Automatic ocular artifacts removal in EEG using deep learning
•This paper investigates the use of deep learning network (DLN) to remove ocular artifacts in EEG signals.•For practical use of rehabilitation system based on brain computer interface, the method does not require additional EOG channels for recording additional EOG reference signals. Meanwhile, the...
Saved in:
| Published in | Biomedical signal processing and control Vol. 43; pp. 148 - 158 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.05.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1746-8094 1746-8108 |
| DOI | 10.1016/j.bspc.2018.02.021 |
Cover
| Abstract | •This paper investigates the use of deep learning network (DLN) to remove ocular artifacts in EEG signals.•For practical use of rehabilitation system based on brain computer interface, the method does not require additional EOG channels for recording additional EOG reference signals. Meanwhile, the ocular artifacts can be denoised without influence.•With few number of EEG analyzing channels and low time cost, combining without additional EOG channel recording, the method could be used in practical motor imagery rehabilitation system, which avoid the trivial preparation and experiment and more susceptible for patients.•In this paper, the proposed method is proved to have strong generalization ability after cross-subject testing.
Ocular artifacts (OAs) are one the most important form of interferences in the analysis of electroencephalogram (EEG) research. OAs removal/reduction is a key analysis before the processing of EEG signals. For classic OAs removal methods, either an additional electrooculogram (EOG) recording or multi-channel EEG is required. To address these limitations of existing methods, this paper investigates the use of deep learning network (DLN) to remove OAs in EEG signals. The proposed method consists of offline stage and online stage. In the offline stage, training samples without OAs are intercepted and used to train an DLN to reconstruct the EEG signals. The high-order statistical moments information of EEG is therefore learned. In the online stage, the trained DLN is used as a filter to automatically remove OAs from the contaminated EEG signals. Compared with the exiting methods, the proposed method has the following advantages: (i) nonuse of additional EOG reference signals, (ii) any few number of EEG channels can be analyzed, (iii) time saving, and (iv) the strong generalization ability, etc. In this paper, both public database and lab individual data for EEG analysis are used, we compared the proposed method with the classic independent component analysis (ICA), kurtosis-ICA (K-ICA), Second-order blind identification (SOBI) and a shallow network method. Experimental results show that the proposed method performs better even for very noisy EEG. |
|---|---|
| AbstractList | •This paper investigates the use of deep learning network (DLN) to remove ocular artifacts in EEG signals.•For practical use of rehabilitation system based on brain computer interface, the method does not require additional EOG channels for recording additional EOG reference signals. Meanwhile, the ocular artifacts can be denoised without influence.•With few number of EEG analyzing channels and low time cost, combining without additional EOG channel recording, the method could be used in practical motor imagery rehabilitation system, which avoid the trivial preparation and experiment and more susceptible for patients.•In this paper, the proposed method is proved to have strong generalization ability after cross-subject testing.
Ocular artifacts (OAs) are one the most important form of interferences in the analysis of electroencephalogram (EEG) research. OAs removal/reduction is a key analysis before the processing of EEG signals. For classic OAs removal methods, either an additional electrooculogram (EOG) recording or multi-channel EEG is required. To address these limitations of existing methods, this paper investigates the use of deep learning network (DLN) to remove OAs in EEG signals. The proposed method consists of offline stage and online stage. In the offline stage, training samples without OAs are intercepted and used to train an DLN to reconstruct the EEG signals. The high-order statistical moments information of EEG is therefore learned. In the online stage, the trained DLN is used as a filter to automatically remove OAs from the contaminated EEG signals. Compared with the exiting methods, the proposed method has the following advantages: (i) nonuse of additional EOG reference signals, (ii) any few number of EEG channels can be analyzed, (iii) time saving, and (iv) the strong generalization ability, etc. In this paper, both public database and lab individual data for EEG analysis are used, we compared the proposed method with the classic independent component analysis (ICA), kurtosis-ICA (K-ICA), Second-order blind identification (SOBI) and a shallow network method. Experimental results show that the proposed method performs better even for very noisy EEG. |
| Author | Yang, Banghua Fan, Chengcheng Hu, Chenxiao Duan, Kaiwen Wang, Jinlong |
| Author_xml | – sequence: 1 givenname: Banghua surname: Yang fullname: Yang, Banghua email: yangbanghua@shu.edu.cn – sequence: 2 givenname: Kaiwen surname: Duan fullname: Duan, Kaiwen – sequence: 3 givenname: Chengcheng surname: Fan fullname: Fan, Chengcheng – sequence: 4 givenname: Chenxiao surname: Hu fullname: Hu, Chenxiao – sequence: 5 givenname: Jinlong surname: Wang fullname: Wang, Jinlong |
| BookMark | eNp9kM1KAzEUhYNUsK2-gKu8wIw3mcxPQRel1B8ouNF1yCQ3kjKdlCQt-PamVDcuejlwz118F86ZkcnoRyTknkHJgDUP27KPe11yYF0JPItdkSlrRVN0DLrJn4eFuCGzGLcAomuZmJKn5SH5nUpOU68PgwpUheSs0inSgDt_VAN1I12vX-ghuvGLGsQ9HVCFMV-35NqqIeLd756Tz-f1x-q12Ly_vK2Wm0JXAKngyuSxRgljsauh77HC2lTQctBWM7DMNKJeACxqJmzPBBjR9kKg5k1d62pO-PmvDj7GgFbug9up8C0ZyFMBcitPBchTARJ4FstQ9w_SLuWkfkxBueEy-nhGMYc6OgwyaoejRuMC6iSNd5fwH4WseTc |
| CitedBy_id | crossref_primary_10_1007_s00521_022_08111_6 crossref_primary_10_1109_JBHI_2023_3314197 crossref_primary_10_1109_ACCESS_2021_3125728 crossref_primary_10_1088_1741_2552_ab260c crossref_primary_10_1108_IJICC_06_2021_0127 crossref_primary_10_1016_j_neuroimage_2025_121123 crossref_primary_10_3390_s23041932 crossref_primary_10_1088_1741_2552_ac2bf8 crossref_primary_10_1080_0952813X_2019_1704438 crossref_primary_10_1088_1742_6596_2325_1_012038 crossref_primary_10_1109_TCDS_2021_3079712 crossref_primary_10_1109_TBME_2022_3161994 crossref_primary_10_3390_bioengineering10050579 crossref_primary_10_1016_j_compbiomed_2024_108626 crossref_primary_10_1016_j_bspc_2022_104115 crossref_primary_10_1109_TNSRE_2022_3154891 crossref_primary_10_1016_j_aei_2024_102831 crossref_primary_10_1007_s12553_023_00765_z crossref_primary_10_1080_03772063_2020_1749143 crossref_primary_10_1016_j_bspc_2020_102094 crossref_primary_10_1371_journal_pone_0277974 crossref_primary_10_3390_s21196343 crossref_primary_10_1016_j_csi_2024_103897 crossref_primary_10_1109_JBHI_2022_3227320 crossref_primary_10_2139_ssrn_3765947 crossref_primary_10_1155_2022_4875399 crossref_primary_10_1371_journal_pone_0313076 crossref_primary_10_3389_fphys_2022_910368 crossref_primary_10_1007_s00779_021_01533_4 crossref_primary_10_1109_TNSRE_2025_3529991 crossref_primary_10_3390_bioengineering11101018 crossref_primary_10_1109_JSEN_2022_3209805 crossref_primary_10_1007_s11760_021_02080_4 crossref_primary_10_1109_JBHI_2021_3131104 crossref_primary_10_1016_j_measurement_2022_112278 crossref_primary_10_1007_s10548_023_00986_5 crossref_primary_10_1088_1741_2552_ad8963 crossref_primary_10_1049_iet_spr_2019_0602 crossref_primary_10_1109_ACCESS_2022_3173261 crossref_primary_10_1109_TIM_2023_3341114 crossref_primary_10_1109_TNSRE_2023_3330963 crossref_primary_10_1007_s42979_023_01959_y crossref_primary_10_1016_j_jneumeth_2022_109498 crossref_primary_10_1109_JBHI_2024_3358917 crossref_primary_10_3389_fninf_2022_1025847 crossref_primary_10_1016_j_compbiomed_2023_107135 crossref_primary_10_1109_TBME_2024_3408331 crossref_primary_10_1371_journal_pone_0311942 crossref_primary_10_1109_TIM_2020_3041099 crossref_primary_10_3390_sym11070944 crossref_primary_10_1088_1741_2552_abb5bd crossref_primary_10_1088_1741_2552_ac63eb crossref_primary_10_3390_biology13010002 crossref_primary_10_1109_TIM_2023_3324345 crossref_primary_10_1016_j_engappai_2023_107514 crossref_primary_10_3390_s24030877 crossref_primary_10_3390_brainsci13020240 crossref_primary_10_1016_j_jenvp_2025_102581 crossref_primary_10_3390_computers9020046 crossref_primary_10_1177_14771535251314433 crossref_primary_10_3390_signals5020018 crossref_primary_10_1007_s12652_022_03783_3 crossref_primary_10_3389_fnins_2023_1258024 crossref_primary_10_1111_1744_1633_70002 crossref_primary_10_2139_ssrn_4074649 crossref_primary_10_1016_j_autcon_2024_105537 crossref_primary_10_1016_j_dsp_2023_104319 crossref_primary_10_1016_j_cnp_2023_04_002 crossref_primary_10_1016_j_bbe_2021_06_007 crossref_primary_10_1111_psyp_14511 crossref_primary_10_1007_s11042_022_12874_4 crossref_primary_10_1016_j_compbiomed_2022_106248 crossref_primary_10_1109_TIM_2023_3342863 crossref_primary_10_1007_s00034_024_02936_3 crossref_primary_10_3389_fnins_2022_782367 crossref_primary_10_1016_j_measen_2022_100465 crossref_primary_10_1523_ENEURO_0160_22_2022 crossref_primary_10_1016_j_bspc_2021_102935 crossref_primary_10_1088_1741_2552_ad788d crossref_primary_10_1109_JSEN_2024_3363754 crossref_primary_10_1016_j_knosys_2024_112555 crossref_primary_10_1016_j_jocn_2023_09_029 crossref_primary_10_1109_ACCESS_2023_3242643 crossref_primary_10_1007_s00521_020_04953_0 crossref_primary_10_1016_j_neucom_2020_04_029 |
| Cites_doi | 10.1016/j.clinph.2006.10.019 10.1061/(ASCE)EM.1943-7889.0000133 10.1016/S0925-2312(00)00286-1 10.1111/1469-8986.3720163 10.1109/78.554307 10.1016/j.compbiomed.2008.04.010 10.1007/BF02344717 10.1016/j.jneumeth.2014.01.024 10.1109/JSEN.2011.2115236 10.1162/neco.2006.18.7.1527 10.1016/j.neucom.2012.04.016 10.1088/1741-2560/13/3/036006 10.1016/j.neuroimage.2007.01.051 10.3233/THC-2001-9302 10.1088/1741-2560/11/3/035013 10.1016/j.medengphy.2010.04.010 10.1016/S1388-2457(00)00541-1 10.1088/1741-2560/11/3/035010 10.1631/FITEE.1400299 10.3389/fnhum.2016.00193 10.1088/1741-2560/10/5/056002 10.1023/A:1026233624772 10.1016/j.bspc.2011.02.001 10.1088/1741-2560/11/3/036008 10.1016/j.clinph.2011.04.026 10.1088/1741-2560/8/3/036015 10.1016/j.bspc.2015.06.009 10.1088/1741-2560/12/4/046022 10.1016/j.jneumeth.2006.05.033 10.1016/j.neucom.2014.09.040 10.1088/1741-2560/9/2/026020 10.1111/j.1469-8986.2003.00141.x 10.4310/CIS.2003.v3.n1.a2 10.1109/GlobalSIP.2013.6736804 10.1088/1741-2560/11/4/046014 10.1088/1741-2560/13/2/026013 10.1088/1741-2560/3/4/011 10.1016/j.eswa.2011.08.132 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2018.02.021 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| EndPage | 158 |
| ExternalDocumentID | 10_1016_j_bspc_2018_02_021 S1746809418300521 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-2addddfda4dfe850bbe3e5d30720cfc10f1d6459009514fb140d47b44ec2655c3 |
| IEDL.DBID | .~1 |
| ISSN | 1746-8094 |
| IngestDate | Wed Oct 01 02:17:44 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Fri Feb 23 02:28:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning network (DLN) Electroencephalogram (EEG) Ocular artifacts (OAs) removal Independent component analysis (ICA) Shallow network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-2addddfda4dfe850bbe3e5d30720cfc10f1d6459009514fb140d47b44ec2655c3 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1016_j_bspc_2018_02_021 crossref_citationtrail_10_1016_j_bspc_2018_02_021 elsevier_sciencedirect_doi_10_1016_j_bspc_2018_02_021 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2018 2018-05-00 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Nguyen, Musson, Li (bib0040) 2012; 97 Indiradevi, Elias, Sathidevi, Nayak, Radhakrishman (bib0175) 2008; 38 Hazra, Roffel, Narasimhan (bib0190) 2010; 136 Hoon, Min, Jin (bib0020) 2014; 11 Hagemann, Naumann (bib0110) 2001; 112 Mowla, Ng, Zilany (bib0060) 2015; 22 Haas, Frei, Osorio (bib0100) 2003; 3 Tang, Pearlmutter, Zibulevsky, Carter (bib0255) 2000; 32 Rosenfeld, Reinhart, Srivastava (bib0055) 1997; 22 Belouchrani, Abed-Meraim, Cardoso, Moulines (bib0245) 1997; 5 Klados, Papadelis, Braun (bib0095) 2011; 6 . Pizzagalli (bib0115) 2007 Blankertz, Dornhege, Krauledat (bib0240) 2007; 37 Islam, Tcheslavski (bib0120) 2015 De Vos, Kroesen, Emkes (bib0010) 2014; 11 Ahmed, Merino, Mao (bib0200) 2013 Luu, He, Brown (bib0075) 2016; 13 Rueda-Plata, Ramos-Pollán, González (bib0230) 2015 Sameni, Gouy-Pailler (bib0030) 2014; 225 María Alonso-Valerdi, Sepulveda, Ramírez-Mendoza (bib0085) 2015; 9 Schmüser, Sebastian, Mobascher, Lieb, Tüscher, Feige (bib0035) 2014; 8 Jung, Makeig, Humphries, Lee, Mckeown, Iragui (bib0090) 2000; 37 Hsu, Lin, Hsu (bib0165) 2012; 39 Seifzadeh, Karim, Amiri (bib0140) 2014; 7 Kamran, Hong (bib0015) 2013; 10 Mammone, Foresta, Morabito (bib0065) 2012; 12 Fatourechi, Bashashati, Ward (bib0105) 2010; 118 Saa, Çetin (bib0205) 2012; 9 de Beer, van Meurs, Grit (bib0045) 2001; 9 Toppi, Risetti, Quitadamo (bib0080) 2014; 11 Krishnaveni, Jayaraman, Anitha, Ramadoss (bib0170) 2006; 3 Yang, He, Lin (bib0150) 2015; 16 Joyce, Gorodnitsky, Kutas (bib0250) 2004; 41 Mannan, Jeong, Kamran (bib0005) 2016; 10 Kilicarslan, Grossman, Contreras-Vidal (bib0135) 2016; 13 Sherlin (bib0050) 2009 Vos, Deburchgraeve (bib0180) 2011; 122 A. Ng, 2011. Sparse autoencoder. CS294A Lecture notes. 72, 1–19. He, Wilson, Russell (bib0155) 2004; 42 Winkler, Brandl, Horn (bib0185) 2014; 11 Wulsin, Blanco, Mani (bib0070) 2010 Turnip, Junaidi (bib0125) 2014 J, Wang (bib0130) 2015; 151 Ghandeharion, Erfanian (bib0160) 2010; 32 Wulsin, Gupta, Mani (bib0210) 2011; 8 Hinton, Osindero, Teh (bib0215) 2006; 18 Schölkopf, Platt, Hofmann (bib0220) 2007 Noureddin, Lawrence, Birch (bib0145) 2007 Kline, Huang, Snyder (bib0025) 2015; 12 Castellanos, Makarov (bib0195) 2006; 158 A. Ng, 2011. Stacked Autoencoders Jung (10.1016/j.bspc.2018.02.021_bib0090) 2000; 37 Rosenfeld (10.1016/j.bspc.2018.02.021_bib0055) 1997; 22 Hagemann (10.1016/j.bspc.2018.02.021_bib0110) 2001; 112 Hsu (10.1016/j.bspc.2018.02.021_bib0165) 2012; 39 Ghandeharion (10.1016/j.bspc.2018.02.021_bib0160) 2010; 32 Ahmed (10.1016/j.bspc.2018.02.021_bib0200) 2013 10.1016/j.bspc.2018.02.021_bib0225 Winkler (10.1016/j.bspc.2018.02.021_bib0185) 2014; 11 He (10.1016/j.bspc.2018.02.021_bib0155) 2004; 42 Vos (10.1016/j.bspc.2018.02.021_bib0180) 2011; 122 Schmüser (10.1016/j.bspc.2018.02.021_bib0035) 2014; 8 Castellanos (10.1016/j.bspc.2018.02.021_bib0195) 2006; 158 Mammone (10.1016/j.bspc.2018.02.021_bib0065) 2012; 12 Islam (10.1016/j.bspc.2018.02.021_bib0120) 2015 Noureddin (10.1016/j.bspc.2018.02.021_bib0145) 2007 Hazra (10.1016/j.bspc.2018.02.021_bib0190) 2010; 136 Wulsin (10.1016/j.bspc.2018.02.021_bib0070) 2010 Nguyen (10.1016/j.bspc.2018.02.021_bib0040) 2012; 97 Kilicarslan (10.1016/j.bspc.2018.02.021_bib0135) 2016; 13 Tang (10.1016/j.bspc.2018.02.021_bib0255) 2000; 32 Saa (10.1016/j.bspc.2018.02.021_bib0205) 2012; 9 Wulsin (10.1016/j.bspc.2018.02.021_bib0210) 2011; 8 de Beer (10.1016/j.bspc.2018.02.021_bib0045) 2001; 9 Mowla (10.1016/j.bspc.2018.02.021_bib0060) 2015; 22 Mannan (10.1016/j.bspc.2018.02.021_bib0005) 2016; 10 Schölkopf (10.1016/j.bspc.2018.02.021_bib0220) 2007 Rueda-Plata (10.1016/j.bspc.2018.02.021_bib0230) 2015 Joyce (10.1016/j.bspc.2018.02.021_bib0250) 2004; 41 Blankertz (10.1016/j.bspc.2018.02.021_bib0240) 2007; 37 Kamran (10.1016/j.bspc.2018.02.021_bib0015) 2013; 10 Yang (10.1016/j.bspc.2018.02.021_bib0150) 2015; 16 Belouchrani (10.1016/j.bspc.2018.02.021_bib0245) 1997; 5 Luu (10.1016/j.bspc.2018.02.021_bib0075) 2016; 13 Klados (10.1016/j.bspc.2018.02.021_bib0095) 2011; 6 Turnip (10.1016/j.bspc.2018.02.021_bib0125) 2014 Haas (10.1016/j.bspc.2018.02.021_bib0100) 2003; 3 Hinton (10.1016/j.bspc.2018.02.021_bib0215) 2006; 18 Kline (10.1016/j.bspc.2018.02.021_bib0025) 2015; 12 Pizzagalli (10.1016/j.bspc.2018.02.021_bib0115) 2007 J (10.1016/j.bspc.2018.02.021_bib0130) 2015; 151 Seifzadeh (10.1016/j.bspc.2018.02.021_bib0140) 2014; 7 Sherlin (10.1016/j.bspc.2018.02.021_bib0050) 2009 Sameni (10.1016/j.bspc.2018.02.021_bib0030) 2014; 225 Fatourechi (10.1016/j.bspc.2018.02.021_bib0105) 2010; 118 María Alonso-Valerdi (10.1016/j.bspc.2018.02.021_bib0085) 2015; 9 10.1016/j.bspc.2018.02.021_bib0235 Toppi (10.1016/j.bspc.2018.02.021_bib0080) 2014; 11 Krishnaveni (10.1016/j.bspc.2018.02.021_bib0170) 2006; 3 De Vos (10.1016/j.bspc.2018.02.021_bib0010) 2014; 11 Hoon (10.1016/j.bspc.2018.02.021_bib0020) 2014; 11 Indiradevi (10.1016/j.bspc.2018.02.021_bib0175) 2008; 38 |
| References_xml | – volume: 225 start-page: 97 year: 2014 end-page: 105 ident: bib0030 article-title: An iterative subspace denoising algorithm for removing electroencephalogram ocular artifacts publication-title: J. Neurosci. Methods – volume: 11 start-page: 035013 year: 2014 ident: bib0185 article-title: Robust artifactual independent component classification for BCI practitioners publication-title: J. Neural Eng. – volume: 42 start-page: 407 year: 2004 end-page: 412 ident: bib0155 article-title: Removal of ocular artifacts from electroencephalogram by adaptive filtering publication-title: Med. Biol. Eng. Comput. – volume: 13 start-page: 026013 year: 2016 ident: bib0135 article-title: A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements publication-title: J. Neural Eng. – start-page: 137 year: 2015 end-page: 142 ident: bib0120 article-title: Independent component analysis for EOG artifacts minimization of EEG signals using kurtosis as a threshold publication-title: Electrical Information and Communication Technology – volume: 32 start-page: 1115 year: 2000 end-page: 1120 ident: bib0255 article-title: Blind source separation of multichannel neuromagnetic responses publication-title: Neurocomputing – volume: 13 start-page: 036006 year: 2016 ident: bib0075 article-title: Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar publication-title: J. Neural Eng. – reference: A. Ng, 2011. Stacked Autoencoders – volume: 12 start-page: 046022 year: 2015 ident: bib0025 article-title: Isolating gait-related movement artifacts in electroencephalography during human walking publication-title: J. Neural Eng. – volume: 3 start-page: 19 year: 2003 end-page: 40 ident: bib0100 article-title: EEG ocular artifact removal through ARMAX model system identification using extended least squares publication-title: Commun. Inform. Syst. – volume: 3 start-page: 338 year: 2006 end-page: 346 ident: bib0170 article-title: Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients publication-title: J. Neural Eng. – start-page: 153 year: 2007 end-page: 160 ident: bib0220 article-title: Greedy Layer-wise Training of Deep Networks – volume: 118 start-page: 480 year: 2010 end-page: 494 ident: bib0105 article-title: EMG and EOG artifacts in brain computer interface systems: a survey publication-title: Clin. Neurophysiol. – start-page: 33 year: 2013 end-page: 36 ident: bib0200 article-title: A deep learning method for classification of images RSVP events with EEG data publication-title: 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP) – volume: 97 start-page: 374 year: 2012 end-page: 389 ident: bib0040 article-title: EOG artifact removal using a wavelet neural network publication-title: Neurocomputing – volume: 9 start-page: 237 year: 2001 end-page: 256 ident: bib0045 article-title: Educational simulation of the electroencephalogram (EEG) publication-title: Technol. Health Care (Don Mills) – volume: 10 start-page: 193 year: 2016 end-page: 209 ident: bib0005 article-title: Hybrid ICA-regression: automatic identification and removal of ocular artifacts from electroencephalographic signals publication-title: Front. Hum. Neurosci. – volume: 11 start-page: 046014 year: 2014 ident: bib0020 article-title: CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording publication-title: J. Neural Eng. – start-page: 56 year: 2007 end-page: 84 ident: bib0115 article-title: Electroencephalography and high-density electrophysiological source localization publication-title: Handbook of Psychophysiology – volume: 6 start-page: 291 year: 2011 end-page: 300 ident: bib0095 article-title: ICA: a hybrid methodology combining Blind Source Separation and regression techniques for the rejection of ocular artifacts publication-title: Biomed. Signal. Process. – volume: 16 start-page: 486 year: 2015 end-page: 496 ident: bib0150 article-title: Fast removal of ocular artifacts from electroencephalogram signals using spatial constraint independent component analysis based recursive least squares in brain-computer interface publication-title: Front. Inform. Technol. Electron. Eng. – volume: 9 start-page: 636 year: 2015 ident: bib0085 article-title: Perception and cognition of cues used in synchronous brain-computer interfaces modify electroencephalographic patterns of control tasks Front publication-title: Hum. Neurosci. – volume: 9 start-page: 26020 year: 2012 end-page: 26028 ident: bib0205 article-title: ÇA latent discriminative model-based approach for classification of imaginary motor tasks from EEG data publication-title: J. Neural Eng. – volume: 10 start-page: 056002 year: 2013 ident: bib0015 article-title: Linear parameter-varying model and adaptive filtering technique for detecting neuronal activities: an fNIRS study publication-title: J. Neural Eng. – volume: 7 start-page: 51 year: 2014 end-page: 56 ident: bib0140 article-title: Comparison of different linear filter design methods for handling ocular artifacts in brain computer interface system publication-title: J. Comput. Robot. – reference: A. Ng, 2011. Sparse autoencoder. CS294A Lecture notes. 72, 1–19. – volume: 5 start-page: 434 year: 1997 end-page: 444 ident: bib0245 article-title: A blind source separation technique using second-order statistics publication-title: IEEE Trans. Signal Process. – volume: 12 start-page: 533 year: 2012 end-page: 542 ident: bib0065 article-title: Automatic artifact rejection from multichannel scalp EEG by wavelet ICA publication-title: IEEE Sens. J. – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: bib0215 article-title: A fast learning algorithm for deep belief nets publication-title: Neural. Comput. – start-page: 143 year: 2007 end-page: 164 ident: bib0145 article-title: Time-frequency analysis of eye blinks and saccades in EOG for EEG artifact removal publication-title: International IEEE/EMBS Conference on Neural Engineering – volume: 37 start-page: 163 year: 2000 end-page: 178 ident: bib0090 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology – year: 2009 ident: bib0050 article-title: Diagnosing and treating brain function through the use of low resolution electromagnetic tomography (LORETA) publication-title: Introduction to Quantitative EEG and Neurofeedback – start-page: 296 year: 2014 end-page: 302 ident: bib0125 article-title: Removal artifacts from EEG signal using independent component analysis and principal component analysis publication-title: International Conference on Technology, Informatics, Management, Engineering, and Environment – start-page: 436 year: 2010 end-page: 441 ident: bib0070 article-title: Semi-supervised anomaly detection for EEG waveforms using deep belief nets publication-title: International Conference on Machine Learning and Applications – volume: 37 start-page: 539 year: 2007 end-page: 550 ident: bib0240 article-title: The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects publication-title: Neuroimage – volume: 151 start-page: 278 year: 2015 end-page: 287 ident: bib0130 article-title: Removal of EOG and EMG artifacts from EEG using combination of functional link neural network and adaptive neural fuzzy inference system publication-title: Neurocomputing – volume: 158 start-page: 300 year: 2006 end-page: 312 ident: bib0195 article-title: Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis publication-title: J. Neurosci. Methods – volume: 8 start-page: 53 year: 2011 end-page: 57 ident: bib0210 article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement publication-title: J. Neural Eng. – volume: 32 start-page: 720 year: 2010 end-page: 729 ident: bib0160 article-title: A fully automatic ocular artifact suppression from EEG data using higher order statistics: improved performance by wavelet analysis publication-title: Med. Eng. Phys. – volume: 11 start-page: 035010 year: 2014 ident: bib0080 article-title: Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery publication-title: J. Neural Eng. – volume: 39 start-page: 2743 year: 2012 end-page: 2749 ident: bib0165 article-title: Wavelet-based envelope features with automatic EOG artifact removal: application to single-trial EEG data publication-title: Expert. Syst. Appl. – volume: 8 start-page: 175 year: 2014 ident: bib0035 article-title: Data-driven analysis of simultaneous EEG/fMRI using an ICA approach Front publication-title: Neuroscience – reference: . – volume: 112 start-page: 215 year: 2001 end-page: 231 ident: bib0110 article-title: The effects of ocular artifacts on (lateralized) broadband power in the EEG publication-title: Clin. Neurophysiol. – start-page: 275 year: 2015 end-page: 284 ident: bib0230 article-title: Supervised greedy layer-wise training for deep convolutional networks with small datasets publication-title: Computational Collective Intelligence – volume: 41 start-page: 313 year: 2004 end-page: 325 ident: bib0250 article-title: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation publication-title: Psychophysiology – volume: 22 start-page: 111 year: 2015 end-page: 118 ident: bib0060 article-title: Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising publication-title: Biomed. Signal. Proces. – volume: 38 start-page: 805 year: 2008 end-page: 816 ident: bib0175 article-title: A multilevel wavelet approach for automatic detection of epileptic spikes in the electroencephalogram publication-title: J. Comput. Biol. Med. – volume: 122 start-page: 2345 year: 2011 end-page: 2354 ident: bib0180 article-title: Automated artifact removal as preprocessing refines neonatal seizure detection publication-title: Clin. Neurophysiol. – volume: 136 start-page: 889 year: 2010 end-page: 897 ident: bib0190 article-title: Modified cross-correlation method for the blind identification of structures publication-title: J. Eng. Mech. – volume: 22 start-page: 1023 year: 1997 end-page: 1034 ident: bib0055 article-title: The effects of alpha (10-Hz) and beta (22-Hz) “Entrainment” simulation on the alpha and beta EEG bands: individual differences are critical to prediction of effects publication-title: Appl. Psychophys. Biof. – volume: 11 start-page: 277 year: 2014 end-page: 286 ident: bib0010 article-title: P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier publication-title: J. Neural Eng. – volume: 118 start-page: 480 year: 2010 ident: 10.1016/j.bspc.2018.02.021_bib0105 article-title: EMG and EOG artifacts in brain computer interface systems: a survey publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2006.10.019 – volume: 136 start-page: 889 year: 2010 ident: 10.1016/j.bspc.2018.02.021_bib0190 article-title: Modified cross-correlation method for the blind identification of structures publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0000133 – volume: 32 start-page: 1115 issue: 2000 year: 2000 ident: 10.1016/j.bspc.2018.02.021_bib0255 article-title: Blind source separation of multichannel neuromagnetic responses publication-title: Neurocomputing doi: 10.1016/S0925-2312(00)00286-1 – volume: 37 start-page: 163 year: 2000 ident: 10.1016/j.bspc.2018.02.021_bib0090 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology doi: 10.1111/1469-8986.3720163 – volume: 5 start-page: 434 issue: 1997 year: 1997 ident: 10.1016/j.bspc.2018.02.021_bib0245 article-title: A blind source separation technique using second-order statistics publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.554307 – volume: 38 start-page: 805 year: 2008 ident: 10.1016/j.bspc.2018.02.021_bib0175 article-title: A multilevel wavelet approach for automatic detection of epileptic spikes in the electroencephalogram publication-title: J. Comput. Biol. Med. doi: 10.1016/j.compbiomed.2008.04.010 – start-page: 137 year: 2015 ident: 10.1016/j.bspc.2018.02.021_bib0120 article-title: Independent component analysis for EOG artifacts minimization of EEG signals using kurtosis as a threshold – start-page: 436 year: 2010 ident: 10.1016/j.bspc.2018.02.021_bib0070 article-title: Semi-supervised anomaly detection for EEG waveforms using deep belief nets publication-title: International Conference on Machine Learning and Applications – volume: 8 start-page: 175 year: 2014 ident: 10.1016/j.bspc.2018.02.021_bib0035 article-title: Data-driven analysis of simultaneous EEG/fMRI using an ICA approach Front publication-title: Neuroscience – volume: 7 start-page: 51 year: 2014 ident: 10.1016/j.bspc.2018.02.021_bib0140 article-title: Comparison of different linear filter design methods for handling ocular artifacts in brain computer interface system publication-title: J. Comput. Robot. – start-page: 296 year: 2014 ident: 10.1016/j.bspc.2018.02.021_bib0125 article-title: Removal artifacts from EEG signal using independent component analysis and principal component analysis – volume: 42 start-page: 407 year: 2004 ident: 10.1016/j.bspc.2018.02.021_bib0155 article-title: Removal of ocular artifacts from electroencephalogram by adaptive filtering publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02344717 – start-page: 56 year: 2007 ident: 10.1016/j.bspc.2018.02.021_bib0115 article-title: Electroencephalography and high-density electrophysiological source localization – volume: 225 start-page: 97 year: 2014 ident: 10.1016/j.bspc.2018.02.021_bib0030 article-title: An iterative subspace denoising algorithm for removing electroencephalogram ocular artifacts publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.01.024 – volume: 12 start-page: 533 year: 2012 ident: 10.1016/j.bspc.2018.02.021_bib0065 article-title: Automatic artifact rejection from multichannel scalp EEG by wavelet ICA publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2011.2115236 – volume: 18 start-page: 1527 year: 2006 ident: 10.1016/j.bspc.2018.02.021_bib0215 article-title: A fast learning algorithm for deep belief nets publication-title: Neural. Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 97 start-page: 374 year: 2012 ident: 10.1016/j.bspc.2018.02.021_bib0040 article-title: EOG artifact removal using a wavelet neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.04.016 – start-page: 153 year: 2007 ident: 10.1016/j.bspc.2018.02.021_bib0220 – volume: 13 start-page: 036006 year: 2016 ident: 10.1016/j.bspc.2018.02.021_bib0075 article-title: Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/3/036006 – volume: 37 start-page: 539 year: 2007 ident: 10.1016/j.bspc.2018.02.021_bib0240 article-title: The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.01.051 – volume: 9 start-page: 237 year: 2001 ident: 10.1016/j.bspc.2018.02.021_bib0045 article-title: Educational simulation of the electroencephalogram (EEG) publication-title: Technol. Health Care (Don Mills) doi: 10.3233/THC-2001-9302 – volume: 11 start-page: 035013 year: 2014 ident: 10.1016/j.bspc.2018.02.021_bib0185 article-title: Robust artifactual independent component classification for BCI practitioners publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/035013 – volume: 32 start-page: 720 year: 2010 ident: 10.1016/j.bspc.2018.02.021_bib0160 article-title: A fully automatic ocular artifact suppression from EEG data using higher order statistics: improved performance by wavelet analysis publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.04.010 – volume: 112 start-page: 215 year: 2001 ident: 10.1016/j.bspc.2018.02.021_bib0110 article-title: The effects of ocular artifacts on (lateralized) broadband power in the EEG publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(00)00541-1 – volume: 11 start-page: 035010 year: 2014 ident: 10.1016/j.bspc.2018.02.021_bib0080 article-title: Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/035010 – volume: 16 start-page: 486 year: 2015 ident: 10.1016/j.bspc.2018.02.021_bib0150 article-title: Fast removal of ocular artifacts from electroencephalogram signals using spatial constraint independent component analysis based recursive least squares in brain-computer interface publication-title: Front. Inform. Technol. Electron. Eng. doi: 10.1631/FITEE.1400299 – volume: 10 start-page: 193 year: 2016 ident: 10.1016/j.bspc.2018.02.021_bib0005 article-title: Hybrid ICA-regression: automatic identification and removal of ocular artifacts from electroencephalographic signals publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2016.00193 – volume: 10 start-page: 056002 year: 2013 ident: 10.1016/j.bspc.2018.02.021_bib0015 article-title: Linear parameter-varying model and adaptive filtering technique for detecting neuronal activities: an fNIRS study publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/5/056002 – start-page: 143 year: 2007 ident: 10.1016/j.bspc.2018.02.021_bib0145 article-title: Time-frequency analysis of eye blinks and saccades in EOG for EEG artifact removal publication-title: International IEEE/EMBS Conference on Neural Engineering – volume: 22 start-page: 1023 year: 1997 ident: 10.1016/j.bspc.2018.02.021_bib0055 article-title: The effects of alpha (10-Hz) and beta (22-Hz) “Entrainment” simulation on the alpha and beta EEG bands: individual differences are critical to prediction of effects publication-title: Appl. Psychophys. Biof. doi: 10.1023/A:1026233624772 – volume: 6 start-page: 291 year: 2011 ident: 10.1016/j.bspc.2018.02.021_bib0095 article-title: ICA: a hybrid methodology combining Blind Source Separation and regression techniques for the rejection of ocular artifacts publication-title: Biomed. Signal. Process. doi: 10.1016/j.bspc.2011.02.001 – volume: 11 start-page: 277 year: 2014 ident: 10.1016/j.bspc.2018.02.021_bib0010 article-title: P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/036008 – volume: 122 start-page: 2345 year: 2011 ident: 10.1016/j.bspc.2018.02.021_bib0180 article-title: Automated artifact removal as preprocessing refines neonatal seizure detection publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2011.04.026 – year: 2009 ident: 10.1016/j.bspc.2018.02.021_bib0050 article-title: Diagnosing and treating brain function through the use of low resolution electromagnetic tomography (LORETA) – volume: 8 start-page: 53 year: 2011 ident: 10.1016/j.bspc.2018.02.021_bib0210 article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036015 – volume: 22 start-page: 111 year: 2015 ident: 10.1016/j.bspc.2018.02.021_bib0060 article-title: Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising publication-title: Biomed. Signal. Proces. doi: 10.1016/j.bspc.2015.06.009 – volume: 12 start-page: 046022 year: 2015 ident: 10.1016/j.bspc.2018.02.021_bib0025 article-title: Isolating gait-related movement artifacts in electroencephalography during human walking publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/4/046022 – start-page: 275 year: 2015 ident: 10.1016/j.bspc.2018.02.021_bib0230 article-title: Supervised greedy layer-wise training for deep convolutional networks with small datasets – ident: 10.1016/j.bspc.2018.02.021_bib0225 – volume: 158 start-page: 300 year: 2006 ident: 10.1016/j.bspc.2018.02.021_bib0195 article-title: Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2006.05.033 – volume: 151 start-page: 278 year: 2015 ident: 10.1016/j.bspc.2018.02.021_bib0130 article-title: Removal of EOG and EMG artifacts from EEG using combination of functional link neural network and adaptive neural fuzzy inference system publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.040 – volume: 9 start-page: 26020 year: 2012 ident: 10.1016/j.bspc.2018.02.021_bib0205 article-title: ÇA latent discriminative model-based approach for classification of imaginary motor tasks from EEG data publication-title: J. Neural Eng. doi: 10.1088/1741-2560/9/2/026020 – volume: 9 start-page: 636 year: 2015 ident: 10.1016/j.bspc.2018.02.021_bib0085 article-title: Perception and cognition of cues used in synchronous brain-computer interfaces modify electroencephalographic patterns of control tasks Front publication-title: Hum. Neurosci. – volume: 41 start-page: 313 year: 2004 ident: 10.1016/j.bspc.2018.02.021_bib0250 article-title: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2003.00141.x – volume: 3 start-page: 19 year: 2003 ident: 10.1016/j.bspc.2018.02.021_bib0100 article-title: EEG ocular artifact removal through ARMAX model system identification using extended least squares publication-title: Commun. Inform. Syst. doi: 10.4310/CIS.2003.v3.n1.a2 – start-page: 33 year: 2013 ident: 10.1016/j.bspc.2018.02.021_bib0200 article-title: A deep learning method for classification of images RSVP events with EEG data publication-title: 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP) doi: 10.1109/GlobalSIP.2013.6736804 – volume: 11 start-page: 046014 year: 2014 ident: 10.1016/j.bspc.2018.02.021_bib0020 article-title: CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/4/046014 – volume: 13 start-page: 026013 year: 2016 ident: 10.1016/j.bspc.2018.02.021_bib0135 article-title: A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/2/026013 – volume: 3 start-page: 338 year: 2006 ident: 10.1016/j.bspc.2018.02.021_bib0170 article-title: Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients publication-title: J. Neural Eng. doi: 10.1088/1741-2560/3/4/011 – ident: 10.1016/j.bspc.2018.02.021_bib0235 – volume: 39 start-page: 2743 year: 2012 ident: 10.1016/j.bspc.2018.02.021_bib0165 article-title: Wavelet-based envelope features with automatic EOG artifact removal: application to single-trial EEG data publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2011.08.132 |
| SSID | ssj0048714 |
| Score | 2.4563348 |
| Snippet | •This paper investigates the use of deep learning network (DLN) to remove ocular artifacts in EEG signals.•For practical use of rehabilitation system based on... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 148 |
| SubjectTerms | Deep learning network (DLN) Electroencephalogram (EEG) Independent component analysis (ICA) Ocular artifacts (OAs) removal Shallow network |
| Title | Automatic ocular artifacts removal in EEG using deep learning |
| URI | https://dx.doi.org/10.1016/j.bspc.2018.02.021 |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k9g8No8ePJTSWhV70UJvYV8pFU1CH1d_uzObTakgPQg5JGEWNpPZ2Znkm28IuYWgIAs86Tl-LCBBYeAHeaDhTGtXgEHrbheLk1_H0WjCnqfhtEH6dS0Mwiqt7698uvHW9k7HarNTzuedN4ilowSyEzBK_LhpKthZjF0M7r83MA-Ixw2_Nwo7KG0LZyqMl1iWSGPoJYa30_f-3py2NpzhETm0kSLtVZM5Jg2dn5CDLf7AU_LQW68Kw7lKC4MnpTh1rFVY0oX-KsCK6Dyng8EjRXz7jCqtS2obRczOyGQ4eO-PHNsPwZHwhCvHB1-kVKY4U5lOQlcIHehQwSr1XZlJz808hdwwJmximYDcSbFYMKalH4WhDM5JMy9yfUGocjkuPfwHypkUAc9UwLiKI8UTLrRqEa9WRCotWTj2rPhMa1TYR4rKS1F5qevD4bXI3WZMWVFl7JQOa_2mv154Cr58x7jLf467Ivt4VWEVr0lztVjrG4gnVqJtDKZN9npPL6PxDwZZya4 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMbCs3DadKBoapaCrRdaKVulh07VREkUZuu_HbuEgcVCXVAyhAlZ8m5nM93yXffEXIHQUHsOZFjuYGEBIWBHxSehjOtbQkGrdttLE4ejVuDKXuZ-bMa6Va1MAirNL6_9OmFtzZXmkabzWyxaL5BLN0KITsBo8SPm5AC7TDfDTADe_j6wXlAQF4QfKO0heKmcqYEeclVhjyGTlgQd7rO37vTxo7TPyQHJlSknXI2R6Smk2Oyv0EgeEIeO-s8LUhXaVoASinOHYsVVnSpP1MwI7pIaK_3RBHgPqdK64yaThHzUzLt9ybdgWUaIlgRPGJuueCMlIqVYCrWoW9LqT3tK1imrh3FkWPHjkJymCJuYrGE5EmxQDKmI7fl-5F3RupJmuhzQpUtcO3hT1DBIumJWHlMqKClRCikVg3iVIrgkWELx6YVH7yChb1zVB5H5XHbhcNpkPufMVnJlbFV2q_0y3-9cQ7OfMu4i3-OuyW7g8loyIfP49dLsod3SuDiFanny7W-huAilzeF8XwD50rLQw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+ocular+artifacts+removal+in+EEG+using+deep+learning&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Yang%2C+Banghua&rft.au=Duan%2C+Kaiwen&rft.au=Fan%2C+Chengcheng&rft.au=Hu%2C+Chenxiao&rft.date=2018-05-01&rft.issn=1746-8094&rft.volume=43&rft.spage=148&rft.epage=158&rft_id=info:doi/10.1016%2Fj.bspc.2018.02.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2018_02_021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |