STFGCN: Spatial–temporal fusion graph convolutional network for traffic prediction
Accurate traffic prediction plays a crucial role in improving traffic conditions and optimizing road utilization. Effectively capturing the multi-scale temporal dependencies and dynamic spatial dependencies is crucial for accurate traffic prediction. These features can effectively reflect complex dy...
Saved in:
| Published in | Expert systems with applications Vol. 255; p. 124648 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 |
| DOI | 10.1016/j.eswa.2024.124648 |
Cover
| Abstract | Accurate traffic prediction plays a crucial role in improving traffic conditions and optimizing road utilization. Effectively capturing the multi-scale temporal dependencies and dynamic spatial dependencies is crucial for accurate traffic prediction. These features can effectively reflect complex dynamic spatial–temporal processes, which have not been comprehensively addressed in most existing research work. Motivated by this issue, the primary contribution of this paper lies in proposing a novel Spatial–Temporal Fusion Graph Neural Network (STFGCN) for accurate traffic prediction, achieved by extracting multi-scale temporal dependencies from multiple semantic environments and constructing a dynamic adaptive graph to model spatial dependencies based on temporal characteristics. Specifically, to capture the multi-scale dynamic temporal dependencies effectively, a Multi-Scale Fusion Convolution (MSFC) module is designed, in which the temporal dependencies are extracted from multiple textual environments by utilizing multi-scale convolution. In order to model dynamic spatial dependencies, a Spatial Adaptive Fusion Convolution (SAFC) module is designed by combining the recent coherence and periodicity to infer dynamic graphs, which are then fused to model dynamic spatial dependencies. Extensive experimental results on five real-world datasets demonstrate that the proposed STFGCN has superior performance. Specifically, compared with the state-of-the-art baselines, STFGCN reduced 1.2% to 16.4% in RMSE measure.
[Display omitted]
•Deep learning model to predict traffic status on large-scale road networks.•Extracting multi-scale temporal dependencies from multiple semantic environments.•Constructing a dynamic adaptive graph to model spatial dependencies based on temporal characteristics.•Extensive experiments demonstrate the effectiveness of the proposed model. |
|---|---|
| AbstractList | Accurate traffic prediction plays a crucial role in improving traffic conditions and optimizing road utilization. Effectively capturing the multi-scale temporal dependencies and dynamic spatial dependencies is crucial for accurate traffic prediction. These features can effectively reflect complex dynamic spatial–temporal processes, which have not been comprehensively addressed in most existing research work. Motivated by this issue, the primary contribution of this paper lies in proposing a novel Spatial–Temporal Fusion Graph Neural Network (STFGCN) for accurate traffic prediction, achieved by extracting multi-scale temporal dependencies from multiple semantic environments and constructing a dynamic adaptive graph to model spatial dependencies based on temporal characteristics. Specifically, to capture the multi-scale dynamic temporal dependencies effectively, a Multi-Scale Fusion Convolution (MSFC) module is designed, in which the temporal dependencies are extracted from multiple textual environments by utilizing multi-scale convolution. In order to model dynamic spatial dependencies, a Spatial Adaptive Fusion Convolution (SAFC) module is designed by combining the recent coherence and periodicity to infer dynamic graphs, which are then fused to model dynamic spatial dependencies. Extensive experimental results on five real-world datasets demonstrate that the proposed STFGCN has superior performance. Specifically, compared with the state-of-the-art baselines, STFGCN reduced 1.2% to 16.4% in RMSE measure.
[Display omitted]
•Deep learning model to predict traffic status on large-scale road networks.•Extracting multi-scale temporal dependencies from multiple semantic environments.•Constructing a dynamic adaptive graph to model spatial dependencies based on temporal characteristics.•Extensive experiments demonstrate the effectiveness of the proposed model. |
| ArticleNumber | 124648 |
| Author | Liu, Jie Zhou, Jin Philip Chen, C.L. Zhang, Tong Li, Hao Han, Shiyuan |
| Author_xml | – sequence: 1 givenname: Hao orcidid: 0009-0008-9861-5842 surname: Li fullname: Li, Hao email: lih@stu.ujn.edu.cn organization: School of Artificial Intelligence, Shandong Women’s University, Jinan, 250399, China – sequence: 2 givenname: Jie orcidid: 0000-0001-7715-142X surname: Liu fullname: Liu, Jie email: ise_liuj@ujn.edu.cn organization: Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, University of Jinan, Jinan, 250022, China – sequence: 3 givenname: Shiyuan orcidid: 0009-0008-5122-3745 surname: Han fullname: Han, Shiyuan email: ai_hansy@sdwu.edu.cn organization: School of Artificial Intelligence, Shandong Women’s University, Jinan, 250399, China – sequence: 4 givenname: Jin surname: Zhou fullname: Zhou, Jin email: ise_zhouj@ujn.edu.cn organization: School of Artificial Intelligence, Shandong Women’s University, Jinan, 250399, China – sequence: 5 givenname: Tong surname: Zhang fullname: Zhang, Tong email: tony@scut.edu.cn organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510641, China – sequence: 6 givenname: C.L. surname: Philip Chen fullname: Philip Chen, C.L. email: philipchen@scut.edu.cn organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510641, China |
| BookMark | eNp9kLFOwzAQhj0UibbwAkx5gYRz7DgJYkEVLUgVDC2z5To2uKRxZLtUbLwDb8iT4KhMDJ1OurvvdP83QaPOdgqhKwwZBsyut5nyB5HlkNMM55TRaoTGUBdlSnFJz9HE-y0ALgHKMVqv1vPF7OkmWfUiGNH-fH0HteutE22i997YLnl1on9LpO0-bLsPsRNHnQoH694TbV0SnNDayKR3qjFyWLhAZ1q0Xl3-1Sl6md-vZw_p8nnxOLtbppIAhJTkdVEwgApYs6lVfE7XVUVY2VCqdUFrSnNZ5mJDNFMSBCEFa2qNGZUNENKQKcqPd6Wz3julee_MTrhPjoEPLviWDy744IIfXUSo-gdJE8Twdgxi2tPo7RFVMdSHUY57aVQnY26nZOCNNafwX-9Of9c |
| CitedBy_id | crossref_primary_10_1016_j_trc_2025_105081 crossref_primary_10_1109_ACCESS_2025_3532473 crossref_primary_10_1007_s10707_024_00532_w crossref_primary_10_1016_j_engappai_2024_109530 |
| Cites_doi | 10.1109/TITS.2019.2935152 10.1080/0144164042000195072 10.1016/j.fuel.2023.129366 10.1080/13658816.2023.2275160 10.1016/j.proeng.2017.04.417 10.1016/j.procs.2020.04.276 10.1016/j.ins.2022.11.086 10.1109/TNSRE.2022.3226860 10.1016/j.inffus.2023.101946 10.1109/TITS.2022.3168590 10.1109/TII.2023.3330340 10.1109/ACCESS.2019.2935504 10.1504/IJADS.2021.117474 10.1109/TITS.2023.3276216 10.47852/bonviewJCCE2202245 10.1016/j.trc.2015.03.014 10.1016/j.ijepes.2023.109579 10.1016/j.engappai.2023.106044 10.1016/j.eswa.2008.07.069 10.1016/j.trc.2018.03.001 10.1016/j.patcog.2023.109670 10.1007/s00521-023-08831-3 10.1109/TITS.2023.3257759 10.1016/j.neucom.2021.07.052 10.1016/j.eswa.2023.120281 10.1080/23249935.2018.1491073 10.1109/TITS.2018.2854913 10.1109/JIOT.2023.3283611 10.1109/TITS.2020.3025076 10.1016/j.eswa.2023.122449 10.1016/j.inffus.2022.11.019 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2024.124648 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_eswa_2024_124648 S095741742401515X |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c300t-32955600806db9e174f988367d44ff549442c72ab3f6ec0a3356d9f164cd033d3 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Wed Oct 01 02:35:02 EDT 2025 Thu Apr 24 22:53:35 EDT 2025 Sat Nov 16 16:00:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Traffic prediction Graph convolution Temporal dependencies Spatial dependencies |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-32955600806db9e174f988367d44ff549442c72ab3f6ec0a3356d9f164cd033d3 |
| ORCID | 0009-0008-9861-5842 0000-0001-7715-142X 0009-0008-5122-3745 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2024_124648 crossref_citationtrail_10_1016_j_eswa_2024_124648 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_124648 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wu, Tan, Qin, Ran, Jiang (b36) 2018; 90 Li, Yu, Shahabi, Liu (b17) 2017 Lan, Ma, Huang, Wang, Yang, Li (b15) 2022 Xu, Wang, Peng, Shen, Deng, Guo (b39) 2018; 16 Yuan, da Rocha Neto, Rothenberg, Obraczka, Barakat, Turletti (b43) 2020; 33 Liu, Zeng, Chen, Xu, Lai, Ma, Xu (b19) 2022; 35 Kong, Fan, bo Jin, Lin, Zuo (b12) 2024; 25 Yu, Yin, Zhu (b42) 2017 Ma, Tao, Wang, Yu, Wang (b22) 2015; 54 dos Santos Coelho, Ayala, Mariani (b27) 2024 Castro-Neto, Jeong, Jeong, Han (b5) 2009; 36 Zhao, Gao, Ji, Wan, Ye, Bai (b48) 2019; 7 Lablack, Shen (b14) 2023; 228 Wang, Zheng, Du, ping Huang, Li (b33) 2022; 23 Abellana (b1) 2021; 14 Cui, Ke, Pu, Wang (b6) 2020 Zhang, Li, Song, rong Dong (b45) 2021; 461 Xu, Cai, Wang, Liu, Yang, Yang (b37) 2022; 621 Vlahogianni, Golias, Karlaftis (b31) 2004; 24 Liu, Zheng, Feng, Chen (b20) 2017 Wu, Pan, Long, Jiang, Zhang (b35) 2019 Zhang, Zhao, Shone, Li, Frangi, Xie, Zhang (b46) 2022; 31 Shao, Zhang, Wang, Xu (b29) 2022 Tedjopurnomo, Bao, Zheng, Choudhury, Qin (b30) 2020; 34 Zheng, Chai, Duanmu, Katos (b50) 2022; 92 Li, Liu, Tao, Zhang, Zou, Pan, Pan (b16) 2024; 239 Yu, Sun, Du, Lv (b41) 2023 Yamasaki, Freire, Seman, Stefenon, Mariani, dos Santos Coelho (b40) 2024 Jin, Lin, Wu, Wan (b11) 2018 Wang, Zhang, Zhang, Cheng, Wang (b32) 2023; 38 Kumar (b13) 2017; 187 Biswas, Dhondale, Singh, Agrawal, Muthudoss, Mishra, Kumar (b4) 2024 Guo, Lin, Feng, Song, Wan (b9) 2019 Bao, Huang, Shen, Cao, Ding, Shi, Shi (b3) 2023; 121 Xu, Han, Zhu, Sun, Du, Lv (b38) 2023; 100 Lu, Zhou, Wu, Jiang, Cui (b21) 2016; 10 Ren, Zhao, Luo, Ma, Duan (b26) 2022; 23 Bai, Yao, Li, Wang, Wang (b2) 2020 Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (b49) 2018; 21 Zheng, Fan, Wang, Qi (b51) 2019 Zhang, Zheng, Qi (b47) 2016 Weng, Fan, Wu, Hu, Tian, Zhu, Wu (b34) 2023; 142 Shao, Zhang, Wang, Wei, Xu (b28) 2022 Mondal, Rehena (b24) 2020; 171 Jiang, Luo (b10) 2021 Rahmani, Baghbani, Bouguila, Patterson (b25) 2023 Miao, Bai, Cao, Liu, Dai, Wang, Qi, Dou (b23) 2023; 10 Garg, Kaur (b8) 2023; 2 Li, Zhu (b18) 2020 Feng, Ling, Zheng, Chen, Xu (b7) 2019; 20 Zhu, Sun, Yi, Wang (b52) 2022; 35 Zhang, Li, Li, Xiao (b44) 2024; 20 Xu (10.1016/j.eswa.2024.124648_b39) 2018; 16 Kong (10.1016/j.eswa.2024.124648_b12) 2024; 25 Yu (10.1016/j.eswa.2024.124648_b41) 2023 Cui (10.1016/j.eswa.2024.124648_b6) 2020 Ma (10.1016/j.eswa.2024.124648_b22) 2015; 54 Shao (10.1016/j.eswa.2024.124648_b29) 2022 Wang (10.1016/j.eswa.2024.124648_b33) 2022; 23 Weng (10.1016/j.eswa.2024.124648_b34) 2023; 142 Wu (10.1016/j.eswa.2024.124648_b36) 2018; 90 Xu (10.1016/j.eswa.2024.124648_b38) 2023; 100 Tedjopurnomo (10.1016/j.eswa.2024.124648_b30) 2020; 34 Zhang (10.1016/j.eswa.2024.124648_b44) 2024; 20 Wang (10.1016/j.eswa.2024.124648_b32) 2023; 38 Abellana (10.1016/j.eswa.2024.124648_b1) 2021; 14 Mondal (10.1016/j.eswa.2024.124648_b24) 2020; 171 Li (10.1016/j.eswa.2024.124648_b16) 2024; 239 Guo (10.1016/j.eswa.2024.124648_b9) 2019 dos Santos Coelho (10.1016/j.eswa.2024.124648_b27) 2024 Bao (10.1016/j.eswa.2024.124648_b3) 2023; 121 Lan (10.1016/j.eswa.2024.124648_b15) 2022 Yuan (10.1016/j.eswa.2024.124648_b43) 2020; 33 Shao (10.1016/j.eswa.2024.124648_b28) 2022 Xu (10.1016/j.eswa.2024.124648_b37) 2022; 621 Liu (10.1016/j.eswa.2024.124648_b19) 2022; 35 Lu (10.1016/j.eswa.2024.124648_b21) 2016; 10 Wu (10.1016/j.eswa.2024.124648_b35) 2019 Zhang (10.1016/j.eswa.2024.124648_b45) 2021; 461 Jiang (10.1016/j.eswa.2024.124648_b10) 2021 Garg (10.1016/j.eswa.2024.124648_b8) 2023; 2 Li (10.1016/j.eswa.2024.124648_b17) 2017 Zheng (10.1016/j.eswa.2024.124648_b51) 2019 Zhao (10.1016/j.eswa.2024.124648_b49) 2018; 21 Zhao (10.1016/j.eswa.2024.124648_b48) 2019; 7 Feng (10.1016/j.eswa.2024.124648_b7) 2019; 20 Jin (10.1016/j.eswa.2024.124648_b11) 2018 Zhu (10.1016/j.eswa.2024.124648_b52) 2022; 35 Ren (10.1016/j.eswa.2024.124648_b26) 2022; 23 Zhang (10.1016/j.eswa.2024.124648_b46) 2022; 31 Li (10.1016/j.eswa.2024.124648_b18) 2020 Liu (10.1016/j.eswa.2024.124648_b20) 2017 Lablack (10.1016/j.eswa.2024.124648_b14) 2023; 228 Yamasaki (10.1016/j.eswa.2024.124648_b40) 2024 Biswas (10.1016/j.eswa.2024.124648_b4) 2024 Vlahogianni (10.1016/j.eswa.2024.124648_b31) 2004; 24 Bai (10.1016/j.eswa.2024.124648_b2) 2020 Rahmani (10.1016/j.eswa.2024.124648_b25) 2023 Kumar (10.1016/j.eswa.2024.124648_b13) 2017; 187 Zhang (10.1016/j.eswa.2024.124648_b47) 2016 Castro-Neto (10.1016/j.eswa.2024.124648_b5) 2009; 36 Miao (10.1016/j.eswa.2024.124648_b23) 2023; 10 Zheng (10.1016/j.eswa.2024.124648_b50) 2022; 92 Yu (10.1016/j.eswa.2024.124648_b42) 2017 |
| References_xml | – volume: 16 start-page: 104 year: 2018 end-page: 118 ident: b39 article-title: Real-time road traffic state prediction based on kernel-KNN publication-title: Transportmetrica A: Transport Science – volume: 23 start-page: 1578 year: 2022 end-page: 1584 ident: b26 article-title: Global-local temporal convolutional network for traffic flow prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 621 start-page: 580 year: 2022 end-page: 595 ident: b37 article-title: Dynamic traffic correlations based spatio-temporal graph convolutional network for urban traffic prediction publication-title: Information Sciences – volume: 33 year: 2020 ident: b43 article-title: Machine learning for next-generation intelligent transportation systems: A survey publication-title: Transactions on Emerging Telecommunications Technologies – volume: 239 year: 2024 ident: b16 article-title: Location and time embedded feature representation for spatiotemporal traffic prediction publication-title: Expert Systems with Applications – volume: 20 start-page: 2001 year: 2019 end-page: 2013 ident: b7 article-title: Adaptive multi-kernel SVM with spatial–temporal correlation for short-term traffic flow prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 24 start-page: 533 year: 2004 end-page: 557 ident: b31 article-title: Short-term traffic forecasting: Overview of objectives and methods publication-title: Transport Reviews – volume: 92 start-page: 93 year: 2022 end-page: 114 ident: b50 article-title: Hybrid deep learning models for traffic prediction in large-scale road networks publication-title: Information Fusion – year: 2019 ident: b9 article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting publication-title: AAAI conference on artificial intelligence – volume: 14 start-page: 565 year: 2021 end-page: 587 ident: b1 article-title: Short-term traffic flow forecasting using the autoregressive integrated moving average model in Metro Cebu (Philippines) publication-title: International Journal of Applied Decision Science – year: 2017 ident: b17 article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting publication-title: arXiv: Learning – volume: 142 year: 2023 ident: b34 article-title: A decomposition dynamic graph convolutional recurrent network for traffic forecasting publication-title: Pattern Recognition – volume: 34 start-page: 1544 year: 2020 end-page: 1561 ident: b30 article-title: A survey on modern deep neural network for traffic prediction: Trends, methods and challenges publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 10 start-page: 21217 year: 2023 end-page: 21226 ident: b23 article-title: A novel short-term traffic prediction model based on SVD and ARIMA with blockchain in industrial internet of things publication-title: IEEE Internet of Things Journal – volume: 54 start-page: 187 year: 2015 end-page: 197 ident: b22 article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data publication-title: Transportation Research Part C-emerging Technologies – year: 2023 ident: b25 article-title: Graph neural networks for intelligent transportation systems: A survey publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 10 start-page: 136 year: 2016 end-page: 151 ident: b21 article-title: Integrating granger causality and vector auto-regression for traffic prediction of large-scale WLANs publication-title: KSII Transactions on Internet and Information Systems – year: 2023 ident: b41 article-title: Towards better dynamic graph learning: New architecture and unified library – year: 2019 ident: b51 article-title: GMAN: A graph multi-attention network for traffic prediction – volume: 187 start-page: 582 year: 2017 end-page: 587 ident: b13 article-title: Traffic flow prediction using Kalman filtering technique publication-title: Procedia Engineering – volume: 35 start-page: 21181 year: 2022 end-page: 21199 ident: b52 article-title: A correlation information-based spatiotemporal network for traffic flow forecasting publication-title: Neural Computing and Applications – volume: 90 start-page: 166 year: 2018 end-page: 180 ident: b36 article-title: A hybrid deep learning based traffic flow prediction method and its understanding publication-title: Transportation Research Part C-emerging Technologies – volume: 25 start-page: 2966 year: 2024 end-page: 2975 ident: b12 article-title: A variational Bayesian inference-based en-decoder framework for traffic flow prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 461 start-page: 109 year: 2021 end-page: 117 ident: b45 article-title: Multiple dynamic graph based traffic speed prediction method publication-title: Neurocomputing – year: 2021 ident: b10 article-title: Graph neural network for traffic forecasting: A survey – year: 2019 ident: b35 article-title: Graph WaveNet for deep spatial-temporal graph modeling publication-title: International joint conference on artificial intelligence – volume: 31 start-page: 484 year: 2022 end-page: 493 ident: b46 article-title: Physics-informed deep learning for musculoskeletal modeling: Predicting muscle forces and joint kinematics from surface EMG publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 20 start-page: 5229 year: 2024 end-page: 5240 ident: b44 article-title: Variance-constrained local–global modeling for device-free localization under uncertainties publication-title: IEEE Transactions on Industrial Informatics – year: 2016 ident: b47 article-title: Deep spatio-temporal residual networks for citywide crowd flows prediction – year: 2020 ident: b6 article-title: Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values – volume: 21 start-page: 3848 year: 2018 end-page: 3858 ident: b49 article-title: T-GCN: A temporal graph convolutional network for traffic prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2024 ident: b40 article-title: Optimized hybrid ensemble learning approaches applied to very short-term load forecasting publication-title: International Journal of Electrical Power & Energy Systems – year: 2022 ident: b29 article-title: Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting publication-title: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining – year: 2022 ident: b28 article-title: Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting publication-title: Proceedings of the 31st ACM international conference on information & knowledge management – volume: 35 start-page: 5816 year: 2022 end-page: 5828 ident: b19 article-title: Scinet: Time series modeling and forecasting with sample convolution and interaction publication-title: Advances in Neural Information Processing Systems – volume: 2 start-page: 175 year: 2023 end-page: 188 ident: b8 article-title: A systematic review on intelligent transport systems publication-title: Journal of Computational and Cognitive Engineering – volume: 7 start-page: 114496 year: 2019 end-page: 114507 ident: b48 article-title: Deep temporal convolutional networks for short-term traffic flow forecasting publication-title: IEEE Access – start-page: 1 year: 2017 end-page: 6 ident: b20 article-title: Short-term traffic flow prediction with Conv-LSTM publication-title: 2017 9th international conference on wireless communications and signal processing (WCSP) – volume: 100 year: 2023 ident: b38 article-title: Generic Dynamic Graph Convolutional Network for traffic flow forecasting publication-title: Information Fusion – year: 2022 ident: b15 article-title: DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting publication-title: International conference on machine learning – volume: 36 start-page: 6164 year: 2009 end-page: 6173 ident: b5 article-title: Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions publication-title: Expert Systems with Applications – volume: 38 start-page: 156 year: 2023 end-page: 181 ident: b32 article-title: Adding attention to the neural ordinary differential equation for spatio-temporal prediction publication-title: International Journal of Geographical Information Science – year: 2017 ident: b42 article-title: Spatio-temporal graph convolutional neural network: A deep learning framework for traffic forecasting – year: 2018 ident: b11 article-title: Spatio-temporal recurrent convolutional networks for citywide short-term crowd flows prediction publication-title: Proceedings of the 2nd international conference on compute and data analysis – year: 2024 ident: b27 article-title: CO and NOx emissions prediction in gas turbine using a novel modeling pipeline based on the combination of deep forest regressor and feature engineering publication-title: Fuel – volume: 23 start-page: 18423 year: 2022 end-page: 18432 ident: b33 article-title: Traffic-GGNN: Predicting traffic flow via attentional spatial-temporal gated graph neural networks publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 121 year: 2023 ident: b3 article-title: Spatial-temporal complex graph convolution network for traffic flow prediction publication-title: Engineering Applications of Artificial Intelligence – volume: 171 start-page: 2547 year: 2020 end-page: 2555 ident: b24 article-title: Road traffic outlier detection technique based on linear regression publication-title: Procedia Computer Science – year: 2020 ident: b18 article-title: Spatial-temporal fusion graph neural networks for traffic flow forecasting – year: 2024 ident: b4 article-title: Development and comparison of machine learning models for in-vitro drug permeation prediction from microneedle patch publication-title: European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik E.V – year: 2020 ident: b2 article-title: Adaptive graph convolutional recurrent network for traffic forecasting – volume: 228 year: 2023 ident: b14 article-title: Spatio-temporal graph mixformer for traffic forecasting publication-title: Expert Systems with Applications – year: 2020 ident: 10.1016/j.eswa.2024.124648_b6 – volume: 33 year: 2020 ident: 10.1016/j.eswa.2024.124648_b43 article-title: Machine learning for next-generation intelligent transportation systems: A survey publication-title: Transactions on Emerging Telecommunications Technologies – volume: 21 start-page: 3848 year: 2018 ident: 10.1016/j.eswa.2024.124648_b49 article-title: T-GCN: A temporal graph convolutional network for traffic prediction publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2019.2935152 – year: 2019 ident: 10.1016/j.eswa.2024.124648_b35 article-title: Graph WaveNet for deep spatial-temporal graph modeling – year: 2022 ident: 10.1016/j.eswa.2024.124648_b15 article-title: DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting – year: 2017 ident: 10.1016/j.eswa.2024.124648_b17 article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting publication-title: arXiv: Learning – year: 2023 ident: 10.1016/j.eswa.2024.124648_b41 – volume: 24 start-page: 533 year: 2004 ident: 10.1016/j.eswa.2024.124648_b31 article-title: Short-term traffic forecasting: Overview of objectives and methods publication-title: Transport Reviews doi: 10.1080/0144164042000195072 – year: 2024 ident: 10.1016/j.eswa.2024.124648_b27 article-title: CO and NOx emissions prediction in gas turbine using a novel modeling pipeline based on the combination of deep forest regressor and feature engineering publication-title: Fuel doi: 10.1016/j.fuel.2023.129366 – volume: 38 start-page: 156 year: 2023 ident: 10.1016/j.eswa.2024.124648_b32 article-title: Adding attention to the neural ordinary differential equation for spatio-temporal prediction publication-title: International Journal of Geographical Information Science doi: 10.1080/13658816.2023.2275160 – volume: 187 start-page: 582 year: 2017 ident: 10.1016/j.eswa.2024.124648_b13 article-title: Traffic flow prediction using Kalman filtering technique publication-title: Procedia Engineering doi: 10.1016/j.proeng.2017.04.417 – volume: 171 start-page: 2547 year: 2020 ident: 10.1016/j.eswa.2024.124648_b24 article-title: Road traffic outlier detection technique based on linear regression publication-title: Procedia Computer Science doi: 10.1016/j.procs.2020.04.276 – volume: 621 start-page: 580 year: 2022 ident: 10.1016/j.eswa.2024.124648_b37 article-title: Dynamic traffic correlations based spatio-temporal graph convolutional network for urban traffic prediction publication-title: Information Sciences doi: 10.1016/j.ins.2022.11.086 – volume: 31 start-page: 484 year: 2022 ident: 10.1016/j.eswa.2024.124648_b46 article-title: Physics-informed deep learning for musculoskeletal modeling: Predicting muscle forces and joint kinematics from surface EMG publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2022.3226860 – year: 2020 ident: 10.1016/j.eswa.2024.124648_b18 – year: 2022 ident: 10.1016/j.eswa.2024.124648_b28 article-title: Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting – volume: 100 year: 2023 ident: 10.1016/j.eswa.2024.124648_b38 article-title: Generic Dynamic Graph Convolutional Network for traffic flow forecasting publication-title: Information Fusion doi: 10.1016/j.inffus.2023.101946 – year: 2019 ident: 10.1016/j.eswa.2024.124648_b51 – year: 2022 ident: 10.1016/j.eswa.2024.124648_b29 article-title: Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting – volume: 23 start-page: 18423 year: 2022 ident: 10.1016/j.eswa.2024.124648_b33 article-title: Traffic-GGNN: Predicting traffic flow via attentional spatial-temporal gated graph neural networks publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2022.3168590 – volume: 20 start-page: 5229 year: 2024 ident: 10.1016/j.eswa.2024.124648_b44 article-title: Variance-constrained local–global modeling for device-free localization under uncertainties publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2023.3330340 – volume: 7 start-page: 114496 year: 2019 ident: 10.1016/j.eswa.2024.124648_b48 article-title: Deep temporal convolutional networks for short-term traffic flow forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2935504 – volume: 14 start-page: 565 year: 2021 ident: 10.1016/j.eswa.2024.124648_b1 article-title: Short-term traffic flow forecasting using the autoregressive integrated moving average model in Metro Cebu (Philippines) publication-title: International Journal of Applied Decision Science doi: 10.1504/IJADS.2021.117474 – volume: 25 start-page: 2966 year: 2024 ident: 10.1016/j.eswa.2024.124648_b12 article-title: A variational Bayesian inference-based en-decoder framework for traffic flow prediction publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2023.3276216 – year: 2020 ident: 10.1016/j.eswa.2024.124648_b2 – volume: 2 start-page: 175 issue: 3 year: 2023 ident: 10.1016/j.eswa.2024.124648_b8 article-title: A systematic review on intelligent transport systems publication-title: Journal of Computational and Cognitive Engineering doi: 10.47852/bonviewJCCE2202245 – year: 2024 ident: 10.1016/j.eswa.2024.124648_b4 article-title: Development and comparison of machine learning models for in-vitro drug permeation prediction from microneedle patch publication-title: European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik E.V – volume: 54 start-page: 187 year: 2015 ident: 10.1016/j.eswa.2024.124648_b22 article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data publication-title: Transportation Research Part C-emerging Technologies doi: 10.1016/j.trc.2015.03.014 – year: 2017 ident: 10.1016/j.eswa.2024.124648_b42 – year: 2024 ident: 10.1016/j.eswa.2024.124648_b40 article-title: Optimized hybrid ensemble learning approaches applied to very short-term load forecasting publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2023.109579 – volume: 121 year: 2023 ident: 10.1016/j.eswa.2024.124648_b3 article-title: Spatial-temporal complex graph convolution network for traffic flow prediction publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.106044 – volume: 36 start-page: 6164 year: 2009 ident: 10.1016/j.eswa.2024.124648_b5 article-title: Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.07.069 – volume: 90 start-page: 166 year: 2018 ident: 10.1016/j.eswa.2024.124648_b36 article-title: A hybrid deep learning based traffic flow prediction method and its understanding publication-title: Transportation Research Part C-emerging Technologies doi: 10.1016/j.trc.2018.03.001 – volume: 34 start-page: 1544 year: 2020 ident: 10.1016/j.eswa.2024.124648_b30 article-title: A survey on modern deep neural network for traffic prediction: Trends, methods and challenges publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 2016 ident: 10.1016/j.eswa.2024.124648_b47 – volume: 35 start-page: 5816 year: 2022 ident: 10.1016/j.eswa.2024.124648_b19 article-title: Scinet: Time series modeling and forecasting with sample convolution and interaction publication-title: Advances in Neural Information Processing Systems – volume: 142 year: 2023 ident: 10.1016/j.eswa.2024.124648_b34 article-title: A decomposition dynamic graph convolutional recurrent network for traffic forecasting publication-title: Pattern Recognition doi: 10.1016/j.patcog.2023.109670 – volume: 35 start-page: 21181 year: 2022 ident: 10.1016/j.eswa.2024.124648_b52 article-title: A correlation information-based spatiotemporal network for traffic flow forecasting publication-title: Neural Computing and Applications doi: 10.1007/s00521-023-08831-3 – year: 2023 ident: 10.1016/j.eswa.2024.124648_b25 article-title: Graph neural networks for intelligent transportation systems: A survey publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2023.3257759 – volume: 10 start-page: 136 year: 2016 ident: 10.1016/j.eswa.2024.124648_b21 article-title: Integrating granger causality and vector auto-regression for traffic prediction of large-scale WLANs publication-title: KSII Transactions on Internet and Information Systems – volume: 461 start-page: 109 year: 2021 ident: 10.1016/j.eswa.2024.124648_b45 article-title: Multiple dynamic graph based traffic speed prediction method publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.07.052 – year: 2019 ident: 10.1016/j.eswa.2024.124648_b9 article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting – volume: 228 year: 2023 ident: 10.1016/j.eswa.2024.124648_b14 article-title: Spatio-temporal graph mixformer for traffic forecasting publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.120281 – volume: 16 start-page: 104 year: 2018 ident: 10.1016/j.eswa.2024.124648_b39 article-title: Real-time road traffic state prediction based on kernel-KNN publication-title: Transportmetrica A: Transport Science doi: 10.1080/23249935.2018.1491073 – volume: 20 start-page: 2001 year: 2019 ident: 10.1016/j.eswa.2024.124648_b7 article-title: Adaptive multi-kernel SVM with spatial–temporal correlation for short-term traffic flow prediction publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2018.2854913 – volume: 10 start-page: 21217 year: 2023 ident: 10.1016/j.eswa.2024.124648_b23 article-title: A novel short-term traffic prediction model based on SVD and ARIMA with blockchain in industrial internet of things publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2023.3283611 – volume: 23 start-page: 1578 year: 2022 ident: 10.1016/j.eswa.2024.124648_b26 article-title: Global-local temporal convolutional network for traffic flow prediction publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2020.3025076 – volume: 239 year: 2024 ident: 10.1016/j.eswa.2024.124648_b16 article-title: Location and time embedded feature representation for spatiotemporal traffic prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.122449 – start-page: 1 year: 2017 ident: 10.1016/j.eswa.2024.124648_b20 article-title: Short-term traffic flow prediction with Conv-LSTM – volume: 92 start-page: 93 year: 2022 ident: 10.1016/j.eswa.2024.124648_b50 article-title: Hybrid deep learning models for traffic prediction in large-scale road networks publication-title: Information Fusion doi: 10.1016/j.inffus.2022.11.019 – year: 2021 ident: 10.1016/j.eswa.2024.124648_b10 – year: 2018 ident: 10.1016/j.eswa.2024.124648_b11 article-title: Spatio-temporal recurrent convolutional networks for citywide short-term crowd flows prediction |
| SSID | ssj0017007 |
| Score | 2.5299556 |
| Snippet | Accurate traffic prediction plays a crucial role in improving traffic conditions and optimizing road utilization. Effectively capturing the multi-scale... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 124648 |
| SubjectTerms | Graph convolution Spatial dependencies Temporal dependencies Traffic prediction |
| Title | STFGCN: Spatial–temporal fusion graph convolutional network for traffic prediction |
| URI | https://dx.doi.org/10.1016/j.eswa.2024.124648 |
| Volume | 255 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB1K3bjxLdZHmYU7SRszM8nEXSnWqthNW-guJPOASomltrgT_8E_9Eu8N5kUBenCZZI7kFxu7iM5cw4hl8wIC4VcecpI7nGpmZeyTHo-z6BJCoQWhUzn0yDsj_nDRExqpFvthUFYpcv9ZU4vsrU703bebM-n0_YQmgMohzDawYgAVXmCO9h5hCoGrfc1zAPp56KSby_y0NptnCkxXub1DbmHAt6CMheiBtBfxelHwentkR3XKdJOeTP7pGbyA7JbqTBQ91IektFw1LvrDm4oqgtDNH19fDq-qRm1K_wYRgtWaooAcxdocCkv8d8Umla6XKTIJEHnC_xtgwZHZNy7HXX7ntNK8BTz_aXHglhg8yL9UGexgQe1sZQsjDTn1sIQyHmgoiDNmA2N8lPGRKhjC8OS0j5jmh2Tev6SmxNCM59JDVOJDHTMUwUDGWeBtZEWXBspswa5rpyUKEckjnoWs6RCjD0n6NgEHZuUjm2Qq_WaeUmjsdFaVL5PfgVDAnl-w7rTf647I9t4VKJUzkl9uViZC-g1llmzCKYm2ercP_YH30vb02M |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbChtCG2E4cNVZQCbZemUrcoiW2pqCpVacWG-A_8Q34Jd4lTgYQ6sMY-KTld7u4lz-8IuWRaGCjkmZNpyR0uFXMSlkrH5Sk0SZ5QIh_T2e357QF_HIphhTTLszBIq7S5v8jpeba2VxrWm43paNToQ3MA5RCgHUAEqMrDNbLOhRcgAqu_L3keqD8XFIJ7gYPb7cmZguSlX99QfMjjdahzPg4B-qs6_ag4rR2yZVtFelvczS6p6Mke2S7HMFD7Vu6TqB-17pu9G4rjhSGcvj4-reDUmJoFfg2juSw1RYa5jTRYmhQEcApdK53PEpSSoNMZ_rfBDQdk0LqLmm3HDktwMua6c4d5ocDuRbq-SkMND2pCKZkfKM6NARTIuZcFXpIy4-vMTRgTvgoNoKVMuYwpdkiqk5eJPiI0dZlUAEukp0KeZIDIOPOMCZTgSkuZ1sh16aQ4s0riONBiHJeUsecYHRujY-PCsTVytbSZFjoaK3eL0vfxr2iIIdGvsDv-p90F2WhH3U7ceeg9nZBNXCkoK6ekOp8t9Bk0HvP0PA-sb1p_1Pg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STFGCN%3A+Spatial%E2%80%93temporal+fusion+graph+convolutional+network+for+traffic+prediction&rft.jtitle=Expert+systems+with+applications&rft.au=Li%2C+Hao&rft.au=Liu%2C+Jie&rft.au=Han%2C+Shiyuan&rft.au=Zhou%2C+Jin&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=255&rft_id=info:doi/10.1016%2Fj.eswa.2024.124648&rft.externalDocID=S095741742401515X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |