Multi-scale wavelet network algorithm for pediatric echocardiographic segmentation via hierarchical feature guided fusion
The automatic segmentation of critical anatomical structures in pediatric echocardiography is the essential steps for early diagnosis and treatment of congenital heart disease. However, current segmentation algorithms rarely extract the information based on effective feature enhancement algorithms....
Saved in:
| Published in | Applied soft computing Vol. 107; p. 107386 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.08.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 |
| DOI | 10.1016/j.asoc.2021.107386 |
Cover
| Abstract | The automatic segmentation of critical anatomical structures in pediatric echocardiography is the essential steps for early diagnosis and treatment of congenital heart disease. However, current segmentation algorithms rarely extract the information based on effective feature enhancement algorithms. Simultaneously, the algorithms are susceptible to image quality and the lack of detail information. To solve this, we propose a multi-scale wavelet network (MS-Net) combined with a bidirectional feature fusion (BFF-Net) and a wavelet-Unet (W-Unet) for end-to-end pediatric echocardiographic segmentation. In MS-Net, the entire network uses the discrete wavelet transform (DWT) instead of the sampling operation to reduce the impact of image noise while avoiding information loss. The algorithm enhances the edge information by designing the edge attention module (EAM) in the BFF-Net branch and fuses the context and detail information via the bidirectional feature fusion. Secondly, this algorithm uses W-Unet to obtain the detail features of high-resolution images by network depth reduction and propagation method, which supplements the features extracted by the BFF-Net branch. Finally, the hierarchical features of BFF-Net and W-Unet are fused and updated by guided filtering (GF) to obtain the final segmentation prediction. Using 127 pediatric echocardiographic cases of self-selection as the experimental dataset, the left atrium and left ventricle of the echocardiogram were segmented. The Dice coefficient values of 0.9532 and 0.9155, the pixel accuracy of 0.9914, and the specificity values of 0.9975 and 0.9984 were obtained. It was thus verifying its potential and effectiveness as a clinical auxiliary tool.
•MS-Net designs a dual-branch network to realize the segmentation of echocardiogram.•Using DWT to satisfies the sampling operation and eliminates the influence of noise.•Design the edge attention module for effective feature enhancement.•Design W-Unet to supplement network details.•Design BBF-Net can realize the perception of contextual and detail information. |
|---|---|
| AbstractList | The automatic segmentation of critical anatomical structures in pediatric echocardiography is the essential steps for early diagnosis and treatment of congenital heart disease. However, current segmentation algorithms rarely extract the information based on effective feature enhancement algorithms. Simultaneously, the algorithms are susceptible to image quality and the lack of detail information. To solve this, we propose a multi-scale wavelet network (MS-Net) combined with a bidirectional feature fusion (BFF-Net) and a wavelet-Unet (W-Unet) for end-to-end pediatric echocardiographic segmentation. In MS-Net, the entire network uses the discrete wavelet transform (DWT) instead of the sampling operation to reduce the impact of image noise while avoiding information loss. The algorithm enhances the edge information by designing the edge attention module (EAM) in the BFF-Net branch and fuses the context and detail information via the bidirectional feature fusion. Secondly, this algorithm uses W-Unet to obtain the detail features of high-resolution images by network depth reduction and propagation method, which supplements the features extracted by the BFF-Net branch. Finally, the hierarchical features of BFF-Net and W-Unet are fused and updated by guided filtering (GF) to obtain the final segmentation prediction. Using 127 pediatric echocardiographic cases of self-selection as the experimental dataset, the left atrium and left ventricle of the echocardiogram were segmented. The Dice coefficient values of 0.9532 and 0.9155, the pixel accuracy of 0.9914, and the specificity values of 0.9975 and 0.9984 were obtained. It was thus verifying its potential and effectiveness as a clinical auxiliary tool.
•MS-Net designs a dual-branch network to realize the segmentation of echocardiogram.•Using DWT to satisfies the sampling operation and eliminates the influence of noise.•Design the edge attention module for effective feature enhancement.•Design W-Unet to supplement network details.•Design BBF-Net can realize the perception of contextual and detail information. |
| ArticleNumber | 107386 |
| Author | Zhao, Cheng Xia, Bei Chen, Weiling Guo, Libao Du, Jie Wang, Tianfu Lei, Baiying |
| Author_xml | – sequence: 1 givenname: Cheng surname: Zhao fullname: Zhao, Cheng organization: School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China – sequence: 2 givenname: Bei surname: Xia fullname: Xia, Bei organization: Department of Ultrasound, Shenzhen Children Hospital, Hospital of Shantou University, China – sequence: 3 givenname: Weiling surname: Chen fullname: Chen, Weiling organization: Department of Ultrasound, Shenzhen Children Hospital, Hospital of Shantou University, China – sequence: 4 givenname: Libao surname: Guo fullname: Guo, Libao organization: School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China – sequence: 5 givenname: Jie surname: Du fullname: Du, Jie organization: School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China – sequence: 6 givenname: Tianfu surname: Wang fullname: Wang, Tianfu email: tfwang@szu.edu.cn organization: School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China – sequence: 7 givenname: Baiying surname: Lei fullname: Lei, Baiying email: leiby@szu.edu.cn organization: School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China |
| BookMark | eNp9kM9KAzEQh4NUsK2-gKe8wNbNbjfNghcp_gPFi57DOJm0qdtNSdKWvr0p9eShEJjhN_mG5BuxQe97YuxWlBNRCnm3mkD0OKnKSuRgVit5wYZCzaqilUoMct9IVUzbqbxioxhXZYbaSg3Z4X3bJVdEhI74HnbUUeI9pb0PPxy6hQ8uLdfc-sA3ZByk4JATLj1CMM4vAmyWOYm0WFOfIDnf850DvnQUIGCeQcctQdoG4outM2S43cZ87ZpdWugi3fzVMft6evycvxRvH8-v84e3AuuyTEVlbD6qhRIbhcbKGtGopiUJMzDT3DUNQmWkFFP4FmhqorYBi209s7bCeszUaS8GH2Mgq9GdHpoCuE6LUh8V6pU-KtRHhfqkMKPVP3QT3BrC4Tx0f4Iof2qXNeiIjnrM9gJh0sa7c_gvbmuR2Q |
| CitedBy_id | crossref_primary_10_1109_TMI_2024_3474028 crossref_primary_10_1016_j_media_2022_102648 crossref_primary_10_1109_ACCESS_2025_3545829 crossref_primary_10_1007_s13246_022_01179_3 crossref_primary_10_1109_TGRS_2024_3427370 crossref_primary_10_1038_s41598_023_38557_0 crossref_primary_10_1007_s12652_022_04231_y crossref_primary_10_1016_j_asoc_2025_112950 crossref_primary_10_1109_ACCESS_2024_3424546 crossref_primary_10_1364_BOE_475272 crossref_primary_10_1109_ACCESS_2024_3504297 crossref_primary_10_1002_int_22969 crossref_primary_10_1109_TGRS_2024_3521483 crossref_primary_10_1016_j_measurement_2025_117393 |
| Cites_doi | 10.1109/ACCESS.2020.2971383 10.1109/ICDIP.2009.14 10.1109/CVPR42600.2020.00727 10.1016/j.neucom.2015.12.073 10.1109/TMI.2019.2900516 10.1016/j.asoc.2020.106765 10.1109/CVPR.2018.00813 10.1007/978-3-030-01234-2_1 10.1109/TPAMI.2016.2644615 10.1109/3DV.2016.79 10.1007/s12021-018-9377-x 10.1109/ICCV.2017.187 10.1109/CVPR.2019.01215 10.1109/CVPR.2019.00541 10.1109/IJCNN.2018.8489717 10.1016/j.inffus.2016.11.007 10.1007/978-3-319-24574-4_28 10.1109/BIBM.2016.7822557 10.1109/ACCESS.2020.2984630 10.1109/ULTSYM.2017.8092812 10.1016/j.asoc.2019.02.036 10.1117/12.2547375 10.1016/j.asoc.2019.105890 10.1155/2018/5682365 10.1109/MCSE.2007.67 10.1109/ISBI.2018.8363716 10.1007/978-3-030-01234-2_49 10.1007/978-3-030-59710-8_41 10.1016/j.inffus.2017.10.005 10.1007/978-3-030-01261-8_20 10.3389/fcvm.2020.00025 10.1109/CVPR42600.2020.01155 10.1016/j.neunet.2020.07.011 10.1109/ULTSYM.2018.8580136 10.1109/CVPR.2016.90 10.1007/978-3-319-66182-7_81 10.1109/CVPR.2017.660 10.1109/CVPR.2018.00745 10.1109/CVPR.2015.7298965 10.1109/ICCVW.2019.00246 10.1515/bmt-2017-0178 10.1007/s11263-006-7934-5 10.1007/978-3-319-24553-9_62 10.1186/1471-2342-8-8 10.1002/mp.13577 10.1109/CVPR.2019.00326 10.1007/978-3-030-32692-0_50 10.1109/CVPR.2019.00197 10.1007/978-3-642-15549-9_1 10.1109/CVPRW.2018.00121 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2021.107386 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2021_107386 S1568494621003094 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61871274; 61801305; 81571758 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Shenzhen Key Basic Research Project, China grantid: JCYJ20170818094109846; JCYJ20180507184647636; JCYJ20190808155618806; GJHZ20190822095414576; JCYJ20190808145011259 – fundername: National Natural Science Foundation of Guangdong Province, China grantid: 2019A1515111205 funderid: http://dx.doi.org/10.13039/501100003453 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-2df2df89a0c58cdf63ccd859e6a7ad485955ca2d6614ab1cd3ee95afc937ff2c3 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Thu Apr 24 22:58:50 EDT 2025 Wed Oct 29 21:49:59 EDT 2025 Fri Feb 23 02:44:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bidirectional feature fusion Multi-scale wavelet network Discrete wavelet transform Wavelet-unet Pediatric echocardiographic segmentation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-2df2df89a0c58cdf63ccd859e6a7ad485955ca2d6614ab1cd3ee95afc937ff2c3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2021_107386 crossref_primary_10_1016_j_asoc_2021_107386 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107386 |
| PublicationCentury | 2000 |
| PublicationDate | August 2021 2021-08-00 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440. K. Li, S. Wang, L. Yu, P.-A. Heng, Dual-Teacher: Integrating intra-domain and inter-domain teachers for annotation-efficient cardiac segmentation, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2020, pp. 418–427. K. He, J. Sun, X. Tang, Guided image filtering, in: Proceedings of the European Conference on Computer Vision, 2010, pp. 1–14. Liu, Song, Wang (b58) 2020 J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, Dual attention network for scene segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3146–3154. Hao, Zhou, Guo (b60) 2020 Chen, Papandreou, Schroff, Adam (b15) 2017 Leclerc, Smistad, Pedrosa, Østvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier (b12) 2019; 38 Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-net: Efficient channel attention for deep convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11534–11542. S. Liu, E. Johns, A.J. Davison, End-to-end multi-task learning with attention, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 1871–1880. Xie, Zhang, Xia, Fulham, Zhang (b27) 2018; 42 M. Chitsaz, W.C. Seng, Medical image segmentation by using reinforcement learning agent, in: Proceedings of the 2009 International Conference on Digital Image Processing, 2009, pp. 216–219. Pan, Lu (b4) 2007; 9 Sinha, Dolz (b16) 2020 Hu, Perazzi, Heilbron, Wang, Lin, Saenko, Sclaroff (b54) 2020 H. Wang, G. Wang, Z. Sheng, S. Zhang, Automated segmentation of skin lesion based on pyramid attention network, in: Proceedings of the International Workshop on Machine Learning in Medical Imaging, 2019, pp. 435–443. Y. Zhang, M.T. Ying, L. Yang, A.T. Ahuja, D.Z. Chen, Coarse-to-fine stacked fully convolutional nets for lymph node segmentation in ultrasound images, in: Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM, 2016, pp. 443–448. Chai, Liu, Xu (b25) 2020; 86 Xue, Xu, Zhang, Long, Huang (b38) 2018; 16 Yang, Yu, Wu, Wang, Ni, Qin, Heng (b36) 2016 C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, N. Sang, Bisenet: Bilateral segmentation network for real-time semantic segmentation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 325–341. Xu, Liu, Zhang, He (b2) 2020; 8 Gao, Li, Loomes, Wang (b28) 2017; 36 Zhou, Siddiquee, Tajbakhsh, Liang (b8) 2018 H. Huang, R. He, Z. Sun, T. Tan, Wavelet-srnet: A wavelet-based cnn for multi-scale face super resolution, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1689–1697. Boykov, Funka-Lea (b5) 2006; 70 O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: Proceedings of the International Conference on Medical image computing and computer-assisted intervention, 2015, pp. 234–241. Dong, Luo, Wang, Cao, Li, Zhang (b46) 2018; 2018 Wolterink, Kamnitsas, Ledig, Išgum (b39) 2018 Hu, Xia, Mao, Jin, Du, Guo, Frangi, Lei, Wang (b52) 2020; 8 Y. Liu, Q. Li, Z. Sun, Attribute enhanced face aging with wavelet-based generative adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. Mittal, Goyal, Kaur, Kaur, Verma, Hemanth (b26) 2019; 78 J. Lee, E. Kim, S. Lee, J. Lee, S. Yoon, Ficklenet: Weakly and semi-supervised semantic image segmentation using stochastic inference, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 5267–5276. P. Liu, H. Zhang, K. Zhang, L. Lin, W. Zuo, Multi-level wavelet-CNN for image restoration, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 773–782. S. Leclerc, E. Smistad, T. Grenier, C. Lartizien, A. Ostvik, F. Espinosa, P.-M. Jodoin, L. Lovstakken, O. Bernard, Deep learning applied to multi-structure segmentation in 2D echocardiography: a preliminary investigation of the required database size, in: Proceedings of the 2018 IEEE International Ultrasonics Symposium, IUS, 2018, pp. 1–4. Q. Li, L. Shen, S. Guo, Z. Lai, Wavelet integrated CNNs for noise-robust image classification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 7245–7254. Mendis, Puska, Norrving, Organization (b1) 2011 Zhou, Wang, Zhang, Liang, Gong (b3) 2016; 186 Savareh, Emami, Hajiabadi, Azimi, Ghafoori (b18) 2019; 64 J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141. X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7794–7803. L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder–decoder with atrous separable convolution for semantic image segmentation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 801–818. Zhuang, Raj, Jain, Ruban, Chaurasia, Li, Lakshmanan, Murugappan (b31) 2019; 9 H. Chen, Q. Dou, D. Ni, J.-Z. Cheng, J. Qin, S. Li, P.-A. Heng, Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks, in: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015, pp. 507–514. Peng, Kervadec, Dolz, Ayed, Pedersoli, Desrosiers (b40) 2020; 130 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. G. Veni, M. Moradi, H. Bulu, G. Narayan, T. Syeda-Mahmood, Echocardiography segmentation based on a shape-guided deformable model driven by a fully convolutional network prior, in: Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018, 2018, pp. 898–902. Badrinarayanan, Kendall, Cipolla (b34) 2017; 39 Liu, Wang, Liu, Yang, Tian (b56) 2020 F. Milletari, N. Navab, S.-A. Ahmadi, V-net: Fully convolutional neural networks for volumetric medical image segmentation, in: Proceedings of the 2016 Fourth International Conference on 3D Vision, 3DV, 2016, pp. 565–571. J.V. Stough, S. Raghunath, X. Zhang, J.M. Pfeifer, B.K. Fornwalt, C.M. Haggerty, Left ventricular and atrial segmentation of 2D echocardiography with convolutional neural networks, in: Proceedings of the Medical Imaging 2020: Image Processing, 2020, 113130A. E. Smistad, A. Østvik, 2D left ventricle segmentation using deep learning, in: Proceedings of the 2017 IEEE International Ultrasonics Symposium, IUS, 2017, pp. 1–4. H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2881–2890. S. Woo, J. Park, J.-Y. Lee, I. So Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19. X. Yang, L. Yu, S. Li, X. Wang, N. Wang, J. Qin, D. Ni, P.-A. Heng, Towards automatic semantic segmentation in volumetric ultrasound, in: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2017, pp. 711–719. Sahba, Tizhoosh, Salama (b43) 2008; 8 Chen, Qin, Qiu, Tarroni, Duan, Bai, Rueckert (b6) 2020; 7 S. Ross-HoweH, R. Tizhoosh, The effects of image pre-and post-processing, wavelet decomposition, and local binary patterns on U-nets for skin lesion segmentation, in: Proceedings of the 2018 International Joint Conference on Neural Networks, IJCNN, 2018, pp. 1–8. Lei, Tian, He, Wang, Wang, Patel, Jani, Mao, Curran, Liu (b32) 2019; 46 Y. Cao, J. Xu, S. Lin, F. Wei, H. Hu, Gcnet: Non-local networks meet squeeze-excitation networks and beyond, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019. Long, Zhang, Li, Niu, Wu, Li (b24) 2020; 97 Wolterink (10.1016/j.asoc.2021.107386_b39) 2018 Liu (10.1016/j.asoc.2021.107386_b56) 2020 Xue (10.1016/j.asoc.2021.107386_b38) 2018; 16 Badrinarayanan (10.1016/j.asoc.2021.107386_b34) 2017; 39 Chen (10.1016/j.asoc.2021.107386_b15) 2017 Chen (10.1016/j.asoc.2021.107386_b6) 2020; 7 Hu (10.1016/j.asoc.2021.107386_b52) 2020; 8 Lei (10.1016/j.asoc.2021.107386_b32) 2019; 46 Mendis (10.1016/j.asoc.2021.107386_b1) 2011 Xu (10.1016/j.asoc.2021.107386_b2) 2020; 8 10.1016/j.asoc.2021.107386_b37 10.1016/j.asoc.2021.107386_b35 10.1016/j.asoc.2021.107386_b33 Boykov (10.1016/j.asoc.2021.107386_b5) 2006; 70 10.1016/j.asoc.2021.107386_b30 Zhuang (10.1016/j.asoc.2021.107386_b31) 2019; 9 Pan (10.1016/j.asoc.2021.107386_b4) 2007; 9 Long (10.1016/j.asoc.2021.107386_b24) 2020; 97 Zhou (10.1016/j.asoc.2021.107386_b3) 2016; 186 10.1016/j.asoc.2021.107386_b49 10.1016/j.asoc.2021.107386_b48 10.1016/j.asoc.2021.107386_b47 10.1016/j.asoc.2021.107386_b45 10.1016/j.asoc.2021.107386_b44 10.1016/j.asoc.2021.107386_b9 10.1016/j.asoc.2021.107386_b42 10.1016/j.asoc.2021.107386_b7 10.1016/j.asoc.2021.107386_b41 Chai (10.1016/j.asoc.2021.107386_b25) 2020; 86 Peng (10.1016/j.asoc.2021.107386_b40) 2020; 130 Sahba (10.1016/j.asoc.2021.107386_b43) 2008; 8 Zhou (10.1016/j.asoc.2021.107386_b8) 2018 Hao (10.1016/j.asoc.2021.107386_b60) 2020 10.1016/j.asoc.2021.107386_b19 10.1016/j.asoc.2021.107386_b17 10.1016/j.asoc.2021.107386_b59 10.1016/j.asoc.2021.107386_b14 Savareh (10.1016/j.asoc.2021.107386_b18) 2019; 64 10.1016/j.asoc.2021.107386_b13 10.1016/j.asoc.2021.107386_b57 10.1016/j.asoc.2021.107386_b11 10.1016/j.asoc.2021.107386_b55 10.1016/j.asoc.2021.107386_b10 Leclerc (10.1016/j.asoc.2021.107386_b12) 2019; 38 10.1016/j.asoc.2021.107386_b53 Gao (10.1016/j.asoc.2021.107386_b28) 2017; 36 10.1016/j.asoc.2021.107386_b51 Yang (10.1016/j.asoc.2021.107386_b36) 2016 Dong (10.1016/j.asoc.2021.107386_b46) 2018; 2018 10.1016/j.asoc.2021.107386_b50 Mittal (10.1016/j.asoc.2021.107386_b26) 2019; 78 Xie (10.1016/j.asoc.2021.107386_b27) 2018; 42 Hu (10.1016/j.asoc.2021.107386_b54) 2020 Sinha (10.1016/j.asoc.2021.107386_b16) 2020 10.1016/j.asoc.2021.107386_b29 Liu (10.1016/j.asoc.2021.107386_b58) 2020 10.1016/j.asoc.2021.107386_b23 10.1016/j.asoc.2021.107386_b22 10.1016/j.asoc.2021.107386_b21 10.1016/j.asoc.2021.107386_b20 10.1016/j.asoc.2021.107386_b61 |
| References_xml | – volume: 7 start-page: 25 year: 2020 ident: b6 article-title: Deep learning for cardiac image segmentation: a review publication-title: Front. Cardiovasc. Med. – volume: 186 start-page: 107 year: 2016 end-page: 118 ident: b3 article-title: Active contour model based on local and global intensity information for medical image segmentation publication-title: Neurocomputing – volume: 64 start-page: 195 year: 2019 end-page: 205 ident: b18 article-title: Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm publication-title: Biomed. Eng.-Biomed. Tech. – reference: P. Liu, H. Zhang, K. Zhang, L. Lin, W. Zuo, Multi-level wavelet-CNN for image restoration, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 773–782. – reference: L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder–decoder with atrous separable convolution for semantic image segmentation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 801–818. – reference: H. Wang, G. Wang, Z. Sheng, S. Zhang, Automated segmentation of skin lesion based on pyramid attention network, in: Proceedings of the International Workshop on Machine Learning in Medical Imaging, 2019, pp. 435–443. – volume: 36 start-page: 103 year: 2017 end-page: 113 ident: b28 article-title: A fused deep learning architecture for viewpoint classification of echocardiography publication-title: Inf. Fusion – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b34 article-title: Segnet: A deep convolutional encoder–decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. – year: 2016 ident: b36 article-title: Fine-grained recurrent neural networks for automatic prostate segmentation in ultrasound images – reference: J. Lee, E. Kim, S. Lee, J. Lee, S. Yoon, Ficklenet: Weakly and semi-supervised semantic image segmentation using stochastic inference, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 5267–5276. – volume: 9 start-page: 32 year: 2007 end-page: 38 ident: b4 article-title: A Bayes-based region-growing algorithm for medical image segmentation publication-title: Comput. Sci. Eng. – reference: S. Ross-HoweH, R. Tizhoosh, The effects of image pre-and post-processing, wavelet decomposition, and local binary patterns on U-nets for skin lesion segmentation, in: Proceedings of the 2018 International Joint Conference on Neural Networks, IJCNN, 2018, pp. 1–8. – volume: 78 start-page: 346 year: 2019 end-page: 354 ident: b26 article-title: Deep learning based enhanced tumor segmentation approach for MR brain images publication-title: Appl. Soft. Comput. – reference: M. Chitsaz, W.C. Seng, Medical image segmentation by using reinforcement learning agent, in: Proceedings of the 2009 International Conference on Digital Image Processing, 2009, pp. 216–219. – reference: S. Woo, J. Park, J.-Y. Lee, I. So Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19. – year: 2017 ident: b15 article-title: Rethinking atrous convolution for semantic image segmentation – reference: J.V. Stough, S. Raghunath, X. Zhang, J.M. Pfeifer, B.K. Fornwalt, C.M. Haggerty, Left ventricular and atrial segmentation of 2D echocardiography with convolutional neural networks, in: Proceedings of the Medical Imaging 2020: Image Processing, 2020, 113130A. – volume: 16 start-page: 383 year: 2018 end-page: 392 ident: b38 article-title: Segan: Adversarial network with multi-scale l 1 loss for medical image segmentation publication-title: Neuroinformatics – reference: Y. Zhang, M.T. Ying, L. Yang, A.T. Ahuja, D.Z. Chen, Coarse-to-fine stacked fully convolutional nets for lymph node segmentation in ultrasound images, in: Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM, 2016, pp. 443–448. – year: 2020 ident: b54 article-title: Real-time semantic segmentation with Fast attention – reference: K. He, J. Sun, X. Tang, Guided image filtering, in: Proceedings of the European Conference on Computer Vision, 2010, pp. 1–14. – reference: H. Huang, R. He, Z. Sun, T. Tan, Wavelet-srnet: A wavelet-based cnn for multi-scale face super resolution, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1689–1697. – reference: S. Liu, E. Johns, A.J. Davison, End-to-end multi-task learning with attention, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 1871–1880. – reference: J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, Dual attention network for scene segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3146–3154. – volume: 97 year: 2020 ident: b24 article-title: Segmentation and classification of knee joint ultrasonic image via deep learning publication-title: Appl. Soft. Comput. – reference: X. Yang, L. Yu, S. Li, X. Wang, N. Wang, J. Qin, D. Ni, P.-A. Heng, Towards automatic semantic segmentation in volumetric ultrasound, in: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2017, pp. 711–719. – volume: 9 start-page: 1827 year: 2019 end-page: 1837 ident: b31 article-title: Nipple segmentation and localization using modified u-net on breast ultrasound images publication-title: J. Med. Imag. Health Inform. – volume: 8 start-page: 8 year: 2008 ident: b43 article-title: Application of reinforcement learning for segmentation of transrectal ultrasound images publication-title: BMC Med. Imag. – reference: S. Leclerc, E. Smistad, T. Grenier, C. Lartizien, A. Ostvik, F. Espinosa, P.-M. Jodoin, L. Lovstakken, O. Bernard, Deep learning applied to multi-structure segmentation in 2D echocardiography: a preliminary investigation of the required database size, in: Proceedings of the 2018 IEEE International Ultrasonics Symposium, IUS, 2018, pp. 1–4. – reference: Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-net: Efficient channel attention for deep convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11534–11542. – volume: 42 start-page: 102 year: 2018 end-page: 110 ident: b27 article-title: Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT publication-title: Inf. Fusion – reference: X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7794–7803. – volume: 8 start-page: 29176 year: 2020 end-page: 29187 ident: b52 article-title: AIDAN: An attention-guided dual-path network for pediatric echocardiography segmentation publication-title: IEEE Access – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. – volume: 8 start-page: 80437 year: 2020 end-page: 80446 ident: b2 article-title: Convolutional-neural-network-based approach for segmentation of apical four-chamber view from fetal echocardiography publication-title: IEEE Access – volume: 70 start-page: 109 year: 2006 end-page: 131 ident: b5 article-title: Graph cuts and efficient ND image segmentation publication-title: Int. J. Comput. Vis. – reference: H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2881–2890. – reference: H. Chen, Q. Dou, D. Ni, J.-Z. Cheng, J. Qin, S. Li, P.-A. Heng, Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks, in: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015, pp. 507–514. – reference: F. Milletari, N. Navab, S.-A. Ahmadi, V-net: Fully convolutional neural networks for volumetric medical image segmentation, in: Proceedings of the 2016 Fourth International Conference on 3D Vision, 3DV, 2016, pp. 565–571. – year: 2020 ident: b58 article-title: WaveFuse: A unified deep framework for image gusion with wavelet transform – start-page: 3 year: 2018 end-page: 11 ident: b8 article-title: Unet++: A nested u-net architecture for medical image segmentation publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – year: 2020 ident: b56 article-title: Deep pyramid local attention neural network for cardiac structure segmentation in two-dimensional echocardiography publication-title: Med. Image Anal. – volume: 86 year: 2020 ident: b25 article-title: A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images publication-title: Appl. Soft. Comput. – reference: G. Veni, M. Moradi, H. Bulu, G. Narayan, T. Syeda-Mahmood, Echocardiography segmentation based on a shape-guided deformable model driven by a fully convolutional network prior, in: Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018, 2018, pp. 898–902. – year: 2020 ident: b60 article-title: Bi-direction context propagation network for real-time semantic segmentation – reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141. – volume: 130 start-page: 297 year: 2020 end-page: 308 ident: b40 article-title: Discretely-constrained deep network for weakly supervised segmentation publication-title: Neural Netw. – reference: Y. Cao, J. Xu, S. Lin, F. Wei, H. Hu, Gcnet: Non-local networks meet squeeze-excitation networks and beyond, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019. – start-page: 1 year: 2020 end-page: 12 ident: b16 article-title: Multi-scale self-guided attention for medical image segmentation publication-title: IEEE J. Biomed. Health – year: 2011 ident: b1 article-title: Global Atlas on Cardiovascular Disease Prevention and Control – year: 2018 ident: b39 article-title: Generative adversarial networks and adversarial methods in biomedical image analysis – volume: 38 start-page: 2198 year: 2019 end-page: 2210 ident: b12 article-title: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography publication-title: IEEE Trans. Med. Imag. – volume: 46 start-page: 3194 year: 2019 end-page: 3206 ident: b32 article-title: Ultrasound prostate segmentation based on multidirectional deeply supervised V-Net publication-title: Med. Phys. – reference: C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, N. Sang, Bisenet: Bilateral segmentation network for real-time semantic segmentation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 325–341. – reference: Y. Liu, Q. Li, Z. Sun, Attribute enhanced face aging with wavelet-based generative adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. – reference: E. Smistad, A. Østvik, 2D left ventricle segmentation using deep learning, in: Proceedings of the 2017 IEEE International Ultrasonics Symposium, IUS, 2017, pp. 1–4. – reference: K. Li, S. Wang, L. Yu, P.-A. Heng, Dual-Teacher: Integrating intra-domain and inter-domain teachers for annotation-efficient cardiac segmentation, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2020, pp. 418–427. – volume: 2018 year: 2018 ident: b46 article-title: A combined fully convolutional networks and deformable model for automatic left ventricle segmentation based on 3D echocardiography publication-title: Biomed. Res. Int. – reference: Q. Li, L. Shen, S. Guo, Z. Lai, Wavelet integrated CNNs for noise-robust image classification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 7245–7254. – reference: O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: Proceedings of the International Conference on Medical image computing and computer-assisted intervention, 2015, pp. 234–241. – reference: J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440. – volume: 8 start-page: 29176 year: 2020 ident: 10.1016/j.asoc.2021.107386_b52 article-title: AIDAN: An attention-guided dual-path network for pediatric echocardiography segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971383 – ident: 10.1016/j.asoc.2021.107386_b44 doi: 10.1109/ICDIP.2009.14 – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2021.107386_b16 article-title: Multi-scale self-guided attention for medical image segmentation publication-title: IEEE J. Biomed. Health – year: 2018 ident: 10.1016/j.asoc.2021.107386_b39 – ident: 10.1016/j.asoc.2021.107386_b59 doi: 10.1109/CVPR42600.2020.00727 – volume: 186 start-page: 107 year: 2016 ident: 10.1016/j.asoc.2021.107386_b3 article-title: Active contour model based on local and global intensity information for medical image segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.073 – volume: 38 start-page: 2198 issue: 9 year: 2019 ident: 10.1016/j.asoc.2021.107386_b12 article-title: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2019.2900516 – volume: 97 year: 2020 ident: 10.1016/j.asoc.2021.107386_b24 article-title: Segmentation and classification of knee joint ultrasonic image via deep learning publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2020.106765 – year: 2011 ident: 10.1016/j.asoc.2021.107386_b1 – ident: 10.1016/j.asoc.2021.107386_b50 doi: 10.1109/CVPR.2018.00813 – ident: 10.1016/j.asoc.2021.107386_b17 doi: 10.1007/978-3-030-01234-2_1 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.asoc.2021.107386_b34 article-title: Segnet: A deep convolutional encoder–decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. doi: 10.1109/TPAMI.2016.2644615 – ident: 10.1016/j.asoc.2021.107386_b9 doi: 10.1109/3DV.2016.79 – volume: 16 start-page: 383 issue: 3–4 year: 2018 ident: 10.1016/j.asoc.2021.107386_b38 article-title: Segan: Adversarial network with multi-scale l 1 loss for medical image segmentation publication-title: Neuroinformatics doi: 10.1007/s12021-018-9377-x – ident: 10.1016/j.asoc.2021.107386_b20 doi: 10.1109/ICCV.2017.187 – ident: 10.1016/j.asoc.2021.107386_b19 doi: 10.1109/CVPR.2019.01215 – ident: 10.1016/j.asoc.2021.107386_b41 doi: 10.1109/CVPR.2019.00541 – ident: 10.1016/j.asoc.2021.107386_b21 doi: 10.1109/IJCNN.2018.8489717 – volume: 36 start-page: 103 year: 2017 ident: 10.1016/j.asoc.2021.107386_b28 article-title: A fused deep learning architecture for viewpoint classification of echocardiography publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.11.007 – year: 2020 ident: 10.1016/j.asoc.2021.107386_b58 – year: 2020 ident: 10.1016/j.asoc.2021.107386_b54 – ident: 10.1016/j.asoc.2021.107386_b7 doi: 10.1007/978-3-319-24574-4_28 – ident: 10.1016/j.asoc.2021.107386_b30 doi: 10.1109/BIBM.2016.7822557 – volume: 8 start-page: 80437 year: 2020 ident: 10.1016/j.asoc.2021.107386_b2 article-title: Convolutional-neural-network-based approach for segmentation of apical four-chamber view from fetal echocardiography publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2984630 – ident: 10.1016/j.asoc.2021.107386_b47 doi: 10.1109/ULTSYM.2017.8092812 – volume: 78 start-page: 346 year: 2019 ident: 10.1016/j.asoc.2021.107386_b26 article-title: Deep learning based enhanced tumor segmentation approach for MR brain images publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2019.02.036 – ident: 10.1016/j.asoc.2021.107386_b33 doi: 10.1117/12.2547375 – year: 2020 ident: 10.1016/j.asoc.2021.107386_b60 – volume: 86 year: 2020 ident: 10.1016/j.asoc.2021.107386_b25 article-title: A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2019.105890 – volume: 2018 year: 2018 ident: 10.1016/j.asoc.2021.107386_b46 article-title: A combined fully convolutional networks and deformable model for automatic left ventricle segmentation based on 3D echocardiography publication-title: Biomed. Res. Int. doi: 10.1155/2018/5682365 – volume: 9 start-page: 32 issue: 4 year: 2007 ident: 10.1016/j.asoc.2021.107386_b4 article-title: A Bayes-based region-growing algorithm for medical image segmentation publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.67 – ident: 10.1016/j.asoc.2021.107386_b29 doi: 10.1109/ISBI.2018.8363716 – start-page: 3 year: 2018 ident: 10.1016/j.asoc.2021.107386_b8 article-title: Unet++: A nested u-net architecture for medical image segmentation – ident: 10.1016/j.asoc.2021.107386_b14 doi: 10.1007/978-3-030-01234-2_49 – ident: 10.1016/j.asoc.2021.107386_b42 doi: 10.1007/978-3-030-59710-8_41 – volume: 42 start-page: 102 year: 2018 ident: 10.1016/j.asoc.2021.107386_b27 article-title: Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.10.005 – volume: 9 start-page: 1827 issue: 9 year: 2019 ident: 10.1016/j.asoc.2021.107386_b31 article-title: Nipple segmentation and localization using modified u-net on breast ultrasound images publication-title: J. Med. Imag. Health Inform. – ident: 10.1016/j.asoc.2021.107386_b57 doi: 10.1007/978-3-030-01261-8_20 – volume: 7 start-page: 25 year: 2020 ident: 10.1016/j.asoc.2021.107386_b6 article-title: Deep learning for cardiac image segmentation: a review publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2020.00025 – ident: 10.1016/j.asoc.2021.107386_b49 doi: 10.1109/CVPR42600.2020.01155 – volume: 130 start-page: 297 year: 2020 ident: 10.1016/j.asoc.2021.107386_b40 article-title: Discretely-constrained deep network for weakly supervised segmentation publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.07.011 – ident: 10.1016/j.asoc.2021.107386_b45 doi: 10.1109/ULTSYM.2018.8580136 – ident: 10.1016/j.asoc.2021.107386_b10 doi: 10.1109/CVPR.2016.90 – year: 2020 ident: 10.1016/j.asoc.2021.107386_b56 article-title: Deep pyramid local attention neural network for cardiac structure segmentation in two-dimensional echocardiography publication-title: Med. Image Anal. – ident: 10.1016/j.asoc.2021.107386_b37 doi: 10.1007/978-3-319-66182-7_81 – ident: 10.1016/j.asoc.2021.107386_b13 doi: 10.1109/CVPR.2017.660 – year: 2017 ident: 10.1016/j.asoc.2021.107386_b15 – ident: 10.1016/j.asoc.2021.107386_b48 doi: 10.1109/CVPR.2018.00745 – ident: 10.1016/j.asoc.2021.107386_b11 doi: 10.1109/CVPR.2015.7298965 – ident: 10.1016/j.asoc.2021.107386_b51 doi: 10.1109/ICCVW.2019.00246 – volume: 64 start-page: 195 issue: 2 year: 2019 ident: 10.1016/j.asoc.2021.107386_b18 article-title: Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm publication-title: Biomed. Eng.-Biomed. Tech. doi: 10.1515/bmt-2017-0178 – volume: 70 start-page: 109 issue: 2 year: 2006 ident: 10.1016/j.asoc.2021.107386_b5 article-title: Graph cuts and efficient ND image segmentation publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-006-7934-5 – ident: 10.1016/j.asoc.2021.107386_b35 doi: 10.1007/978-3-319-24553-9_62 – volume: 8 start-page: 8 issue: 1 year: 2008 ident: 10.1016/j.asoc.2021.107386_b43 article-title: Application of reinforcement learning for segmentation of transrectal ultrasound images publication-title: BMC Med. Imag. doi: 10.1186/1471-2342-8-8 – volume: 46 start-page: 3194 issue: 7 year: 2019 ident: 10.1016/j.asoc.2021.107386_b32 article-title: Ultrasound prostate segmentation based on multidirectional deeply supervised V-Net publication-title: Med. Phys. doi: 10.1002/mp.13577 – ident: 10.1016/j.asoc.2021.107386_b61 doi: 10.1109/CVPR.2019.00326 – ident: 10.1016/j.asoc.2021.107386_b53 doi: 10.1007/978-3-030-32692-0_50 – ident: 10.1016/j.asoc.2021.107386_b55 doi: 10.1109/CVPR.2019.00197 – ident: 10.1016/j.asoc.2021.107386_b23 doi: 10.1007/978-3-642-15549-9_1 – ident: 10.1016/j.asoc.2021.107386_b22 doi: 10.1109/CVPRW.2018.00121 – year: 2016 ident: 10.1016/j.asoc.2021.107386_b36 |
| SSID | ssj0016928 |
| Score | 2.446612 |
| Snippet | The automatic segmentation of critical anatomical structures in pediatric echocardiography is the essential steps for early diagnosis and treatment of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107386 |
| SubjectTerms | Bidirectional feature fusion Discrete wavelet transform Multi-scale wavelet network Pediatric echocardiographic segmentation Wavelet-unet |
| Title | Multi-scale wavelet network algorithm for pediatric echocardiographic segmentation via hierarchical feature guided fusion |
| URI | https://dx.doi.org/10.1016/j.asoc.2021.107386 |
| Volume | 107 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lXry4i3UpOXiTsU1mP5ZiqVsRtdDbkMlSK-202Fbx4m_3vZlMUZAehIFhQjIMXzJvSd57HyHnUqvQhMw4MecGjxlTRzDNHTcyYF0rEzCJ-5D3vaDb924G_qBC2mUuDIZVWtlfyPRcWtuWhkWzMRuNGk_geURe7AXgtOA5AdYE9bwQWQwuv1ZhHiyIc35V7Oxgb5s4U8R4CUAAfETOoAHZL_9WTj8UTmeHbFlLkbaKj9klFZ3tke2ShYHan3KffOY5tM4cwNb0QyCRxIJmRXQ3FePhFNz_lwkF45TOSl4OqkHqyTwUNa9YDS1zPZzYPKSMvo8ERZLs_JgBXkyNzguA0uFypLSiZombbAek37l6bncdS6jgSLfZXDhcGbiiWDSlH0mYCFdKFfmxDkQolIelznwpuEKdLVImlat17AsjwYYxhkv3kFSzaaaPCA2bacCYlBEA7zFuQDBEURoq4YPFKVNeI6xEMpG22jiSXoyTMqzsNUH0E0Q_KdCvkYvVmFlRa2Ntb7-coOTXiklAGawZd_zPcSdkE5-K4L9TUl28LfUZGCSLtJ6vuDrZaLUf7x7wfn3b7X0DYCnk7g |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2wotHbeI6pABdoutBJb5PhRgtq0oi2Ihd_OXeIgkBADUibHjqLP9j3su_sIOZdahSZkxok5N3jNmDqCae64kQHrWpmASTyH7PWDztC7e_Qfa6Rd5cJgWKWV_aVML6S1bWlaNJuzLGs-gOcRebEXgNOC9wTeCln1fB6iB3b58RXnwYK4IFjF3g52t5kzZZCXAAjASeQMGpD-8nft9E3j3GyRDWsq0qvyb7ZJTec7ZLOiYaB2V-6S9yKJ1pkD2pq-CWSSWNC8DO-mYjyagv__NKFgndJZRcxBNYg9WcSiFiWroWWuRxObiJTT10xQZMku7hngw9ToogIoHS0zpRU1Szxl2yPDm-tBu-NYRgVHuq3WwuHKwBPFoiX9SMJMuFKqyI91IEKhPKx15kvBFSptkTKpXK1jXxgJRowxXLr7pJ5Pc31AaNhKA8akjAB5j3EDkiGK0lAJH0xOmfIGYRWSibTlxpH1YpxUcWXPCaKfIPpJiX6DXHyNmZXFNv7s7VcTlPxYMglogz_GHf5z3BlZ6wx63aR7278_Iuv4powEPCb1xctSn4B1skhPi9X3CZZ25O4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+wavelet+network+algorithm+for+pediatric+echocardiographic+segmentation+via+hierarchical+feature+guided+fusion&rft.jtitle=Applied+soft+computing&rft.au=Zhao%2C+Cheng&rft.au=Xia%2C+Bei&rft.au=Chen%2C+Weiling&rft.au=Guo%2C+Libao&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=107&rft_id=info:doi/10.1016%2Fj.asoc.2021.107386&rft.externalDocID=S1568494621003094 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |