Flood susceptibility mapping using AutoML and a deep learning framework with evolutionary algorithms for hyperparameter optimization
Flooding is one of the most common natural hazards that have extremely detrimental consequences. Understanding which areas are vulnerable to flooding is crucial to addressing these effects. In this work, we use machine learning models and Automated machine learning (AutoML) systems for flood suscept...
Saved in:
| Published in | Applied soft computing Vol. 148; p. 110846 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.11.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 |
| DOI | 10.1016/j.asoc.2023.110846 |
Cover
| Abstract | Flooding is one of the most common natural hazards that have extremely detrimental consequences. Understanding which areas are vulnerable to flooding is crucial to addressing these effects. In this work, we use machine learning models and Automated machine learning (AutoML) systems for flood susceptibility mapping in Kerala, India. In particular, we used a three-dimensional convolutional neural network (CNN) architecture for this purpose. The CNN model was assisted with hyperparameter optimization techniques that combine Bayesian optimization with evolutionary algorithms like differential evolution and covariance matrix adaptation evolutionary strategies. The performances of all models are compared in terms of cross-entropy loss, accuracy, precision, recall, area under the curve (AUC) and kappa score. The CNN model shows better performance than the AutoML models. Evolutionary algorithm-assisted hyperparameter optimization methods improved the efficiency of the CNN model by 4 and 9 percent in terms of accuracy and by 0.0265 and 0.0497 with reference to the AUC score.
[Display omitted]
•A 3D CNN model is proposed to assess flood susceptibility.•Model performance is compared with state-of-the-art machine learning and AutoML models.•A novel hyperparameter optimization model designed for the 3D CNN model.•The model is further improvised by using the evolutionary algorithms-assisted Bayesian optimization technique. |
|---|---|
| AbstractList | Flooding is one of the most common natural hazards that have extremely detrimental consequences. Understanding which areas are vulnerable to flooding is crucial to addressing these effects. In this work, we use machine learning models and Automated machine learning (AutoML) systems for flood susceptibility mapping in Kerala, India. In particular, we used a three-dimensional convolutional neural network (CNN) architecture for this purpose. The CNN model was assisted with hyperparameter optimization techniques that combine Bayesian optimization with evolutionary algorithms like differential evolution and covariance matrix adaptation evolutionary strategies. The performances of all models are compared in terms of cross-entropy loss, accuracy, precision, recall, area under the curve (AUC) and kappa score. The CNN model shows better performance than the AutoML models. Evolutionary algorithm-assisted hyperparameter optimization methods improved the efficiency of the CNN model by 4 and 9 percent in terms of accuracy and by 0.0265 and 0.0497 with reference to the AUC score.
[Display omitted]
•A 3D CNN model is proposed to assess flood susceptibility.•Model performance is compared with state-of-the-art machine learning and AutoML models.•A novel hyperparameter optimization model designed for the 3D CNN model.•The model is further improvised by using the evolutionary algorithms-assisted Bayesian optimization technique. |
| ArticleNumber | 110846 |
| Author | K.S.S., Parthasarathy Vincent, Amala Mary Jidesh, P. |
| Author_xml | – sequence: 1 givenname: Amala Mary surname: Vincent fullname: Vincent, Amala Mary email: amalamaryvincent@gmail.com organization: Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, Karnataka, India – sequence: 2 givenname: Parthasarathy orcidid: 0000-0003-0936-4065 surname: K.S.S. fullname: K.S.S., Parthasarathy organization: Department of Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, Karnataka, India – sequence: 3 givenname: P. surname: Jidesh fullname: Jidesh, P. organization: Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, Karnataka, India |
| BookMark | eNp9kEFPwyAUgImZidv0D3jiD3QCZZQmXpbFqcmMFz0TRl83ZlsaoDPz7A-3dZ48LCQP8uDjvfdN0KhxDSB0S8mMEiru9jMdnJkxwtIZpURycYHGVGYsyYWko_48FzLhORdXaBLCnvRQzuQYfa8q5wocumCgjXZjKxuPuNZta5st7sIQF110L2usmwJrXAC0uALtm-Gq9LqGT-c_8KeNOwwHV3XRukb7I9bV1vk-WwdcOo93xxZ8qwcggseur1bbLz28vkaXpa4C3PztU_S-enhbPiXr18fn5WKdmJSQmDAmOKeyNKUspGYS5lRSgFIKBoZvBAE6Jxw2XGepzjMoMsk46ZfISUp4lk6RPP1rvAvBQ6mMjb8dRK9tpShRg021V4NNNdhUJ5s9yv6hrbd1P-Z56P4EQT_UwYJXwVhoDBTWg4mqcPYc_gPtEpPX |
| CitedBy_id | crossref_primary_10_1016_j_uclim_2024_102272 crossref_primary_10_1016_j_asr_2024_08_004 crossref_primary_10_1016_j_asoc_2024_112021 crossref_primary_10_1016_j_ejrh_2025_102262 crossref_primary_10_1016_j_jii_2024_100738 crossref_primary_10_1007_s10661_024_13487_0 crossref_primary_10_1007_s12665_024_11988_2 crossref_primary_10_1016_j_ejrh_2025_102285 crossref_primary_10_1007_s00477_024_02855_4 crossref_primary_10_1016_j_engappai_2024_109263 crossref_primary_10_1007_s12145_024_01564_4 crossref_primary_10_1016_j_anucene_2024_110466 crossref_primary_10_3390_rs15225429 crossref_primary_10_3390_land13040467 crossref_primary_10_1016_j_psep_2025_106816 |
| Cites_doi | 10.1038/s41598-023-27447-0 10.1002/hyp.8117 10.1016/j.jhydrol.2023.129121 10.1080/10106049.2015.1041559 10.1007/s00477-022-02195-1 10.1111/jfr3.12683 10.1007/s00477-022-02179-1 10.1016/j.jhydrol.2019.124379 10.3390/rs14071656 10.1007/s13201-019-1102-x 10.1016/j.jhydrol.2020.125235 10.3390/w11030615 10.1038/s41467-022-30727-4 10.1080/19475705.2017.1308971 10.5194/hess-22-5001-2018 10.1016/j.ijdrr.2021.102614 10.1080/19475705.2020.1836036 10.1016/j.isprsjprs.2021.05.019 10.3390/w12071986 10.1016/j.jhydrol.2019.124482 10.1214/aos/1013203451 10.1016/j.jenvman.2021.114317 10.1016/j.jhydrol.2013.09.034 10.1038/s41598-021-86650-z 10.1016/j.uclim.2023.101503 10.1016/j.jenvman.2021.112449 10.3390/w14071140 10.1007/s11069-022-05248-4 10.1080/19475705.2015.1045043 10.1016/j.scitotenv.2019.02.422 10.3390/rs12020266 10.1016/j.jhydrol.2020.125615 10.26480/jcleanwas.02.2018.19.24 10.1061/(ASCE)HE.1943-5584.0001948 10.1016/j.asr.2019.12.003 10.1016/j.jenvman.2022.116450 10.1016/j.jhydrol.2020.125552 10.1109/TGRS.2014.2358501 10.1038/s41598-023-32027-3 10.1080/2150704X.2017.1319987 10.1016/j.scitotenv.2015.08.055 10.3390/rs11192231 10.1016/j.pce.2022.103198 10.1016/j.envsoft.2017.06.012 10.3390/geosciences8020050 10.3390/app11114901 10.1016/j.scs.2022.104307 10.1016/j.scitotenv.2018.12.217 10.1080/10106049.2021.1953618 10.1016/j.jenvman.2018.06.075 10.3390/app11146629 10.1007/s00477-020-01924-8 10.1023/A:1010933404324 10.1080/10106049.2021.1892209 10.1109/TGRS.2018.2797536 10.1016/j.jhydrol.2023.129100 10.1175/JHM-D-16-0032.1 10.1016/j.jenvman.2021.113367 10.1007/s11269-015-1169-6 10.3390/rs14030440 10.1016/j.rse.2018.11.008 10.1007/s12205-022-0559-6 10.1016/j.jhydrol.2022.128072 10.1080/19475705.2022.2060138 10.1016/j.scitotenv.2019.02.263 10.1016/j.scitotenv.2017.09.262 10.1080/10106049.2021.1920636 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2023.110846 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2023_110846 S1568494623008645 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-2264418fcf8d8a28e5181eef862ec4b60e1504eb4a73a97ed7824040469030473 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Wed Oct 29 21:19:17 EDT 2025 Thu Apr 24 23:10:47 EDT 2025 Sat Feb 24 15:48:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | AutoML Bayesian optimization Convolutional neural network HPO Kerala Flood susceptibility mapping |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-2264418fcf8d8a28e5181eef862ec4b60e1504eb4a73a97ed7824040469030473 |
| ORCID | 0000-0003-0936-4065 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2023_110846 crossref_primary_10_1016_j_asoc_2023_110846 elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110846 |
| PublicationCentury | 2000 |
| PublicationDate | November 2023 2023-11-00 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Friedman (b81) 2001; 29 Fenglin, Ahmad, Zelenakova (b5) 2023; 13 Lee, Kim, Jung, Lee, Lee (b61) 2017; 8 Saravanan, Abijith, Reddy, Parthasarathy, Janardhanam, Sathiyamurthi, Sivakumar (b63) 2023; 49 Hasanuzzaman, Islam, Bera, Shit (b23) 2022; 127 Mateo-Garcia, Veitch-Michaelis, Smith, Oprea, Schumann, Gal, Baydin, Backes (b18) 2018; 11 Chowdhuri, Pal, Chakrabortty (b34) 2020; 65 Bui, Tsangaratos, Ngo, Pham, Pham (b49) 2019; 668 Breiman (b80) 2001; 45 Shahabi, Shirzadi, Ghaderi, Omidvar, Al-Ansari, Clague, Geertsema, Khosravi, Amini, Bahrami, Rahmati, Habibi, Mohammadi, Nguyen, Melesse, Ahmad, Ahmad (b17) 2020; 12 Mehravar, Razavi-Termeh, Moghimi, Ranjgar, Foroughnia, Amani (b52) 2023; 617 Malekian, Azarnivand (b39) 2016; 30 Das (b78) 2019; 14 Arabameri, Danesh, Santosh, Cerda, Pal, Ghorbanzadeh, Roy, Chowdhuri (b58) 2022; 13 Balogun, Sheng, Sallehuddin, Aina, Dano, Pradhan, Yekeen, Tella (b55) 2022 Vijaykumar, Abhilash, Sreenath, Athira, Mohanakumar, Mapes, Chakrapani, Sahai, Niyas, Sreejith (b68) 2021; 33 Pham, Luu, Phong, Trinh, Shirzadi, Renoud, Asadi, Le, von Meding, Clague (b72) 2021; 592 Sarchani, Awol, Tsanis (b28) 2021; 11 Prasad, Loveson, Das, Kotha (b19) 2022; 37 Saravanan, Abijith (b22) 2022 Government of Kerala (b67) 2023 Wang, Fang, Hong, Peng (b74) 2020; 582 Yariyan, Avand, Abbaspour, Torabi Haghighi, Costache, Ghorbanzadeh, Janizadeh, Blaschke (b43) 2020; 11 Government of India (b3) 2023 McGrath, Gohl (b24) 2022; 14 Yu, Xie, Dong, Hu, Liu, Li, Peng, Ma, Wang, Xu (b30) 2018; 22 Rahmati, Pourghasemi, Zeinivand (b37) 2016; 31 Bui, Nguyen, Nguyen, Pham, Nguyen, Pham (b60) 2020; 581 Ekmekcioğlu, Koc, Özger (b44) 2021; 35 Chapi, Singh, Shirzadi, Shahabi, Bui, Pham, Khosravi (b75) 2017; 95 Giovannettone, Sangameswaran, Maderia, Batten (b35) 2020; 25 Jiang, Liang, He, Ziegler, Lin, Pan, Wang, Zou, Hao, Mao, Zeng, Yin, Feng, Miao, Wood, Zeng (b6) 2021; 178 Saha, Gayen, Bayen (b64) 2022; 36 Kazakis, Kougias, Patsialis (b73) 2015; 538 Yaseen, Lu, Chen (b56) 2022; 36 Rentschler, Salhab, Jafino (b1) 2022; 13 Sufiyan, Magaji (b29) 2018; 2 Khosravi, Panahi, Golkarian, Keesstra, Saco, Bui, Lee (b53) 2020; 591 Chen, Guestrin (b82) 2016 Government of Kerala (b86) 2023 Li, Martinis, Wieland, Schlaffer, Natsuaki (b9) 2019; 11 Rafiei-Sardooi, Azareh, Choubin, Mosavi, Clague (b38) 2021; 66 Li, Osei, Hu, Stein (b45) 2023; 88 Tehrany, Pradhan, Jebur (b4) 2013; 504 Parthasarathy, Deka, Saravanan, Abijith, Jacinth Jennifer (b69) 2021 Aissia, Chebana, Ouarda, Roy, Desrochers, Chartier, Robichaud (b31) 2012; 26 Nawindah (b40) 2017; 117 Elkhrachy (b15) 2022; 14 Weydahl (b10) 1996 Iervolino, Guida, Iodice, Riccio (b12) 2015; 53 Zhao, Pang, Xu, Peng, Xu (b21) 2019; 659 Wang, Fang, Hong (b65) 2019; 666 Cui, Quan, Jin (b48) 2023; 27 Li, Hong (b57) 2023; 325 Tanim, McRae, Tavakol-Davani, Goharian (b16) 2022; 14 Sarkar, Mondal (b36) 2020; 10 Jha, Afreen (b26) 2020; 12 Ahmadlou, Al-Fugara, Al-Shabeeb, Arora, Al-Adamat, Pham, Al-Ansari, Linh, Sajedi (b47) 2020; 14 Pal, Chowdhuri, Das, Chakrabortty, Roy, Saha, Shit (b2) 2022; 305 O’Neill (b77) 2016 Dano, Balogun, Matori, Wan Yusouf, Abubakar, Said Mohamed, Aina, Pradhan (b85) 2019; 11 Dou, Chen (b83) 2017; 8 Anusha, Bharathi (b8) 2020; 23 Youssef, Pradhan, Dikshit, Mahdi (b50) 2022 Razavi Termeh, Kornejady, Pourghasemi, Keesstra (b59) 2018; 615 Ghosh (b14) 2023; 82 Abedi, Costache, Shafizadeh-Moghadam, Pham (b20) 2022; 37 Romali, Yusop, Ismail (b27) 2018 Rahmati, Zeinivand, Besharat (b42) 2016; 7 Liu, Wang, Xiong, Cheng, Li, Cao, He, Duan, He, Yang (b51) 2022 Amitrano, Di Martino, Iodice, Riccio, Ruello (b11) 2018; 56 Garrote, Peña, Díez-Herrero (b33) 2021; 11 Mousavi, Ataie-Ashtiani, Hosseini (b13) 2022; 612 Chakrabortty, Chandra Pal, Rezaie, Arabameri, Lee, Roy, Saha, Chowdhuri, Moayedi (b62) 2022; 37 Bhuyan, Van Westen, Wang, Meena (b71) 2022 Hao, Yunus, Siva Subramanian, Avtar (b79) 2021; 297 Mahdizadeh Gharakhanlou, Perez (b25) 2023 González-Arqueros, Mendoza, Bocco, Solís Castillo (b76) 2018; 223 Zhao, Pang, Xu, Peng, Zuo (b54) 2020; 590 Vincent, Jidesh (b84) 2023; 13 A. Bajamgnigni Gbambie, A. Poulin, M. Boucher, R. Arsenault, Added Value of Alternative Information in Interpolated Precipitation Datasets for Hydrology. Vol. 18 No. 1, Tech. Rep. JHM-D-16-0032.1, 2017, pp. 247–264,. Patrikaki, Kazakis, Kougias, Patsialis, Theodossiou, Voudouris (b41) 2018; 8 Shen, Anagnostou, Allen, Robert Brakenridge, Kettner (b7) 2019; 221 Wang, Fang, Hong, Costache, Tang (b46) 2021; 289 Khosravi, Panahi, Golkarian, Keesstra, Saco, Bui, Lee (b66) 2020; 591 Vilasan, Kapse (b70) 2022; 112 Ghosh (10.1016/j.asoc.2023.110846_b14) 2023; 82 Hao (10.1016/j.asoc.2023.110846_b79) 2021; 297 Das (10.1016/j.asoc.2023.110846_b78) 2019; 14 Zhao (10.1016/j.asoc.2023.110846_b21) 2019; 659 Aissia (10.1016/j.asoc.2023.110846_b31) 2012; 26 Bui (10.1016/j.asoc.2023.110846_b49) 2019; 668 Bui (10.1016/j.asoc.2023.110846_b60) 2020; 581 Li (10.1016/j.asoc.2023.110846_b45) 2023; 88 O’Neill (10.1016/j.asoc.2023.110846_b77) 2016 Anusha (10.1016/j.asoc.2023.110846_b8) 2020; 23 Wang (10.1016/j.asoc.2023.110846_b74) 2020; 582 Arabameri (10.1016/j.asoc.2023.110846_b58) 2022; 13 Sarchani (10.1016/j.asoc.2023.110846_b28) 2021; 11 Malekian (10.1016/j.asoc.2023.110846_b39) 2016; 30 Chowdhuri (10.1016/j.asoc.2023.110846_b34) 2020; 65 Amitrano (10.1016/j.asoc.2023.110846_b11) 2018; 56 Li (10.1016/j.asoc.2023.110846_b9) 2019; 11 Elkhrachy (10.1016/j.asoc.2023.110846_b15) 2022; 14 Saravanan (10.1016/j.asoc.2023.110846_b63) 2023; 49 Wang (10.1016/j.asoc.2023.110846_b65) 2019; 666 Tanim (10.1016/j.asoc.2023.110846_b16) 2022; 14 McGrath (10.1016/j.asoc.2023.110846_b24) 2022; 14 Government of Kerala (10.1016/j.asoc.2023.110846_b67) 2023 Breiman (10.1016/j.asoc.2023.110846_b80) 2001; 45 Lee (10.1016/j.asoc.2023.110846_b61) 2017; 8 Iervolino (10.1016/j.asoc.2023.110846_b12) 2015; 53 Hasanuzzaman (10.1016/j.asoc.2023.110846_b23) 2022; 127 Cui (10.1016/j.asoc.2023.110846_b48) 2023; 27 Vijaykumar (10.1016/j.asoc.2023.110846_b68) 2021; 33 Tehrany (10.1016/j.asoc.2023.110846_b4) 2013; 504 Giovannettone (10.1016/j.asoc.2023.110846_b35) 2020; 25 Mateo-Garcia (10.1016/j.asoc.2023.110846_b18) 2018; 11 Nawindah (10.1016/j.asoc.2023.110846_b40) 2017; 117 Pham (10.1016/j.asoc.2023.110846_b72) 2021; 592 Pal (10.1016/j.asoc.2023.110846_b2) 2022; 305 10.1016/j.asoc.2023.110846_b32 Garrote (10.1016/j.asoc.2023.110846_b33) 2021; 11 Ahmadlou (10.1016/j.asoc.2023.110846_b47) 2020; 14 Razavi Termeh (10.1016/j.asoc.2023.110846_b59) 2018; 615 Mehravar (10.1016/j.asoc.2023.110846_b52) 2023; 617 Rahmati (10.1016/j.asoc.2023.110846_b42) 2016; 7 Dou (10.1016/j.asoc.2023.110846_b83) 2017; 8 Fenglin (10.1016/j.asoc.2023.110846_b5) 2023; 13 Sufiyan (10.1016/j.asoc.2023.110846_b29) 2018; 2 Zhao (10.1016/j.asoc.2023.110846_b54) 2020; 590 Li (10.1016/j.asoc.2023.110846_b57) 2023; 325 Saha (10.1016/j.asoc.2023.110846_b64) 2022; 36 Friedman (10.1016/j.asoc.2023.110846_b81) 2001; 29 Khosravi (10.1016/j.asoc.2023.110846_b53) 2020; 591 Chakrabortty (10.1016/j.asoc.2023.110846_b62) 2022; 37 Rahmati (10.1016/j.asoc.2023.110846_b37) 2016; 31 Rafiei-Sardooi (10.1016/j.asoc.2023.110846_b38) 2021; 66 Mousavi (10.1016/j.asoc.2023.110846_b13) 2022; 612 Ekmekcioğlu (10.1016/j.asoc.2023.110846_b44) 2021; 35 Liu (10.1016/j.asoc.2023.110846_b51) 2022 Shahabi (10.1016/j.asoc.2023.110846_b17) 2020; 12 Mahdizadeh Gharakhanlou (10.1016/j.asoc.2023.110846_b25) 2023 Bhuyan (10.1016/j.asoc.2023.110846_b71) 2022 Yaseen (10.1016/j.asoc.2023.110846_b56) 2022; 36 Jiang (10.1016/j.asoc.2023.110846_b6) 2021; 178 Shen (10.1016/j.asoc.2023.110846_b7) 2019; 221 Balogun (10.1016/j.asoc.2023.110846_b55) 2022 Khosravi (10.1016/j.asoc.2023.110846_b66) 2020; 591 Chapi (10.1016/j.asoc.2023.110846_b75) 2017; 95 Abedi (10.1016/j.asoc.2023.110846_b20) 2022; 37 Youssef (10.1016/j.asoc.2023.110846_b50) 2022 Dano (10.1016/j.asoc.2023.110846_b85) 2019; 11 Chen (10.1016/j.asoc.2023.110846_b82) 2016 Weydahl (10.1016/j.asoc.2023.110846_b10) 1996 Vincent (10.1016/j.asoc.2023.110846_b84) 2023; 13 Kazakis (10.1016/j.asoc.2023.110846_b73) 2015; 538 Sarkar (10.1016/j.asoc.2023.110846_b36) 2020; 10 Wang (10.1016/j.asoc.2023.110846_b46) 2021; 289 Prasad (10.1016/j.asoc.2023.110846_b19) 2022; 37 Rentschler (10.1016/j.asoc.2023.110846_b1) 2022; 13 Government of India (10.1016/j.asoc.2023.110846_b3) 2023 Parthasarathy (10.1016/j.asoc.2023.110846_b69) 2021 Romali (10.1016/j.asoc.2023.110846_b27) 2018 Yu (10.1016/j.asoc.2023.110846_b30) 2018; 22 Government of Kerala (10.1016/j.asoc.2023.110846_b86) 2023 González-Arqueros (10.1016/j.asoc.2023.110846_b76) 2018; 223 Jha (10.1016/j.asoc.2023.110846_b26) 2020; 12 Patrikaki (10.1016/j.asoc.2023.110846_b41) 2018; 8 Yariyan (10.1016/j.asoc.2023.110846_b43) 2020; 11 Saravanan (10.1016/j.asoc.2023.110846_b22) 2022 Vilasan (10.1016/j.asoc.2023.110846_b70) 2022; 112 |
| References_xml | – volume: 13 start-page: 949 year: 2022 end-page: 974 ident: b58 article-title: Flood susceptibility mapping using meta-heuristic algorithms publication-title: Geomat. Nat. Hazards Risk – volume: 504 start-page: 69 year: 2013 end-page: 79 ident: b4 article-title: Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS publication-title: J. Hydrol. – volume: 56 start-page: 3290 year: 2018 end-page: 3299 ident: b11 article-title: Unsupervised rapid flood mapping using Sentinel-1 GRD SAR images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 11 start-page: 7249 year: 2018 ident: b18 article-title: Towards global flood mapping onboard low cost satellites with machine learning publication-title: Sci. Rep. – volume: 612 year: 2022 ident: b13 article-title: Comparison of statistical and mcdm approaches for flood susceptibility mapping in northern Iran publication-title: J. Hydrol. – volume: 27 start-page: 431 year: 2023 end-page: 441 ident: b48 article-title: Flood susceptibility mapping using novel hybrid approach of neural network with genetic quantum ensembles publication-title: KSCE J. Civil Eng. – start-page: 151 year: 1996 end-page: 153 1 ident: b10 article-title: Flood monitoring in Norway using ers-1 SAR images publication-title: IGARSS ’96. 1996 International Geoscience and Remote Sensing Symposium, Vol. 1 – volume: 25 year: 2020 ident: b35 article-title: Spatial analysis of flood susceptibility throughout Currituck County, North Carolina publication-title: J. Hydrol. Eng. – volume: 33 year: 2021 ident: b68 article-title: Kerala floods in consecutive years - its association with mesoscale cloudburst and structural changes in monsoon clouds over the west coast of India publication-title: Weather Clim. Extrem. – start-page: 1 year: 2022 end-page: 30 ident: b22 article-title: Flood susceptibility mapping of northeast coastal districts of Tamil Nadu India using multi-source geospatial data and machine learning techniques publication-title: Geocarto Int. – volume: 53 start-page: 2295 year: 2015 end-page: 2307 ident: b12 article-title: Flooding water depth estimation with high-resolution SAR publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 14 year: 2022 ident: b16 article-title: Flood detection in urban areas using satellite imagery and machine learning publication-title: Water – volume: 31 start-page: 42 year: 2016 end-page: 70 ident: b37 article-title: Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran publication-title: Geocarto Int. – volume: 11 year: 2019 ident: b85 article-title: Flood susceptibility mapping using GIS-based analytic network process: A case study of perlis, Malaysia publication-title: Water – volume: 305 year: 2022 ident: b2 article-title: Threats of climate change and land use patterns enhance the susceptibility of future floods in India publication-title: J. Environ. Manag. – volume: 590 year: 2020 ident: b54 article-title: Urban flood susceptibility assessment based on convolutional neural networks publication-title: J. Hydrol. – year: 2023 ident: b25 article-title: Flood susceptible prediction through the use of geospatial variables and machine learning methods publication-title: J. Hydrol. – volume: 127 year: 2022 ident: b23 article-title: A comparison of performance measures of three machine learning algorithms for flood susceptibility mapping of river Silabati (Tropical River, India) publication-title: Phys. Chem. Earth, Parts A/B/C – volume: 36 start-page: 3041 year: 2022 end-page: 3061 ident: b56 article-title: Comparison of statistical and mcdm approaches for flood susceptibility mapping in northern Iran publication-title: Stoch. Environ. Res. Risk Assess. – volume: 8 start-page: 733 year: 2017 end-page: 742 ident: b83 article-title: Remote sensing imagery classification using AdaBoost with a weight vector (WV AdaBoost) publication-title: Remote Sens. Lett. – start-page: 1 year: 2022 end-page: 30 ident: b51 article-title: Assessment of flood susceptibility mapping using support vector machine, logistic regression and their ensemble techniques in the belt and road region publication-title: Geocarto Int. – year: 2023 ident: b86 article-title: Allapuzha district, topography – volume: 13 start-page: 3527 year: 2022 ident: b1 article-title: Flood exposure and poverty in 188 countries publication-title: Nature Commun. – volume: 82 year: 2023 ident: b14 article-title: Flood susceptibility assessment and mapping in a monsoon-dominated tropical river basin using gis-based data-driven bivariate and multivariate statistical models and their ensemble techniques publication-title: Environ. Earth Sci. – volume: 12 year: 2020 ident: b17 article-title: Flood detection and susceptibility mapping using sentinel-1 remote sensing data and a machine learning approach: Hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier publication-title: Remote Sens. – volume: 11 start-page: 6629 year: 2021 ident: b33 article-title: Probabilistic flood hazard maps from monte carlo derived peak flow values—an application to flood risk management in Zamora City (Spain) publication-title: Appl. Sci. – start-page: 1 year: 2022 end-page: 28 ident: b50 article-title: Comparative study of Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for flood susceptibility mapping: a case study at Ras Gharib, Red Sea, Egypt publication-title: Geocarto Int. – volume: 65 start-page: 1466 year: 2020 end-page: 1489 ident: b34 article-title: Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India publication-title: Adv. Space Res. – volume: 88 year: 2023 ident: b45 article-title: Urban flood susceptibility mapping based on social media data in Chengdu City, China publication-title: Sustainable Cities Soc. – start-page: 2158 year: 2016 end-page: 2186 ident: b77 article-title: The impact of perceived flood exposure on flood-risk perception: The role of distance publication-title: Risk Anal. Off. Publ. Soc. Risk Anal. – volume: 49 year: 2023 ident: b63 article-title: Flood susceptibility mapping using machine learning boosting algorithms techniques in Idukki district of Kerala India publication-title: Urban Clim. – volume: 14 year: 2020 ident: b47 article-title: Flood susceptibility mapping and assessment using a novel deep learning model combining multilayer perceptron and autoencoder neural networks publication-title: J. Flood Risk Manag. – volume: 615 start-page: 438 year: 2018 end-page: 451 ident: b59 article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms publication-title: Sci. Total Environ. – volume: 36 start-page: 3295 year: 2022 end-page: 3310 ident: b64 article-title: Deep learning algorithms to develop flood susceptibility map in data-scarce and ungauged river basin in India publication-title: Stoch. Environ. Res. Risk Assess. – volume: 538 start-page: 555 year: 2015 end-page: 563 ident: b73 article-title: Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: Application in Rhodope–Evros Region, Greece publication-title: Sci. Total Environ. – volume: 178 start-page: 36 year: 2021 end-page: 50 ident: b6 article-title: Rapid and large-scale mapping of flood inundation via integrating spaceborne synthetic aperture radar imagery with unsupervised deep learning publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 22 start-page: 5001 year: 2018 end-page: 5019 ident: b30 article-title: Improvement of the swat model for event-based flood simulation on a sub-daily timescale publication-title: Hydrol. Earth Syst. Sci. – start-page: 379 year: 2021 end-page: 395 ident: b69 article-title: Chapter 17 - assessing the impact of 2018 tropical rainfall and the consecutive flood-related damages for the State of Kerala, India publication-title: Disaster Resilience and Sustainability – volume: 11 year: 2019 ident: b9 article-title: Urban flood mapping using sar intensity and interferometric coherence via Bayesian network fusion publication-title: Remote Sens. – volume: 12 start-page: 1986 year: 2020 ident: b26 article-title: Flooding urban landscapes: Analysis using combined hydrodynamic and hydrologic modeling approaches publication-title: Water – volume: 35 start-page: 617 year: 2021 end-page: 637 ident: b44 article-title: District based flood risk assessment in istanbul using fuzzy analytical hierarchy process publication-title: Stoch. Environ. Res. Risk Assess. – volume: 221 start-page: 302 year: 2019 end-page: 315 ident: b7 article-title: Near-real-time non-obstructed flood inundation mapping using synthetic aperture radar publication-title: Remote Sens. Environ. – volume: 591 year: 2020 ident: b66 article-title: Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran publication-title: J. Hydrol. – volume: 14 year: 2022 ident: b15 article-title: Flash flood water depth estimation using sar images, digital elevation models, and machine learning algorithms publication-title: Remote Sens. – volume: 325 year: 2023 ident: b57 article-title: Modelling flood susceptibility based on deep learning coupling with ensemble learning models publication-title: J. Environ. Manag. – volume: 13 start-page: 4737 year: 2023 ident: b84 article-title: An improved hyperparameter optimization framework for AutoML systems using evolutionary algorithms publication-title: Sci. Rep. – volume: 581 year: 2020 ident: b60 article-title: Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping publication-title: J. Hydrol. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b80 article-title: Random forests publication-title: Mach. Learn. – volume: 223 start-page: 685 year: 2018 end-page: 693 ident: b76 article-title: Flood susceptibility in rural settlements in remote zones: The case of a mountainous basin in the sierra-costa region of Michoacán, Mexico publication-title: J. Environ. Manag. – volume: 30 start-page: 409 year: 2016 end-page: 425 ident: b39 article-title: Application of integrated shannon’s entropy and vikor techniques in prioritization of flood risk in the shemshak watershed, Iran publication-title: Water Resour. Manag. – reference: A. Bajamgnigni Gbambie, A. Poulin, M. Boucher, R. Arsenault, Added Value of Alternative Information in Interpolated Precipitation Datasets for Hydrology. Vol. 18 No. 1, Tech. Rep. JHM-D-16-0032.1, 2017, pp. 247–264,. – volume: 13 start-page: 247 year: 2023 ident: b5 article-title: Exploratory regression modeling for flood susceptibility mapping in the GIS environment publication-title: Sci. Rep. – volume: 659 start-page: 940 year: 2019 end-page: 949 ident: b21 article-title: Assessment of urban flood susceptibility using semi-supervised machine learning model publication-title: Sci. Total Environ. – volume: 666 start-page: 975 year: 2019 end-page: 993 ident: b65 article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China publication-title: Sci. Total Environ. – start-page: 1 year: 2022 end-page: 27 ident: b55 article-title: Assessment of data mining, multi-criteria decision making and fuzzy-computing techniques for spatial flood susceptibility mapping: a comparative study publication-title: Geocarto Int. – volume: 10 start-page: 1 year: 2020 end-page: 13 ident: b36 article-title: Flood vulnerability mapping using frequency ratio (fr) model: a case study on kulik river basin, Indo-Bangladesh Barind Region publication-title: Appl. Water Sci. – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: b81 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Statist. – volume: 2 start-page: 19 year: 2018 end-page: 24 ident: b29 article-title: Modeling flood hazard using swat and 3d analysis in terengannu watershed publication-title: J. Clean. WAS – volume: 14 year: 2022 ident: b24 article-title: Accessing the impact of meteorological variables on machine learning flood susceptibility mapping publication-title: Remote Sens. – year: 2018 ident: b27 article-title: Hydrological modelling using hec-hms for flood risk assessment of Segamat Town, Malaysia publication-title: IOP Conference Series: Materials Science and Engineering, Vol. 318 – start-page: 785 year: 2016 end-page: 794 ident: b82 article-title: Xgboost: A scalable tree boosting system publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – year: 2023 ident: b3 article-title: National Disaster Management Authority – volume: 591 year: 2020 ident: b53 article-title: Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran publication-title: J. Hydrol. – year: 2023 ident: b67 article-title: Kerala, topography – year: 2022 ident: b71 article-title: Mapping and characterising buildings for flood exposure analysis using open-source data and artificial intelligence publication-title: Nat. Hazards – volume: 37 start-page: 6713 year: 2022 end-page: 6735 ident: b62 article-title: Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India publication-title: Geocarto Int. – volume: 11 start-page: 4901 year: 2021 ident: b28 article-title: Hydrological analysis of extreme rain events in a medium-sized basin publication-title: Appl. Sci. – volume: 66 year: 2021 ident: b38 article-title: Evaluating urban flood risk using hybrid method of topsis and machine learning publication-title: Int. J. Disaster Risk Reduct. – volume: 11 start-page: 2282 year: 2020 end-page: 2314 ident: b43 article-title: Flood susceptibility mapping using an improved analytic network process with statistical models publication-title: Geomat. Nat. Hazards Risk – volume: 617 year: 2023 ident: b52 article-title: Flood susceptibility mapping using multi-temporal sar imagery and novel integration of nature-inspired algorithms into support vector regression publication-title: J. Hydrol. – volume: 592 year: 2021 ident: b72 article-title: Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling? publication-title: J. Hydrol. – volume: 668 start-page: 1038 year: 2019 end-page: 1054 ident: b49 article-title: Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods publication-title: Sci. Total Environ. – volume: 14 start-page: 60 year: 2019 end-page: 74 ident: b78 article-title: Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in ulhas basin, India publication-title: Remote Sens. Appl. Soc. Environ. – volume: 297 year: 2021 ident: b79 article-title: Basin-wide flood depth and exposure mapping from SAR images and machine learning models publication-title: J. Environ. Manag. – volume: 26 start-page: 130 year: 2012 end-page: 142 ident: b31 article-title: Multivariate analysis of flood characteristics in a climate change context of the watershed of the baskatong reservoir, Province of Québec, Canada publication-title: Hydrol. Process. – volume: 37 start-page: 5479 year: 2022 end-page: 5496 ident: b20 article-title: Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees publication-title: Geocarto Int. – volume: 117 start-page: 795 year: 2017 end-page: 803 ident: b40 article-title: Simple additive weighting (saw) mathematics method for warehouse disaster location selection in central Jakarta, Indonesia publication-title: Int. J. Pure Appl. Math. – volume: 8 start-page: 1185 year: 2017 end-page: 1203 ident: b61 article-title: Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul Metropolitan City, Korea publication-title: Geomat. Nat. Hazards Risk – volume: 23 start-page: 207 year: 2020 end-page: 219 ident: b8 article-title: Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data publication-title: Egypt. J. Remote Sens. Space Sci. – volume: 289 year: 2021 ident: b46 article-title: Flood susceptibility mapping by integrating frequency ratio and index of entropy with multilayer perceptron and classification and regression tree publication-title: J. Environ. Manag. – volume: 112 start-page: 1767 year: 2022 end-page: 1793 ident: b70 article-title: Evaluation of the prediction capability of ahp and f-ahp methods in flood susceptibility mapping of Ernakulam District (India) publication-title: Nat. Hazards – volume: 7 start-page: 1000 year: 2016 end-page: 1017 ident: b42 article-title: Flood hazard zoning in yasooj region, iran, using gis and multi-criteria decision analysis publication-title: Geomat. Nat. Hazards Risk – volume: 37 start-page: 4571 year: 2022 end-page: 4593 ident: b19 article-title: Novel ensemble machine learning models in flood susceptibility mapping publication-title: Geocarto Int. – volume: 582 year: 2020 ident: b74 article-title: Flood susceptibility mapping using convolutional neural network frameworks publication-title: J. Hydrol. – volume: 95 start-page: 229 year: 2017 end-page: 245 ident: b75 article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment publication-title: Environ. Model. Softw. – volume: 8 start-page: 50 year: 2018 ident: b41 article-title: Assessing flood hazard at river basin scale with an index-based approach: The case of Mouriki, Greece publication-title: Geosciences – volume: 13 start-page: 247 year: 2023 ident: 10.1016/j.asoc.2023.110846_b5 article-title: Exploratory regression modeling for flood susceptibility mapping in the GIS environment publication-title: Sci. Rep. doi: 10.1038/s41598-023-27447-0 – volume: 26 start-page: 130 issue: 1 year: 2012 ident: 10.1016/j.asoc.2023.110846_b31 article-title: Multivariate analysis of flood characteristics in a climate change context of the watershed of the baskatong reservoir, Province of Québec, Canada publication-title: Hydrol. Process. doi: 10.1002/hyp.8117 – year: 2023 ident: 10.1016/j.asoc.2023.110846_b25 article-title: Flood susceptible prediction through the use of geospatial variables and machine learning methods publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129121 – volume: 31 start-page: 42 issue: 1 year: 2016 ident: 10.1016/j.asoc.2023.110846_b37 article-title: Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran publication-title: Geocarto Int. doi: 10.1080/10106049.2015.1041559 – volume: 36 start-page: 3295 issue: 10 year: 2022 ident: 10.1016/j.asoc.2023.110846_b64 article-title: Deep learning algorithms to develop flood susceptibility map in data-scarce and ungauged river basin in India publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-022-02195-1 – volume: 14 issue: 1 year: 2020 ident: 10.1016/j.asoc.2023.110846_b47 article-title: Flood susceptibility mapping and assessment using a novel deep learning model combining multilayer perceptron and autoencoder neural networks publication-title: J. Flood Risk Manag. doi: 10.1111/jfr3.12683 – volume: 36 start-page: 3041 year: 2022 ident: 10.1016/j.asoc.2023.110846_b56 article-title: Comparison of statistical and mcdm approaches for flood susceptibility mapping in northern Iran publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-022-02179-1 – volume: 581 year: 2020 ident: 10.1016/j.asoc.2023.110846_b60 article-title: Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124379 – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2023.110846_b22 article-title: Flood susceptibility mapping of northeast coastal districts of Tamil Nadu India using multi-source geospatial data and machine learning techniques publication-title: Geocarto Int. – volume: 14 issue: 7 year: 2022 ident: 10.1016/j.asoc.2023.110846_b24 article-title: Accessing the impact of meteorological variables on machine learning flood susceptibility mapping publication-title: Remote Sens. doi: 10.3390/rs14071656 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.asoc.2023.110846_b36 article-title: Flood vulnerability mapping using frequency ratio (fr) model: a case study on kulik river basin, Indo-Bangladesh Barind Region publication-title: Appl. Water Sci. doi: 10.1007/s13201-019-1102-x – volume: 590 year: 2020 ident: 10.1016/j.asoc.2023.110846_b54 article-title: Urban flood susceptibility assessment based on convolutional neural networks publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125235 – start-page: 151 year: 1996 ident: 10.1016/j.asoc.2023.110846_b10 article-title: Flood monitoring in Norway using ers-1 SAR images – year: 2022 ident: 10.1016/j.asoc.2023.110846_b71 article-title: Mapping and characterising buildings for flood exposure analysis using open-source data and artificial intelligence publication-title: Nat. Hazards – volume: 11 issue: 3 year: 2019 ident: 10.1016/j.asoc.2023.110846_b85 article-title: Flood susceptibility mapping using GIS-based analytic network process: A case study of perlis, Malaysia publication-title: Water doi: 10.3390/w11030615 – volume: 13 start-page: 3527 year: 2022 ident: 10.1016/j.asoc.2023.110846_b1 article-title: Flood exposure and poverty in 188 countries publication-title: Nature Commun. doi: 10.1038/s41467-022-30727-4 – volume: 8 start-page: 1185 issue: 2 year: 2017 ident: 10.1016/j.asoc.2023.110846_b61 article-title: Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul Metropolitan City, Korea publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2017.1308971 – volume: 22 start-page: 5001 issue: 9 year: 2018 ident: 10.1016/j.asoc.2023.110846_b30 article-title: Improvement of the swat model for event-based flood simulation on a sub-daily timescale publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-5001-2018 – volume: 66 year: 2021 ident: 10.1016/j.asoc.2023.110846_b38 article-title: Evaluating urban flood risk using hybrid method of topsis and machine learning publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2021.102614 – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2023.110846_b50 article-title: Comparative study of Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for flood susceptibility mapping: a case study at Ras Gharib, Red Sea, Egypt publication-title: Geocarto Int. – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2023.110846_b55 article-title: Assessment of data mining, multi-criteria decision making and fuzzy-computing techniques for spatial flood susceptibility mapping: a comparative study publication-title: Geocarto Int. – year: 2018 ident: 10.1016/j.asoc.2023.110846_b27 article-title: Hydrological modelling using hec-hms for flood risk assessment of Segamat Town, Malaysia – volume: 11 start-page: 2282 issue: 1 year: 2020 ident: 10.1016/j.asoc.2023.110846_b43 article-title: Flood susceptibility mapping using an improved analytic network process with statistical models publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2020.1836036 – volume: 178 start-page: 36 year: 2021 ident: 10.1016/j.asoc.2023.110846_b6 article-title: Rapid and large-scale mapping of flood inundation via integrating spaceborne synthetic aperture radar imagery with unsupervised deep learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.05.019 – volume: 12 start-page: 1986 issue: 7 year: 2020 ident: 10.1016/j.asoc.2023.110846_b26 article-title: Flooding urban landscapes: Analysis using combined hydrodynamic and hydrologic modeling approaches publication-title: Water doi: 10.3390/w12071986 – volume: 582 year: 2020 ident: 10.1016/j.asoc.2023.110846_b74 article-title: Flood susceptibility mapping using convolutional neural network frameworks publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124482 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.asoc.2023.110846_b81 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Statist. doi: 10.1214/aos/1013203451 – volume: 305 year: 2022 ident: 10.1016/j.asoc.2023.110846_b2 article-title: Threats of climate change and land use patterns enhance the susceptibility of future floods in India publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.114317 – volume: 504 start-page: 69 year: 2013 ident: 10.1016/j.asoc.2023.110846_b4 article-title: Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.09.034 – volume: 11 start-page: 7249 issue: 1 year: 2018 ident: 10.1016/j.asoc.2023.110846_b18 article-title: Towards global flood mapping onboard low cost satellites with machine learning publication-title: Sci. Rep. doi: 10.1038/s41598-021-86650-z – volume: 49 year: 2023 ident: 10.1016/j.asoc.2023.110846_b63 article-title: Flood susceptibility mapping using machine learning boosting algorithms techniques in Idukki district of Kerala India publication-title: Urban Clim. doi: 10.1016/j.uclim.2023.101503 – volume: 289 year: 2021 ident: 10.1016/j.asoc.2023.110846_b46 article-title: Flood susceptibility mapping by integrating frequency ratio and index of entropy with multilayer perceptron and classification and regression tree publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112449 – volume: 14 issue: 7 year: 2022 ident: 10.1016/j.asoc.2023.110846_b16 article-title: Flood detection in urban areas using satellite imagery and machine learning publication-title: Water doi: 10.3390/w14071140 – volume: 112 start-page: 1767 year: 2022 ident: 10.1016/j.asoc.2023.110846_b70 article-title: Evaluation of the prediction capability of ahp and f-ahp methods in flood susceptibility mapping of Ernakulam District (India) publication-title: Nat. Hazards doi: 10.1007/s11069-022-05248-4 – volume: 7 start-page: 1000 issue: 3 year: 2016 ident: 10.1016/j.asoc.2023.110846_b42 article-title: Flood hazard zoning in yasooj region, iran, using gis and multi-criteria decision analysis publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2015.1045043 – volume: 668 start-page: 1038 year: 2019 ident: 10.1016/j.asoc.2023.110846_b49 article-title: Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.422 – volume: 33 year: 2021 ident: 10.1016/j.asoc.2023.110846_b68 article-title: Kerala floods in consecutive years - its association with mesoscale cloudburst and structural changes in monsoon clouds over the west coast of India publication-title: Weather Clim. Extrem. – volume: 14 start-page: 60 year: 2019 ident: 10.1016/j.asoc.2023.110846_b78 article-title: Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in ulhas basin, India publication-title: Remote Sens. Appl. Soc. Environ. – volume: 12 issue: 2 year: 2020 ident: 10.1016/j.asoc.2023.110846_b17 article-title: Flood detection and susceptibility mapping using sentinel-1 remote sensing data and a machine learning approach: Hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier publication-title: Remote Sens. doi: 10.3390/rs12020266 – volume: 592 year: 2021 ident: 10.1016/j.asoc.2023.110846_b72 article-title: Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling? publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125615 – start-page: 2158 year: 2016 ident: 10.1016/j.asoc.2023.110846_b77 article-title: The impact of perceived flood exposure on flood-risk perception: The role of distance publication-title: Risk Anal. Off. Publ. Soc. Risk Anal. – volume: 2 start-page: 19 year: 2018 ident: 10.1016/j.asoc.2023.110846_b29 article-title: Modeling flood hazard using swat and 3d analysis in terengannu watershed publication-title: J. Clean. WAS doi: 10.26480/jcleanwas.02.2018.19.24 – volume: 25 issue: 8 year: 2020 ident: 10.1016/j.asoc.2023.110846_b35 article-title: Spatial analysis of flood susceptibility throughout Currituck County, North Carolina publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0001948 – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2023.110846_b51 article-title: Assessment of flood susceptibility mapping using support vector machine, logistic regression and their ensemble techniques in the belt and road region publication-title: Geocarto Int. – volume: 65 start-page: 1466 issue: 5 year: 2020 ident: 10.1016/j.asoc.2023.110846_b34 article-title: Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India publication-title: Adv. Space Res. doi: 10.1016/j.asr.2019.12.003 – volume: 325 year: 2023 ident: 10.1016/j.asoc.2023.110846_b57 article-title: Modelling flood susceptibility based on deep learning coupling with ensemble learning models publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.116450 – volume: 591 year: 2020 ident: 10.1016/j.asoc.2023.110846_b53 article-title: Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125552 – volume: 53 start-page: 2295 issue: 5 year: 2015 ident: 10.1016/j.asoc.2023.110846_b12 article-title: Flooding water depth estimation with high-resolution SAR publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2358501 – volume: 13 start-page: 4737 issue: 1 year: 2023 ident: 10.1016/j.asoc.2023.110846_b84 article-title: An improved hyperparameter optimization framework for AutoML systems using evolutionary algorithms publication-title: Sci. Rep. doi: 10.1038/s41598-023-32027-3 – volume: 8 start-page: 733 issue: 8 year: 2017 ident: 10.1016/j.asoc.2023.110846_b83 article-title: Remote sensing imagery classification using AdaBoost with a weight vector (WV AdaBoost) publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2017.1319987 – start-page: 785 year: 2016 ident: 10.1016/j.asoc.2023.110846_b82 article-title: Xgboost: A scalable tree boosting system – volume: 82 issue: 28 year: 2023 ident: 10.1016/j.asoc.2023.110846_b14 article-title: Flood susceptibility assessment and mapping in a monsoon-dominated tropical river basin using gis-based data-driven bivariate and multivariate statistical models and their ensemble techniques publication-title: Environ. Earth Sci. – volume: 538 start-page: 555 year: 2015 ident: 10.1016/j.asoc.2023.110846_b73 article-title: Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: Application in Rhodope–Evros Region, Greece publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.08.055 – volume: 591 year: 2020 ident: 10.1016/j.asoc.2023.110846_b66 article-title: Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125552 – year: 2023 ident: 10.1016/j.asoc.2023.110846_b67 – volume: 11 issue: 19 year: 2019 ident: 10.1016/j.asoc.2023.110846_b9 article-title: Urban flood mapping using sar intensity and interferometric coherence via Bayesian network fusion publication-title: Remote Sens. doi: 10.3390/rs11192231 – volume: 127 year: 2022 ident: 10.1016/j.asoc.2023.110846_b23 article-title: A comparison of performance measures of three machine learning algorithms for flood susceptibility mapping of river Silabati (Tropical River, India) publication-title: Phys. Chem. Earth, Parts A/B/C doi: 10.1016/j.pce.2022.103198 – volume: 95 start-page: 229 year: 2017 ident: 10.1016/j.asoc.2023.110846_b75 article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2017.06.012 – volume: 117 start-page: 795 issue: 15 year: 2017 ident: 10.1016/j.asoc.2023.110846_b40 article-title: Simple additive weighting (saw) mathematics method for warehouse disaster location selection in central Jakarta, Indonesia publication-title: Int. J. Pure Appl. Math. – volume: 8 start-page: 50 issue: 2 year: 2018 ident: 10.1016/j.asoc.2023.110846_b41 article-title: Assessing flood hazard at river basin scale with an index-based approach: The case of Mouriki, Greece publication-title: Geosciences doi: 10.3390/geosciences8020050 – year: 2023 ident: 10.1016/j.asoc.2023.110846_b86 – volume: 11 start-page: 4901 issue: 11 year: 2021 ident: 10.1016/j.asoc.2023.110846_b28 article-title: Hydrological analysis of extreme rain events in a medium-sized basin publication-title: Appl. Sci. doi: 10.3390/app11114901 – volume: 88 year: 2023 ident: 10.1016/j.asoc.2023.110846_b45 article-title: Urban flood susceptibility mapping based on social media data in Chengdu City, China publication-title: Sustainable Cities Soc. doi: 10.1016/j.scs.2022.104307 – volume: 659 start-page: 940 year: 2019 ident: 10.1016/j.asoc.2023.110846_b21 article-title: Assessment of urban flood susceptibility using semi-supervised machine learning model publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.217 – volume: 37 start-page: 6713 issue: 23 year: 2022 ident: 10.1016/j.asoc.2023.110846_b62 article-title: Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India publication-title: Geocarto Int. doi: 10.1080/10106049.2021.1953618 – volume: 223 start-page: 685 year: 2018 ident: 10.1016/j.asoc.2023.110846_b76 article-title: Flood susceptibility in rural settlements in remote zones: The case of a mountainous basin in the sierra-costa region of Michoacán, Mexico publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.06.075 – volume: 11 start-page: 6629 issue: 14 year: 2021 ident: 10.1016/j.asoc.2023.110846_b33 article-title: Probabilistic flood hazard maps from monte carlo derived peak flow values—an application to flood risk management in Zamora City (Spain) publication-title: Appl. Sci. doi: 10.3390/app11146629 – volume: 35 start-page: 617 year: 2021 ident: 10.1016/j.asoc.2023.110846_b44 article-title: District based flood risk assessment in istanbul using fuzzy analytical hierarchy process publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-020-01924-8 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.asoc.2023.110846_b80 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 37 start-page: 4571 issue: 16 year: 2022 ident: 10.1016/j.asoc.2023.110846_b19 article-title: Novel ensemble machine learning models in flood susceptibility mapping publication-title: Geocarto Int. doi: 10.1080/10106049.2021.1892209 – volume: 56 start-page: 3290 issue: 6 year: 2018 ident: 10.1016/j.asoc.2023.110846_b11 article-title: Unsupervised rapid flood mapping using Sentinel-1 GRD SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2797536 – volume: 617 year: 2023 ident: 10.1016/j.asoc.2023.110846_b52 article-title: Flood susceptibility mapping using multi-temporal sar imagery and novel integration of nature-inspired algorithms into support vector regression publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129100 – ident: 10.1016/j.asoc.2023.110846_b32 doi: 10.1175/JHM-D-16-0032.1 – volume: 297 year: 2021 ident: 10.1016/j.asoc.2023.110846_b79 article-title: Basin-wide flood depth and exposure mapping from SAR images and machine learning models publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.113367 – volume: 30 start-page: 409 year: 2016 ident: 10.1016/j.asoc.2023.110846_b39 article-title: Application of integrated shannon’s entropy and vikor techniques in prioritization of flood risk in the shemshak watershed, Iran publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-1169-6 – volume: 14 issue: 3 year: 2022 ident: 10.1016/j.asoc.2023.110846_b15 article-title: Flash flood water depth estimation using sar images, digital elevation models, and machine learning algorithms publication-title: Remote Sens. doi: 10.3390/rs14030440 – volume: 221 start-page: 302 year: 2019 ident: 10.1016/j.asoc.2023.110846_b7 article-title: Near-real-time non-obstructed flood inundation mapping using synthetic aperture radar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.008 – volume: 27 start-page: 431 year: 2023 ident: 10.1016/j.asoc.2023.110846_b48 article-title: Flood susceptibility mapping using novel hybrid approach of neural network with genetic quantum ensembles publication-title: KSCE J. Civil Eng. doi: 10.1007/s12205-022-0559-6 – start-page: 379 year: 2021 ident: 10.1016/j.asoc.2023.110846_b69 article-title: Chapter 17 - assessing the impact of 2018 tropical rainfall and the consecutive flood-related damages for the State of Kerala, India – volume: 612 year: 2022 ident: 10.1016/j.asoc.2023.110846_b13 article-title: Comparison of statistical and mcdm approaches for flood susceptibility mapping in northern Iran publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128072 – volume: 13 start-page: 949 issue: 1 year: 2022 ident: 10.1016/j.asoc.2023.110846_b58 article-title: Flood susceptibility mapping using meta-heuristic algorithms publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2022.2060138 – volume: 666 start-page: 975 year: 2019 ident: 10.1016/j.asoc.2023.110846_b65 article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.263 – year: 2023 ident: 10.1016/j.asoc.2023.110846_b3 – volume: 23 start-page: 207 issue: 2 year: 2020 ident: 10.1016/j.asoc.2023.110846_b8 article-title: Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data publication-title: Egypt. J. Remote Sens. Space Sci. – volume: 615 start-page: 438 year: 2018 ident: 10.1016/j.asoc.2023.110846_b59 article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.262 – volume: 37 start-page: 5479 issue: 19 year: 2022 ident: 10.1016/j.asoc.2023.110846_b20 article-title: Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees publication-title: Geocarto Int. doi: 10.1080/10106049.2021.1920636 |
| SSID | ssj0016928 |
| Score | 2.5055983 |
| Snippet | Flooding is one of the most common natural hazards that have extremely detrimental consequences. Understanding which areas are vulnerable to flooding is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110846 |
| SubjectTerms | AutoML Bayesian optimization Convolutional neural network Flood susceptibility mapping HPO Kerala |
| Title | Flood susceptibility mapping using AutoML and a deep learning framework with evolutionary algorithms for hyperparameter optimization |
| URI | https://dx.doi.org/10.1016/j.asoc.2023.110846 |
| Volume | 148 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRHdQMbSl-x8xiriqpAWyGgUrfISexS1KZVH0hdmPjh3CUOAgl1YIpi2Up0Z_u-s7-7Y-zaFloiMK9Zvi-ExVVdWJ4tcV1FGuEBAuQwvT3v9Z3OgN8PxbDAWnksDNEqzd6f7enpbm1aqkaa1fl4XH1Gz8PjPkf7TbicU6A55y5VMah8fNM86o6f1lelzhb1NoEzGcdLogQqVEA8ZcMTCP7LOP0wOO0DtmeQIjSznzlkBZUcsf28CgOYRXnMPtvEPYflepkyVFKy6wamkhIvjIB47SNorlezXhdkEoOEWKk5mGoRI9A5OwvoSBbUu5mLcrEBORnNFtg6XQJiW3hFn3VBucKnxKGBGX5tasI4T9igffvS6limtoIVobhWViMFQp6OtBd7suEpgaZeKY0Ojop46NRQazWuQi5dW_quihFJcFzw5E3TTZ19yorJLFFnDOyGdmMnrNm-Ftzhbiik6zvak4qHoa_tEqvnQg0ik3ic6l9Mgpxh9haQIgJSRJAposRuvsfMs7QbW3uLXFfBr8kToF3YMu78n-Mu2C69ZSGJl6y4WqzVFWKTVVhOJ1-Z7TRbT91Het49dPpfTtDmbg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjSjPG9hQ-oqdx1hVVAXaLrRSt8hJ7FLUl_pA6sLED-cucSqQUAdWx6dEd7bvu_i7O8bubaElAvOy5ftCWFxVhOXZEvdVpBEeIEAOk9vzdsdp9vhzX_RzrJ7lwhCt0pz96ZmenNZmpGS0WZoNh6VXjDw87nP034TLudhhu1xUXYrAip8bnkfF8ZMGqzTboukmcyYleUlUQZE6iCd0eELBf3mnHx6nccQODFSEWvo1xyynJifsMGvDAGZXnrKvBpHPYbFaJBSVhO26hrGkygsDIGL7AGqr5bTdAjmJQUKs1AxMu4gB6IyeBfRPFtSHWYxyvgY5GkznODpeAIJbeMOgdU7FwsdEooEpvm1s8jjPWK_x2K03LdNcwYpQX0urmiAhT0faiz1Z9ZRAX6-UxghHRTx0ymi2Mlchl64tfVfFCCU47ngKp-mqzj5n-cl0oi4Y2FXtxk5Ytn0tuMPdUEjXd7QnFQ9DX9sFVsmUGkSm8jg1wBgFGcXsPSBDBGSIIDVEgT1sZGZp3Y2ts0Vmq-DX6gnQMWyRu_yn3B3ba3bbraD11Hm5Yvv0JM1PvGb55XylbhCoLMPbZCF-A4Cu5m4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flood+susceptibility+mapping+using+AutoML+and+a+deep+learning+framework+with+evolutionary+algorithms+for+hyperparameter+optimization&rft.jtitle=Applied+soft+computing&rft.au=Vincent%2C+Amala+Mary&rft.au=K.S.S.%2C+Parthasarathy&rft.au=Jidesh%2C+P.&rft.date=2023-11-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=148&rft_id=info:doi/10.1016%2Fj.asoc.2023.110846&rft.externalDocID=S1568494623008645 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |