Multi-scale wavelet network algorithm for pediatric echocardiographic segmentation via hierarchical feature guided fusion

The automatic segmentation of critical anatomical structures in pediatric echocardiography is the essential steps for early diagnosis and treatment of congenital heart disease. However, current segmentation algorithms rarely extract the information based on effective feature enhancement algorithms....

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 107; p. 107386
Main Authors Zhao, Cheng, Xia, Bei, Chen, Weiling, Guo, Libao, Du, Jie, Wang, Tianfu, Lei, Baiying
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2021
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2021.107386

Cover

Abstract The automatic segmentation of critical anatomical structures in pediatric echocardiography is the essential steps for early diagnosis and treatment of congenital heart disease. However, current segmentation algorithms rarely extract the information based on effective feature enhancement algorithms. Simultaneously, the algorithms are susceptible to image quality and the lack of detail information. To solve this, we propose a multi-scale wavelet network (MS-Net) combined with a bidirectional feature fusion (BFF-Net) and a wavelet-Unet (W-Unet) for end-to-end pediatric echocardiographic segmentation. In MS-Net, the entire network uses the discrete wavelet transform (DWT) instead of the sampling operation to reduce the impact of image noise while avoiding information loss. The algorithm enhances the edge information by designing the edge attention module (EAM) in the BFF-Net branch and fuses the context and detail information via the bidirectional feature fusion. Secondly, this algorithm uses W-Unet to obtain the detail features of high-resolution images by network depth reduction and propagation method, which supplements the features extracted by the BFF-Net branch. Finally, the hierarchical features of BFF-Net and W-Unet are fused and updated by guided filtering (GF) to obtain the final segmentation prediction. Using 127 pediatric echocardiographic cases of self-selection as the experimental dataset, the left atrium and left ventricle of the echocardiogram were segmented. The Dice coefficient values of 0.9532 and 0.9155, the pixel accuracy of 0.9914, and the specificity values of 0.9975 and 0.9984 were obtained. It was thus verifying its potential and effectiveness as a clinical auxiliary tool. •MS-Net designs a dual-branch network to realize the segmentation of echocardiogram.•Using DWT to satisfies the sampling operation and eliminates the influence of noise.•Design the edge attention module for effective feature enhancement.•Design W-Unet to supplement network details.•Design BBF-Net can realize the perception of contextual and detail information.
AbstractList The automatic segmentation of critical anatomical structures in pediatric echocardiography is the essential steps for early diagnosis and treatment of congenital heart disease. However, current segmentation algorithms rarely extract the information based on effective feature enhancement algorithms. Simultaneously, the algorithms are susceptible to image quality and the lack of detail information. To solve this, we propose a multi-scale wavelet network (MS-Net) combined with a bidirectional feature fusion (BFF-Net) and a wavelet-Unet (W-Unet) for end-to-end pediatric echocardiographic segmentation. In MS-Net, the entire network uses the discrete wavelet transform (DWT) instead of the sampling operation to reduce the impact of image noise while avoiding information loss. The algorithm enhances the edge information by designing the edge attention module (EAM) in the BFF-Net branch and fuses the context and detail information via the bidirectional feature fusion. Secondly, this algorithm uses W-Unet to obtain the detail features of high-resolution images by network depth reduction and propagation method, which supplements the features extracted by the BFF-Net branch. Finally, the hierarchical features of BFF-Net and W-Unet are fused and updated by guided filtering (GF) to obtain the final segmentation prediction. Using 127 pediatric echocardiographic cases of self-selection as the experimental dataset, the left atrium and left ventricle of the echocardiogram were segmented. The Dice coefficient values of 0.9532 and 0.9155, the pixel accuracy of 0.9914, and the specificity values of 0.9975 and 0.9984 were obtained. It was thus verifying its potential and effectiveness as a clinical auxiliary tool. •MS-Net designs a dual-branch network to realize the segmentation of echocardiogram.•Using DWT to satisfies the sampling operation and eliminates the influence of noise.•Design the edge attention module for effective feature enhancement.•Design W-Unet to supplement network details.•Design BBF-Net can realize the perception of contextual and detail information.
ArticleNumber 107386
Author Zhao, Cheng
Xia, Bei
Chen, Weiling
Guo, Libao
Du, Jie
Wang, Tianfu
Lei, Baiying
Author_xml – sequence: 1
  givenname: Cheng
  surname: Zhao
  fullname: Zhao, Cheng
  organization: School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
– sequence: 2
  givenname: Bei
  surname: Xia
  fullname: Xia, Bei
  organization: Department of Ultrasound, Shenzhen Children Hospital, Hospital of Shantou University, China
– sequence: 3
  givenname: Weiling
  surname: Chen
  fullname: Chen, Weiling
  organization: Department of Ultrasound, Shenzhen Children Hospital, Hospital of Shantou University, China
– sequence: 4
  givenname: Libao
  surname: Guo
  fullname: Guo, Libao
  organization: School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
– sequence: 5
  givenname: Jie
  surname: Du
  fullname: Du, Jie
  organization: School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
– sequence: 6
  givenname: Tianfu
  surname: Wang
  fullname: Wang, Tianfu
  email: tfwang@szu.edu.cn
  organization: School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
– sequence: 7
  givenname: Baiying
  surname: Lei
  fullname: Lei, Baiying
  email: leiby@szu.edu.cn
  organization: School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
BookMark eNp9kM9KAzEQh4NUsK2-gKe8wNbNbjfNghcp_gPFi57DOJm0qdtNSdKWvr0p9eShEJjhN_mG5BuxQe97YuxWlBNRCnm3mkD0OKnKSuRgVit5wYZCzaqilUoMct9IVUzbqbxioxhXZYbaSg3Z4X3bJVdEhI74HnbUUeI9pb0PPxy6hQ8uLdfc-sA3ZByk4JATLj1CMM4vAmyWOYm0WFOfIDnf850DvnQUIGCeQcctQdoG4outM2S43cZ87ZpdWugi3fzVMft6evycvxRvH8-v84e3AuuyTEVlbD6qhRIbhcbKGtGopiUJMzDT3DUNQmWkFFP4FmhqorYBi209s7bCeszUaS8GH2Mgq9GdHpoCuE6LUh8V6pU-KtRHhfqkMKPVP3QT3BrC4Tx0f4Iof2qXNeiIjnrM9gJh0sa7c_gvbmuR2Q
CitedBy_id crossref_primary_10_1109_TMI_2024_3474028
crossref_primary_10_1016_j_media_2022_102648
crossref_primary_10_1109_ACCESS_2025_3545829
crossref_primary_10_1007_s13246_022_01179_3
crossref_primary_10_1109_TGRS_2024_3427370
crossref_primary_10_1038_s41598_023_38557_0
crossref_primary_10_1007_s12652_022_04231_y
crossref_primary_10_1016_j_asoc_2025_112950
crossref_primary_10_1109_ACCESS_2024_3424546
crossref_primary_10_1364_BOE_475272
crossref_primary_10_1109_ACCESS_2024_3504297
crossref_primary_10_1002_int_22969
crossref_primary_10_1109_TGRS_2024_3521483
crossref_primary_10_1016_j_measurement_2025_117393
Cites_doi 10.1109/ACCESS.2020.2971383
10.1109/ICDIP.2009.14
10.1109/CVPR42600.2020.00727
10.1016/j.neucom.2015.12.073
10.1109/TMI.2019.2900516
10.1016/j.asoc.2020.106765
10.1109/CVPR.2018.00813
10.1007/978-3-030-01234-2_1
10.1109/TPAMI.2016.2644615
10.1109/3DV.2016.79
10.1007/s12021-018-9377-x
10.1109/ICCV.2017.187
10.1109/CVPR.2019.01215
10.1109/CVPR.2019.00541
10.1109/IJCNN.2018.8489717
10.1016/j.inffus.2016.11.007
10.1007/978-3-319-24574-4_28
10.1109/BIBM.2016.7822557
10.1109/ACCESS.2020.2984630
10.1109/ULTSYM.2017.8092812
10.1016/j.asoc.2019.02.036
10.1117/12.2547375
10.1016/j.asoc.2019.105890
10.1155/2018/5682365
10.1109/MCSE.2007.67
10.1109/ISBI.2018.8363716
10.1007/978-3-030-01234-2_49
10.1007/978-3-030-59710-8_41
10.1016/j.inffus.2017.10.005
10.1007/978-3-030-01261-8_20
10.3389/fcvm.2020.00025
10.1109/CVPR42600.2020.01155
10.1016/j.neunet.2020.07.011
10.1109/ULTSYM.2018.8580136
10.1109/CVPR.2016.90
10.1007/978-3-319-66182-7_81
10.1109/CVPR.2017.660
10.1109/CVPR.2018.00745
10.1109/CVPR.2015.7298965
10.1109/ICCVW.2019.00246
10.1515/bmt-2017-0178
10.1007/s11263-006-7934-5
10.1007/978-3-319-24553-9_62
10.1186/1471-2342-8-8
10.1002/mp.13577
10.1109/CVPR.2019.00326
10.1007/978-3-030-32692-0_50
10.1109/CVPR.2019.00197
10.1007/978-3-642-15549-9_1
10.1109/CVPRW.2018.00121
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107386
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107386
S1568494621003094
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61871274; 61801305; 81571758
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Shenzhen Key Basic Research Project, China
  grantid: JCYJ20170818094109846; JCYJ20180507184647636; JCYJ20190808155618806; GJHZ20190822095414576; JCYJ20190808145011259
– fundername: National Natural Science Foundation of Guangdong Province, China
  grantid: 2019A1515111205
  funderid: http://dx.doi.org/10.13039/501100003453
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-2df2df89a0c58cdf63ccd859e6a7ad485955ca2d6614ab1cd3ee95afc937ff2c3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:58:50 EDT 2025
Wed Oct 29 21:49:59 EDT 2025
Fri Feb 23 02:44:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bidirectional feature fusion
Multi-scale wavelet network
Discrete wavelet transform
Wavelet-unet
Pediatric echocardiographic segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-2df2df89a0c58cdf63ccd859e6a7ad485955ca2d6614ab1cd3ee95afc937ff2c3
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2021_107386
crossref_primary_10_1016_j_asoc_2021_107386
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107386
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.
K. Li, S. Wang, L. Yu, P.-A. Heng, Dual-Teacher: Integrating intra-domain and inter-domain teachers for annotation-efficient cardiac segmentation, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2020, pp. 418–427.
K. He, J. Sun, X. Tang, Guided image filtering, in: Proceedings of the European Conference on Computer Vision, 2010, pp. 1–14.
Liu, Song, Wang (b58) 2020
J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, Dual attention network for scene segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3146–3154.
Hao, Zhou, Guo (b60) 2020
Chen, Papandreou, Schroff, Adam (b15) 2017
Leclerc, Smistad, Pedrosa, Østvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier (b12) 2019; 38
Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-net: Efficient channel attention for deep convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11534–11542.
S. Liu, E. Johns, A.J. Davison, End-to-end multi-task learning with attention, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 1871–1880.
Xie, Zhang, Xia, Fulham, Zhang (b27) 2018; 42
M. Chitsaz, W.C. Seng, Medical image segmentation by using reinforcement learning agent, in: Proceedings of the 2009 International Conference on Digital Image Processing, 2009, pp. 216–219.
Pan, Lu (b4) 2007; 9
Sinha, Dolz (b16) 2020
Hu, Perazzi, Heilbron, Wang, Lin, Saenko, Sclaroff (b54) 2020
H. Wang, G. Wang, Z. Sheng, S. Zhang, Automated segmentation of skin lesion based on pyramid attention network, in: Proceedings of the International Workshop on Machine Learning in Medical Imaging, 2019, pp. 435–443.
Y. Zhang, M.T. Ying, L. Yang, A.T. Ahuja, D.Z. Chen, Coarse-to-fine stacked fully convolutional nets for lymph node segmentation in ultrasound images, in: Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM, 2016, pp. 443–448.
Chai, Liu, Xu (b25) 2020; 86
Xue, Xu, Zhang, Long, Huang (b38) 2018; 16
Yang, Yu, Wu, Wang, Ni, Qin, Heng (b36) 2016
C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, N. Sang, Bisenet: Bilateral segmentation network for real-time semantic segmentation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 325–341.
Xu, Liu, Zhang, He (b2) 2020; 8
Gao, Li, Loomes, Wang (b28) 2017; 36
Zhou, Siddiquee, Tajbakhsh, Liang (b8) 2018
H. Huang, R. He, Z. Sun, T. Tan, Wavelet-srnet: A wavelet-based cnn for multi-scale face super resolution, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1689–1697.
Boykov, Funka-Lea (b5) 2006; 70
O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: Proceedings of the International Conference on Medical image computing and computer-assisted intervention, 2015, pp. 234–241.
Dong, Luo, Wang, Cao, Li, Zhang (b46) 2018; 2018
Wolterink, Kamnitsas, Ledig, Išgum (b39) 2018
Hu, Xia, Mao, Jin, Du, Guo, Frangi, Lei, Wang (b52) 2020; 8
Y. Liu, Q. Li, Z. Sun, Attribute enhanced face aging with wavelet-based generative adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.
Mittal, Goyal, Kaur, Kaur, Verma, Hemanth (b26) 2019; 78
J. Lee, E. Kim, S. Lee, J. Lee, S. Yoon, Ficklenet: Weakly and semi-supervised semantic image segmentation using stochastic inference, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 5267–5276.
P. Liu, H. Zhang, K. Zhang, L. Lin, W. Zuo, Multi-level wavelet-CNN for image restoration, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 773–782.
S. Leclerc, E. Smistad, T. Grenier, C. Lartizien, A. Ostvik, F. Espinosa, P.-M. Jodoin, L. Lovstakken, O. Bernard, Deep learning applied to multi-structure segmentation in 2D echocardiography: a preliminary investigation of the required database size, in: Proceedings of the 2018 IEEE International Ultrasonics Symposium, IUS, 2018, pp. 1–4.
Q. Li, L. Shen, S. Guo, Z. Lai, Wavelet integrated CNNs for noise-robust image classification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 7245–7254.
Mendis, Puska, Norrving, Organization (b1) 2011
Zhou, Wang, Zhang, Liang, Gong (b3) 2016; 186
Savareh, Emami, Hajiabadi, Azimi, Ghafoori (b18) 2019; 64
J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7794–7803.
L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder–decoder with atrous separable convolution for semantic image segmentation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 801–818.
Zhuang, Raj, Jain, Ruban, Chaurasia, Li, Lakshmanan, Murugappan (b31) 2019; 9
H. Chen, Q. Dou, D. Ni, J.-Z. Cheng, J. Qin, S. Li, P.-A. Heng, Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks, in: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015, pp. 507–514.
Peng, Kervadec, Dolz, Ayed, Pedersoli, Desrosiers (b40) 2020; 130
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
G. Veni, M. Moradi, H. Bulu, G. Narayan, T. Syeda-Mahmood, Echocardiography segmentation based on a shape-guided deformable model driven by a fully convolutional network prior, in: Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018, 2018, pp. 898–902.
Badrinarayanan, Kendall, Cipolla (b34) 2017; 39
Liu, Wang, Liu, Yang, Tian (b56) 2020
F. Milletari, N. Navab, S.-A. Ahmadi, V-net: Fully convolutional neural networks for volumetric medical image segmentation, in: Proceedings of the 2016 Fourth International Conference on 3D Vision, 3DV, 2016, pp. 565–571.
J.V. Stough, S. Raghunath, X. Zhang, J.M. Pfeifer, B.K. Fornwalt, C.M. Haggerty, Left ventricular and atrial segmentation of 2D echocardiography with convolutional neural networks, in: Proceedings of the Medical Imaging 2020: Image Processing, 2020, 113130A.
E. Smistad, A. Østvik, 2D left ventricle segmentation using deep learning, in: Proceedings of the 2017 IEEE International Ultrasonics Symposium, IUS, 2017, pp. 1–4.
H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2881–2890.
S. Woo, J. Park, J.-Y. Lee, I. So Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
X. Yang, L. Yu, S. Li, X. Wang, N. Wang, J. Qin, D. Ni, P.-A. Heng, Towards automatic semantic segmentation in volumetric ultrasound, in: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2017, pp. 711–719.
Sahba, Tizhoosh, Salama (b43) 2008; 8
Chen, Qin, Qiu, Tarroni, Duan, Bai, Rueckert (b6) 2020; 7
S. Ross-HoweH, R. Tizhoosh, The effects of image pre-and post-processing, wavelet decomposition, and local binary patterns on U-nets for skin lesion segmentation, in: Proceedings of the 2018 International Joint Conference on Neural Networks, IJCNN, 2018, pp. 1–8.
Lei, Tian, He, Wang, Wang, Patel, Jani, Mao, Curran, Liu (b32) 2019; 46
Y. Cao, J. Xu, S. Lin, F. Wei, H. Hu, Gcnet: Non-local networks meet squeeze-excitation networks and beyond, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019.
Long, Zhang, Li, Niu, Wu, Li (b24) 2020; 97
Wolterink (10.1016/j.asoc.2021.107386_b39) 2018
Liu (10.1016/j.asoc.2021.107386_b56) 2020
Xue (10.1016/j.asoc.2021.107386_b38) 2018; 16
Badrinarayanan (10.1016/j.asoc.2021.107386_b34) 2017; 39
Chen (10.1016/j.asoc.2021.107386_b15) 2017
Chen (10.1016/j.asoc.2021.107386_b6) 2020; 7
Hu (10.1016/j.asoc.2021.107386_b52) 2020; 8
Lei (10.1016/j.asoc.2021.107386_b32) 2019; 46
Mendis (10.1016/j.asoc.2021.107386_b1) 2011
Xu (10.1016/j.asoc.2021.107386_b2) 2020; 8
10.1016/j.asoc.2021.107386_b37
10.1016/j.asoc.2021.107386_b35
10.1016/j.asoc.2021.107386_b33
Boykov (10.1016/j.asoc.2021.107386_b5) 2006; 70
10.1016/j.asoc.2021.107386_b30
Zhuang (10.1016/j.asoc.2021.107386_b31) 2019; 9
Pan (10.1016/j.asoc.2021.107386_b4) 2007; 9
Long (10.1016/j.asoc.2021.107386_b24) 2020; 97
Zhou (10.1016/j.asoc.2021.107386_b3) 2016; 186
10.1016/j.asoc.2021.107386_b49
10.1016/j.asoc.2021.107386_b48
10.1016/j.asoc.2021.107386_b47
10.1016/j.asoc.2021.107386_b45
10.1016/j.asoc.2021.107386_b44
10.1016/j.asoc.2021.107386_b9
10.1016/j.asoc.2021.107386_b42
10.1016/j.asoc.2021.107386_b7
10.1016/j.asoc.2021.107386_b41
Chai (10.1016/j.asoc.2021.107386_b25) 2020; 86
Peng (10.1016/j.asoc.2021.107386_b40) 2020; 130
Sahba (10.1016/j.asoc.2021.107386_b43) 2008; 8
Zhou (10.1016/j.asoc.2021.107386_b8) 2018
Hao (10.1016/j.asoc.2021.107386_b60) 2020
10.1016/j.asoc.2021.107386_b19
10.1016/j.asoc.2021.107386_b17
10.1016/j.asoc.2021.107386_b59
10.1016/j.asoc.2021.107386_b14
Savareh (10.1016/j.asoc.2021.107386_b18) 2019; 64
10.1016/j.asoc.2021.107386_b13
10.1016/j.asoc.2021.107386_b57
10.1016/j.asoc.2021.107386_b11
10.1016/j.asoc.2021.107386_b55
10.1016/j.asoc.2021.107386_b10
Leclerc (10.1016/j.asoc.2021.107386_b12) 2019; 38
10.1016/j.asoc.2021.107386_b53
Gao (10.1016/j.asoc.2021.107386_b28) 2017; 36
10.1016/j.asoc.2021.107386_b51
Yang (10.1016/j.asoc.2021.107386_b36) 2016
Dong (10.1016/j.asoc.2021.107386_b46) 2018; 2018
10.1016/j.asoc.2021.107386_b50
Mittal (10.1016/j.asoc.2021.107386_b26) 2019; 78
Xie (10.1016/j.asoc.2021.107386_b27) 2018; 42
Hu (10.1016/j.asoc.2021.107386_b54) 2020
Sinha (10.1016/j.asoc.2021.107386_b16) 2020
10.1016/j.asoc.2021.107386_b29
Liu (10.1016/j.asoc.2021.107386_b58) 2020
10.1016/j.asoc.2021.107386_b23
10.1016/j.asoc.2021.107386_b22
10.1016/j.asoc.2021.107386_b21
10.1016/j.asoc.2021.107386_b20
10.1016/j.asoc.2021.107386_b61
References_xml – volume: 7
  start-page: 25
  year: 2020
  ident: b6
  article-title: Deep learning for cardiac image segmentation: a review
  publication-title: Front. Cardiovasc. Med.
– volume: 186
  start-page: 107
  year: 2016
  end-page: 118
  ident: b3
  article-title: Active contour model based on local and global intensity information for medical image segmentation
  publication-title: Neurocomputing
– volume: 64
  start-page: 195
  year: 2019
  end-page: 205
  ident: b18
  article-title: Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm
  publication-title: Biomed. Eng.-Biomed. Tech.
– reference: P. Liu, H. Zhang, K. Zhang, L. Lin, W. Zuo, Multi-level wavelet-CNN for image restoration, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 773–782.
– reference: L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder–decoder with atrous separable convolution for semantic image segmentation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 801–818.
– reference: H. Wang, G. Wang, Z. Sheng, S. Zhang, Automated segmentation of skin lesion based on pyramid attention network, in: Proceedings of the International Workshop on Machine Learning in Medical Imaging, 2019, pp. 435–443.
– volume: 36
  start-page: 103
  year: 2017
  end-page: 113
  ident: b28
  article-title: A fused deep learning architecture for viewpoint classification of echocardiography
  publication-title: Inf. Fusion
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b34
  article-title: Segnet: A deep convolutional encoder–decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal.
– year: 2016
  ident: b36
  article-title: Fine-grained recurrent neural networks for automatic prostate segmentation in ultrasound images
– reference: J. Lee, E. Kim, S. Lee, J. Lee, S. Yoon, Ficklenet: Weakly and semi-supervised semantic image segmentation using stochastic inference, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 5267–5276.
– volume: 9
  start-page: 32
  year: 2007
  end-page: 38
  ident: b4
  article-title: A Bayes-based region-growing algorithm for medical image segmentation
  publication-title: Comput. Sci. Eng.
– reference: S. Ross-HoweH, R. Tizhoosh, The effects of image pre-and post-processing, wavelet decomposition, and local binary patterns on U-nets for skin lesion segmentation, in: Proceedings of the 2018 International Joint Conference on Neural Networks, IJCNN, 2018, pp. 1–8.
– volume: 78
  start-page: 346
  year: 2019
  end-page: 354
  ident: b26
  article-title: Deep learning based enhanced tumor segmentation approach for MR brain images
  publication-title: Appl. Soft. Comput.
– reference: M. Chitsaz, W.C. Seng, Medical image segmentation by using reinforcement learning agent, in: Proceedings of the 2009 International Conference on Digital Image Processing, 2009, pp. 216–219.
– reference: S. Woo, J. Park, J.-Y. Lee, I. So Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
– year: 2017
  ident: b15
  article-title: Rethinking atrous convolution for semantic image segmentation
– reference: J.V. Stough, S. Raghunath, X. Zhang, J.M. Pfeifer, B.K. Fornwalt, C.M. Haggerty, Left ventricular and atrial segmentation of 2D echocardiography with convolutional neural networks, in: Proceedings of the Medical Imaging 2020: Image Processing, 2020, 113130A.
– volume: 16
  start-page: 383
  year: 2018
  end-page: 392
  ident: b38
  article-title: Segan: Adversarial network with multi-scale l 1 loss for medical image segmentation
  publication-title: Neuroinformatics
– reference: Y. Zhang, M.T. Ying, L. Yang, A.T. Ahuja, D.Z. Chen, Coarse-to-fine stacked fully convolutional nets for lymph node segmentation in ultrasound images, in: Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM, 2016, pp. 443–448.
– year: 2020
  ident: b54
  article-title: Real-time semantic segmentation with Fast attention
– reference: K. He, J. Sun, X. Tang, Guided image filtering, in: Proceedings of the European Conference on Computer Vision, 2010, pp. 1–14.
– reference: H. Huang, R. He, Z. Sun, T. Tan, Wavelet-srnet: A wavelet-based cnn for multi-scale face super resolution, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1689–1697.
– reference: S. Liu, E. Johns, A.J. Davison, End-to-end multi-task learning with attention, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 1871–1880.
– reference: J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, Dual attention network for scene segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3146–3154.
– volume: 97
  year: 2020
  ident: b24
  article-title: Segmentation and classification of knee joint ultrasonic image via deep learning
  publication-title: Appl. Soft. Comput.
– reference: X. Yang, L. Yu, S. Li, X. Wang, N. Wang, J. Qin, D. Ni, P.-A. Heng, Towards automatic semantic segmentation in volumetric ultrasound, in: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2017, pp. 711–719.
– volume: 9
  start-page: 1827
  year: 2019
  end-page: 1837
  ident: b31
  article-title: Nipple segmentation and localization using modified u-net on breast ultrasound images
  publication-title: J. Med. Imag. Health Inform.
– volume: 8
  start-page: 8
  year: 2008
  ident: b43
  article-title: Application of reinforcement learning for segmentation of transrectal ultrasound images
  publication-title: BMC Med. Imag.
– reference: S. Leclerc, E. Smistad, T. Grenier, C. Lartizien, A. Ostvik, F. Espinosa, P.-M. Jodoin, L. Lovstakken, O. Bernard, Deep learning applied to multi-structure segmentation in 2D echocardiography: a preliminary investigation of the required database size, in: Proceedings of the 2018 IEEE International Ultrasonics Symposium, IUS, 2018, pp. 1–4.
– reference: Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-net: Efficient channel attention for deep convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11534–11542.
– volume: 42
  start-page: 102
  year: 2018
  end-page: 110
  ident: b27
  article-title: Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT
  publication-title: Inf. Fusion
– reference: X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7794–7803.
– volume: 8
  start-page: 29176
  year: 2020
  end-page: 29187
  ident: b52
  article-title: AIDAN: An attention-guided dual-path network for pediatric echocardiography segmentation
  publication-title: IEEE Access
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– volume: 8
  start-page: 80437
  year: 2020
  end-page: 80446
  ident: b2
  article-title: Convolutional-neural-network-based approach for segmentation of apical four-chamber view from fetal echocardiography
  publication-title: IEEE Access
– volume: 70
  start-page: 109
  year: 2006
  end-page: 131
  ident: b5
  article-title: Graph cuts and efficient ND image segmentation
  publication-title: Int. J. Comput. Vis.
– reference: H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2881–2890.
– reference: H. Chen, Q. Dou, D. Ni, J.-Z. Cheng, J. Qin, S. Li, P.-A. Heng, Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks, in: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015, pp. 507–514.
– reference: F. Milletari, N. Navab, S.-A. Ahmadi, V-net: Fully convolutional neural networks for volumetric medical image segmentation, in: Proceedings of the 2016 Fourth International Conference on 3D Vision, 3DV, 2016, pp. 565–571.
– year: 2020
  ident: b58
  article-title: WaveFuse: A unified deep framework for image gusion with wavelet transform
– start-page: 3
  year: 2018
  end-page: 11
  ident: b8
  article-title: Unet++: A nested u-net architecture for medical image segmentation
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– year: 2020
  ident: b56
  article-title: Deep pyramid local attention neural network for cardiac structure segmentation in two-dimensional echocardiography
  publication-title: Med. Image Anal.
– volume: 86
  year: 2020
  ident: b25
  article-title: A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images
  publication-title: Appl. Soft. Comput.
– reference: G. Veni, M. Moradi, H. Bulu, G. Narayan, T. Syeda-Mahmood, Echocardiography segmentation based on a shape-guided deformable model driven by a fully convolutional network prior, in: Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018, 2018, pp. 898–902.
– year: 2020
  ident: b60
  article-title: Bi-direction context propagation network for real-time semantic segmentation
– reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
– volume: 130
  start-page: 297
  year: 2020
  end-page: 308
  ident: b40
  article-title: Discretely-constrained deep network for weakly supervised segmentation
  publication-title: Neural Netw.
– reference: Y. Cao, J. Xu, S. Lin, F. Wei, H. Hu, Gcnet: Non-local networks meet squeeze-excitation networks and beyond, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019.
– start-page: 1
  year: 2020
  end-page: 12
  ident: b16
  article-title: Multi-scale self-guided attention for medical image segmentation
  publication-title: IEEE J. Biomed. Health
– year: 2011
  ident: b1
  article-title: Global Atlas on Cardiovascular Disease Prevention and Control
– year: 2018
  ident: b39
  article-title: Generative adversarial networks and adversarial methods in biomedical image analysis
– volume: 38
  start-page: 2198
  year: 2019
  end-page: 2210
  ident: b12
  article-title: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography
  publication-title: IEEE Trans. Med. Imag.
– volume: 46
  start-page: 3194
  year: 2019
  end-page: 3206
  ident: b32
  article-title: Ultrasound prostate segmentation based on multidirectional deeply supervised V-Net
  publication-title: Med. Phys.
– reference: C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, N. Sang, Bisenet: Bilateral segmentation network for real-time semantic segmentation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 325–341.
– reference: Y. Liu, Q. Li, Z. Sun, Attribute enhanced face aging with wavelet-based generative adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.
– reference: E. Smistad, A. Østvik, 2D left ventricle segmentation using deep learning, in: Proceedings of the 2017 IEEE International Ultrasonics Symposium, IUS, 2017, pp. 1–4.
– reference: K. Li, S. Wang, L. Yu, P.-A. Heng, Dual-Teacher: Integrating intra-domain and inter-domain teachers for annotation-efficient cardiac segmentation, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2020, pp. 418–427.
– volume: 2018
  year: 2018
  ident: b46
  article-title: A combined fully convolutional networks and deformable model for automatic left ventricle segmentation based on 3D echocardiography
  publication-title: Biomed. Res. Int.
– reference: Q. Li, L. Shen, S. Guo, Z. Lai, Wavelet integrated CNNs for noise-robust image classification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 7245–7254.
– reference: O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: Proceedings of the International Conference on Medical image computing and computer-assisted intervention, 2015, pp. 234–241.
– reference: J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.
– volume: 8
  start-page: 29176
  year: 2020
  ident: 10.1016/j.asoc.2021.107386_b52
  article-title: AIDAN: An attention-guided dual-path network for pediatric echocardiography segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971383
– ident: 10.1016/j.asoc.2021.107386_b44
  doi: 10.1109/ICDIP.2009.14
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2021.107386_b16
  article-title: Multi-scale self-guided attention for medical image segmentation
  publication-title: IEEE J. Biomed. Health
– year: 2018
  ident: 10.1016/j.asoc.2021.107386_b39
– ident: 10.1016/j.asoc.2021.107386_b59
  doi: 10.1109/CVPR42600.2020.00727
– volume: 186
  start-page: 107
  year: 2016
  ident: 10.1016/j.asoc.2021.107386_b3
  article-title: Active contour model based on local and global intensity information for medical image segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.073
– volume: 38
  start-page: 2198
  issue: 9
  year: 2019
  ident: 10.1016/j.asoc.2021.107386_b12
  article-title: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2019.2900516
– volume: 97
  year: 2020
  ident: 10.1016/j.asoc.2021.107386_b24
  article-title: Segmentation and classification of knee joint ultrasonic image via deep learning
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2020.106765
– year: 2011
  ident: 10.1016/j.asoc.2021.107386_b1
– ident: 10.1016/j.asoc.2021.107386_b50
  doi: 10.1109/CVPR.2018.00813
– ident: 10.1016/j.asoc.2021.107386_b17
  doi: 10.1007/978-3-030-01234-2_1
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.asoc.2021.107386_b34
  article-title: Segnet: A deep convolutional encoder–decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/TPAMI.2016.2644615
– ident: 10.1016/j.asoc.2021.107386_b9
  doi: 10.1109/3DV.2016.79
– volume: 16
  start-page: 383
  issue: 3–4
  year: 2018
  ident: 10.1016/j.asoc.2021.107386_b38
  article-title: Segan: Adversarial network with multi-scale l 1 loss for medical image segmentation
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-018-9377-x
– ident: 10.1016/j.asoc.2021.107386_b20
  doi: 10.1109/ICCV.2017.187
– ident: 10.1016/j.asoc.2021.107386_b19
  doi: 10.1109/CVPR.2019.01215
– ident: 10.1016/j.asoc.2021.107386_b41
  doi: 10.1109/CVPR.2019.00541
– ident: 10.1016/j.asoc.2021.107386_b21
  doi: 10.1109/IJCNN.2018.8489717
– volume: 36
  start-page: 103
  year: 2017
  ident: 10.1016/j.asoc.2021.107386_b28
  article-title: A fused deep learning architecture for viewpoint classification of echocardiography
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.11.007
– year: 2020
  ident: 10.1016/j.asoc.2021.107386_b58
– year: 2020
  ident: 10.1016/j.asoc.2021.107386_b54
– ident: 10.1016/j.asoc.2021.107386_b7
  doi: 10.1007/978-3-319-24574-4_28
– ident: 10.1016/j.asoc.2021.107386_b30
  doi: 10.1109/BIBM.2016.7822557
– volume: 8
  start-page: 80437
  year: 2020
  ident: 10.1016/j.asoc.2021.107386_b2
  article-title: Convolutional-neural-network-based approach for segmentation of apical four-chamber view from fetal echocardiography
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984630
– ident: 10.1016/j.asoc.2021.107386_b47
  doi: 10.1109/ULTSYM.2017.8092812
– volume: 78
  start-page: 346
  year: 2019
  ident: 10.1016/j.asoc.2021.107386_b26
  article-title: Deep learning based enhanced tumor segmentation approach for MR brain images
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2019.02.036
– ident: 10.1016/j.asoc.2021.107386_b33
  doi: 10.1117/12.2547375
– year: 2020
  ident: 10.1016/j.asoc.2021.107386_b60
– volume: 86
  year: 2020
  ident: 10.1016/j.asoc.2021.107386_b25
  article-title: A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2019.105890
– volume: 2018
  year: 2018
  ident: 10.1016/j.asoc.2021.107386_b46
  article-title: A combined fully convolutional networks and deformable model for automatic left ventricle segmentation based on 3D echocardiography
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2018/5682365
– volume: 9
  start-page: 32
  issue: 4
  year: 2007
  ident: 10.1016/j.asoc.2021.107386_b4
  article-title: A Bayes-based region-growing algorithm for medical image segmentation
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.67
– ident: 10.1016/j.asoc.2021.107386_b29
  doi: 10.1109/ISBI.2018.8363716
– start-page: 3
  year: 2018
  ident: 10.1016/j.asoc.2021.107386_b8
  article-title: Unet++: A nested u-net architecture for medical image segmentation
– ident: 10.1016/j.asoc.2021.107386_b14
  doi: 10.1007/978-3-030-01234-2_49
– ident: 10.1016/j.asoc.2021.107386_b42
  doi: 10.1007/978-3-030-59710-8_41
– volume: 42
  start-page: 102
  year: 2018
  ident: 10.1016/j.asoc.2021.107386_b27
  article-title: Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.10.005
– volume: 9
  start-page: 1827
  issue: 9
  year: 2019
  ident: 10.1016/j.asoc.2021.107386_b31
  article-title: Nipple segmentation and localization using modified u-net on breast ultrasound images
  publication-title: J. Med. Imag. Health Inform.
– ident: 10.1016/j.asoc.2021.107386_b57
  doi: 10.1007/978-3-030-01261-8_20
– volume: 7
  start-page: 25
  year: 2020
  ident: 10.1016/j.asoc.2021.107386_b6
  article-title: Deep learning for cardiac image segmentation: a review
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2020.00025
– ident: 10.1016/j.asoc.2021.107386_b49
  doi: 10.1109/CVPR42600.2020.01155
– volume: 130
  start-page: 297
  year: 2020
  ident: 10.1016/j.asoc.2021.107386_b40
  article-title: Discretely-constrained deep network for weakly supervised segmentation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.07.011
– ident: 10.1016/j.asoc.2021.107386_b45
  doi: 10.1109/ULTSYM.2018.8580136
– ident: 10.1016/j.asoc.2021.107386_b10
  doi: 10.1109/CVPR.2016.90
– year: 2020
  ident: 10.1016/j.asoc.2021.107386_b56
  article-title: Deep pyramid local attention neural network for cardiac structure segmentation in two-dimensional echocardiography
  publication-title: Med. Image Anal.
– ident: 10.1016/j.asoc.2021.107386_b37
  doi: 10.1007/978-3-319-66182-7_81
– ident: 10.1016/j.asoc.2021.107386_b13
  doi: 10.1109/CVPR.2017.660
– year: 2017
  ident: 10.1016/j.asoc.2021.107386_b15
– ident: 10.1016/j.asoc.2021.107386_b48
  doi: 10.1109/CVPR.2018.00745
– ident: 10.1016/j.asoc.2021.107386_b11
  doi: 10.1109/CVPR.2015.7298965
– ident: 10.1016/j.asoc.2021.107386_b51
  doi: 10.1109/ICCVW.2019.00246
– volume: 64
  start-page: 195
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2021.107386_b18
  article-title: Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm
  publication-title: Biomed. Eng.-Biomed. Tech.
  doi: 10.1515/bmt-2017-0178
– volume: 70
  start-page: 109
  issue: 2
  year: 2006
  ident: 10.1016/j.asoc.2021.107386_b5
  article-title: Graph cuts and efficient ND image segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-006-7934-5
– ident: 10.1016/j.asoc.2021.107386_b35
  doi: 10.1007/978-3-319-24553-9_62
– volume: 8
  start-page: 8
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2021.107386_b43
  article-title: Application of reinforcement learning for segmentation of transrectal ultrasound images
  publication-title: BMC Med. Imag.
  doi: 10.1186/1471-2342-8-8
– volume: 46
  start-page: 3194
  issue: 7
  year: 2019
  ident: 10.1016/j.asoc.2021.107386_b32
  article-title: Ultrasound prostate segmentation based on multidirectional deeply supervised V-Net
  publication-title: Med. Phys.
  doi: 10.1002/mp.13577
– ident: 10.1016/j.asoc.2021.107386_b61
  doi: 10.1109/CVPR.2019.00326
– ident: 10.1016/j.asoc.2021.107386_b53
  doi: 10.1007/978-3-030-32692-0_50
– ident: 10.1016/j.asoc.2021.107386_b55
  doi: 10.1109/CVPR.2019.00197
– ident: 10.1016/j.asoc.2021.107386_b23
  doi: 10.1007/978-3-642-15549-9_1
– ident: 10.1016/j.asoc.2021.107386_b22
  doi: 10.1109/CVPRW.2018.00121
– year: 2016
  ident: 10.1016/j.asoc.2021.107386_b36
SSID ssj0016928
Score 2.446612
Snippet The automatic segmentation of critical anatomical structures in pediatric echocardiography is the essential steps for early diagnosis and treatment of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107386
SubjectTerms Bidirectional feature fusion
Discrete wavelet transform
Multi-scale wavelet network
Pediatric echocardiographic segmentation
Wavelet-unet
Title Multi-scale wavelet network algorithm for pediatric echocardiographic segmentation via hierarchical feature guided fusion
URI https://dx.doi.org/10.1016/j.asoc.2021.107386
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lXry4i3UpOXiTsU1mP5ZiqVsRtdDbkMlSK-202Fbx4m_3vZlMUZAehIFhQjIMXzJvSd57HyHnUqvQhMw4MecGjxlTRzDNHTcyYF0rEzCJ-5D3vaDb924G_qBC2mUuDIZVWtlfyPRcWtuWhkWzMRuNGk_geURe7AXgtOA5AdYE9bwQWQwuv1ZhHiyIc35V7Oxgb5s4U8R4CUAAfETOoAHZL_9WTj8UTmeHbFlLkbaKj9klFZ3tke2ShYHan3KffOY5tM4cwNb0QyCRxIJmRXQ3FePhFNz_lwkF45TOSl4OqkHqyTwUNa9YDS1zPZzYPKSMvo8ERZLs_JgBXkyNzguA0uFypLSiZombbAek37l6bncdS6jgSLfZXDhcGbiiWDSlH0mYCFdKFfmxDkQolIelznwpuEKdLVImlat17AsjwYYxhkv3kFSzaaaPCA2bacCYlBEA7zFuQDBEURoq4YPFKVNeI6xEMpG22jiSXoyTMqzsNUH0E0Q_KdCvkYvVmFlRa2Ntb7-coOTXiklAGawZd_zPcSdkE5-K4L9TUl28LfUZGCSLtJ6vuDrZaLUf7x7wfn3b7X0DYCnk7g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2wotHbeI6pABdoutBJb5PhRgtq0oi2Ihd_OXeIgkBADUibHjqLP9j3su_sIOZdahSZkxok5N3jNmDqCae64kQHrWpmASTyH7PWDztC7e_Qfa6Rd5cJgWKWV_aVML6S1bWlaNJuzLGs-gOcRebEXgNOC9wTeCln1fB6iB3b58RXnwYK4IFjF3g52t5kzZZCXAAjASeQMGpD-8nft9E3j3GyRDWsq0qvyb7ZJTec7ZLOiYaB2V-6S9yKJ1pkD2pq-CWSSWNC8DO-mYjyagv__NKFgndJZRcxBNYg9WcSiFiWroWWuRxObiJTT10xQZMku7hngw9ToogIoHS0zpRU1Szxl2yPDm-tBu-NYRgVHuq3WwuHKwBPFoiX9SMJMuFKqyI91IEKhPKx15kvBFSptkTKpXK1jXxgJRowxXLr7pJ5Pc31AaNhKA8akjAB5j3EDkiGK0lAJH0xOmfIGYRWSibTlxpH1YpxUcWXPCaKfIPpJiX6DXHyNmZXFNv7s7VcTlPxYMglogz_GHf5z3BlZ6wx63aR7278_Iuv4powEPCb1xctSn4B1skhPi9X3CZZ25O4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+wavelet+network+algorithm+for+pediatric+echocardiographic+segmentation+via+hierarchical+feature+guided+fusion&rft.jtitle=Applied+soft+computing&rft.au=Zhao%2C+Cheng&rft.au=Xia%2C+Bei&rft.au=Chen%2C+Weiling&rft.au=Guo%2C+Libao&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=107&rft_id=info:doi/10.1016%2Fj.asoc.2021.107386&rft.externalDocID=S1568494621003094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon