Flood susceptibility mapping using AutoML and a deep learning framework with evolutionary algorithms for hyperparameter optimization

Flooding is one of the most common natural hazards that have extremely detrimental consequences. Understanding which areas are vulnerable to flooding is crucial to addressing these effects. In this work, we use machine learning models and Automated machine learning (AutoML) systems for flood suscept...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 148; p. 110846
Main Authors Vincent, Amala Mary, K.S.S., Parthasarathy, Jidesh, P.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2023
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2023.110846

Cover

Abstract Flooding is one of the most common natural hazards that have extremely detrimental consequences. Understanding which areas are vulnerable to flooding is crucial to addressing these effects. In this work, we use machine learning models and Automated machine learning (AutoML) systems for flood susceptibility mapping in Kerala, India. In particular, we used a three-dimensional convolutional neural network (CNN) architecture for this purpose. The CNN model was assisted with hyperparameter optimization techniques that combine Bayesian optimization with evolutionary algorithms like differential evolution and covariance matrix adaptation evolutionary strategies. The performances of all models are compared in terms of cross-entropy loss, accuracy, precision, recall, area under the curve (AUC) and kappa score. The CNN model shows better performance than the AutoML models. Evolutionary algorithm-assisted hyperparameter optimization methods improved the efficiency of the CNN model by 4 and 9 percent in terms of accuracy and by 0.0265 and 0.0497 with reference to the AUC score. [Display omitted] •A 3D CNN model is proposed to assess flood susceptibility.•Model performance is compared with state-of-the-art machine learning and AutoML models.•A novel hyperparameter optimization model designed for the 3D CNN model.•The model is further improvised by using the evolutionary algorithms-assisted Bayesian optimization technique.
AbstractList Flooding is one of the most common natural hazards that have extremely detrimental consequences. Understanding which areas are vulnerable to flooding is crucial to addressing these effects. In this work, we use machine learning models and Automated machine learning (AutoML) systems for flood susceptibility mapping in Kerala, India. In particular, we used a three-dimensional convolutional neural network (CNN) architecture for this purpose. The CNN model was assisted with hyperparameter optimization techniques that combine Bayesian optimization with evolutionary algorithms like differential evolution and covariance matrix adaptation evolutionary strategies. The performances of all models are compared in terms of cross-entropy loss, accuracy, precision, recall, area under the curve (AUC) and kappa score. The CNN model shows better performance than the AutoML models. Evolutionary algorithm-assisted hyperparameter optimization methods improved the efficiency of the CNN model by 4 and 9 percent in terms of accuracy and by 0.0265 and 0.0497 with reference to the AUC score. [Display omitted] •A 3D CNN model is proposed to assess flood susceptibility.•Model performance is compared with state-of-the-art machine learning and AutoML models.•A novel hyperparameter optimization model designed for the 3D CNN model.•The model is further improvised by using the evolutionary algorithms-assisted Bayesian optimization technique.
ArticleNumber 110846
Author K.S.S., Parthasarathy
Vincent, Amala Mary
Jidesh, P.
Author_xml – sequence: 1
  givenname: Amala Mary
  surname: Vincent
  fullname: Vincent, Amala Mary
  email: amalamaryvincent@gmail.com
  organization: Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, Karnataka, India
– sequence: 2
  givenname: Parthasarathy
  orcidid: 0000-0003-0936-4065
  surname: K.S.S.
  fullname: K.S.S., Parthasarathy
  organization: Department of Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, Karnataka, India
– sequence: 3
  givenname: P.
  surname: Jidesh
  fullname: Jidesh, P.
  organization: Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, Karnataka, India
BookMark eNp9kEFPwyAUgImZidv0D3jiD3QCZZQmXpbFqcmMFz0TRl83ZlsaoDPz7A-3dZ48LCQP8uDjvfdN0KhxDSB0S8mMEiru9jMdnJkxwtIZpURycYHGVGYsyYWko_48FzLhORdXaBLCnvRQzuQYfa8q5wocumCgjXZjKxuPuNZta5st7sIQF110L2usmwJrXAC0uALtm-Gq9LqGT-c_8KeNOwwHV3XRukb7I9bV1vk-WwdcOo93xxZ8qwcggseur1bbLz28vkaXpa4C3PztU_S-enhbPiXr18fn5WKdmJSQmDAmOKeyNKUspGYS5lRSgFIKBoZvBAE6Jxw2XGepzjMoMsk46ZfISUp4lk6RPP1rvAvBQ6mMjb8dRK9tpShRg021V4NNNdhUJ5s9yv6hrbd1P-Z56P4EQT_UwYJXwVhoDBTWg4mqcPYc_gPtEpPX
CitedBy_id crossref_primary_10_1016_j_uclim_2024_102272
crossref_primary_10_1016_j_asr_2024_08_004
crossref_primary_10_1016_j_asoc_2024_112021
crossref_primary_10_1016_j_ejrh_2025_102262
crossref_primary_10_1016_j_jii_2024_100738
crossref_primary_10_1007_s10661_024_13487_0
crossref_primary_10_1007_s12665_024_11988_2
crossref_primary_10_1016_j_ejrh_2025_102285
crossref_primary_10_1007_s00477_024_02855_4
crossref_primary_10_1016_j_engappai_2024_109263
crossref_primary_10_1007_s12145_024_01564_4
crossref_primary_10_1016_j_anucene_2024_110466
crossref_primary_10_3390_rs15225429
crossref_primary_10_3390_land13040467
crossref_primary_10_1016_j_psep_2025_106816
Cites_doi 10.1038/s41598-023-27447-0
10.1002/hyp.8117
10.1016/j.jhydrol.2023.129121
10.1080/10106049.2015.1041559
10.1007/s00477-022-02195-1
10.1111/jfr3.12683
10.1007/s00477-022-02179-1
10.1016/j.jhydrol.2019.124379
10.3390/rs14071656
10.1007/s13201-019-1102-x
10.1016/j.jhydrol.2020.125235
10.3390/w11030615
10.1038/s41467-022-30727-4
10.1080/19475705.2017.1308971
10.5194/hess-22-5001-2018
10.1016/j.ijdrr.2021.102614
10.1080/19475705.2020.1836036
10.1016/j.isprsjprs.2021.05.019
10.3390/w12071986
10.1016/j.jhydrol.2019.124482
10.1214/aos/1013203451
10.1016/j.jenvman.2021.114317
10.1016/j.jhydrol.2013.09.034
10.1038/s41598-021-86650-z
10.1016/j.uclim.2023.101503
10.1016/j.jenvman.2021.112449
10.3390/w14071140
10.1007/s11069-022-05248-4
10.1080/19475705.2015.1045043
10.1016/j.scitotenv.2019.02.422
10.3390/rs12020266
10.1016/j.jhydrol.2020.125615
10.26480/jcleanwas.02.2018.19.24
10.1061/(ASCE)HE.1943-5584.0001948
10.1016/j.asr.2019.12.003
10.1016/j.jenvman.2022.116450
10.1016/j.jhydrol.2020.125552
10.1109/TGRS.2014.2358501
10.1038/s41598-023-32027-3
10.1080/2150704X.2017.1319987
10.1016/j.scitotenv.2015.08.055
10.3390/rs11192231
10.1016/j.pce.2022.103198
10.1016/j.envsoft.2017.06.012
10.3390/geosciences8020050
10.3390/app11114901
10.1016/j.scs.2022.104307
10.1016/j.scitotenv.2018.12.217
10.1080/10106049.2021.1953618
10.1016/j.jenvman.2018.06.075
10.3390/app11146629
10.1007/s00477-020-01924-8
10.1023/A:1010933404324
10.1080/10106049.2021.1892209
10.1109/TGRS.2018.2797536
10.1016/j.jhydrol.2023.129100
10.1175/JHM-D-16-0032.1
10.1016/j.jenvman.2021.113367
10.1007/s11269-015-1169-6
10.3390/rs14030440
10.1016/j.rse.2018.11.008
10.1007/s12205-022-0559-6
10.1016/j.jhydrol.2022.128072
10.1080/19475705.2022.2060138
10.1016/j.scitotenv.2019.02.263
10.1016/j.scitotenv.2017.09.262
10.1080/10106049.2021.1920636
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2023.110846
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2023_110846
S1568494623008645
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-2264418fcf8d8a28e5181eef862ec4b60e1504eb4a73a97ed7824040469030473
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Wed Oct 29 21:19:17 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Sat Feb 24 15:48:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords AutoML
Bayesian optimization
Convolutional neural network
HPO
Kerala
Flood susceptibility mapping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-2264418fcf8d8a28e5181eef862ec4b60e1504eb4a73a97ed7824040469030473
ORCID 0000-0003-0936-4065
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2023_110846
crossref_primary_10_1016_j_asoc_2023_110846
elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110846
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Friedman (b81) 2001; 29
Fenglin, Ahmad, Zelenakova (b5) 2023; 13
Lee, Kim, Jung, Lee, Lee (b61) 2017; 8
Saravanan, Abijith, Reddy, Parthasarathy, Janardhanam, Sathiyamurthi, Sivakumar (b63) 2023; 49
Hasanuzzaman, Islam, Bera, Shit (b23) 2022; 127
Mateo-Garcia, Veitch-Michaelis, Smith, Oprea, Schumann, Gal, Baydin, Backes (b18) 2018; 11
Chowdhuri, Pal, Chakrabortty (b34) 2020; 65
Bui, Tsangaratos, Ngo, Pham, Pham (b49) 2019; 668
Breiman (b80) 2001; 45
Shahabi, Shirzadi, Ghaderi, Omidvar, Al-Ansari, Clague, Geertsema, Khosravi, Amini, Bahrami, Rahmati, Habibi, Mohammadi, Nguyen, Melesse, Ahmad, Ahmad (b17) 2020; 12
Mehravar, Razavi-Termeh, Moghimi, Ranjgar, Foroughnia, Amani (b52) 2023; 617
Malekian, Azarnivand (b39) 2016; 30
Das (b78) 2019; 14
Arabameri, Danesh, Santosh, Cerda, Pal, Ghorbanzadeh, Roy, Chowdhuri (b58) 2022; 13
Balogun, Sheng, Sallehuddin, Aina, Dano, Pradhan, Yekeen, Tella (b55) 2022
Vijaykumar, Abhilash, Sreenath, Athira, Mohanakumar, Mapes, Chakrapani, Sahai, Niyas, Sreejith (b68) 2021; 33
Pham, Luu, Phong, Trinh, Shirzadi, Renoud, Asadi, Le, von Meding, Clague (b72) 2021; 592
Sarchani, Awol, Tsanis (b28) 2021; 11
Prasad, Loveson, Das, Kotha (b19) 2022; 37
Saravanan, Abijith (b22) 2022
Government of Kerala (b67) 2023
Wang, Fang, Hong, Peng (b74) 2020; 582
Yariyan, Avand, Abbaspour, Torabi Haghighi, Costache, Ghorbanzadeh, Janizadeh, Blaschke (b43) 2020; 11
Government of India (b3) 2023
McGrath, Gohl (b24) 2022; 14
Yu, Xie, Dong, Hu, Liu, Li, Peng, Ma, Wang, Xu (b30) 2018; 22
Rahmati, Pourghasemi, Zeinivand (b37) 2016; 31
Bui, Nguyen, Nguyen, Pham, Nguyen, Pham (b60) 2020; 581
Ekmekcioğlu, Koc, Özger (b44) 2021; 35
Chapi, Singh, Shirzadi, Shahabi, Bui, Pham, Khosravi (b75) 2017; 95
Giovannettone, Sangameswaran, Maderia, Batten (b35) 2020; 25
Jiang, Liang, He, Ziegler, Lin, Pan, Wang, Zou, Hao, Mao, Zeng, Yin, Feng, Miao, Wood, Zeng (b6) 2021; 178
Saha, Gayen, Bayen (b64) 2022; 36
Kazakis, Kougias, Patsialis (b73) 2015; 538
Yaseen, Lu, Chen (b56) 2022; 36
Rentschler, Salhab, Jafino (b1) 2022; 13
Sufiyan, Magaji (b29) 2018; 2
Khosravi, Panahi, Golkarian, Keesstra, Saco, Bui, Lee (b53) 2020; 591
Chen, Guestrin (b82) 2016
Government of Kerala (b86) 2023
Li, Martinis, Wieland, Schlaffer, Natsuaki (b9) 2019; 11
Rafiei-Sardooi, Azareh, Choubin, Mosavi, Clague (b38) 2021; 66
Li, Osei, Hu, Stein (b45) 2023; 88
Tehrany, Pradhan, Jebur (b4) 2013; 504
Parthasarathy, Deka, Saravanan, Abijith, Jacinth Jennifer (b69) 2021
Aissia, Chebana, Ouarda, Roy, Desrochers, Chartier, Robichaud (b31) 2012; 26
Nawindah (b40) 2017; 117
Elkhrachy (b15) 2022; 14
Weydahl (b10) 1996
Iervolino, Guida, Iodice, Riccio (b12) 2015; 53
Zhao, Pang, Xu, Peng, Xu (b21) 2019; 659
Wang, Fang, Hong (b65) 2019; 666
Cui, Quan, Jin (b48) 2023; 27
Li, Hong (b57) 2023; 325
Tanim, McRae, Tavakol-Davani, Goharian (b16) 2022; 14
Sarkar, Mondal (b36) 2020; 10
Jha, Afreen (b26) 2020; 12
Ahmadlou, Al-Fugara, Al-Shabeeb, Arora, Al-Adamat, Pham, Al-Ansari, Linh, Sajedi (b47) 2020; 14
Pal, Chowdhuri, Das, Chakrabortty, Roy, Saha, Shit (b2) 2022; 305
O’Neill (b77) 2016
Dano, Balogun, Matori, Wan Yusouf, Abubakar, Said Mohamed, Aina, Pradhan (b85) 2019; 11
Dou, Chen (b83) 2017; 8
Anusha, Bharathi (b8) 2020; 23
Youssef, Pradhan, Dikshit, Mahdi (b50) 2022
Razavi Termeh, Kornejady, Pourghasemi, Keesstra (b59) 2018; 615
Ghosh (b14) 2023; 82
Abedi, Costache, Shafizadeh-Moghadam, Pham (b20) 2022; 37
Romali, Yusop, Ismail (b27) 2018
Rahmati, Zeinivand, Besharat (b42) 2016; 7
Liu, Wang, Xiong, Cheng, Li, Cao, He, Duan, He, Yang (b51) 2022
Amitrano, Di Martino, Iodice, Riccio, Ruello (b11) 2018; 56
Garrote, Peña, Díez-Herrero (b33) 2021; 11
Mousavi, Ataie-Ashtiani, Hosseini (b13) 2022; 612
Chakrabortty, Chandra Pal, Rezaie, Arabameri, Lee, Roy, Saha, Chowdhuri, Moayedi (b62) 2022; 37
Bhuyan, Van Westen, Wang, Meena (b71) 2022
Hao, Yunus, Siva Subramanian, Avtar (b79) 2021; 297
Mahdizadeh Gharakhanlou, Perez (b25) 2023
González-Arqueros, Mendoza, Bocco, Solís Castillo (b76) 2018; 223
Zhao, Pang, Xu, Peng, Zuo (b54) 2020; 590
Vincent, Jidesh (b84) 2023; 13
A. Bajamgnigni Gbambie, A. Poulin, M. Boucher, R. Arsenault, Added Value of Alternative Information in Interpolated Precipitation Datasets for Hydrology. Vol. 18 No. 1, Tech. Rep. JHM-D-16-0032.1, 2017, pp. 247–264,.
Patrikaki, Kazakis, Kougias, Patsialis, Theodossiou, Voudouris (b41) 2018; 8
Shen, Anagnostou, Allen, Robert Brakenridge, Kettner (b7) 2019; 221
Wang, Fang, Hong, Costache, Tang (b46) 2021; 289
Khosravi, Panahi, Golkarian, Keesstra, Saco, Bui, Lee (b66) 2020; 591
Vilasan, Kapse (b70) 2022; 112
Ghosh (10.1016/j.asoc.2023.110846_b14) 2023; 82
Hao (10.1016/j.asoc.2023.110846_b79) 2021; 297
Das (10.1016/j.asoc.2023.110846_b78) 2019; 14
Zhao (10.1016/j.asoc.2023.110846_b21) 2019; 659
Aissia (10.1016/j.asoc.2023.110846_b31) 2012; 26
Bui (10.1016/j.asoc.2023.110846_b49) 2019; 668
Bui (10.1016/j.asoc.2023.110846_b60) 2020; 581
Li (10.1016/j.asoc.2023.110846_b45) 2023; 88
O’Neill (10.1016/j.asoc.2023.110846_b77) 2016
Anusha (10.1016/j.asoc.2023.110846_b8) 2020; 23
Wang (10.1016/j.asoc.2023.110846_b74) 2020; 582
Arabameri (10.1016/j.asoc.2023.110846_b58) 2022; 13
Sarchani (10.1016/j.asoc.2023.110846_b28) 2021; 11
Malekian (10.1016/j.asoc.2023.110846_b39) 2016; 30
Chowdhuri (10.1016/j.asoc.2023.110846_b34) 2020; 65
Amitrano (10.1016/j.asoc.2023.110846_b11) 2018; 56
Li (10.1016/j.asoc.2023.110846_b9) 2019; 11
Elkhrachy (10.1016/j.asoc.2023.110846_b15) 2022; 14
Saravanan (10.1016/j.asoc.2023.110846_b63) 2023; 49
Wang (10.1016/j.asoc.2023.110846_b65) 2019; 666
Tanim (10.1016/j.asoc.2023.110846_b16) 2022; 14
McGrath (10.1016/j.asoc.2023.110846_b24) 2022; 14
Government of Kerala (10.1016/j.asoc.2023.110846_b67) 2023
Breiman (10.1016/j.asoc.2023.110846_b80) 2001; 45
Lee (10.1016/j.asoc.2023.110846_b61) 2017; 8
Iervolino (10.1016/j.asoc.2023.110846_b12) 2015; 53
Hasanuzzaman (10.1016/j.asoc.2023.110846_b23) 2022; 127
Cui (10.1016/j.asoc.2023.110846_b48) 2023; 27
Vijaykumar (10.1016/j.asoc.2023.110846_b68) 2021; 33
Tehrany (10.1016/j.asoc.2023.110846_b4) 2013; 504
Giovannettone (10.1016/j.asoc.2023.110846_b35) 2020; 25
Mateo-Garcia (10.1016/j.asoc.2023.110846_b18) 2018; 11
Nawindah (10.1016/j.asoc.2023.110846_b40) 2017; 117
Pham (10.1016/j.asoc.2023.110846_b72) 2021; 592
Pal (10.1016/j.asoc.2023.110846_b2) 2022; 305
10.1016/j.asoc.2023.110846_b32
Garrote (10.1016/j.asoc.2023.110846_b33) 2021; 11
Ahmadlou (10.1016/j.asoc.2023.110846_b47) 2020; 14
Razavi Termeh (10.1016/j.asoc.2023.110846_b59) 2018; 615
Mehravar (10.1016/j.asoc.2023.110846_b52) 2023; 617
Rahmati (10.1016/j.asoc.2023.110846_b42) 2016; 7
Dou (10.1016/j.asoc.2023.110846_b83) 2017; 8
Fenglin (10.1016/j.asoc.2023.110846_b5) 2023; 13
Sufiyan (10.1016/j.asoc.2023.110846_b29) 2018; 2
Zhao (10.1016/j.asoc.2023.110846_b54) 2020; 590
Li (10.1016/j.asoc.2023.110846_b57) 2023; 325
Saha (10.1016/j.asoc.2023.110846_b64) 2022; 36
Friedman (10.1016/j.asoc.2023.110846_b81) 2001; 29
Khosravi (10.1016/j.asoc.2023.110846_b53) 2020; 591
Chakrabortty (10.1016/j.asoc.2023.110846_b62) 2022; 37
Rahmati (10.1016/j.asoc.2023.110846_b37) 2016; 31
Rafiei-Sardooi (10.1016/j.asoc.2023.110846_b38) 2021; 66
Mousavi (10.1016/j.asoc.2023.110846_b13) 2022; 612
Ekmekcioğlu (10.1016/j.asoc.2023.110846_b44) 2021; 35
Liu (10.1016/j.asoc.2023.110846_b51) 2022
Shahabi (10.1016/j.asoc.2023.110846_b17) 2020; 12
Mahdizadeh Gharakhanlou (10.1016/j.asoc.2023.110846_b25) 2023
Bhuyan (10.1016/j.asoc.2023.110846_b71) 2022
Yaseen (10.1016/j.asoc.2023.110846_b56) 2022; 36
Jiang (10.1016/j.asoc.2023.110846_b6) 2021; 178
Shen (10.1016/j.asoc.2023.110846_b7) 2019; 221
Balogun (10.1016/j.asoc.2023.110846_b55) 2022
Khosravi (10.1016/j.asoc.2023.110846_b66) 2020; 591
Chapi (10.1016/j.asoc.2023.110846_b75) 2017; 95
Abedi (10.1016/j.asoc.2023.110846_b20) 2022; 37
Youssef (10.1016/j.asoc.2023.110846_b50) 2022
Dano (10.1016/j.asoc.2023.110846_b85) 2019; 11
Chen (10.1016/j.asoc.2023.110846_b82) 2016
Weydahl (10.1016/j.asoc.2023.110846_b10) 1996
Vincent (10.1016/j.asoc.2023.110846_b84) 2023; 13
Kazakis (10.1016/j.asoc.2023.110846_b73) 2015; 538
Sarkar (10.1016/j.asoc.2023.110846_b36) 2020; 10
Wang (10.1016/j.asoc.2023.110846_b46) 2021; 289
Prasad (10.1016/j.asoc.2023.110846_b19) 2022; 37
Rentschler (10.1016/j.asoc.2023.110846_b1) 2022; 13
Government of India (10.1016/j.asoc.2023.110846_b3) 2023
Parthasarathy (10.1016/j.asoc.2023.110846_b69) 2021
Romali (10.1016/j.asoc.2023.110846_b27) 2018
Yu (10.1016/j.asoc.2023.110846_b30) 2018; 22
Government of Kerala (10.1016/j.asoc.2023.110846_b86) 2023
González-Arqueros (10.1016/j.asoc.2023.110846_b76) 2018; 223
Jha (10.1016/j.asoc.2023.110846_b26) 2020; 12
Patrikaki (10.1016/j.asoc.2023.110846_b41) 2018; 8
Yariyan (10.1016/j.asoc.2023.110846_b43) 2020; 11
Saravanan (10.1016/j.asoc.2023.110846_b22) 2022
Vilasan (10.1016/j.asoc.2023.110846_b70) 2022; 112
References_xml – volume: 13
  start-page: 949
  year: 2022
  end-page: 974
  ident: b58
  article-title: Flood susceptibility mapping using meta-heuristic algorithms
  publication-title: Geomat. Nat. Hazards Risk
– volume: 504
  start-page: 69
  year: 2013
  end-page: 79
  ident: b4
  article-title: Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS
  publication-title: J. Hydrol.
– volume: 56
  start-page: 3290
  year: 2018
  end-page: 3299
  ident: b11
  article-title: Unsupervised rapid flood mapping using Sentinel-1 GRD SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 11
  start-page: 7249
  year: 2018
  ident: b18
  article-title: Towards global flood mapping onboard low cost satellites with machine learning
  publication-title: Sci. Rep.
– volume: 612
  year: 2022
  ident: b13
  article-title: Comparison of statistical and mcdm approaches for flood susceptibility mapping in northern Iran
  publication-title: J. Hydrol.
– volume: 27
  start-page: 431
  year: 2023
  end-page: 441
  ident: b48
  article-title: Flood susceptibility mapping using novel hybrid approach of neural network with genetic quantum ensembles
  publication-title: KSCE J. Civil Eng.
– start-page: 151
  year: 1996
  end-page: 153 1
  ident: b10
  article-title: Flood monitoring in Norway using ers-1 SAR images
  publication-title: IGARSS ’96. 1996 International Geoscience and Remote Sensing Symposium, Vol. 1
– volume: 25
  year: 2020
  ident: b35
  article-title: Spatial analysis of flood susceptibility throughout Currituck County, North Carolina
  publication-title: J. Hydrol. Eng.
– volume: 33
  year: 2021
  ident: b68
  article-title: Kerala floods in consecutive years - its association with mesoscale cloudburst and structural changes in monsoon clouds over the west coast of India
  publication-title: Weather Clim. Extrem.
– start-page: 1
  year: 2022
  end-page: 30
  ident: b22
  article-title: Flood susceptibility mapping of northeast coastal districts of Tamil Nadu India using multi-source geospatial data and machine learning techniques
  publication-title: Geocarto Int.
– volume: 53
  start-page: 2295
  year: 2015
  end-page: 2307
  ident: b12
  article-title: Flooding water depth estimation with high-resolution SAR
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  year: 2022
  ident: b16
  article-title: Flood detection in urban areas using satellite imagery and machine learning
  publication-title: Water
– volume: 31
  start-page: 42
  year: 2016
  end-page: 70
  ident: b37
  article-title: Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran
  publication-title: Geocarto Int.
– volume: 11
  year: 2019
  ident: b85
  article-title: Flood susceptibility mapping using GIS-based analytic network process: A case study of perlis, Malaysia
  publication-title: Water
– volume: 305
  year: 2022
  ident: b2
  article-title: Threats of climate change and land use patterns enhance the susceptibility of future floods in India
  publication-title: J. Environ. Manag.
– volume: 590
  year: 2020
  ident: b54
  article-title: Urban flood susceptibility assessment based on convolutional neural networks
  publication-title: J. Hydrol.
– year: 2023
  ident: b25
  article-title: Flood susceptible prediction through the use of geospatial variables and machine learning methods
  publication-title: J. Hydrol.
– volume: 127
  year: 2022
  ident: b23
  article-title: A comparison of performance measures of three machine learning algorithms for flood susceptibility mapping of river Silabati (Tropical River, India)
  publication-title: Phys. Chem. Earth, Parts A/B/C
– volume: 36
  start-page: 3041
  year: 2022
  end-page: 3061
  ident: b56
  article-title: Comparison of statistical and mcdm approaches for flood susceptibility mapping in northern Iran
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 8
  start-page: 733
  year: 2017
  end-page: 742
  ident: b83
  article-title: Remote sensing imagery classification using AdaBoost with a weight vector (WV AdaBoost)
  publication-title: Remote Sens. Lett.
– start-page: 1
  year: 2022
  end-page: 30
  ident: b51
  article-title: Assessment of flood susceptibility mapping using support vector machine, logistic regression and their ensemble techniques in the belt and road region
  publication-title: Geocarto Int.
– year: 2023
  ident: b86
  article-title: Allapuzha district, topography
– volume: 13
  start-page: 3527
  year: 2022
  ident: b1
  article-title: Flood exposure and poverty in 188 countries
  publication-title: Nature Commun.
– volume: 82
  year: 2023
  ident: b14
  article-title: Flood susceptibility assessment and mapping in a monsoon-dominated tropical river basin using gis-based data-driven bivariate and multivariate statistical models and their ensemble techniques
  publication-title: Environ. Earth Sci.
– volume: 12
  year: 2020
  ident: b17
  article-title: Flood detection and susceptibility mapping using sentinel-1 remote sensing data and a machine learning approach: Hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier
  publication-title: Remote Sens.
– volume: 11
  start-page: 6629
  year: 2021
  ident: b33
  article-title: Probabilistic flood hazard maps from monte carlo derived peak flow values—an application to flood risk management in Zamora City (Spain)
  publication-title: Appl. Sci.
– start-page: 1
  year: 2022
  end-page: 28
  ident: b50
  article-title: Comparative study of Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for flood susceptibility mapping: a case study at Ras Gharib, Red Sea, Egypt
  publication-title: Geocarto Int.
– volume: 65
  start-page: 1466
  year: 2020
  end-page: 1489
  ident: b34
  article-title: Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India
  publication-title: Adv. Space Res.
– volume: 88
  year: 2023
  ident: b45
  article-title: Urban flood susceptibility mapping based on social media data in Chengdu City, China
  publication-title: Sustainable Cities Soc.
– start-page: 2158
  year: 2016
  end-page: 2186
  ident: b77
  article-title: The impact of perceived flood exposure on flood-risk perception: The role of distance
  publication-title: Risk Anal. Off. Publ. Soc. Risk Anal.
– volume: 49
  year: 2023
  ident: b63
  article-title: Flood susceptibility mapping using machine learning boosting algorithms techniques in Idukki district of Kerala India
  publication-title: Urban Clim.
– volume: 14
  year: 2020
  ident: b47
  article-title: Flood susceptibility mapping and assessment using a novel deep learning model combining multilayer perceptron and autoencoder neural networks
  publication-title: J. Flood Risk Manag.
– volume: 615
  start-page: 438
  year: 2018
  end-page: 451
  ident: b59
  article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms
  publication-title: Sci. Total Environ.
– volume: 36
  start-page: 3295
  year: 2022
  end-page: 3310
  ident: b64
  article-title: Deep learning algorithms to develop flood susceptibility map in data-scarce and ungauged river basin in India
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 538
  start-page: 555
  year: 2015
  end-page: 563
  ident: b73
  article-title: Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: Application in Rhodope–Evros Region, Greece
  publication-title: Sci. Total Environ.
– volume: 178
  start-page: 36
  year: 2021
  end-page: 50
  ident: b6
  article-title: Rapid and large-scale mapping of flood inundation via integrating spaceborne synthetic aperture radar imagery with unsupervised deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 22
  start-page: 5001
  year: 2018
  end-page: 5019
  ident: b30
  article-title: Improvement of the swat model for event-based flood simulation on a sub-daily timescale
  publication-title: Hydrol. Earth Syst. Sci.
– start-page: 379
  year: 2021
  end-page: 395
  ident: b69
  article-title: Chapter 17 - assessing the impact of 2018 tropical rainfall and the consecutive flood-related damages for the State of Kerala, India
  publication-title: Disaster Resilience and Sustainability
– volume: 11
  year: 2019
  ident: b9
  article-title: Urban flood mapping using sar intensity and interferometric coherence via Bayesian network fusion
  publication-title: Remote Sens.
– volume: 12
  start-page: 1986
  year: 2020
  ident: b26
  article-title: Flooding urban landscapes: Analysis using combined hydrodynamic and hydrologic modeling approaches
  publication-title: Water
– volume: 35
  start-page: 617
  year: 2021
  end-page: 637
  ident: b44
  article-title: District based flood risk assessment in istanbul using fuzzy analytical hierarchy process
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 221
  start-page: 302
  year: 2019
  end-page: 315
  ident: b7
  article-title: Near-real-time non-obstructed flood inundation mapping using synthetic aperture radar
  publication-title: Remote Sens. Environ.
– volume: 591
  year: 2020
  ident: b66
  article-title: Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran
  publication-title: J. Hydrol.
– volume: 14
  year: 2022
  ident: b15
  article-title: Flash flood water depth estimation using sar images, digital elevation models, and machine learning algorithms
  publication-title: Remote Sens.
– volume: 325
  year: 2023
  ident: b57
  article-title: Modelling flood susceptibility based on deep learning coupling with ensemble learning models
  publication-title: J. Environ. Manag.
– volume: 13
  start-page: 4737
  year: 2023
  ident: b84
  article-title: An improved hyperparameter optimization framework for AutoML systems using evolutionary algorithms
  publication-title: Sci. Rep.
– volume: 581
  year: 2020
  ident: b60
  article-title: Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping
  publication-title: J. Hydrol.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b80
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 223
  start-page: 685
  year: 2018
  end-page: 693
  ident: b76
  article-title: Flood susceptibility in rural settlements in remote zones: The case of a mountainous basin in the sierra-costa region of Michoacán, Mexico
  publication-title: J. Environ. Manag.
– volume: 30
  start-page: 409
  year: 2016
  end-page: 425
  ident: b39
  article-title: Application of integrated shannon’s entropy and vikor techniques in prioritization of flood risk in the shemshak watershed, Iran
  publication-title: Water Resour. Manag.
– reference: A. Bajamgnigni Gbambie, A. Poulin, M. Boucher, R. Arsenault, Added Value of Alternative Information in Interpolated Precipitation Datasets for Hydrology. Vol. 18 No. 1, Tech. Rep. JHM-D-16-0032.1, 2017, pp. 247–264,.
– volume: 13
  start-page: 247
  year: 2023
  ident: b5
  article-title: Exploratory regression modeling for flood susceptibility mapping in the GIS environment
  publication-title: Sci. Rep.
– volume: 659
  start-page: 940
  year: 2019
  end-page: 949
  ident: b21
  article-title: Assessment of urban flood susceptibility using semi-supervised machine learning model
  publication-title: Sci. Total Environ.
– volume: 666
  start-page: 975
  year: 2019
  end-page: 993
  ident: b65
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China
  publication-title: Sci. Total Environ.
– start-page: 1
  year: 2022
  end-page: 27
  ident: b55
  article-title: Assessment of data mining, multi-criteria decision making and fuzzy-computing techniques for spatial flood susceptibility mapping: a comparative study
  publication-title: Geocarto Int.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 13
  ident: b36
  article-title: Flood vulnerability mapping using frequency ratio (fr) model: a case study on kulik river basin, Indo-Bangladesh Barind Region
  publication-title: Appl. Water Sci.
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: b81
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
– volume: 2
  start-page: 19
  year: 2018
  end-page: 24
  ident: b29
  article-title: Modeling flood hazard using swat and 3d analysis in terengannu watershed
  publication-title: J. Clean. WAS
– volume: 14
  year: 2022
  ident: b24
  article-title: Accessing the impact of meteorological variables on machine learning flood susceptibility mapping
  publication-title: Remote Sens.
– year: 2018
  ident: b27
  article-title: Hydrological modelling using hec-hms for flood risk assessment of Segamat Town, Malaysia
  publication-title: IOP Conference Series: Materials Science and Engineering, Vol. 318
– start-page: 785
  year: 2016
  end-page: 794
  ident: b82
  article-title: Xgboost: A scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2023
  ident: b3
  article-title: National Disaster Management Authority
– volume: 591
  year: 2020
  ident: b53
  article-title: Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran
  publication-title: J. Hydrol.
– year: 2023
  ident: b67
  article-title: Kerala, topography
– year: 2022
  ident: b71
  article-title: Mapping and characterising buildings for flood exposure analysis using open-source data and artificial intelligence
  publication-title: Nat. Hazards
– volume: 37
  start-page: 6713
  year: 2022
  end-page: 6735
  ident: b62
  article-title: Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India
  publication-title: Geocarto Int.
– volume: 11
  start-page: 4901
  year: 2021
  ident: b28
  article-title: Hydrological analysis of extreme rain events in a medium-sized basin
  publication-title: Appl. Sci.
– volume: 66
  year: 2021
  ident: b38
  article-title: Evaluating urban flood risk using hybrid method of topsis and machine learning
  publication-title: Int. J. Disaster Risk Reduct.
– volume: 11
  start-page: 2282
  year: 2020
  end-page: 2314
  ident: b43
  article-title: Flood susceptibility mapping using an improved analytic network process with statistical models
  publication-title: Geomat. Nat. Hazards Risk
– volume: 617
  year: 2023
  ident: b52
  article-title: Flood susceptibility mapping using multi-temporal sar imagery and novel integration of nature-inspired algorithms into support vector regression
  publication-title: J. Hydrol.
– volume: 592
  year: 2021
  ident: b72
  article-title: Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?
  publication-title: J. Hydrol.
– volume: 668
  start-page: 1038
  year: 2019
  end-page: 1054
  ident: b49
  article-title: Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods
  publication-title: Sci. Total Environ.
– volume: 14
  start-page: 60
  year: 2019
  end-page: 74
  ident: b78
  article-title: Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in ulhas basin, India
  publication-title: Remote Sens. Appl. Soc. Environ.
– volume: 297
  year: 2021
  ident: b79
  article-title: Basin-wide flood depth and exposure mapping from SAR images and machine learning models
  publication-title: J. Environ. Manag.
– volume: 26
  start-page: 130
  year: 2012
  end-page: 142
  ident: b31
  article-title: Multivariate analysis of flood characteristics in a climate change context of the watershed of the baskatong reservoir, Province of Québec, Canada
  publication-title: Hydrol. Process.
– volume: 37
  start-page: 5479
  year: 2022
  end-page: 5496
  ident: b20
  article-title: Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees
  publication-title: Geocarto Int.
– volume: 117
  start-page: 795
  year: 2017
  end-page: 803
  ident: b40
  article-title: Simple additive weighting (saw) mathematics method for warehouse disaster location selection in central Jakarta, Indonesia
  publication-title: Int. J. Pure Appl. Math.
– volume: 8
  start-page: 1185
  year: 2017
  end-page: 1203
  ident: b61
  article-title: Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul Metropolitan City, Korea
  publication-title: Geomat. Nat. Hazards Risk
– volume: 23
  start-page: 207
  year: 2020
  end-page: 219
  ident: b8
  article-title: Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data
  publication-title: Egypt. J. Remote Sens. Space Sci.
– volume: 289
  year: 2021
  ident: b46
  article-title: Flood susceptibility mapping by integrating frequency ratio and index of entropy with multilayer perceptron and classification and regression tree
  publication-title: J. Environ. Manag.
– volume: 112
  start-page: 1767
  year: 2022
  end-page: 1793
  ident: b70
  article-title: Evaluation of the prediction capability of ahp and f-ahp methods in flood susceptibility mapping of Ernakulam District (India)
  publication-title: Nat. Hazards
– volume: 7
  start-page: 1000
  year: 2016
  end-page: 1017
  ident: b42
  article-title: Flood hazard zoning in yasooj region, iran, using gis and multi-criteria decision analysis
  publication-title: Geomat. Nat. Hazards Risk
– volume: 37
  start-page: 4571
  year: 2022
  end-page: 4593
  ident: b19
  article-title: Novel ensemble machine learning models in flood susceptibility mapping
  publication-title: Geocarto Int.
– volume: 582
  year: 2020
  ident: b74
  article-title: Flood susceptibility mapping using convolutional neural network frameworks
  publication-title: J. Hydrol.
– volume: 95
  start-page: 229
  year: 2017
  end-page: 245
  ident: b75
  article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment
  publication-title: Environ. Model. Softw.
– volume: 8
  start-page: 50
  year: 2018
  ident: b41
  article-title: Assessing flood hazard at river basin scale with an index-based approach: The case of Mouriki, Greece
  publication-title: Geosciences
– volume: 13
  start-page: 247
  year: 2023
  ident: 10.1016/j.asoc.2023.110846_b5
  article-title: Exploratory regression modeling for flood susceptibility mapping in the GIS environment
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-27447-0
– volume: 26
  start-page: 130
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2023.110846_b31
  article-title: Multivariate analysis of flood characteristics in a climate change context of the watershed of the baskatong reservoir, Province of Québec, Canada
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.8117
– year: 2023
  ident: 10.1016/j.asoc.2023.110846_b25
  article-title: Flood susceptible prediction through the use of geospatial variables and machine learning methods
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129121
– volume: 31
  start-page: 42
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2023.110846_b37
  article-title: Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2015.1041559
– volume: 36
  start-page: 3295
  issue: 10
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b64
  article-title: Deep learning algorithms to develop flood susceptibility map in data-scarce and ungauged river basin in India
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-022-02195-1
– volume: 14
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2023.110846_b47
  article-title: Flood susceptibility mapping and assessment using a novel deep learning model combining multilayer perceptron and autoencoder neural networks
  publication-title: J. Flood Risk Manag.
  doi: 10.1111/jfr3.12683
– volume: 36
  start-page: 3041
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b56
  article-title: Comparison of statistical and mcdm approaches for flood susceptibility mapping in northern Iran
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-022-02179-1
– volume: 581
  year: 2020
  ident: 10.1016/j.asoc.2023.110846_b60
  article-title: Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124379
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b22
  article-title: Flood susceptibility mapping of northeast coastal districts of Tamil Nadu India using multi-source geospatial data and machine learning techniques
  publication-title: Geocarto Int.
– volume: 14
  issue: 7
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b24
  article-title: Accessing the impact of meteorological variables on machine learning flood susceptibility mapping
  publication-title: Remote Sens.
  doi: 10.3390/rs14071656
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2023.110846_b36
  article-title: Flood vulnerability mapping using frequency ratio (fr) model: a case study on kulik river basin, Indo-Bangladesh Barind Region
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-019-1102-x
– volume: 590
  year: 2020
  ident: 10.1016/j.asoc.2023.110846_b54
  article-title: Urban flood susceptibility assessment based on convolutional neural networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125235
– start-page: 151
  year: 1996
  ident: 10.1016/j.asoc.2023.110846_b10
  article-title: Flood monitoring in Norway using ers-1 SAR images
– year: 2022
  ident: 10.1016/j.asoc.2023.110846_b71
  article-title: Mapping and characterising buildings for flood exposure analysis using open-source data and artificial intelligence
  publication-title: Nat. Hazards
– volume: 11
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2023.110846_b85
  article-title: Flood susceptibility mapping using GIS-based analytic network process: A case study of perlis, Malaysia
  publication-title: Water
  doi: 10.3390/w11030615
– volume: 13
  start-page: 3527
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b1
  article-title: Flood exposure and poverty in 188 countries
  publication-title: Nature Commun.
  doi: 10.1038/s41467-022-30727-4
– volume: 8
  start-page: 1185
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2023.110846_b61
  article-title: Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul Metropolitan City, Korea
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2017.1308971
– volume: 22
  start-page: 5001
  issue: 9
  year: 2018
  ident: 10.1016/j.asoc.2023.110846_b30
  article-title: Improvement of the swat model for event-based flood simulation on a sub-daily timescale
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-5001-2018
– volume: 66
  year: 2021
  ident: 10.1016/j.asoc.2023.110846_b38
  article-title: Evaluating urban flood risk using hybrid method of topsis and machine learning
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2021.102614
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b50
  article-title: Comparative study of Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for flood susceptibility mapping: a case study at Ras Gharib, Red Sea, Egypt
  publication-title: Geocarto Int.
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b55
  article-title: Assessment of data mining, multi-criteria decision making and fuzzy-computing techniques for spatial flood susceptibility mapping: a comparative study
  publication-title: Geocarto Int.
– year: 2018
  ident: 10.1016/j.asoc.2023.110846_b27
  article-title: Hydrological modelling using hec-hms for flood risk assessment of Segamat Town, Malaysia
– volume: 11
  start-page: 2282
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2023.110846_b43
  article-title: Flood susceptibility mapping using an improved analytic network process with statistical models
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2020.1836036
– volume: 178
  start-page: 36
  year: 2021
  ident: 10.1016/j.asoc.2023.110846_b6
  article-title: Rapid and large-scale mapping of flood inundation via integrating spaceborne synthetic aperture radar imagery with unsupervised deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.05.019
– volume: 12
  start-page: 1986
  issue: 7
  year: 2020
  ident: 10.1016/j.asoc.2023.110846_b26
  article-title: Flooding urban landscapes: Analysis using combined hydrodynamic and hydrologic modeling approaches
  publication-title: Water
  doi: 10.3390/w12071986
– volume: 582
  year: 2020
  ident: 10.1016/j.asoc.2023.110846_b74
  article-title: Flood susceptibility mapping using convolutional neural network frameworks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124482
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.asoc.2023.110846_b81
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1013203451
– volume: 305
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b2
  article-title: Threats of climate change and land use patterns enhance the susceptibility of future floods in India
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.114317
– volume: 504
  start-page: 69
  year: 2013
  ident: 10.1016/j.asoc.2023.110846_b4
  article-title: Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.09.034
– volume: 11
  start-page: 7249
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2023.110846_b18
  article-title: Towards global flood mapping onboard low cost satellites with machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-86650-z
– volume: 49
  year: 2023
  ident: 10.1016/j.asoc.2023.110846_b63
  article-title: Flood susceptibility mapping using machine learning boosting algorithms techniques in Idukki district of Kerala India
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2023.101503
– volume: 289
  year: 2021
  ident: 10.1016/j.asoc.2023.110846_b46
  article-title: Flood susceptibility mapping by integrating frequency ratio and index of entropy with multilayer perceptron and classification and regression tree
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112449
– volume: 14
  issue: 7
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b16
  article-title: Flood detection in urban areas using satellite imagery and machine learning
  publication-title: Water
  doi: 10.3390/w14071140
– volume: 112
  start-page: 1767
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b70
  article-title: Evaluation of the prediction capability of ahp and f-ahp methods in flood susceptibility mapping of Ernakulam District (India)
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-022-05248-4
– volume: 7
  start-page: 1000
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2023.110846_b42
  article-title: Flood hazard zoning in yasooj region, iran, using gis and multi-criteria decision analysis
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2015.1045043
– volume: 668
  start-page: 1038
  year: 2019
  ident: 10.1016/j.asoc.2023.110846_b49
  article-title: Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.422
– volume: 33
  year: 2021
  ident: 10.1016/j.asoc.2023.110846_b68
  article-title: Kerala floods in consecutive years - its association with mesoscale cloudburst and structural changes in monsoon clouds over the west coast of India
  publication-title: Weather Clim. Extrem.
– volume: 14
  start-page: 60
  year: 2019
  ident: 10.1016/j.asoc.2023.110846_b78
  article-title: Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in ulhas basin, India
  publication-title: Remote Sens. Appl. Soc. Environ.
– volume: 12
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2023.110846_b17
  article-title: Flood detection and susceptibility mapping using sentinel-1 remote sensing data and a machine learning approach: Hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier
  publication-title: Remote Sens.
  doi: 10.3390/rs12020266
– volume: 592
  year: 2021
  ident: 10.1016/j.asoc.2023.110846_b72
  article-title: Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125615
– start-page: 2158
  year: 2016
  ident: 10.1016/j.asoc.2023.110846_b77
  article-title: The impact of perceived flood exposure on flood-risk perception: The role of distance
  publication-title: Risk Anal. Off. Publ. Soc. Risk Anal.
– volume: 2
  start-page: 19
  year: 2018
  ident: 10.1016/j.asoc.2023.110846_b29
  article-title: Modeling flood hazard using swat and 3d analysis in terengannu watershed
  publication-title: J. Clean. WAS
  doi: 10.26480/jcleanwas.02.2018.19.24
– volume: 25
  issue: 8
  year: 2020
  ident: 10.1016/j.asoc.2023.110846_b35
  article-title: Spatial analysis of flood susceptibility throughout Currituck County, North Carolina
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0001948
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b51
  article-title: Assessment of flood susceptibility mapping using support vector machine, logistic regression and their ensemble techniques in the belt and road region
  publication-title: Geocarto Int.
– volume: 65
  start-page: 1466
  issue: 5
  year: 2020
  ident: 10.1016/j.asoc.2023.110846_b34
  article-title: Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2019.12.003
– volume: 325
  year: 2023
  ident: 10.1016/j.asoc.2023.110846_b57
  article-title: Modelling flood susceptibility based on deep learning coupling with ensemble learning models
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.116450
– volume: 591
  year: 2020
  ident: 10.1016/j.asoc.2023.110846_b53
  article-title: Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125552
– volume: 53
  start-page: 2295
  issue: 5
  year: 2015
  ident: 10.1016/j.asoc.2023.110846_b12
  article-title: Flooding water depth estimation with high-resolution SAR
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2358501
– volume: 13
  start-page: 4737
  issue: 1
  year: 2023
  ident: 10.1016/j.asoc.2023.110846_b84
  article-title: An improved hyperparameter optimization framework for AutoML systems using evolutionary algorithms
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-32027-3
– volume: 8
  start-page: 733
  issue: 8
  year: 2017
  ident: 10.1016/j.asoc.2023.110846_b83
  article-title: Remote sensing imagery classification using AdaBoost with a weight vector (WV AdaBoost)
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2017.1319987
– start-page: 785
  year: 2016
  ident: 10.1016/j.asoc.2023.110846_b82
  article-title: Xgboost: A scalable tree boosting system
– volume: 82
  issue: 28
  year: 2023
  ident: 10.1016/j.asoc.2023.110846_b14
  article-title: Flood susceptibility assessment and mapping in a monsoon-dominated tropical river basin using gis-based data-driven bivariate and multivariate statistical models and their ensemble techniques
  publication-title: Environ. Earth Sci.
– volume: 538
  start-page: 555
  year: 2015
  ident: 10.1016/j.asoc.2023.110846_b73
  article-title: Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: Application in Rhodope–Evros Region, Greece
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.08.055
– volume: 591
  year: 2020
  ident: 10.1016/j.asoc.2023.110846_b66
  article-title: Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125552
– year: 2023
  ident: 10.1016/j.asoc.2023.110846_b67
– volume: 11
  issue: 19
  year: 2019
  ident: 10.1016/j.asoc.2023.110846_b9
  article-title: Urban flood mapping using sar intensity and interferometric coherence via Bayesian network fusion
  publication-title: Remote Sens.
  doi: 10.3390/rs11192231
– volume: 127
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b23
  article-title: A comparison of performance measures of three machine learning algorithms for flood susceptibility mapping of river Silabati (Tropical River, India)
  publication-title: Phys. Chem. Earth, Parts A/B/C
  doi: 10.1016/j.pce.2022.103198
– volume: 95
  start-page: 229
  year: 2017
  ident: 10.1016/j.asoc.2023.110846_b75
  article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2017.06.012
– volume: 117
  start-page: 795
  issue: 15
  year: 2017
  ident: 10.1016/j.asoc.2023.110846_b40
  article-title: Simple additive weighting (saw) mathematics method for warehouse disaster location selection in central Jakarta, Indonesia
  publication-title: Int. J. Pure Appl. Math.
– volume: 8
  start-page: 50
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2023.110846_b41
  article-title: Assessing flood hazard at river basin scale with an index-based approach: The case of Mouriki, Greece
  publication-title: Geosciences
  doi: 10.3390/geosciences8020050
– year: 2023
  ident: 10.1016/j.asoc.2023.110846_b86
– volume: 11
  start-page: 4901
  issue: 11
  year: 2021
  ident: 10.1016/j.asoc.2023.110846_b28
  article-title: Hydrological analysis of extreme rain events in a medium-sized basin
  publication-title: Appl. Sci.
  doi: 10.3390/app11114901
– volume: 88
  year: 2023
  ident: 10.1016/j.asoc.2023.110846_b45
  article-title: Urban flood susceptibility mapping based on social media data in Chengdu City, China
  publication-title: Sustainable Cities Soc.
  doi: 10.1016/j.scs.2022.104307
– volume: 659
  start-page: 940
  year: 2019
  ident: 10.1016/j.asoc.2023.110846_b21
  article-title: Assessment of urban flood susceptibility using semi-supervised machine learning model
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.217
– volume: 37
  start-page: 6713
  issue: 23
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b62
  article-title: Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2021.1953618
– volume: 223
  start-page: 685
  year: 2018
  ident: 10.1016/j.asoc.2023.110846_b76
  article-title: Flood susceptibility in rural settlements in remote zones: The case of a mountainous basin in the sierra-costa region of Michoacán, Mexico
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.06.075
– volume: 11
  start-page: 6629
  issue: 14
  year: 2021
  ident: 10.1016/j.asoc.2023.110846_b33
  article-title: Probabilistic flood hazard maps from monte carlo derived peak flow values—an application to flood risk management in Zamora City (Spain)
  publication-title: Appl. Sci.
  doi: 10.3390/app11146629
– volume: 35
  start-page: 617
  year: 2021
  ident: 10.1016/j.asoc.2023.110846_b44
  article-title: District based flood risk assessment in istanbul using fuzzy analytical hierarchy process
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-020-01924-8
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.asoc.2023.110846_b80
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 37
  start-page: 4571
  issue: 16
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b19
  article-title: Novel ensemble machine learning models in flood susceptibility mapping
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2021.1892209
– volume: 56
  start-page: 3290
  issue: 6
  year: 2018
  ident: 10.1016/j.asoc.2023.110846_b11
  article-title: Unsupervised rapid flood mapping using Sentinel-1 GRD SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2797536
– volume: 617
  year: 2023
  ident: 10.1016/j.asoc.2023.110846_b52
  article-title: Flood susceptibility mapping using multi-temporal sar imagery and novel integration of nature-inspired algorithms into support vector regression
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129100
– ident: 10.1016/j.asoc.2023.110846_b32
  doi: 10.1175/JHM-D-16-0032.1
– volume: 297
  year: 2021
  ident: 10.1016/j.asoc.2023.110846_b79
  article-title: Basin-wide flood depth and exposure mapping from SAR images and machine learning models
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.113367
– volume: 30
  start-page: 409
  year: 2016
  ident: 10.1016/j.asoc.2023.110846_b39
  article-title: Application of integrated shannon’s entropy and vikor techniques in prioritization of flood risk in the shemshak watershed, Iran
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-1169-6
– volume: 14
  issue: 3
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b15
  article-title: Flash flood water depth estimation using sar images, digital elevation models, and machine learning algorithms
  publication-title: Remote Sens.
  doi: 10.3390/rs14030440
– volume: 221
  start-page: 302
  year: 2019
  ident: 10.1016/j.asoc.2023.110846_b7
  article-title: Near-real-time non-obstructed flood inundation mapping using synthetic aperture radar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.008
– volume: 27
  start-page: 431
  year: 2023
  ident: 10.1016/j.asoc.2023.110846_b48
  article-title: Flood susceptibility mapping using novel hybrid approach of neural network with genetic quantum ensembles
  publication-title: KSCE J. Civil Eng.
  doi: 10.1007/s12205-022-0559-6
– start-page: 379
  year: 2021
  ident: 10.1016/j.asoc.2023.110846_b69
  article-title: Chapter 17 - assessing the impact of 2018 tropical rainfall and the consecutive flood-related damages for the State of Kerala, India
– volume: 612
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b13
  article-title: Comparison of statistical and mcdm approaches for flood susceptibility mapping in northern Iran
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128072
– volume: 13
  start-page: 949
  issue: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b58
  article-title: Flood susceptibility mapping using meta-heuristic algorithms
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2022.2060138
– volume: 666
  start-page: 975
  year: 2019
  ident: 10.1016/j.asoc.2023.110846_b65
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.263
– year: 2023
  ident: 10.1016/j.asoc.2023.110846_b3
– volume: 23
  start-page: 207
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2023.110846_b8
  article-title: Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data
  publication-title: Egypt. J. Remote Sens. Space Sci.
– volume: 615
  start-page: 438
  year: 2018
  ident: 10.1016/j.asoc.2023.110846_b59
  article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.262
– volume: 37
  start-page: 5479
  issue: 19
  year: 2022
  ident: 10.1016/j.asoc.2023.110846_b20
  article-title: Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2021.1920636
SSID ssj0016928
Score 2.5055983
Snippet Flooding is one of the most common natural hazards that have extremely detrimental consequences. Understanding which areas are vulnerable to flooding is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110846
SubjectTerms AutoML
Bayesian optimization
Convolutional neural network
Flood susceptibility mapping
HPO
Kerala
Title Flood susceptibility mapping using AutoML and a deep learning framework with evolutionary algorithms for hyperparameter optimization
URI https://dx.doi.org/10.1016/j.asoc.2023.110846
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRHdQMbSl-x8xiriqpAWyGgUrfISexS1KZVH0hdmPjh3CUOAgl1YIpi2Up0Z_u-s7-7Y-zaFloiMK9Zvi-ExVVdWJ4tcV1FGuEBAuQwvT3v9Z3OgN8PxbDAWnksDNEqzd6f7enpbm1aqkaa1fl4XH1Gz8PjPkf7TbicU6A55y5VMah8fNM86o6f1lelzhb1NoEzGcdLogQqVEA8ZcMTCP7LOP0wOO0DtmeQIjSznzlkBZUcsf28CgOYRXnMPtvEPYflepkyVFKy6wamkhIvjIB47SNorlezXhdkEoOEWKk5mGoRI9A5OwvoSBbUu5mLcrEBORnNFtg6XQJiW3hFn3VBucKnxKGBGX5tasI4T9igffvS6limtoIVobhWViMFQp6OtBd7suEpgaZeKY0Ojop46NRQazWuQi5dW_quihFJcFzw5E3TTZ19yorJLFFnDOyGdmMnrNm-Ftzhbiik6zvak4qHoa_tEqvnQg0ik3ic6l9Mgpxh9haQIgJSRJAposRuvsfMs7QbW3uLXFfBr8kToF3YMu78n-Mu2C69ZSGJl6y4WqzVFWKTVVhOJ1-Z7TRbT91Het49dPpfTtDmbg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjSjPG9hQ-oqdx1hVVAXaLrRSt8hJ7FLUl_pA6sLED-cucSqQUAdWx6dEd7bvu_i7O8bubaElAvOy5ftCWFxVhOXZEvdVpBEeIEAOk9vzdsdp9vhzX_RzrJ7lwhCt0pz96ZmenNZmpGS0WZoNh6VXjDw87nP034TLudhhu1xUXYrAip8bnkfF8ZMGqzTboukmcyYleUlUQZE6iCd0eELBf3mnHx6nccQODFSEWvo1xyynJifsMGvDAGZXnrKvBpHPYbFaJBSVhO26hrGkygsDIGL7AGqr5bTdAjmJQUKs1AxMu4gB6IyeBfRPFtSHWYxyvgY5GkznODpeAIJbeMOgdU7FwsdEooEpvm1s8jjPWK_x2K03LdNcwYpQX0urmiAhT0faiz1Z9ZRAX6-UxghHRTx0ymi2Mlchl64tfVfFCCU47ngKp-mqzj5n-cl0oi4Y2FXtxk5Ytn0tuMPdUEjXd7QnFQ9DX9sFVsmUGkSm8jg1wBgFGcXsPSBDBGSIIDVEgT1sZGZp3Y2ts0Vmq-DX6gnQMWyRu_yn3B3ba3bbraD11Hm5Yvv0JM1PvGb55XylbhCoLMPbZCF-A4Cu5m4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flood+susceptibility+mapping+using+AutoML+and+a+deep+learning+framework+with+evolutionary+algorithms+for+hyperparameter+optimization&rft.jtitle=Applied+soft+computing&rft.au=Vincent%2C+Amala+Mary&rft.au=K.S.S.%2C+Parthasarathy&rft.au=Jidesh%2C+P.&rft.date=2023-11-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=148&rft_id=info:doi/10.1016%2Fj.asoc.2023.110846&rft.externalDocID=S1568494623008645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon