Cognitive behavior optimization algorithm for solving optimization problems
•A new swarm intelligence algorithm, COA, is developed for the optimization problems.•The novel behavior model in COA makes the algorithm more effective and intelligent.•Performance on 53 different benchmark problems is considered.•The problem solving success of COA is compared with 8 state-of-the-a...
Saved in:
| Published in | Applied soft computing Vol. 39; pp. 199 - 222 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.02.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 |
| DOI | 10.1016/j.asoc.2015.11.015 |
Cover
| Abstract | •A new swarm intelligence algorithm, COA, is developed for the optimization problems.•The novel behavior model in COA makes the algorithm more effective and intelligent.•Performance on 53 different benchmark problems is considered.•The problem solving success of COA is compared with 8 state-of-the-art algorithms.
Nature-based algorithms have become popular in recent fifteen years and have been widely applied in various fields of science and engineering, such as robot control, cluster analysis, controller design, dynamic optimization and image processing. In this paper, a new swarm intelligence algorithm named cognitive behavior optimization algorithm (COA) is introduced, which is used to solve the real-valued numerical optimization problems. COA has a detailed cognitive behavior model. In the model of COA, the common phenomenon of foraging food source for population is summarized as the process of exploration–communication–adjustment. Matching with the process, three main behaviors and two groups in COA are introduced. Firstly, cognitive population uses Gaussian and Levy flight random walk methods to explore the search space in the rough search behavior. Secondly, the improved crossover and mutation operator are used in the information exchange and share behavior between the two groups: cognitive population and memory population. Finally, the intelligent adjustment behavior is used to enhance the exploitation of the population for cognitive population. To verify the performance of our approach, both the classic and modern complex benchmark functions considered as the unconstrained functions are employed. Meanwhile, some well-known engineering design optimization problems are used as the constrained functions in the literature. The experimental results, considering both convergence and accuracy simultaneously, demonstrate the effectiveness of COA for global numerical and engineering optimization problems. |
|---|---|
| AbstractList | •A new swarm intelligence algorithm, COA, is developed for the optimization problems.•The novel behavior model in COA makes the algorithm more effective and intelligent.•Performance on 53 different benchmark problems is considered.•The problem solving success of COA is compared with 8 state-of-the-art algorithms.
Nature-based algorithms have become popular in recent fifteen years and have been widely applied in various fields of science and engineering, such as robot control, cluster analysis, controller design, dynamic optimization and image processing. In this paper, a new swarm intelligence algorithm named cognitive behavior optimization algorithm (COA) is introduced, which is used to solve the real-valued numerical optimization problems. COA has a detailed cognitive behavior model. In the model of COA, the common phenomenon of foraging food source for population is summarized as the process of exploration–communication–adjustment. Matching with the process, three main behaviors and two groups in COA are introduced. Firstly, cognitive population uses Gaussian and Levy flight random walk methods to explore the search space in the rough search behavior. Secondly, the improved crossover and mutation operator are used in the information exchange and share behavior between the two groups: cognitive population and memory population. Finally, the intelligent adjustment behavior is used to enhance the exploitation of the population for cognitive population. To verify the performance of our approach, both the classic and modern complex benchmark functions considered as the unconstrained functions are employed. Meanwhile, some well-known engineering design optimization problems are used as the constrained functions in the literature. The experimental results, considering both convergence and accuracy simultaneously, demonstrate the effectiveness of COA for global numerical and engineering optimization problems. |
| Author | Weng, Xingwei Li, Mudong Han, Tong Zhao, Hui |
| Author_xml | – sequence: 1 givenname: Mudong surname: Li fullname: Li, Mudong email: modern_lee@163.com – sequence: 2 givenname: Hui surname: Zhao fullname: Zhao, Hui – sequence: 3 givenname: Xingwei surname: Weng fullname: Weng, Xingwei – sequence: 4 givenname: Tong surname: Han fullname: Han, Tong |
| BookMark | eNp9kM9OwzAMhyM0JLbBC3DqC7TETf8kEhc0AUNM4gLnKE3TzVPbTElUCZ6ejHGBw06fJfuz7N-CzEY7GkJugWZAobrbZ8pbneUUygwgi7ggc-B1noqKwyzWZcXTQhTVFVl4v6dREjmfk9eV3Y4YcDJJY3ZqQusSewg44JcKaMdE9VvrMOyGpIstb_sJx-3fkYOzTW8Gf00uO9V7c_PLJfl4enxfrdPN2_PL6mGTakZpSKFRutC0LpoScqiY6Bg1wtCaNWXHQAlRtFBxXlLO6rZpNRO6a1rVgQKltGZLkp_2ame9d6aTB4eDcp8SqDzGIffyGIc8xiEBZESU-D9JY_i5PziF_Xn1_qSa-NSExkmv0YzatOiMDrK1eE7_BkPSgBo |
| CitedBy_id | crossref_primary_10_1007_s00500_023_08575_1 crossref_primary_10_1134_S0040579523070060 crossref_primary_10_1007_s10489_020_01947_2 crossref_primary_10_1007_s00521_018_3785_6 crossref_primary_10_1134_S0040579524700799 crossref_primary_10_32604_cmc_2023_037611 crossref_primary_10_1016_j_dajour_2023_100182 crossref_primary_10_3390_electronics12122559 crossref_primary_10_1007_s12559_020_09730_8 crossref_primary_10_1016_j_eswa_2018_04_012 crossref_primary_10_1016_j_aej_2021_09_013 crossref_primary_10_1016_j_asoc_2019_02_037 crossref_primary_10_1007_s10462_020_09952_0 crossref_primary_10_1109_ACCESS_2019_2933661 crossref_primary_10_1007_s10462_023_10470_y crossref_primary_10_1109_ACCESS_2019_2908262 crossref_primary_10_1007_s00500_019_03806_w crossref_primary_10_1007_s00521_022_06908_z crossref_primary_10_1007_s11831_022_09742_7 crossref_primary_10_1007_s41403_018_0051_2 crossref_primary_10_1016_j_aej_2022_08_013 crossref_primary_10_1016_j_crfs_2022_02_006 crossref_primary_10_1109_ACCESS_2020_3030950 crossref_primary_10_1016_j_mtcomm_2024_110666 crossref_primary_10_1016_j_aej_2025_02_046 crossref_primary_10_1515_jisys_2017_0046 crossref_primary_10_1007_s10586_017_1432_0 crossref_primary_10_1007_s10489_018_1325_9 crossref_primary_10_1016_j_energy_2017_09_130 crossref_primary_10_1088_1742_6596_1213_3_032009 crossref_primary_10_3390_math13050717 crossref_primary_10_1016_j_eswa_2016_02_036 crossref_primary_10_1109_ACCESS_2019_2918406 crossref_primary_10_1007_s00521_020_05475_5 crossref_primary_10_1016_j_knosys_2022_108320 crossref_primary_10_1155_2017_8034573 crossref_primary_10_1007_s41403_020_00185_9 crossref_primary_10_1007_s42235_022_00207_y crossref_primary_10_1016_j_asoc_2019_105680 crossref_primary_10_3390_electronics13214215 crossref_primary_10_3846_jcem_2023_20399 crossref_primary_10_1007_s11831_022_09801_z crossref_primary_10_3390_math13040668 crossref_primary_10_1093_comjnl_bxz046 |
| Cites_doi | 10.1016/j.ins.2013.06.051 10.1007/s00500-008-0323-y 10.1016/j.ins.2009.03.004 10.1016/j.swevo.2011.02.002 10.1016/j.cageo.2011.12.011 10.1109/TEVC.2003.810752 10.1109/TEVC.2008.927706 10.1016/j.asoc.2014.02.009 10.1016/j.asoc.2012.04.026 10.1016/j.asoc.2013.10.019 10.1162/evco.2007.15.1.1 10.1145/2480741.2480752 10.1016/j.asoc.2014.01.038 10.1109/TEVC.2006.872133 10.1016/j.cam.2004.02.013 10.1007/s00521-012-1028-9 10.1016/j.jfranklin.2008.11.003 10.1016/j.jappgeo.2013.08.019 10.2528/PIER07082403 10.1016/j.advengsoft.2013.12.007 10.1016/j.asoc.2014.06.022 10.1109/TEVC.2009.2014613 10.1016/j.ins.2014.02.154 10.1007/s10462-009-9137-2 10.1016/j.compstruc.2014.03.007 10.1109/TKDE.2010.234 10.1016/S1004-9541(13)60442-5 10.1007/s10898-007-9149-x 10.1016/j.asoc.2015.06.056 10.1016/j.ijepes.2014.03.039 10.1016/j.advengsoft.2012.11.019 10.1016/j.ins.2014.08.040 10.1007/s00521-013-1433-8 10.1007/s00707-009-0270-4 10.1016/j.cor.2013.06.012 10.1016/j.advengsoft.2005.04.005 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier B.V. |
| Copyright_xml | – notice: 2015 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2015.11.015 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 222 |
| ExternalDocumentID | 10_1016_j_asoc_2015_11_015 S1568494615007334 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-1bac4c074b5121639f30e9e073b5f31a994d168850837dbdc39cfbdaf1a1aacc3 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Wed Oct 01 02:32:05 EDT 2025 Thu Apr 24 22:58:47 EDT 2025 Fri Feb 23 02:28:01 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cognitive behavior model Nature-based algorithms Exploration Global optimization Exploitation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-1bac4c074b5121639f30e9e073b5f31a994d168850837dbdc39cfbdaf1a1aacc3 |
| PageCount | 24 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2015_11_015 crossref_citationtrail_10_1016_j_asoc_2015_11_015 elsevier_sciencedirect_doi_10_1016_j_asoc_2015_11_015 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2016 2016-02-00 |
| PublicationDateYYYYMMDD | 2016-02-01 |
| PublicationDate_xml | – month: 02 year: 2016 text: February 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Karaboga (bib0240) 2005 Mirjalili, Mirjalili, Lewis (bib0370) 2014; 69 Ishibuchi, Yoshida, Murata (bib0225) 2003; 7 Baykasoğlu, Ozsoydan (bib0285) 2015; 36 Kanzow, Yamashita, Fukushima (bib0235) 2004; 172 Sun, Zhong, Cheng, Qian (bib0305) 2013; 21 Derrac, Garcia, Molina, Herrera (bib0415) 2011; 1 Zhang, Sanderson (bib0245) 2009; 13 Koupaei, Abdechiri (bib0290) 2013; 13 Kennedy, Eberhart (bib0345) 1995 Karaboga, Basturk (bib0355) 2007; 39 Kaveh, Talatahari (bib0385) 2010; 213 Gandomi, Yang, Alavi, Talatahari (bib0440) 2013; 22 Erol, Eksin (bib0380) 2006; 37 Holland (bib0315) 1992 Price, Storn, Lampinen (bib0320) 2005 Lindley (bib0430) 1995 Igel, Hansen, Roth (bib0395) 2007; 15 Karaboga (bib0270) 2009; 346 Helbig, Engelbrecht (bib0255) 2013; 250 Ono, Maeda, Sakimoto, Nakayama (bib0275) 2014; 15 Liang, Qu, Suganthan (bib0435) 2013 Yang (bib0310) 2008 Civicioglu (bib0340) 2012; 46 Chen, Huang (bib0300) 2013; 66 Cheng, Prayogo (bib0350) 2014; 139 Formato (bib0375) 2007; 77 Balkaya (bib0260) 2013; 98 Neri, Tirronen (bib0250) 2010; 33 Brest, Greiner, Bošković, Mernik, Žumer (bib0325) 2006; 10 Tsaia, Fanga, Chou (bib0295) 2013; 40 Qin, Huang, Suganthan (bib0330) 2009; 13 Rashedi, Nezamabadi-pour, Saryazdi (bib0390) 2009; 179 Črepinšek, Liu, Mernik (bib0405) 2014; 19 de Carvalho, Laender, Goncalves, da Solva (bib0230) 2012; 24 Li, Zhang, Yin (bib0365) 2014; 24 Veček, Mernik, Črepinšek (bib0425) 2014; 277 Wang, Li, Huang, Li (bib0335) 2014; 18 Črepinšek, Liu, Mernik (bib0400) 2013; 45 Tamilselvi, Baskar (bib0280) 2014; 61 Yang, Deb (bib0360) 2009 Teixeira, Covas, Stützle, Gaspar-Cunha (bib0265) 2014; 23 Alcalá-Fdez, Sánchez, García, del Jesus, Ventura, Garrell, Otero, Romero, Bacardit, Rivas, Fernández, Herrera (bib0420) 2009; 13 Mernik, Liu, Karaboga, Črepinšek (bib0410) 2015; 291 Zhang (10.1016/j.asoc.2015.11.015_bib0245) 2009; 13 Price (10.1016/j.asoc.2015.11.015_bib0320) 2005 Veček (10.1016/j.asoc.2015.11.015_bib0425) 2014; 277 Karaboga (10.1016/j.asoc.2015.11.015_bib0270) 2009; 346 Teixeira (10.1016/j.asoc.2015.11.015_bib0265) 2014; 23 Rashedi (10.1016/j.asoc.2015.11.015_bib0390) 2009; 179 Liang (10.1016/j.asoc.2015.11.015_bib0435) 2013 Karaboga (10.1016/j.asoc.2015.11.015_bib0240) 2005 Črepinšek (10.1016/j.asoc.2015.11.015_bib0405) 2014; 19 Baykasoğlu (10.1016/j.asoc.2015.11.015_bib0285) 2015; 36 Mernik (10.1016/j.asoc.2015.11.015_bib0410) 2015; 291 Balkaya (10.1016/j.asoc.2015.11.015_bib0260) 2013; 98 Wang (10.1016/j.asoc.2015.11.015_bib0335) 2014; 18 Helbig (10.1016/j.asoc.2015.11.015_bib0255) 2013; 250 Tamilselvi (10.1016/j.asoc.2015.11.015_bib0280) 2014; 61 Yang (10.1016/j.asoc.2015.11.015_bib0310) 2008 Brest (10.1016/j.asoc.2015.11.015_bib0325) 2006; 10 de Carvalho (10.1016/j.asoc.2015.11.015_bib0230) 2012; 24 Kaveh (10.1016/j.asoc.2015.11.015_bib0385) 2010; 213 Qin (10.1016/j.asoc.2015.11.015_bib0330) 2009; 13 Mirjalili (10.1016/j.asoc.2015.11.015_bib0370) 2014; 69 Ishibuchi (10.1016/j.asoc.2015.11.015_bib0225) 2003; 7 Igel (10.1016/j.asoc.2015.11.015_bib0395) 2007; 15 Cheng (10.1016/j.asoc.2015.11.015_bib0350) 2014; 139 Črepinšek (10.1016/j.asoc.2015.11.015_bib0400) 2013; 45 Kennedy (10.1016/j.asoc.2015.11.015_bib0345) 1995 Neri (10.1016/j.asoc.2015.11.015_bib0250) 2010; 33 Koupaei (10.1016/j.asoc.2015.11.015_bib0290) 2013; 13 Li (10.1016/j.asoc.2015.11.015_bib0365) 2014; 24 Civicioglu (10.1016/j.asoc.2015.11.015_bib0340) 2012; 46 Karaboga (10.1016/j.asoc.2015.11.015_bib0355) 2007; 39 Formato (10.1016/j.asoc.2015.11.015_bib0375) 2007; 77 Kanzow (10.1016/j.asoc.2015.11.015_bib0235) 2004; 172 Ono (10.1016/j.asoc.2015.11.015_bib0275) 2014; 15 Derrac (10.1016/j.asoc.2015.11.015_bib0415) 2011; 1 Holland (10.1016/j.asoc.2015.11.015_bib0315) 1992 Chen (10.1016/j.asoc.2015.11.015_bib0300) 2013; 66 Yang (10.1016/j.asoc.2015.11.015_bib0360) 2009 Tsaia (10.1016/j.asoc.2015.11.015_bib0295) 2013; 40 Erol (10.1016/j.asoc.2015.11.015_bib0380) 2006; 37 Gandomi (10.1016/j.asoc.2015.11.015_bib0440) 2013; 22 Sun (10.1016/j.asoc.2015.11.015_bib0305) 2013; 21 Lindley (10.1016/j.asoc.2015.11.015_bib0430) 1995 Alcalá-Fdez (10.1016/j.asoc.2015.11.015_bib0420) 2009; 13 |
| References_xml | – volume: 250 start-page: 61 year: 2013 end-page: 81 ident: bib0255 article-title: Performance measures for dynamic multi-objective optimization algorithms publication-title: Inf. Sci. – volume: 36 start-page: 152 year: 2015 end-page: 164 ident: bib0285 article-title: Adaptive firefly algorithm with chaos for mechanical design optimization problems publication-title: Appl. Soft Comput. – volume: 33 start-page: 61 year: 2010 end-page: 106 ident: bib0250 article-title: Recent advances in differential evolution: a survey and experimental analysis publication-title: Artif. Intell. Rev. – volume: 24 start-page: 1867 year: 2014 end-page: 1877 ident: bib0365 article-title: Animal migration optimization: an optimization algorithm inspired by animal migration behavior publication-title: Neural Comput. Appl. – volume: 61 start-page: 208 year: 2014 end-page: 218 ident: bib0280 article-title: Modified parameter optimization of distribution transformer design using covariance matrix adaptation evolution strategy publication-title: Int. J. Electr. Power – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: bib0355 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim. – volume: 13 start-page: 307 year: 2009 end-page: 318 ident: bib0420 article-title: KEEL: a software tool to assess evolutionary algorithms to data mining problems publication-title: Soft Comput. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib0415 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 23 start-page: 298 year: 2014 end-page: 307 ident: bib0265 article-title: Hybrid algorithms for the twin-screw extrusion configuration problem publication-title: Appl. Soft Comput. – start-page: 210 year: 2009 end-page: 214 ident: bib0360 article-title: Cuckoo search via levy flights publication-title: Proceedings of World Congress on Nature and Biologically Inspired Computing, vol. 4 – volume: 13 start-page: 945 year: 2009 end-page: 958 ident: bib0245 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. – volume: 98 start-page: 160 year: 2013 end-page: 175 ident: bib0260 article-title: An implementation of differential evolution algorithm for inversion of geoelectrical data publication-title: J. Appl. Geophys. – volume: 13 start-page: 2896 year: 2013 end-page: 2905 ident: bib0290 article-title: Sensor deployment for fault diagnosis using a new discrete optimization algorithm publication-title: Appl. Soft Comput. – year: 2005 ident: bib0240 article-title: An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report-TR06 – volume: 66 start-page: 24 year: 2013 end-page: 33 ident: bib0300 article-title: Application of data mining in a global optimization algorithm publication-title: Adv. Eng. Softw. – volume: 291 start-page: 115 year: 2015 end-page: 127 ident: bib0410 article-title: On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation publication-title: Inf. Sci. – volume: 37 start-page: 106 year: 2006 end-page: 111 ident: bib0380 article-title: A new optimization method: big bang–big crunch publication-title: Adv. Eng. Softw. – volume: 13 start-page: 398 year: 2009 end-page: 417 ident: bib0330 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evol. Comput. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib0370 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: bib0390 article-title: GSA: a gravitational search algorithm publication-title: Inf. Sci. – volume: 40 start-page: 3045 year: 2013 end-page: 3055 ident: bib0295 article-title: Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm publication-title: Comput. Oper. Res. – start-page: 39 year: 1995 end-page: 43 ident: bib0345 article-title: Particle swarm optimization publication-title: Proceedings of Sixth International Symposium on Micro Machine and Human Science – volume: 7 start-page: 204 year: 2003 end-page: 223 ident: bib0225 article-title: Balance between genetic search and local search in memetic algorithms for multi objective permutation flowshop scheduling publication-title: IEEE Trans. Evol. Comput. – year: 2005 ident: bib0320 article-title: Differential Evolution: A Practical Approach to Global Optimization – volume: 18 start-page: 232 year: 2014 end-page: 247 ident: bib0335 article-title: Differential evolution based on covariance matrix learning and bimodal distribution parameter setting publication-title: Appl. Soft Comput. – volume: 46 start-page: 229 year: 2012 end-page: 247 ident: bib0340 article-title: Transforming geocentric Cartesian coordinates to geodetic coordinates by using differential search algorithm publication-title: Comput. Geosci.-UK – volume: 15 start-page: 1 year: 2007 end-page: 28 ident: bib0395 article-title: Covariance matrix adaptation for multi-objective optimization publication-title: Evol. Comput. – volume: 15 start-page: 203 year: 2014 end-page: 218 ident: bib0275 article-title: User-system cooperative evolutionary computation for both quantitative and qualitative objective optimization in image processing filter design publication-title: Appl. Soft Comput. – year: 2008 ident: bib0310 article-title: Nature-inspired Nature-based Algorithms – volume: 10 start-page: 646 year: 2006 end-page: 657 ident: bib0325 article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems publication-title: IEEE Trans. Evol. Comput. – volume: 213 start-page: 267 year: 2010 end-page: 289 ident: bib0385 article-title: A novel heuristic optimization method: charged system search publication-title: Acta Mech. – volume: 19 start-page: 161 year: 2014 end-page: 170 ident: bib0405 article-title: Replication and comparison of computational experiments in applied evolutionary computing: common pitfalls and guidelines to avoid them publication-title: Appl. Soft Comput. – start-page: 1 year: 2013 end-page: 32 ident: bib0435 article-title: Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-parameter Numerical Optimization, Technical Report – year: 1995 ident: bib0430 article-title: New Cambridge Statistical Tables – year: 1992 ident: bib0315 article-title: Adaptation in Natural and Artificial Systems – volume: 277 start-page: 656 year: 2014 end-page: 679 ident: bib0425 article-title: A chess rating system for evolutionary algorithms: a new method for the comparison and ranking of evolutionary algorithms publication-title: Inf. Sci. – volume: 346 start-page: 328 year: 2009 end-page: 348 ident: bib0270 article-title: A new design method based on artificial bee colony algorithm for digital IIR filters publication-title: J. Franklin I – volume: 77 start-page: 425 year: 2007 end-page: 491 ident: bib0375 article-title: Central force optimization: a new nature-based with applications in applied electromagnetics publication-title: Prog. Electromagn. Res. – volume: 139 start-page: 98 year: 2014 end-page: 112 ident: bib0350 article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm publication-title: Comput. Struct. – volume: 45 start-page: 1 year: 2013 end-page: 33 ident: bib0400 article-title: Exploration and exploitation in evolutionary algorithms: a survey publication-title: ACM Comput. Surv. – volume: 24 start-page: 399 year: 2012 end-page: 412 ident: bib0230 article-title: A genetic programming approach to record deduplication publication-title: IEEE Trans. Knowl. Data Eng. – volume: 172 start-page: 375 year: 2004 end-page: 397 ident: bib0235 article-title: Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints publication-title: J. Comput. Appl. Math. – volume: 21 start-page: 64 year: 2013 end-page: 71 ident: bib0305 article-title: Novel control vector parameterization method with differential evolution algorithm and its application in dynamic optimization of chemical processes publication-title: Chin. J. Chem. Eng. – volume: 22 start-page: 1239 year: 2013 end-page: 1255 ident: bib0440 article-title: Bat algorithm for constrained optimization tasks publication-title: Neural Comput. Appl. – volume: 250 start-page: 61 year: 2013 ident: 10.1016/j.asoc.2015.11.015_bib0255 article-title: Performance measures for dynamic multi-objective optimization algorithms publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.06.051 – volume: 13 start-page: 307 year: 2009 ident: 10.1016/j.asoc.2015.11.015_bib0420 article-title: KEEL: a software tool to assess evolutionary algorithms to data mining problems publication-title: Soft Comput. doi: 10.1007/s00500-008-0323-y – year: 2005 ident: 10.1016/j.asoc.2015.11.015_bib0320 – volume: 179 start-page: 2232 year: 2009 ident: 10.1016/j.asoc.2015.11.015_bib0390 article-title: GSA: a gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – start-page: 1 year: 2013 ident: 10.1016/j.asoc.2015.11.015_bib0435 – start-page: 210 year: 2009 ident: 10.1016/j.asoc.2015.11.015_bib0360 article-title: Cuckoo search via levy flights – volume: 1 start-page: 3 year: 2011 ident: 10.1016/j.asoc.2015.11.015_bib0415 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 46 start-page: 229 year: 2012 ident: 10.1016/j.asoc.2015.11.015_bib0340 article-title: Transforming geocentric Cartesian coordinates to geodetic coordinates by using differential search algorithm publication-title: Comput. Geosci.-UK doi: 10.1016/j.cageo.2011.12.011 – volume: 7 start-page: 204 year: 2003 ident: 10.1016/j.asoc.2015.11.015_bib0225 article-title: Balance between genetic search and local search in memetic algorithms for multi objective permutation flowshop scheduling publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.810752 – volume: 13 start-page: 398 year: 2009 ident: 10.1016/j.asoc.2015.11.015_bib0330 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.927706 – volume: 19 start-page: 161 year: 2014 ident: 10.1016/j.asoc.2015.11.015_bib0405 article-title: Replication and comparison of computational experiments in applied evolutionary computing: common pitfalls and guidelines to avoid them publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.02.009 – volume: 13 start-page: 2896 year: 2013 ident: 10.1016/j.asoc.2015.11.015_bib0290 article-title: Sensor deployment for fault diagnosis using a new discrete optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.04.026 – volume: 15 start-page: 203 year: 2014 ident: 10.1016/j.asoc.2015.11.015_bib0275 article-title: User-system cooperative evolutionary computation for both quantitative and qualitative objective optimization in image processing filter design publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.10.019 – year: 2008 ident: 10.1016/j.asoc.2015.11.015_bib0310 – volume: 15 start-page: 1 year: 2007 ident: 10.1016/j.asoc.2015.11.015_bib0395 article-title: Covariance matrix adaptation for multi-objective optimization publication-title: Evol. Comput. doi: 10.1162/evco.2007.15.1.1 – volume: 45 start-page: 1 year: 2013 ident: 10.1016/j.asoc.2015.11.015_bib0400 article-title: Exploration and exploitation in evolutionary algorithms: a survey publication-title: ACM Comput. Surv. doi: 10.1145/2480741.2480752 – year: 1995 ident: 10.1016/j.asoc.2015.11.015_bib0430 – volume: 18 start-page: 232 year: 2014 ident: 10.1016/j.asoc.2015.11.015_bib0335 article-title: Differential evolution based on covariance matrix learning and bimodal distribution parameter setting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.01.038 – volume: 10 start-page: 646 issue: 6 year: 2006 ident: 10.1016/j.asoc.2015.11.015_bib0325 article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2006.872133 – volume: 172 start-page: 375 year: 2004 ident: 10.1016/j.asoc.2015.11.015_bib0235 article-title: Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2004.02.013 – volume: 22 start-page: 1239 issue: 6 year: 2013 ident: 10.1016/j.asoc.2015.11.015_bib0440 article-title: Bat algorithm for constrained optimization tasks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-1028-9 – volume: 346 start-page: 328 year: 2009 ident: 10.1016/j.asoc.2015.11.015_bib0270 article-title: A new design method based on artificial bee colony algorithm for digital IIR filters publication-title: J. Franklin I doi: 10.1016/j.jfranklin.2008.11.003 – volume: 98 start-page: 160 year: 2013 ident: 10.1016/j.asoc.2015.11.015_bib0260 article-title: An implementation of differential evolution algorithm for inversion of geoelectrical data publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2013.08.019 – volume: 77 start-page: 425 year: 2007 ident: 10.1016/j.asoc.2015.11.015_bib0375 article-title: Central force optimization: a new nature-based with applications in applied electromagnetics publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER07082403 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.asoc.2015.11.015_bib0370 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 23 start-page: 298 year: 2014 ident: 10.1016/j.asoc.2015.11.015_bib0265 article-title: Hybrid algorithms for the twin-screw extrusion configuration problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.06.022 – volume: 13 start-page: 945 year: 2009 ident: 10.1016/j.asoc.2015.11.015_bib0245 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2014613 – volume: 277 start-page: 656 year: 2014 ident: 10.1016/j.asoc.2015.11.015_bib0425 article-title: A chess rating system for evolutionary algorithms: a new method for the comparison and ranking of evolutionary algorithms publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.02.154 – volume: 33 start-page: 61 year: 2010 ident: 10.1016/j.asoc.2015.11.015_bib0250 article-title: Recent advances in differential evolution: a survey and experimental analysis publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-009-9137-2 – start-page: 39 year: 1995 ident: 10.1016/j.asoc.2015.11.015_bib0345 article-title: Particle swarm optimization – volume: 139 start-page: 98 year: 2014 ident: 10.1016/j.asoc.2015.11.015_bib0350 article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2014.03.007 – volume: 24 start-page: 399 year: 2012 ident: 10.1016/j.asoc.2015.11.015_bib0230 article-title: A genetic programming approach to record deduplication publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2010.234 – volume: 21 start-page: 64 year: 2013 ident: 10.1016/j.asoc.2015.11.015_bib0305 article-title: Novel control vector parameterization method with differential evolution algorithm and its application in dynamic optimization of chemical processes publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(13)60442-5 – year: 1992 ident: 10.1016/j.asoc.2015.11.015_bib0315 – volume: 39 start-page: 459 year: 2007 ident: 10.1016/j.asoc.2015.11.015_bib0355 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim. doi: 10.1007/s10898-007-9149-x – year: 2005 ident: 10.1016/j.asoc.2015.11.015_bib0240 – volume: 36 start-page: 152 year: 2015 ident: 10.1016/j.asoc.2015.11.015_bib0285 article-title: Adaptive firefly algorithm with chaos for mechanical design optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.06.056 – volume: 61 start-page: 208 year: 2014 ident: 10.1016/j.asoc.2015.11.015_bib0280 article-title: Modified parameter optimization of distribution transformer design using covariance matrix adaptation evolution strategy publication-title: Int. J. Electr. Power doi: 10.1016/j.ijepes.2014.03.039 – volume: 66 start-page: 24 year: 2013 ident: 10.1016/j.asoc.2015.11.015_bib0300 article-title: Application of data mining in a global optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2012.11.019 – volume: 291 start-page: 115 year: 2015 ident: 10.1016/j.asoc.2015.11.015_bib0410 article-title: On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.08.040 – volume: 24 start-page: 1867 issue: 7–8 year: 2014 ident: 10.1016/j.asoc.2015.11.015_bib0365 article-title: Animal migration optimization: an optimization algorithm inspired by animal migration behavior publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1433-8 – volume: 213 start-page: 267 year: 2010 ident: 10.1016/j.asoc.2015.11.015_bib0385 article-title: A novel heuristic optimization method: charged system search publication-title: Acta Mech. doi: 10.1007/s00707-009-0270-4 – volume: 40 start-page: 3045 year: 2013 ident: 10.1016/j.asoc.2015.11.015_bib0295 article-title: Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2013.06.012 – volume: 37 start-page: 106 year: 2006 ident: 10.1016/j.asoc.2015.11.015_bib0380 article-title: A new optimization method: big bang–big crunch publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2005.04.005 |
| SSID | ssj0016928 |
| Score | 2.3532732 |
| Snippet | •A new swarm intelligence algorithm, COA, is developed for the optimization problems.•The novel behavior model in COA makes the algorithm more effective and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 199 |
| SubjectTerms | Cognitive behavior model Exploitation Exploration Global optimization Nature-based algorithms |
| Title | Cognitive behavior optimization algorithm for solving optimization problems |
| URI | https://dx.doi.org/10.1016/j.asoc.2015.11.015 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM32XY32aTZYwmWaqWIWugt7Cta6Ytar_52d5KNWJAePC0JsxA-ZmdmwzfzIXSddISUJqYk4IoSbq0giaaaUGFVzoRxGatg-Q7j_ojfj6NxDaVVLwzQKn3sL2N6Ea39m7ZHs72cTNrP7uaRcMFhojkoD8JMUM47oGLQ-vqhebBYFPqqYEzA2jfOlBwv6RAAelfUgkmeII37V3L6lXB6B2jPV4q4W37MIarZ-RHar1QYsD-Ux2iQVgwgXPXc44ULBDPfYYnl9HWxmqzfZtgVqNj5GvxD2DTxsjIfJ2jUu31J-8RLJBAdUromTEnNtSsDlEvcrrQSeUitsA4PFeUhk0Jww-IkgaHvHaOMDoXOlZE5k0xKrcNTVJ8v5vYM4SCOhKKBprmMOA9yF_hUZEJmpA2SWPEGYhU2mfbzw0HGYppVRLH3DPDMAE93scjc0kA3P3uW5fSMrdZRBXm24QOZC-9b9p3_c98F2nVPnoN9ierr1ae9ciXGWjULH2qinW769PAI692gP_wGMb3T6w |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2zIrZ3YaTyiiqrQ0oVW6mb5FSjqSyWs_Hbs1KmohBiYIiV3UvTpcneOvrsPgNu0yaU0CUYRVRhRazlKNdYIc6sywo2rWAXLt590hvRpxEYV0CpnYTytMuT-VU4vsnW40whoNhbjcePFnTxSyqnfaO6VB-kW2KYsavoTWP1rzfMgCS8EVr018uZhcmZF8pIOAs_vYnW_ytNr4_5WnX5UnPYB2AutIrxfvc0hqNjZEdgvZRhg-CqPQbdVUoBgOXQP5y4TTMOIJZST1_lynL9NoetQoQs2_xNh0yToynycgGH7YdDqoKCRgHSMcY6Ikppq1wcoV7ldb8WzGFtuHSCKZTGRnFNDkjT1W9-bRhkdc50pIzMiiZRax6egOpvP7BmAUcK4wpHGmWSURpnLfIqZmBhpozRRtAZIiY3QYYG417GYiJIp9i48nsLj6U4Wwl1q4G7ts1itz_jTmpWQi40gEC6__-F3_k-_G7DTGTz3RO-x370Au-5JIGRfgmq-_LRXrt_I1XURT9-ht9Pr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cognitive+behavior+optimization+algorithm+for+solving+optimization+problems&rft.jtitle=Applied+soft+computing&rft.au=Li%2C+Mudong&rft.au=Zhao%2C+Hui&rft.au=Weng%2C+Xingwei&rft.au=Han%2C+Tong&rft.date=2016-02-01&rft.issn=1568-4946&rft.volume=39&rft.spage=199&rft.epage=222&rft_id=info:doi/10.1016%2Fj.asoc.2015.11.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2015_11_015 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |