specifically, to capture the multi-scale dynamic temporal dependencies effectively, a Multi-Scale Fusion Convolution (MSFC) module is designed, in which the temporal dependencies are extracted from multiple textual environments by utilizing multi-scale convolution. In order to model dynamic spatial dependencies, a Spatial Adaptive Fusion Convolution (SAFC) module is designed by combining the recent coherence and periodicity to infer dynamic graphs, which are then fused to model dynamic spatial dependencies. Extensive experimental results on five real-world datasets demonstrate that the proposed STFGCN has superior performance. Specifically, compared with the state-of-the-art baselines, STFGCN reduced 1.2% to 16.4% in RMSE measure. [Display omitted] •Deep learning model to predict traffic status on large-scale road networks.•Extracting multi-scale temporal dependencies from multiple semantic environments.•Constructing a dynamic adaptive graph to model spatial dependencies based on temporal characteristics.•Extensive experiments demonstrate the effectiveness of the proposed model.
ArticleNumber 124648
Author Liu, Jie
Zhou, Jin
Philip Chen, C.L.
Zhang, Tong
Li, Hao
Han, Shiyuan
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0009-0008-9861-5842
  surname: Li
  fullname: Li, Hao
  email: lih@stu.ujn.edu.cn
  organization: School of Artificial Intelligence, Shandong Women’s University, Jinan, 250399, China
– sequence: 2
  givenname: Jie
  orcidid: 0000-0001-7715-142X
  surname: Liu
  fullname: Liu, Jie
  email: ise_liuj@ujn.edu.cn
  organization: Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, University of Jinan, Jinan, 250022, China
– sequence: 3
  givenname: Shiyuan
  orcidid: 0009-0008-5122-3745
  surname: Han
  fullname: Han, Shiyuan
  email: ai_hansy@sdwu.edu.cn
  organization: School of Artificial Intelligence, Shandong Women’s University, Jinan, 250399, China
– sequence: 4
  givenname: Jin
  surname: Zhou
  fullname: Zhou, Jin
  email: ise_zhouj@ujn.edu.cn
  organization: School of Artificial Intelligence, Shandong Women’s University, Jinan, 250399, China
– sequence: 5
  givenname: Tong
  surname: Zhang
  fullname: Zhang, Tong
  email: tony@scut.edu.cn
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510641, China
– sequence: 6
  givenname: C.L.
  surname: Philip Chen
  fullname: Philip Chen, C.L.
  email: philipchen@scut.edu.cn
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510641, China
BookMark eNp9kLFOwzAQhj0UibbwAkx5gYRz7DgJYkEVLUgVDC2z5To2uKRxZLtUbLwDb8iT4KhMDJ1OurvvdP83QaPOdgqhKwwZBsyut5nyB5HlkNMM55TRaoTGUBdlSnFJz9HE-y0ALgHKMVqv1vPF7OkmWfUiGNH-fH0HteutE22i997YLnl1on9LpO0-bLsPsRNHnQoH694TbV0SnNDayKR3qjFyWLhAZ1q0Xl3-1Sl6md-vZw_p8nnxOLtbppIAhJTkdVEwgApYs6lVfE7XVUVY2VCqdUFrSnNZ5mJDNFMSBCEFa2qNGZUNENKQKcqPd6Wz3julee_MTrhPjoEPLviWDy744IIfXUSo-gdJE8Twdgxi2tPo7RFVMdSHUY57aVQnY26nZOCNNafwX-9Of9c
CitedBy_id crossref_primary_10_1016_j_trc_2025_105081
crossref_primary_10_1109_ACCESS_2025_3532473
crossref_primary_10_1007_s10707_024_00532_w
crossref_primary_10_1016_j_engappai_2024_109530
Cites_doi 10.1109/TITS.2019.2935152
10.1080/0144164042000195072
10.1016/j.fuel.2023.129366
10.1080/13658816.2023.2275160
10.1016/j.proeng.2017.04.417
10.1016/j.procs.2020.04.276
10.1016/j.ins.2022.11.086
10.1109/TNSRE.2022.3226860
10.1016/j.inffus.2023.101946
10.1109/TITS.2022.3168590
10.1109/TII.2023.3330340
10.1109/ACCESS.2019.2935504
10.1504/IJADS.2021.117474
10.1109/TITS.2023.3276216
10.47852/bonviewJCCE2202245
10.1016/j.trc.2015.03.014
10.1016/j.ijepes.2023.109579
10.1016/j.engappai.2023.106044
10.1016/j.eswa.2008.07.069
10.1016/j.trc.2018.03.001
10.1016/j.patcog.2023.109670
10.1007/s00521-023-08831-3
10.1109/TITS.2023.3257759
10.1016/j.neucom.2021.07.052
10.1016/j.eswa.2023.120281
10.1080/23249935.2018.1491073
10.1109/TITS.2018.2854913
10.1109/JIOT.2023.3283611
10.1109/TITS.2020.3025076
10.1016/j.eswa.2023.122449
10.1016/j.inffus.2022.11.019
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.124648
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_124648
S095741742401515X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-32955600806db9e174f988367d44ff549442c72ab3f6ec0a3356d9f164cd033d3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Wed Oct 01 02:35:02 EDT 2025
Thu Apr 24 22:53:35 EDT 2025
Sat Nov 16 16:00:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Traffic prediction
Graph convolution
Temporal dependencies
Spatial dependencies
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-32955600806db9e174f988367d44ff549442c72ab3f6ec0a3356d9f164cd033d3
ORCID 0009-0008-9861-5842
0000-0001-7715-142X
0009-0008-5122-3745
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_124648
crossref_citationtrail_10_1016_j_eswa_2024_124648
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_124648
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, Tan, Qin, Ran, Jiang (b36) 2018; 90
Li, Yu, Shahabi, Liu (b17) 2017
Lan, Ma, Huang, Wang, Yang, Li (b15) 2022
Xu, Wang, Peng, Shen, Deng, Guo (b39) 2018; 16
Yuan, da Rocha Neto, Rothenberg, Obraczka, Barakat, Turletti (b43) 2020; 33
Liu, Zeng, Chen, Xu, Lai, Ma, Xu (b19) 2022; 35
Kong, Fan, bo Jin, Lin, Zuo (b12) 2024; 25
Yu, Yin, Zhu (b42) 2017
Ma, Tao, Wang, Yu, Wang (b22) 2015; 54
dos Santos Coelho, Ayala, Mariani (b27) 2024
Castro-Neto, Jeong, Jeong, Han (b5) 2009; 36
Zhao, Gao, Ji, Wan, Ye, Bai (b48) 2019; 7
Lablack, Shen (b14) 2023; 228
Wang, Zheng, Du, ping Huang, Li (b33) 2022; 23
Abellana (b1) 2021; 14
Cui, Ke, Pu, Wang (b6) 2020
Zhang, Li, Song, rong Dong (b45) 2021; 461
Xu, Cai, Wang, Liu, Yang, Yang (b37) 2022; 621
Vlahogianni, Golias, Karlaftis (b31) 2004; 24
Liu, Zheng, Feng, Chen (b20) 2017
Wu, Pan, Long, Jiang, Zhang (b35) 2019
Zhang, Zhao, Shone, Li, Frangi, Xie, Zhang (b46) 2022; 31
Shao, Zhang, Wang, Xu (b29) 2022
Tedjopurnomo, Bao, Zheng, Choudhury, Qin (b30) 2020; 34
Zheng, Chai, Duanmu, Katos (b50) 2022; 92
Li, Liu, Tao, Zhang, Zou, Pan, Pan (b16) 2024; 239
Yu, Sun, Du, Lv (b41) 2023
Yamasaki, Freire, Seman, Stefenon, Mariani, dos Santos Coelho (b40) 2024
Jin, Lin, Wu, Wan (b11) 2018
Wang, Zhang, Zhang, Cheng, Wang (b32) 2023; 38
Kumar (b13) 2017; 187
Biswas, Dhondale, Singh, Agrawal, Muthudoss, Mishra, Kumar (b4) 2024
Guo, Lin, Feng, Song, Wan (b9) 2019
Bao, Huang, Shen, Cao, Ding, Shi, Shi (b3) 2023; 121
Xu, Han, Zhu, Sun, Du, Lv (b38) 2023; 100
Lu, Zhou, Wu, Jiang, Cui (b21) 2016; 10
Ren, Zhao, Luo, Ma, Duan (b26) 2022; 23
Bai, Yao, Li, Wang, Wang (b2) 2020
Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (b49) 2018; 21
Zheng, Fan, Wang, Qi (b51) 2019
Zhang, Zheng, Qi (b47) 2016
Weng, Fan, Wu, Hu, Tian, Zhu, Wu (b34) 2023; 142
Shao, Zhang, Wang, Wei, Xu (b28) 2022
Mondal, Rehena (b24) 2020; 171
Jiang, Luo (b10) 2021
Rahmani, Baghbani, Bouguila, Patterson (b25) 2023
Miao, Bai, Cao, Liu, Dai, Wang, Qi, Dou (b23) 2023; 10
Garg, Kaur (b8) 2023; 2
Li, Zhu (b18) 2020
Feng, Ling, Zheng, Chen, Xu (b7) 2019; 20
Zhu, Sun, Yi, Wang (b52) 2022; 35
Zhang, Li, Li, Xiao (b44) 2024; 20
Xu (10.1016/j.eswa.2024.124648_b39) 2018; 16
Kong (10.1016/j.eswa.2024.124648_b12) 2024; 25
Yu (10.1016/j.eswa.2024.124648_b41) 2023
Cui (10.1016/j.eswa.2024.124648_b6) 2020
Ma (10.1016/j.eswa.2024.124648_b22) 2015; 54
Shao (10.1016/j.eswa.2024.124648_b29) 2022
Wang (10.1016/j.eswa.2024.124648_b33) 2022; 23
Weng (10.1016/j.eswa.2024.124648_b34) 2023; 142
Wu (10.1016/j.eswa.2024.124648_b36) 2018; 90
Xu (10.1016/j.eswa.2024.124648_b38) 2023; 100
Tedjopurnomo (10.1016/j.eswa.2024.124648_b30) 2020; 34
Zhang (10.1016/j.eswa.2024.124648_b44) 2024; 20
Wang (10.1016/j.eswa.2024.124648_b32) 2023; 38
Abellana (10.1016/j.eswa.2024.124648_b1) 2021; 14
Mondal (10.1016/j.eswa.2024.124648_b24) 2020; 171
Li (10.1016/j.eswa.2024.124648_b16) 2024; 239
Guo (10.1016/j.eswa.2024.124648_b9) 2019
dos Santos Coelho (10.1016/j.eswa.2024.124648_b27) 2024
Bao (10.1016/j.eswa.2024.124648_b3) 2023; 121
Lan (10.1016/j.eswa.2024.124648_b15) 2022
Yuan (10.1016/j.eswa.2024.124648_b43) 2020; 33
Shao (10.1016/j.eswa.2024.124648_b28) 2022
Xu (10.1016/j.eswa.2024.124648_b37) 2022; 621
Liu (10.1016/j.eswa.2024.124648_b19) 2022; 35
Lu (10.1016/j.eswa.2024.124648_b21) 2016; 10
Wu (10.1016/j.eswa.2024.124648_b35) 2019
Zhang (10.1016/j.eswa.2024.124648_b45) 2021; 461
Jiang (10.1016/j.eswa.2024.124648_b10) 2021
Garg (10.1016/j.eswa.2024.124648_b8) 2023; 2
Li (10.1016/j.eswa.2024.124648_b17) 2017
Zheng (10.1016/j.eswa.2024.124648_b51) 2019
Zhao (10.1016/j.eswa.2024.124648_b49) 2018; 21
Zhao (10.1016/j.eswa.2024.124648_b48) 2019; 7
Feng (10.1016/j.eswa.2024.124648_b7) 2019; 20
Jin (10.1016/j.eswa.2024.124648_b11) 2018
Zhu (10.1016/j.eswa.2024.124648_b52) 2022; 35
Ren (10.1016/j.eswa.2024.124648_b26) 2022; 23
Zhang (10.1016/j.eswa.2024.124648_b46) 2022; 31
Li (10.1016/j.eswa.2024.124648_b18) 2020
Liu (10.1016/j.eswa.2024.124648_b20) 2017
Lablack (10.1016/j.eswa.2024.124648_b14) 2023; 228
Yamasaki (10.1016/j.eswa.2024.124648_b40) 2024
Biswas (10.1016/j.eswa.2024.124648_b4) 2024
Vlahogianni (10.1016/j.eswa.2024.124648_b31) 2004; 24
Bai (10.1016/j.eswa.2024.124648_b2) 2020
Rahmani (10.1016/j.eswa.2024.124648_b25) 2023
Kumar (10.1016/j.eswa.2024.124648_b13) 2017; 187
Zhang (10.1016/j.eswa.2024.124648_b47) 2016
Castro-Neto (10.1016/j.eswa.2024.124648_b5) 2009; 36
Miao (10.1016/j.eswa.2024.124648_b23) 2023; 10
Zheng (10.1016/j.eswa.2024.124648_b50) 2022; 92
Yu (10.1016/j.eswa.2024.124648_b42) 2017
References_xml – volume: 16
  start-page: 104
  year: 2018
  end-page: 118
  ident: b39
  article-title: Real-time road traffic state prediction based on kernel-KNN
  publication-title: Transportmetrica A: Transport Science
– volume: 23
  start-page: 1578
  year: 2022
  end-page: 1584
  ident: b26
  article-title: Global-local temporal convolutional network for traffic flow prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 621
  start-page: 580
  year: 2022
  end-page: 595
  ident: b37
  article-title: Dynamic traffic correlations based spatio-temporal graph convolutional network for urban traffic prediction
  publication-title: Information Sciences
– volume: 33
  year: 2020
  ident: b43
  article-title: Machine learning for next-generation intelligent transportation systems: A survey
  publication-title: Transactions on Emerging Telecommunications Technologies
– volume: 239
  year: 2024
  ident: b16
  article-title: Location and time embedded feature representation for spatiotemporal traffic prediction
  publication-title: Expert Systems with Applications
– volume: 20
  start-page: 2001
  year: 2019
  end-page: 2013
  ident: b7
  article-title: Adaptive multi-kernel SVM with spatial–temporal correlation for short-term traffic flow prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 24
  start-page: 533
  year: 2004
  end-page: 557
  ident: b31
  article-title: Short-term traffic forecasting: Overview of objectives and methods
  publication-title: Transport Reviews
– volume: 92
  start-page: 93
  year: 2022
  end-page: 114
  ident: b50
  article-title: Hybrid deep learning models for traffic prediction in large-scale road networks
  publication-title: Information Fusion
– year: 2019
  ident: b9
  article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting
  publication-title: AAAI conference on artificial intelligence
– volume: 14
  start-page: 565
  year: 2021
  end-page: 587
  ident: b1
  article-title: Short-term traffic flow forecasting using the autoregressive integrated moving average model in Metro Cebu (Philippines)
  publication-title: International Journal of Applied Decision Science
– year: 2017
  ident: b17
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
  publication-title: arXiv: Learning
– volume: 142
  year: 2023
  ident: b34
  article-title: A decomposition dynamic graph convolutional recurrent network for traffic forecasting
  publication-title: Pattern Recognition
– volume: 34
  start-page: 1544
  year: 2020
  end-page: 1561
  ident: b30
  article-title: A survey on modern deep neural network for traffic prediction: Trends, methods and challenges
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 10
  start-page: 21217
  year: 2023
  end-page: 21226
  ident: b23
  article-title: A novel short-term traffic prediction model based on SVD and ARIMA with blockchain in industrial internet of things
  publication-title: IEEE Internet of Things Journal
– volume: 54
  start-page: 187
  year: 2015
  end-page: 197
  ident: b22
  article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
  publication-title: Transportation Research Part C-emerging Technologies
– year: 2023
  ident: b25
  article-title: Graph neural networks for intelligent transportation systems: A survey
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 10
  start-page: 136
  year: 2016
  end-page: 151
  ident: b21
  article-title: Integrating granger causality and vector auto-regression for traffic prediction of large-scale WLANs
  publication-title: KSII Transactions on Internet and Information Systems
– year: 2023
  ident: b41
  article-title: Towards better dynamic graph learning: New architecture and unified library
– year: 2019
  ident: b51
  article-title: GMAN: A graph multi-attention network for traffic prediction
– volume: 187
  start-page: 582
  year: 2017
  end-page: 587
  ident: b13
  article-title: Traffic flow prediction using Kalman filtering technique
  publication-title: Procedia Engineering
– volume: 35
  start-page: 21181
  year: 2022
  end-page: 21199
  ident: b52
  article-title: A correlation information-based spatiotemporal network for traffic flow forecasting
  publication-title: Neural Computing and Applications
– volume: 90
  start-page: 166
  year: 2018
  end-page: 180
  ident: b36
  article-title: A hybrid deep learning based traffic flow prediction method and its understanding
  publication-title: Transportation Research Part C-emerging Technologies
– volume: 25
  start-page: 2966
  year: 2024
  end-page: 2975
  ident: b12
  article-title: A variational Bayesian inference-based en-decoder framework for traffic flow prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 461
  start-page: 109
  year: 2021
  end-page: 117
  ident: b45
  article-title: Multiple dynamic graph based traffic speed prediction method
  publication-title: Neurocomputing
– year: 2021
  ident: b10
  article-title: Graph neural network for traffic forecasting: A survey
– year: 2019
  ident: b35
  article-title: Graph WaveNet for deep spatial-temporal graph modeling
  publication-title: International joint conference on artificial intelligence
– volume: 31
  start-page: 484
  year: 2022
  end-page: 493
  ident: b46
  article-title: Physics-informed deep learning for musculoskeletal modeling: Predicting muscle forces and joint kinematics from surface EMG
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 20
  start-page: 5229
  year: 2024
  end-page: 5240
  ident: b44
  article-title: Variance-constrained local–global modeling for device-free localization under uncertainties
  publication-title: IEEE Transactions on Industrial Informatics
– year: 2016
  ident: b47
  article-title: Deep spatio-temporal residual networks for citywide crowd flows prediction
– year: 2020
  ident: b6
  article-title: Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values
– volume: 21
  start-page: 3848
  year: 2018
  end-page: 3858
  ident: b49
  article-title: T-GCN: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2024
  ident: b40
  article-title: Optimized hybrid ensemble learning approaches applied to very short-term load forecasting
  publication-title: International Journal of Electrical Power & Energy Systems
– year: 2022
  ident: b29
  article-title: Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting
  publication-title: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining
– year: 2022
  ident: b28
  article-title: Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting
  publication-title: Proceedings of the 31st ACM international conference on information & knowledge management
– volume: 35
  start-page: 5816
  year: 2022
  end-page: 5828
  ident: b19
  article-title: Scinet: Time series modeling and forecasting with sample convolution and interaction
  publication-title: Advances in Neural Information Processing Systems
– volume: 2
  start-page: 175
  year: 2023
  end-page: 188
  ident: b8
  article-title: A systematic review on intelligent transport systems
  publication-title: Journal of Computational and Cognitive Engineering
– volume: 7
  start-page: 114496
  year: 2019
  end-page: 114507
  ident: b48
  article-title: Deep temporal convolutional networks for short-term traffic flow forecasting
  publication-title: IEEE Access
– start-page: 1
  year: 2017
  end-page: 6
  ident: b20
  article-title: Short-term traffic flow prediction with Conv-LSTM
  publication-title: 2017 9th international conference on wireless communications and signal processing (WCSP)
– volume: 100
  year: 2023
  ident: b38
  article-title: Generic Dynamic Graph Convolutional Network for traffic flow forecasting
  publication-title: Information Fusion
– year: 2022
  ident: b15
  article-title: DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting
  publication-title: International conference on machine learning
– volume: 36
  start-page: 6164
  year: 2009
  end-page: 6173
  ident: b5
  article-title: Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 156
  year: 2023
  end-page: 181
  ident: b32
  article-title: Adding attention to the neural ordinary differential equation for spatio-temporal prediction
  publication-title: International Journal of Geographical Information Science
– year: 2017
  ident: b42
  article-title: Spatio-temporal graph convolutional neural network: A deep learning framework for traffic forecasting
– year: 2018
  ident: b11
  article-title: Spatio-temporal recurrent convolutional networks for citywide short-term crowd flows prediction
  publication-title: Proceedings of the 2nd international conference on compute and data analysis
– year: 2024
  ident: b27
  article-title: CO and NOx emissions prediction in gas turbine using a novel modeling pipeline based on the combination of deep forest regressor and feature engineering
  publication-title: Fuel
– volume: 23
  start-page: 18423
  year: 2022
  end-page: 18432
  ident: b33
  article-title: Traffic-GGNN: Predicting traffic flow via attentional spatial-temporal gated graph neural networks
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 121
  year: 2023
  ident: b3
  article-title: Spatial-temporal complex graph convolution network for traffic flow prediction
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 171
  start-page: 2547
  year: 2020
  end-page: 2555
  ident: b24
  article-title: Road traffic outlier detection technique based on linear regression
  publication-title: Procedia Computer Science
– year: 2020
  ident: b18
  article-title: Spatial-temporal fusion graph neural networks for traffic flow forecasting
– year: 2024
  ident: b4
  article-title: Development and comparison of machine learning models for in-vitro drug permeation prediction from microneedle patch
  publication-title: European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik E.V
– year: 2020
  ident: b2
  article-title: Adaptive graph convolutional recurrent network for traffic forecasting
– volume: 228
  year: 2023
  ident: b14
  article-title: Spatio-temporal graph mixformer for traffic forecasting
  publication-title: Expert Systems with Applications
– year: 2020
  ident: 10.1016/j.eswa.2024.124648_b6
– volume: 33
  year: 2020
  ident: 10.1016/j.eswa.2024.124648_b43
  article-title: Machine learning for next-generation intelligent transportation systems: A survey
  publication-title: Transactions on Emerging Telecommunications Technologies
– volume: 21
  start-page: 3848
  year: 2018
  ident: 10.1016/j.eswa.2024.124648_b49
  article-title: T-GCN: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2019.2935152
– year: 2019
  ident: 10.1016/j.eswa.2024.124648_b35
  article-title: Graph WaveNet for deep spatial-temporal graph modeling
– year: 2022
  ident: 10.1016/j.eswa.2024.124648_b15
  article-title: DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting
– year: 2017
  ident: 10.1016/j.eswa.2024.124648_b17
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
  publication-title: arXiv: Learning
– year: 2023
  ident: 10.1016/j.eswa.2024.124648_b41
– volume: 24
  start-page: 533
  year: 2004
  ident: 10.1016/j.eswa.2024.124648_b31
  article-title: Short-term traffic forecasting: Overview of objectives and methods
  publication-title: Transport Reviews
  doi: 10.1080/0144164042000195072
– year: 2024
  ident: 10.1016/j.eswa.2024.124648_b27
  article-title: CO and NOx emissions prediction in gas turbine using a novel modeling pipeline based on the combination of deep forest regressor and feature engineering
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.129366
– volume: 38
  start-page: 156
  year: 2023
  ident: 10.1016/j.eswa.2024.124648_b32
  article-title: Adding attention to the neural ordinary differential equation for spatio-temporal prediction
  publication-title: International Journal of Geographical Information Science
  doi: 10.1080/13658816.2023.2275160
– volume: 187
  start-page: 582
  year: 2017
  ident: 10.1016/j.eswa.2024.124648_b13
  article-title: Traffic flow prediction using Kalman filtering technique
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2017.04.417
– volume: 171
  start-page: 2547
  year: 2020
  ident: 10.1016/j.eswa.2024.124648_b24
  article-title: Road traffic outlier detection technique based on linear regression
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2020.04.276
– volume: 621
  start-page: 580
  year: 2022
  ident: 10.1016/j.eswa.2024.124648_b37
  article-title: Dynamic traffic correlations based spatio-temporal graph convolutional network for urban traffic prediction
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.11.086
– volume: 31
  start-page: 484
  year: 2022
  ident: 10.1016/j.eswa.2024.124648_b46
  article-title: Physics-informed deep learning for musculoskeletal modeling: Predicting muscle forces and joint kinematics from surface EMG
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2022.3226860
– year: 2020
  ident: 10.1016/j.eswa.2024.124648_b18
– year: 2022
  ident: 10.1016/j.eswa.2024.124648_b28
  article-title: Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting
– volume: 100
  year: 2023
  ident: 10.1016/j.eswa.2024.124648_b38
  article-title: Generic Dynamic Graph Convolutional Network for traffic flow forecasting
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2023.101946
– year: 2019
  ident: 10.1016/j.eswa.2024.124648_b51
– year: 2022
  ident: 10.1016/j.eswa.2024.124648_b29
  article-title: Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting
– volume: 23
  start-page: 18423
  year: 2022
  ident: 10.1016/j.eswa.2024.124648_b33
  article-title: Traffic-GGNN: Predicting traffic flow via attentional spatial-temporal gated graph neural networks
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2022.3168590
– volume: 20
  start-page: 5229
  year: 2024
  ident: 10.1016/j.eswa.2024.124648_b44
  article-title: Variance-constrained local–global modeling for device-free localization under uncertainties
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2023.3330340
– volume: 7
  start-page: 114496
  year: 2019
  ident: 10.1016/j.eswa.2024.124648_b48
  article-title: Deep temporal convolutional networks for short-term traffic flow forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2935504
– volume: 14
  start-page: 565
  year: 2021
  ident: 10.1016/j.eswa.2024.124648_b1
  article-title: Short-term traffic flow forecasting using the autoregressive integrated moving average model in Metro Cebu (Philippines)
  publication-title: International Journal of Applied Decision Science
  doi: 10.1504/IJADS.2021.117474
– volume: 25
  start-page: 2966
  year: 2024
  ident: 10.1016/j.eswa.2024.124648_b12
  article-title: A variational Bayesian inference-based en-decoder framework for traffic flow prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2023.3276216
– year: 2020
  ident: 10.1016/j.eswa.2024.124648_b2
– volume: 2
  start-page: 175
  issue: 3
  year: 2023
  ident: 10.1016/j.eswa.2024.124648_b8
  article-title: A systematic review on intelligent transport systems
  publication-title: Journal of Computational and Cognitive Engineering
  doi: 10.47852/bonviewJCCE2202245
– year: 2024
  ident: 10.1016/j.eswa.2024.124648_b4
  article-title: Development and comparison of machine learning models for in-vitro drug permeation prediction from microneedle patch
  publication-title: European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik E.V
– volume: 54
  start-page: 187
  year: 2015
  ident: 10.1016/j.eswa.2024.124648_b22
  article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
  publication-title: Transportation Research Part C-emerging Technologies
  doi: 10.1016/j.trc.2015.03.014
– year: 2017
  ident: 10.1016/j.eswa.2024.124648_b42
– year: 2024
  ident: 10.1016/j.eswa.2024.124648_b40
  article-title: Optimized hybrid ensemble learning approaches applied to very short-term load forecasting
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2023.109579
– volume: 121
  year: 2023
  ident: 10.1016/j.eswa.2024.124648_b3
  article-title: Spatial-temporal complex graph convolution network for traffic flow prediction
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.106044
– volume: 36
  start-page: 6164
  year: 2009
  ident: 10.1016/j.eswa.2024.124648_b5
  article-title: Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.07.069
– volume: 90
  start-page: 166
  year: 2018
  ident: 10.1016/j.eswa.2024.124648_b36
  article-title: A hybrid deep learning based traffic flow prediction method and its understanding
  publication-title: Transportation Research Part C-emerging Technologies
  doi: 10.1016/j.trc.2018.03.001
– volume: 34
  start-page: 1544
  year: 2020
  ident: 10.1016/j.eswa.2024.124648_b30
  article-title: A survey on modern deep neural network for traffic prediction: Trends, methods and challenges
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2016
  ident: 10.1016/j.eswa.2024.124648_b47
– volume: 35
  start-page: 5816
  year: 2022
  ident: 10.1016/j.eswa.2024.124648_b19
  article-title: Scinet: Time series modeling and forecasting with sample convolution and interaction
  publication-title: Advances in Neural Information Processing Systems
– volume: 142
  year: 2023
  ident: 10.1016/j.eswa.2024.124648_b34
  article-title: A decomposition dynamic graph convolutional recurrent network for traffic forecasting
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2023.109670
– volume: 35
  start-page: 21181
  year: 2022
  ident: 10.1016/j.eswa.2024.124648_b52
  article-title: A correlation information-based spatiotemporal network for traffic flow forecasting
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-023-08831-3
– year: 2023
  ident: 10.1016/j.eswa.2024.124648_b25
  article-title: Graph neural networks for intelligent transportation systems: A survey
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2023.3257759
– volume: 10
  start-page: 136
  year: 2016
  ident: 10.1016/j.eswa.2024.124648_b21
  article-title: Integrating granger causality and vector auto-regression for traffic prediction of large-scale WLANs
  publication-title: KSII Transactions on Internet and Information Systems
– volume: 461
  start-page: 109
  year: 2021
  ident: 10.1016/j.eswa.2024.124648_b45
  article-title: Multiple dynamic graph based traffic speed prediction method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.07.052
– year: 2019
  ident: 10.1016/j.eswa.2024.124648_b9
  article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting
– volume: 228
  year: 2023
  ident: 10.1016/j.eswa.2024.124648_b14
  article-title: Spatio-temporal graph mixformer for traffic forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.120281
– volume: 16
  start-page: 104
  year: 2018
  ident: 10.1016/j.eswa.2024.124648_b39
  article-title: Real-time road traffic state prediction based on kernel-KNN
  publication-title: Transportmetrica A: Transport Science
  doi: 10.1080/23249935.2018.1491073
– volume: 20
  start-page: 2001
  year: 2019
  ident: 10.1016/j.eswa.2024.124648_b7
  article-title: Adaptive multi-kernel SVM with spatial–temporal correlation for short-term traffic flow prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2018.2854913
– volume: 10
  start-page: 21217
  year: 2023
  ident: 10.1016/j.eswa.2024.124648_b23
  article-title: A novel short-term traffic prediction model based on SVD and ARIMA with blockchain in industrial internet of things
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2023.3283611
– volume: 23
  start-page: 1578
  year: 2022
  ident: 10.1016/j.eswa.2024.124648_b26
  article-title: Global-local temporal convolutional network for traffic flow prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2020.3025076
– volume: 239
  year: 2024
  ident: 10.1016/j.eswa.2024.124648_b16
  article-title: Location and time embedded feature representation for spatiotemporal traffic prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.122449
– start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2024.124648_b20
  article-title: Short-term traffic flow prediction with Conv-LSTM
– volume: 92
  start-page: 93
  year: 2022
  ident: 10.1016/j.eswa.2024.124648_b50
  article-title: Hybrid deep learning models for traffic prediction in large-scale road networks
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2022.11.019
– year: 2021
  ident: 10.1016/j.eswa.2024.124648_b10
– year: 2018
  ident: 10.1016/j.eswa.2024.124648_b11
  article-title: Spatio-temporal recurrent convolutional networks for citywide short-term crowd flows prediction
SSID ssj0017007
Score 2.5299556
Snippet Accurate traffic prediction plays a crucial role in improving traffic conditions and optimizing road utilization. Effectively capturing the multi-scale...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124648
SubjectTerms Graph convolution
Spatial dependencies
Temporal dependencies
Traffic prediction
Title STFGCN: Spatial–temporal fusion graph convolutional network for traffic prediction
URI https://dx.doi.org/10.1016/j.eswa.2024.124648
Volume 255
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB1K3bjxLdZHmYU7SRszM8nEXSnWqthNW-guJPOASomltrgT_8E_9Eu8N5kUBenCZZI7kFxu7iM5cw4hl8wIC4VcecpI7nGpmZeyTHo-z6BJCoQWhUzn0yDsj_nDRExqpFvthUFYpcv9ZU4vsrU703bebM-n0_YQmgMohzDawYgAVXmCO9h5hCoGrfc1zAPp56KSby_y0NptnCkxXub1DbmHAt6CMheiBtBfxelHwentkR3XKdJOeTP7pGbyA7JbqTBQ91IektFw1LvrDm4oqgtDNH19fDq-qRm1K_wYRgtWaooAcxdocCkv8d8Umla6XKTIJEHnC_xtgwZHZNy7HXX7ntNK8BTz_aXHglhg8yL9UGexgQe1sZQsjDTn1sIQyHmgoiDNmA2N8lPGRKhjC8OS0j5jmh2Tev6SmxNCM59JDVOJDHTMUwUDGWeBtZEWXBspswa5rpyUKEckjnoWs6RCjD0n6NgEHZuUjm2Qq_WaeUmjsdFaVL5PfgVDAnl-w7rTf647I9t4VKJUzkl9uViZC-g1llmzCKYm2ercP_YH30vb02M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbChtCG2E4cNVZQCbZemUrcoiW2pqCpVacWG-A_8Q34Jd4lTgYQ6sMY-KTld7u4lz-8IuWRaGCjkmZNpyR0uFXMSlkrH5Sk0SZ5QIh_T2e357QF_HIphhTTLszBIq7S5v8jpeba2VxrWm43paNToQ3MA5RCgHUAEqMrDNbLOhRcgAqu_L3keqD8XFIJ7gYPb7cmZguSlX99QfMjjdahzPg4B-qs6_ag4rR2yZVtFelvczS6p6Mke2S7HMFD7Vu6TqB-17pu9G4rjhSGcvj4-reDUmJoFfg2juSw1RYa5jTRYmhQEcApdK53PEpSSoNMZ_rfBDQdk0LqLmm3HDktwMua6c4d5ocDuRbq-SkMND2pCKZkfKM6NARTIuZcFXpIy4-vMTRgTvgoNoKVMuYwpdkiqk5eJPiI0dZlUAEukp0KeZIDIOPOMCZTgSkuZ1sh16aQ4s0riONBiHJeUsecYHRujY-PCsTVytbSZFjoaK3eL0vfxr2iIIdGvsDv-p90F2WhH3U7ceeg9nZBNXCkoK6ekOp8t9Bk0HvP0PA-sb1p_1Pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STFGCN%3A+Spatial%E2%80%93temporal+fusion+graph+convolutional+network+for+traffic+prediction&rft.jtitle=Expert+systems+with+applications&rft.au=Li%2C+Hao&rft.au=Liu%2C+Jie&rft.au=Han%2C+Shiyuan&rft.au=Zhou%2C+Jin&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=255&rft_id=info:doi/10.1016%2Fj.eswa.2024.124648&rft.externalDocID=S095741742401515X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon