Automatic ocular artifacts removal in EEG using deep learning

•This paper investigates the use of deep learning network (DLN) to remove ocular artifacts in EEG signals.•For practical use of rehabilitation system based on brain computer interface, the method does not require additional EOG channels for recording additional EOG reference signals. Meanwhile, the...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 43; pp. 148 - 158
Main Authors Yang, Banghua, Duan, Kaiwen, Fan, Chengcheng, Hu, Chenxiao, Wang, Jinlong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2018
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2018.02.021

Cover

Abstract •This paper investigates the use of deep learning network (DLN) to remove ocular artifacts in EEG signals.•For practical use of rehabilitation system based on brain computer interface, the method does not require additional EOG channels for recording additional EOG reference signals. Meanwhile, the ocular artifacts can be denoised without influence.•With few number of EEG analyzing channels and low time cost, combining without additional EOG channel recording, the method could be used in practical motor imagery rehabilitation system, which avoid the trivial preparation and experiment and more susceptible for patients.•In this paper, the proposed method is proved to have strong generalization ability after cross-subject testing. Ocular artifacts (OAs) are one the most important form of interferences in the analysis of electroencephalogram (EEG) research. OAs removal/reduction is a key analysis before the processing of EEG signals. For classic OAs removal methods, either an additional electrooculogram (EOG) recording or multi-channel EEG is required. To address these limitations of existing methods, this paper investigates the use of deep learning network (DLN) to remove OAs in EEG signals. The proposed method consists of offline stage and online stage. In the offline stage, training samples without OAs are intercepted and used to train an DLN to reconstruct the EEG signals. The high-order statistical moments information of EEG is therefore learned. In the online stage, the trained DLN is used as a filter to automatically remove OAs from the contaminated EEG signals. Compared with the exiting methods, the proposed method has the following advantages: (i) nonuse of additional EOG reference signals, (ii) any few number of EEG channels can be analyzed, (iii) time saving, and (iv) the strong generalization ability, etc. In this paper, both public database and lab individual data for EEG analysis are used, we compared the proposed method with the classic independent component analysis (ICA), kurtosis-ICA (K-ICA), Second-order blind identification (SOBI) and a shallow network method. Experimental results show that the proposed method performs better even for very noisy EEG.
AbstractList •This paper investigates the use of deep learning network (DLN) to remove ocular artifacts in EEG signals.•For practical use of rehabilitation system based on brain computer interface, the method does not require additional EOG channels for recording additional EOG reference signals. Meanwhile, the ocular artifacts can be denoised without influence.•With few number of EEG analyzing channels and low time cost, combining without additional EOG channel recording, the method could be used in practical motor imagery rehabilitation system, which avoid the trivial preparation and experiment and more susceptible for patients.•In this paper, the proposed method is proved to have strong generalization ability after cross-subject testing. Ocular artifacts (OAs) are one the most important form of interferences in the analysis of electroencephalogram (EEG) research. OAs removal/reduction is a key analysis before the processing of EEG signals. For classic OAs removal methods, either an additional electrooculogram (EOG) recording or multi-channel EEG is required. To address these limitations of existing methods, this paper investigates the use of deep learning network (DLN) to remove OAs in EEG signals. The proposed method consists of offline stage and online stage. In the offline stage, training samples without OAs are intercepted and used to train an DLN to reconstruct the EEG signals. The high-order statistical moments information of EEG is therefore learned. In the online stage, the trained DLN is used as a filter to automatically remove OAs from the contaminated EEG signals. Compared with the exiting methods, the proposed method has the following advantages: (i) nonuse of additional EOG reference signals, (ii) any few number of EEG channels can be analyzed, (iii) time saving, and (iv) the strong generalization ability, etc. In this paper, both public database and lab individual data for EEG analysis are used, we compared the proposed method with the classic independent component analysis (ICA), kurtosis-ICA (K-ICA), Second-order blind identification (SOBI) and a shallow network method. Experimental results show that the proposed method performs better even for very noisy EEG.
Author Yang, Banghua
Fan, Chengcheng
Hu, Chenxiao
Duan, Kaiwen
Wang, Jinlong
Author_xml – sequence: 1
  givenname: Banghua
  surname: Yang
  fullname: Yang, Banghua
  email: yangbanghua@shu.edu.cn
– sequence: 2
  givenname: Kaiwen
  surname: Duan
  fullname: Duan, Kaiwen
– sequence: 3
  givenname: Chengcheng
  surname: Fan
  fullname: Fan, Chengcheng
– sequence: 4
  givenname: Chenxiao
  surname: Hu
  fullname: Hu, Chenxiao
– sequence: 5
  givenname: Jinlong
  surname: Wang
  fullname: Wang, Jinlong
BookMark eNp9kM1KAzEUhYNUsK2-gKu8wIw3mcxPQRel1B8ouNF1yCQ3kjKdlCQt-PamVDcuejlwz118F86ZkcnoRyTknkHJgDUP27KPe11yYF0JPItdkSlrRVN0DLrJn4eFuCGzGLcAomuZmJKn5SH5nUpOU68PgwpUheSs0inSgDt_VAN1I12vX-ghuvGLGsQ9HVCFMV-35NqqIeLd756Tz-f1x-q12Ly_vK2Wm0JXAKngyuSxRgljsauh77HC2lTQctBWM7DMNKJeACxqJmzPBBjR9kKg5k1d62pO-PmvDj7GgFbug9up8C0ZyFMBcitPBchTARJ4FstQ9w_SLuWkfkxBueEy-nhGMYc6OgwyaoejRuMC6iSNd5fwH4WseTc
CitedBy_id crossref_primary_10_1007_s00521_022_08111_6
crossref_primary_10_1109_JBHI_2023_3314197
crossref_primary_10_1109_ACCESS_2021_3125728
crossref_primary_10_1088_1741_2552_ab260c
crossref_primary_10_1108_IJICC_06_2021_0127
crossref_primary_10_1016_j_neuroimage_2025_121123
crossref_primary_10_3390_s23041932
crossref_primary_10_1088_1741_2552_ac2bf8
crossref_primary_10_1080_0952813X_2019_1704438
crossref_primary_10_1088_1742_6596_2325_1_012038
crossref_primary_10_1109_TCDS_2021_3079712
crossref_primary_10_1109_TBME_2022_3161994
crossref_primary_10_3390_bioengineering10050579
crossref_primary_10_1016_j_compbiomed_2024_108626
crossref_primary_10_1016_j_bspc_2022_104115
crossref_primary_10_1109_TNSRE_2022_3154891
crossref_primary_10_1016_j_aei_2024_102831
crossref_primary_10_1007_s12553_023_00765_z
crossref_primary_10_1080_03772063_2020_1749143
crossref_primary_10_1016_j_bspc_2020_102094
crossref_primary_10_1371_journal_pone_0277974
crossref_primary_10_3390_s21196343
crossref_primary_10_1016_j_csi_2024_103897
crossref_primary_10_1109_JBHI_2022_3227320
crossref_primary_10_2139_ssrn_3765947
crossref_primary_10_1155_2022_4875399
crossref_primary_10_1371_journal_pone_0313076
crossref_primary_10_3389_fphys_2022_910368
crossref_primary_10_1007_s00779_021_01533_4
crossref_primary_10_1109_TNSRE_2025_3529991
crossref_primary_10_3390_bioengineering11101018
crossref_primary_10_1109_JSEN_2022_3209805
crossref_primary_10_1007_s11760_021_02080_4
crossref_primary_10_1109_JBHI_2021_3131104
crossref_primary_10_1016_j_measurement_2022_112278
crossref_primary_10_1007_s10548_023_00986_5
crossref_primary_10_1088_1741_2552_ad8963
crossref_primary_10_1049_iet_spr_2019_0602
crossref_primary_10_1109_ACCESS_2022_3173261
crossref_primary_10_1109_TIM_2023_3341114
crossref_primary_10_1109_TNSRE_2023_3330963
crossref_primary_10_1007_s42979_023_01959_y
crossref_primary_10_1016_j_jneumeth_2022_109498
crossref_primary_10_1109_JBHI_2024_3358917
crossref_primary_10_3389_fninf_2022_1025847
crossref_primary_10_1016_j_compbiomed_2023_107135
crossref_primary_10_1109_TBME_2024_3408331
crossref_primary_10_1371_journal_pone_0311942
crossref_primary_10_1109_TIM_2020_3041099
crossref_primary_10_3390_sym11070944
crossref_primary_10_1088_1741_2552_abb5bd
crossref_primary_10_1088_1741_2552_ac63eb
crossref_primary_10_3390_biology13010002
crossref_primary_10_1109_TIM_2023_3324345
crossref_primary_10_1016_j_engappai_2023_107514
crossref_primary_10_3390_s24030877
crossref_primary_10_3390_brainsci13020240
crossref_primary_10_1016_j_jenvp_2025_102581
crossref_primary_10_3390_computers9020046
crossref_primary_10_1177_14771535251314433
crossref_primary_10_3390_signals5020018
crossref_primary_10_1007_s12652_022_03783_3
crossref_primary_10_3389_fnins_2023_1258024
crossref_primary_10_1111_1744_1633_70002
crossref_primary_10_2139_ssrn_4074649
crossref_primary_10_1016_j_autcon_2024_105537
crossref_primary_10_1016_j_dsp_2023_104319
crossref_primary_10_1016_j_cnp_2023_04_002
crossref_primary_10_1016_j_bbe_2021_06_007
crossref_primary_10_1111_psyp_14511
crossref_primary_10_1007_s11042_022_12874_4
crossref_primary_10_1016_j_compbiomed_2022_106248
crossref_primary_10_1109_TIM_2023_3342863
crossref_primary_10_1007_s00034_024_02936_3
crossref_primary_10_3389_fnins_2022_782367
crossref_primary_10_1016_j_measen_2022_100465
crossref_primary_10_1523_ENEURO_0160_22_2022
crossref_primary_10_1016_j_bspc_2021_102935
crossref_primary_10_1088_1741_2552_ad788d
crossref_primary_10_1109_JSEN_2024_3363754
crossref_primary_10_1016_j_knosys_2024_112555
crossref_primary_10_1016_j_jocn_2023_09_029
crossref_primary_10_1109_ACCESS_2023_3242643
crossref_primary_10_1007_s00521_020_04953_0
crossref_primary_10_1016_j_neucom_2020_04_029
Cites_doi 10.1016/j.clinph.2006.10.019
10.1061/(ASCE)EM.1943-7889.0000133
10.1016/S0925-2312(00)00286-1
10.1111/1469-8986.3720163
10.1109/78.554307
10.1016/j.compbiomed.2008.04.010
10.1007/BF02344717
10.1016/j.jneumeth.2014.01.024
10.1109/JSEN.2011.2115236
10.1162/neco.2006.18.7.1527
10.1016/j.neucom.2012.04.016
10.1088/1741-2560/13/3/036006
10.1016/j.neuroimage.2007.01.051
10.3233/THC-2001-9302
10.1088/1741-2560/11/3/035013
10.1016/j.medengphy.2010.04.010
10.1016/S1388-2457(00)00541-1
10.1088/1741-2560/11/3/035010
10.1631/FITEE.1400299
10.3389/fnhum.2016.00193
10.1088/1741-2560/10/5/056002
10.1023/A:1026233624772
10.1016/j.bspc.2011.02.001
10.1088/1741-2560/11/3/036008
10.1016/j.clinph.2011.04.026
10.1088/1741-2560/8/3/036015
10.1016/j.bspc.2015.06.009
10.1088/1741-2560/12/4/046022
10.1016/j.jneumeth.2006.05.033
10.1016/j.neucom.2014.09.040
10.1088/1741-2560/9/2/026020
10.1111/j.1469-8986.2003.00141.x
10.4310/CIS.2003.v3.n1.a2
10.1109/GlobalSIP.2013.6736804
10.1088/1741-2560/11/4/046014
10.1088/1741-2560/13/2/026013
10.1088/1741-2560/3/4/011
10.1016/j.eswa.2011.08.132
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2018.02.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
EndPage 158
ExternalDocumentID 10_1016_j_bspc_2018_02_021
S1746809418300521
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-2addddfda4dfe850bbe3e5d30720cfc10f1d6459009514fb140d47b44ec2655c3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Wed Oct 01 02:17:44 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Fri Feb 23 02:28:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning network (DLN)
Electroencephalogram (EEG)
Ocular artifacts (OAs) removal
Independent component analysis (ICA)
Shallow network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-2addddfda4dfe850bbe3e5d30720cfc10f1d6459009514fb140d47b44ec2655c3
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_bspc_2018_02_021
crossref_citationtrail_10_1016_j_bspc_2018_02_021
elsevier_sciencedirect_doi_10_1016_j_bspc_2018_02_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2018
2018-05-00
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationTitle Biomedical signal processing and control
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Nguyen, Musson, Li (bib0040) 2012; 97
Indiradevi, Elias, Sathidevi, Nayak, Radhakrishman (bib0175) 2008; 38
Hazra, Roffel, Narasimhan (bib0190) 2010; 136
Hoon, Min, Jin (bib0020) 2014; 11
Hagemann, Naumann (bib0110) 2001; 112
Mowla, Ng, Zilany (bib0060) 2015; 22
Haas, Frei, Osorio (bib0100) 2003; 3
Tang, Pearlmutter, Zibulevsky, Carter (bib0255) 2000; 32
Rosenfeld, Reinhart, Srivastava (bib0055) 1997; 22
Belouchrani, Abed-Meraim, Cardoso, Moulines (bib0245) 1997; 5
Klados, Papadelis, Braun (bib0095) 2011; 6
.
Pizzagalli (bib0115) 2007
Blankertz, Dornhege, Krauledat (bib0240) 2007; 37
Islam, Tcheslavski (bib0120) 2015
De Vos, Kroesen, Emkes (bib0010) 2014; 11
Ahmed, Merino, Mao (bib0200) 2013
Luu, He, Brown (bib0075) 2016; 13
Rueda-Plata, Ramos-Pollán, González (bib0230) 2015
Sameni, Gouy-Pailler (bib0030) 2014; 225
María Alonso-Valerdi, Sepulveda, Ramírez-Mendoza (bib0085) 2015; 9
Schmüser, Sebastian, Mobascher, Lieb, Tüscher, Feige (bib0035) 2014; 8
Jung, Makeig, Humphries, Lee, Mckeown, Iragui (bib0090) 2000; 37
Hsu, Lin, Hsu (bib0165) 2012; 39
Seifzadeh, Karim, Amiri (bib0140) 2014; 7
Kamran, Hong (bib0015) 2013; 10
Mammone, Foresta, Morabito (bib0065) 2012; 12
Fatourechi, Bashashati, Ward (bib0105) 2010; 118
Saa, Çetin (bib0205) 2012; 9
de Beer, van Meurs, Grit (bib0045) 2001; 9
Toppi, Risetti, Quitadamo (bib0080) 2014; 11
Krishnaveni, Jayaraman, Anitha, Ramadoss (bib0170) 2006; 3
Yang, He, Lin (bib0150) 2015; 16
Joyce, Gorodnitsky, Kutas (bib0250) 2004; 41
Mannan, Jeong, Kamran (bib0005) 2016; 10
Kilicarslan, Grossman, Contreras-Vidal (bib0135) 2016; 13
Sherlin (bib0050) 2009
Vos, Deburchgraeve (bib0180) 2011; 122
A. Ng, 2011. Sparse autoencoder. CS294A Lecture notes. 72, 1–19.
He, Wilson, Russell (bib0155) 2004; 42
Winkler, Brandl, Horn (bib0185) 2014; 11
Wulsin, Blanco, Mani (bib0070) 2010
Turnip, Junaidi (bib0125) 2014
J, Wang (bib0130) 2015; 151
Ghandeharion, Erfanian (bib0160) 2010; 32
Wulsin, Gupta, Mani (bib0210) 2011; 8
Hinton, Osindero, Teh (bib0215) 2006; 18
Schölkopf, Platt, Hofmann (bib0220) 2007
Noureddin, Lawrence, Birch (bib0145) 2007
Kline, Huang, Snyder (bib0025) 2015; 12
Castellanos, Makarov (bib0195) 2006; 158
A. Ng, 2011. Stacked Autoencoders
Jung (10.1016/j.bspc.2018.02.021_bib0090) 2000; 37
Rosenfeld (10.1016/j.bspc.2018.02.021_bib0055) 1997; 22
Hagemann (10.1016/j.bspc.2018.02.021_bib0110) 2001; 112
Hsu (10.1016/j.bspc.2018.02.021_bib0165) 2012; 39
Ghandeharion (10.1016/j.bspc.2018.02.021_bib0160) 2010; 32
Ahmed (10.1016/j.bspc.2018.02.021_bib0200) 2013
10.1016/j.bspc.2018.02.021_bib0225
Winkler (10.1016/j.bspc.2018.02.021_bib0185) 2014; 11
He (10.1016/j.bspc.2018.02.021_bib0155) 2004; 42
Vos (10.1016/j.bspc.2018.02.021_bib0180) 2011; 122
Schmüser (10.1016/j.bspc.2018.02.021_bib0035) 2014; 8
Castellanos (10.1016/j.bspc.2018.02.021_bib0195) 2006; 158
Mammone (10.1016/j.bspc.2018.02.021_bib0065) 2012; 12
Islam (10.1016/j.bspc.2018.02.021_bib0120) 2015
Noureddin (10.1016/j.bspc.2018.02.021_bib0145) 2007
Hazra (10.1016/j.bspc.2018.02.021_bib0190) 2010; 136
Wulsin (10.1016/j.bspc.2018.02.021_bib0070) 2010
Nguyen (10.1016/j.bspc.2018.02.021_bib0040) 2012; 97
Kilicarslan (10.1016/j.bspc.2018.02.021_bib0135) 2016; 13
Tang (10.1016/j.bspc.2018.02.021_bib0255) 2000; 32
Saa (10.1016/j.bspc.2018.02.021_bib0205) 2012; 9
Wulsin (10.1016/j.bspc.2018.02.021_bib0210) 2011; 8
de Beer (10.1016/j.bspc.2018.02.021_bib0045) 2001; 9
Mowla (10.1016/j.bspc.2018.02.021_bib0060) 2015; 22
Mannan (10.1016/j.bspc.2018.02.021_bib0005) 2016; 10
Schölkopf (10.1016/j.bspc.2018.02.021_bib0220) 2007
Rueda-Plata (10.1016/j.bspc.2018.02.021_bib0230) 2015
Joyce (10.1016/j.bspc.2018.02.021_bib0250) 2004; 41
Blankertz (10.1016/j.bspc.2018.02.021_bib0240) 2007; 37
Kamran (10.1016/j.bspc.2018.02.021_bib0015) 2013; 10
Yang (10.1016/j.bspc.2018.02.021_bib0150) 2015; 16
Belouchrani (10.1016/j.bspc.2018.02.021_bib0245) 1997; 5
Luu (10.1016/j.bspc.2018.02.021_bib0075) 2016; 13
Klados (10.1016/j.bspc.2018.02.021_bib0095) 2011; 6
Turnip (10.1016/j.bspc.2018.02.021_bib0125) 2014
Haas (10.1016/j.bspc.2018.02.021_bib0100) 2003; 3
Hinton (10.1016/j.bspc.2018.02.021_bib0215) 2006; 18
Kline (10.1016/j.bspc.2018.02.021_bib0025) 2015; 12
Pizzagalli (10.1016/j.bspc.2018.02.021_bib0115) 2007
J (10.1016/j.bspc.2018.02.021_bib0130) 2015; 151
Seifzadeh (10.1016/j.bspc.2018.02.021_bib0140) 2014; 7
Sherlin (10.1016/j.bspc.2018.02.021_bib0050) 2009
Sameni (10.1016/j.bspc.2018.02.021_bib0030) 2014; 225
Fatourechi (10.1016/j.bspc.2018.02.021_bib0105) 2010; 118
María Alonso-Valerdi (10.1016/j.bspc.2018.02.021_bib0085) 2015; 9
10.1016/j.bspc.2018.02.021_bib0235
Toppi (10.1016/j.bspc.2018.02.021_bib0080) 2014; 11
Krishnaveni (10.1016/j.bspc.2018.02.021_bib0170) 2006; 3
De Vos (10.1016/j.bspc.2018.02.021_bib0010) 2014; 11
Hoon (10.1016/j.bspc.2018.02.021_bib0020) 2014; 11
Indiradevi (10.1016/j.bspc.2018.02.021_bib0175) 2008; 38
References_xml – volume: 225
  start-page: 97
  year: 2014
  end-page: 105
  ident: bib0030
  article-title: An iterative subspace denoising algorithm for removing electroencephalogram ocular artifacts
  publication-title: J. Neurosci. Methods
– volume: 11
  start-page: 035013
  year: 2014
  ident: bib0185
  article-title: Robust artifactual independent component classification for BCI practitioners
  publication-title: J. Neural Eng.
– volume: 42
  start-page: 407
  year: 2004
  end-page: 412
  ident: bib0155
  article-title: Removal of ocular artifacts from electroencephalogram by adaptive filtering
  publication-title: Med. Biol. Eng. Comput.
– volume: 13
  start-page: 026013
  year: 2016
  ident: bib0135
  article-title:  A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements
  publication-title: J. Neural Eng.
– start-page: 137
  year: 2015
  end-page: 142
  ident: bib0120
  article-title: Independent component analysis for EOG artifacts minimization of EEG signals using kurtosis as a threshold
  publication-title: Electrical Information and Communication Technology
– volume: 32
  start-page: 1115
  year: 2000
  end-page: 1120
  ident: bib0255
  article-title: Blind source separation of multichannel neuromagnetic responses
  publication-title: Neurocomputing
– volume: 13
  start-page: 036006
  year: 2016
  ident: bib0075
  article-title: Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar
  publication-title: J. Neural Eng.
– reference: A. Ng, 2011. Stacked Autoencoders
– volume: 12
  start-page: 046022
  year: 2015
  ident: bib0025
  article-title: Isolating gait-related movement artifacts in electroencephalography during human walking
  publication-title: J. Neural Eng.
– volume: 3
  start-page: 19
  year: 2003
  end-page: 40
  ident: bib0100
  article-title: EEG ocular artifact removal through ARMAX model system identification using extended least squares
  publication-title: Commun. Inform. Syst.
– volume: 3
  start-page: 338
  year: 2006
  end-page: 346
  ident: bib0170
  article-title: Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients
  publication-title: J. Neural Eng.
– start-page: 153
  year: 2007
  end-page: 160
  ident: bib0220
  article-title: Greedy Layer-wise Training of Deep Networks
– volume: 118
  start-page: 480
  year: 2010
  end-page: 494
  ident: bib0105
  article-title: EMG and EOG artifacts in brain computer interface systems: a survey
  publication-title: Clin. Neurophysiol.
– start-page: 33
  year: 2013
  end-page: 36
  ident: bib0200
  article-title: A deep learning method for classification of images RSVP events with EEG data
  publication-title: 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP)
– volume: 97
  start-page: 374
  year: 2012
  end-page: 389
  ident: bib0040
  article-title: EOG artifact removal using a wavelet neural network
  publication-title: Neurocomputing
– volume: 9
  start-page: 237
  year: 2001
  end-page: 256
  ident: bib0045
  article-title: Educational simulation of the electroencephalogram (EEG)
  publication-title: Technol. Health Care (Don Mills)
– volume: 10
  start-page: 193
  year: 2016
  end-page: 209
  ident: bib0005
  article-title: Hybrid ICA-regression: automatic identification and removal of ocular artifacts from electroencephalographic signals
  publication-title: Front. Hum. Neurosci.
– volume: 11
  start-page: 046014
  year: 2014
  ident: bib0020
  article-title: CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording
  publication-title: J. Neural Eng.
– start-page: 56
  year: 2007
  end-page: 84
  ident: bib0115
  article-title: Electroencephalography and high-density electrophysiological source localization
  publication-title: Handbook of Psychophysiology
– volume: 6
  start-page: 291
  year: 2011
  end-page: 300
  ident: bib0095
  article-title: ICA: a hybrid methodology combining Blind Source Separation and regression techniques for the rejection of ocular artifacts
  publication-title: Biomed. Signal. Process.
– volume: 16
  start-page: 486
  year: 2015
  end-page: 496
  ident: bib0150
  article-title: Fast removal of ocular artifacts from electroencephalogram signals using spatial constraint independent component analysis based recursive least squares in brain-computer interface
  publication-title: Front. Inform. Technol. Electron. Eng.
– volume: 9
  start-page: 636
  year: 2015
  ident: bib0085
  article-title: Perception and cognition of cues used in synchronous brain-computer interfaces modify electroencephalographic patterns of control tasks Front
  publication-title: Hum. Neurosci.
– volume: 9
  start-page: 26020
  year: 2012
  end-page: 26028
  ident: bib0205
  article-title: ÇA latent discriminative model-based approach for classification of imaginary motor tasks from EEG data
  publication-title: J. Neural Eng.
– volume: 10
  start-page: 056002
  year: 2013
  ident: bib0015
  article-title: Linear parameter-varying model and adaptive filtering technique for detecting neuronal activities: an fNIRS study
  publication-title: J. Neural Eng.
– volume: 7
  start-page: 51
  year: 2014
  end-page: 56
  ident: bib0140
  article-title: Comparison of different linear filter design methods for handling ocular artifacts in brain computer interface system
  publication-title: J. Comput. Robot.
– reference: A. Ng, 2011. Sparse autoencoder. CS294A Lecture notes. 72, 1–19.
– volume: 5
  start-page: 434
  year: 1997
  end-page: 444
  ident: bib0245
  article-title: A blind source separation technique using second-order statistics
  publication-title: IEEE Trans. Signal Process.
– volume: 12
  start-page: 533
  year: 2012
  end-page: 542
  ident: bib0065
  article-title: Automatic artifact rejection from multichannel scalp EEG by wavelet ICA
  publication-title: IEEE Sens. J.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib0215
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural. Comput.
– start-page: 143
  year: 2007
  end-page: 164
  ident: bib0145
  article-title: Time-frequency analysis of eye blinks and saccades in EOG for EEG artifact removal
  publication-title: International IEEE/EMBS Conference on Neural Engineering
– volume: 37
  start-page: 163
  year: 2000
  end-page: 178
  ident: bib0090
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
– year: 2009
  ident: bib0050
  article-title: Diagnosing and treating brain function through the use of low resolution electromagnetic tomography (LORETA)
  publication-title: Introduction to Quantitative EEG and Neurofeedback
– start-page: 296
  year: 2014
  end-page: 302
  ident: bib0125
  article-title: Removal artifacts from EEG signal using independent component analysis and principal component analysis
  publication-title: International Conference on Technology, Informatics, Management, Engineering, and Environment
– start-page: 436
  year: 2010
  end-page: 441
  ident: bib0070
  article-title: Semi-supervised anomaly detection for EEG waveforms using deep belief nets
  publication-title: International Conference on Machine Learning and Applications
– volume: 37
  start-page: 539
  year: 2007
  end-page: 550
  ident: bib0240
  article-title: The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects
  publication-title: Neuroimage
– volume: 151
  start-page: 278
  year: 2015
  end-page: 287
  ident: bib0130
  article-title: Removal of EOG and EMG artifacts from EEG using combination of functional link neural network and adaptive neural fuzzy inference system
  publication-title: Neurocomputing
– volume: 158
  start-page: 300
  year: 2006
  end-page: 312
  ident: bib0195
  article-title: Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis
  publication-title: J. Neurosci. Methods
– volume: 8
  start-page: 53
  year: 2011
  end-page: 57
  ident: bib0210
  article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement
  publication-title: J. Neural Eng.
– volume: 32
  start-page: 720
  year: 2010
  end-page: 729
  ident: bib0160
  article-title:  A fully automatic ocular artifact suppression from EEG data using higher order statistics: improved performance by wavelet analysis
  publication-title: Med. Eng. Phys.
– volume: 11
  start-page: 035010
  year: 2014
  ident: bib0080
  article-title: Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery
  publication-title: J. Neural Eng.
– volume: 39
  start-page: 2743
  year: 2012
  end-page: 2749
  ident: bib0165
  article-title: Wavelet-based envelope features with automatic EOG artifact removal: application to single-trial EEG data
  publication-title: Expert. Syst. Appl.
– volume: 8
  start-page: 175
  year: 2014
  ident: bib0035
  article-title: Data-driven analysis of simultaneous EEG/fMRI using an ICA approach Front
  publication-title: Neuroscience
– reference: .
– volume: 112
  start-page: 215
  year: 2001
  end-page: 231
  ident: bib0110
  article-title: The effects of ocular artifacts on (lateralized) broadband power in the EEG
  publication-title: Clin. Neurophysiol.
– start-page: 275
  year: 2015
  end-page: 284
  ident: bib0230
  article-title: Supervised greedy layer-wise training for deep convolutional networks with small datasets
  publication-title: Computational Collective Intelligence
– volume: 41
  start-page: 313
  year: 2004
  end-page: 325
  ident: bib0250
  article-title: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation
  publication-title: Psychophysiology
– volume: 22
  start-page: 111
  year: 2015
  end-page: 118
  ident: bib0060
  article-title: Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising
  publication-title: Biomed. Signal. Proces.
– volume: 38
  start-page: 805
  year: 2008
  end-page: 816
  ident: bib0175
  article-title: A multilevel wavelet approach for automatic detection of epileptic spikes in the electroencephalogram
  publication-title: J. Comput. Biol. Med.
– volume: 122
  start-page: 2345
  year: 2011
  end-page: 2354
  ident: bib0180
  article-title: Automated artifact removal as preprocessing refines neonatal seizure detection
  publication-title: Clin. Neurophysiol.
– volume: 136
  start-page: 889
  year: 2010
  end-page: 897
  ident: bib0190
  article-title: Modified cross-correlation method for the blind identification of structures
  publication-title: J. Eng. Mech.
– volume: 22
  start-page: 1023
  year: 1997
  end-page: 1034
  ident: bib0055
  article-title: The effects of alpha (10-Hz) and beta (22-Hz) “Entrainment” simulation on the alpha and beta EEG bands: individual differences are critical to prediction of effects
  publication-title: Appl. Psychophys. Biof.
– volume: 11
  start-page: 277
  year: 2014
  end-page: 286
  ident: bib0010
  article-title: P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier
  publication-title: J. Neural Eng.
– volume: 118
  start-page: 480
  year: 2010
  ident: 10.1016/j.bspc.2018.02.021_bib0105
  article-title: EMG and EOG artifacts in brain computer interface systems: a survey
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2006.10.019
– volume: 136
  start-page: 889
  year: 2010
  ident: 10.1016/j.bspc.2018.02.021_bib0190
  article-title: Modified cross-correlation method for the blind identification of structures
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0000133
– volume: 32
  start-page: 1115
  issue: 2000
  year: 2000
  ident: 10.1016/j.bspc.2018.02.021_bib0255
  article-title: Blind source separation of multichannel neuromagnetic responses
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(00)00286-1
– volume: 37
  start-page: 163
  year: 2000
  ident: 10.1016/j.bspc.2018.02.021_bib0090
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720163
– volume: 5
  start-page: 434
  issue: 1997
  year: 1997
  ident: 10.1016/j.bspc.2018.02.021_bib0245
  article-title: A blind source separation technique using second-order statistics
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.554307
– volume: 38
  start-page: 805
  year: 2008
  ident: 10.1016/j.bspc.2018.02.021_bib0175
  article-title: A multilevel wavelet approach for automatic detection of epileptic spikes in the electroencephalogram
  publication-title: J. Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2008.04.010
– start-page: 137
  year: 2015
  ident: 10.1016/j.bspc.2018.02.021_bib0120
  article-title: Independent component analysis for EOG artifacts minimization of EEG signals using kurtosis as a threshold
– start-page: 436
  year: 2010
  ident: 10.1016/j.bspc.2018.02.021_bib0070
  article-title: Semi-supervised anomaly detection for EEG waveforms using deep belief nets
  publication-title: International Conference on Machine Learning and Applications
– volume: 8
  start-page: 175
  year: 2014
  ident: 10.1016/j.bspc.2018.02.021_bib0035
  article-title: Data-driven analysis of simultaneous EEG/fMRI using an ICA approach Front
  publication-title: Neuroscience
– volume: 7
  start-page: 51
  year: 2014
  ident: 10.1016/j.bspc.2018.02.021_bib0140
  article-title: Comparison of different linear filter design methods for handling ocular artifacts in brain computer interface system
  publication-title: J. Comput. Robot.
– start-page: 296
  year: 2014
  ident: 10.1016/j.bspc.2018.02.021_bib0125
  article-title: Removal artifacts from EEG signal using independent component analysis and principal component analysis
– volume: 42
  start-page: 407
  year: 2004
  ident: 10.1016/j.bspc.2018.02.021_bib0155
  article-title: Removal of ocular artifacts from electroencephalogram by adaptive filtering
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02344717
– start-page: 56
  year: 2007
  ident: 10.1016/j.bspc.2018.02.021_bib0115
  article-title: Electroencephalography and high-density electrophysiological source localization
– volume: 225
  start-page: 97
  year: 2014
  ident: 10.1016/j.bspc.2018.02.021_bib0030
  article-title: An iterative subspace denoising algorithm for removing electroencephalogram ocular artifacts
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.01.024
– volume: 12
  start-page: 533
  year: 2012
  ident: 10.1016/j.bspc.2018.02.021_bib0065
  article-title: Automatic artifact rejection from multichannel scalp EEG by wavelet ICA
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2011.2115236
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.bspc.2018.02.021_bib0215
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural. Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 97
  start-page: 374
  year: 2012
  ident: 10.1016/j.bspc.2018.02.021_bib0040
  article-title: EOG artifact removal using a wavelet neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.04.016
– start-page: 153
  year: 2007
  ident: 10.1016/j.bspc.2018.02.021_bib0220
– volume: 13
  start-page: 036006
  year: 2016
  ident: 10.1016/j.bspc.2018.02.021_bib0075
  article-title: Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/3/036006
– volume: 37
  start-page: 539
  year: 2007
  ident: 10.1016/j.bspc.2018.02.021_bib0240
  article-title: The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.01.051
– volume: 9
  start-page: 237
  year: 2001
  ident: 10.1016/j.bspc.2018.02.021_bib0045
  article-title: Educational simulation of the electroencephalogram (EEG)
  publication-title: Technol. Health Care (Don Mills)
  doi: 10.3233/THC-2001-9302
– volume: 11
  start-page: 035013
  year: 2014
  ident: 10.1016/j.bspc.2018.02.021_bib0185
  article-title: Robust artifactual independent component classification for BCI practitioners
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/3/035013
– volume: 32
  start-page: 720
  year: 2010
  ident: 10.1016/j.bspc.2018.02.021_bib0160
  article-title:  A fully automatic ocular artifact suppression from EEG data using higher order statistics: improved performance by wavelet analysis
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.04.010
– volume: 112
  start-page: 215
  year: 2001
  ident: 10.1016/j.bspc.2018.02.021_bib0110
  article-title: The effects of ocular artifacts on (lateralized) broadband power in the EEG
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(00)00541-1
– volume: 11
  start-page: 035010
  year: 2014
  ident: 10.1016/j.bspc.2018.02.021_bib0080
  article-title: Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/3/035010
– volume: 16
  start-page: 486
  year: 2015
  ident: 10.1016/j.bspc.2018.02.021_bib0150
  article-title: Fast removal of ocular artifacts from electroencephalogram signals using spatial constraint independent component analysis based recursive least squares in brain-computer interface
  publication-title: Front. Inform. Technol. Electron. Eng.
  doi: 10.1631/FITEE.1400299
– volume: 10
  start-page: 193
  year: 2016
  ident: 10.1016/j.bspc.2018.02.021_bib0005
  article-title: Hybrid ICA-regression: automatic identification and removal of ocular artifacts from electroencephalographic signals
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2016.00193
– volume: 10
  start-page: 056002
  year: 2013
  ident: 10.1016/j.bspc.2018.02.021_bib0015
  article-title: Linear parameter-varying model and adaptive filtering technique for detecting neuronal activities: an fNIRS study
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/5/056002
– start-page: 143
  year: 2007
  ident: 10.1016/j.bspc.2018.02.021_bib0145
  article-title: Time-frequency analysis of eye blinks and saccades in EOG for EEG artifact removal
  publication-title: International IEEE/EMBS Conference on Neural Engineering
– volume: 22
  start-page: 1023
  year: 1997
  ident: 10.1016/j.bspc.2018.02.021_bib0055
  article-title: The effects of alpha (10-Hz) and beta (22-Hz) “Entrainment” simulation on the alpha and beta EEG bands: individual differences are critical to prediction of effects
  publication-title: Appl. Psychophys. Biof.
  doi: 10.1023/A:1026233624772
– volume: 6
  start-page: 291
  year: 2011
  ident: 10.1016/j.bspc.2018.02.021_bib0095
  article-title: ICA: a hybrid methodology combining Blind Source Separation and regression techniques for the rejection of ocular artifacts
  publication-title: Biomed. Signal. Process.
  doi: 10.1016/j.bspc.2011.02.001
– volume: 11
  start-page: 277
  year: 2014
  ident: 10.1016/j.bspc.2018.02.021_bib0010
  article-title: P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/3/036008
– volume: 122
  start-page: 2345
  year: 2011
  ident: 10.1016/j.bspc.2018.02.021_bib0180
  article-title: Automated artifact removal as preprocessing refines neonatal seizure detection
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2011.04.026
– year: 2009
  ident: 10.1016/j.bspc.2018.02.021_bib0050
  article-title: Diagnosing and treating brain function through the use of low resolution electromagnetic tomography (LORETA)
– volume: 8
  start-page: 53
  year: 2011
  ident: 10.1016/j.bspc.2018.02.021_bib0210
  article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036015
– volume: 22
  start-page: 111
  year: 2015
  ident: 10.1016/j.bspc.2018.02.021_bib0060
  article-title: Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising
  publication-title: Biomed. Signal. Proces.
  doi: 10.1016/j.bspc.2015.06.009
– volume: 12
  start-page: 046022
  year: 2015
  ident: 10.1016/j.bspc.2018.02.021_bib0025
  article-title: Isolating gait-related movement artifacts in electroencephalography during human walking
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/4/046022
– start-page: 275
  year: 2015
  ident: 10.1016/j.bspc.2018.02.021_bib0230
  article-title: Supervised greedy layer-wise training for deep convolutional networks with small datasets
– ident: 10.1016/j.bspc.2018.02.021_bib0225
– volume: 158
  start-page: 300
  year: 2006
  ident: 10.1016/j.bspc.2018.02.021_bib0195
  article-title: Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2006.05.033
– volume: 151
  start-page: 278
  year: 2015
  ident: 10.1016/j.bspc.2018.02.021_bib0130
  article-title: Removal of EOG and EMG artifacts from EEG using combination of functional link neural network and adaptive neural fuzzy inference system
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.040
– volume: 9
  start-page: 26020
  year: 2012
  ident: 10.1016/j.bspc.2018.02.021_bib0205
  article-title: ÇA latent discriminative model-based approach for classification of imaginary motor tasks from EEG data
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/9/2/026020
– volume: 9
  start-page: 636
  year: 2015
  ident: 10.1016/j.bspc.2018.02.021_bib0085
  article-title: Perception and cognition of cues used in synchronous brain-computer interfaces modify electroencephalographic patterns of control tasks Front
  publication-title: Hum. Neurosci.
– volume: 41
  start-page: 313
  year: 2004
  ident: 10.1016/j.bspc.2018.02.021_bib0250
  article-title: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2003.00141.x
– volume: 3
  start-page: 19
  year: 2003
  ident: 10.1016/j.bspc.2018.02.021_bib0100
  article-title: EEG ocular artifact removal through ARMAX model system identification using extended least squares
  publication-title: Commun. Inform. Syst.
  doi: 10.4310/CIS.2003.v3.n1.a2
– start-page: 33
  year: 2013
  ident: 10.1016/j.bspc.2018.02.021_bib0200
  article-title: A deep learning method for classification of images RSVP events with EEG data
  publication-title: 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP)
  doi: 10.1109/GlobalSIP.2013.6736804
– volume: 11
  start-page: 046014
  year: 2014
  ident: 10.1016/j.bspc.2018.02.021_bib0020
  article-title: CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/4/046014
– volume: 13
  start-page: 026013
  year: 2016
  ident: 10.1016/j.bspc.2018.02.021_bib0135
  article-title:  A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/2/026013
– volume: 3
  start-page: 338
  year: 2006
  ident: 10.1016/j.bspc.2018.02.021_bib0170
  article-title: Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/3/4/011
– ident: 10.1016/j.bspc.2018.02.021_bib0235
– volume: 39
  start-page: 2743
  year: 2012
  ident: 10.1016/j.bspc.2018.02.021_bib0165
  article-title: Wavelet-based envelope features with automatic EOG artifact removal: application to single-trial EEG data
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2011.08.132
SSID ssj0048714
Score 2.4563348
Snippet •This paper investigates the use of deep learning network (DLN) to remove ocular artifacts in EEG signals.•For practical use of rehabilitation system based on...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 148
SubjectTerms Deep learning network (DLN)
Electroencephalogram (EEG)
Independent component analysis (ICA)
Ocular artifacts (OAs) removal
Shallow network
Title Automatic ocular artifacts removal in EEG using deep learning
URI https://dx.doi.org/10.1016/j.bspc.2018.02.021
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k9g8No8ePJTSWhV70UJvYV8pFU1CH1d_uzObTakgPQg5JGEWNpPZ2Znkm28IuYWgIAs86Tl-LCBBYeAHeaDhTGtXgEHrbheLk1_H0WjCnqfhtEH6dS0Mwiqt7698uvHW9k7HarNTzuedN4ilowSyEzBK_LhpKthZjF0M7r83MA-Ixw2_Nwo7KG0LZyqMl1iWSGPoJYa30_f-3py2NpzhETm0kSLtVZM5Jg2dn5CDLf7AU_LQW68Kw7lKC4MnpTh1rFVY0oX-KsCK6Dyng8EjRXz7jCqtS2obRczOyGQ4eO-PHNsPwZHwhCvHB1-kVKY4U5lOQlcIHehQwSr1XZlJz808hdwwJmximYDcSbFYMKalH4WhDM5JMy9yfUGocjkuPfwHypkUAc9UwLiKI8UTLrRqEa9WRCotWTj2rPhMa1TYR4rKS1F5qevD4bXI3WZMWVFl7JQOa_2mv154Cr58x7jLf467Ivt4VWEVr0lztVjrG4gnVqJtDKZN9npPL6PxDwZZya4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMbCs3DadKBoapaCrRdaKVulh07VREkUZuu_HbuEgcVCXVAyhAlZ8m5nM93yXffEXIHQUHsOZFjuYGEBIWBHxSehjOtbQkGrdttLE4ejVuDKXuZ-bMa6Va1MAirNL6_9OmFtzZXmkabzWyxaL5BLN0KITsBo8SPm5AC7TDfDTADe_j6wXlAQF4QfKO0heKmcqYEeclVhjyGTlgQd7rO37vTxo7TPyQHJlSknXI2R6Smk2Oyv0EgeEIeO-s8LUhXaVoASinOHYsVVnSpP1MwI7pIaK_3RBHgPqdK64yaThHzUzLt9ybdgWUaIlgRPGJuueCMlIqVYCrWoW9LqT3tK1imrh3FkWPHjkJymCJuYrGE5EmxQDKmI7fl-5F3RupJmuhzQpUtcO3hT1DBIumJWHlMqKClRCikVg3iVIrgkWELx6YVH7yChb1zVB5H5XHbhcNpkPufMVnJlbFV2q_0y3-9cQ7OfMu4i3-OuyW7g8loyIfP49dLsod3SuDiFanny7W-huAilzeF8XwD50rLQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+ocular+artifacts+removal+in+EEG+using+deep+learning&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Yang%2C+Banghua&rft.au=Duan%2C+Kaiwen&rft.au=Fan%2C+Chengcheng&rft.au=Hu%2C+Chenxiao&rft.date=2018-05-01&rft.issn=1746-8094&rft.volume=43&rft.spage=148&rft.epage=158&rft_id=info:doi/10.1016%2Fj.bspc.2018.02.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2018_02_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon