Cognitive behavior optimization algorithm for solving optimization problems

•A new swarm intelligence algorithm, COA, is developed for the optimization problems.•The novel behavior model in COA makes the algorithm more effective and intelligent.•Performance on 53 different benchmark problems is considered.•The problem solving success of COA is compared with 8 state-of-the-a...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 39; pp. 199 - 222
Main Authors Li, Mudong, Zhao, Hui, Weng, Xingwei, Han, Tong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2016
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2015.11.015

Cover

Abstract •A new swarm intelligence algorithm, COA, is developed for the optimization problems.•The novel behavior model in COA makes the algorithm more effective and intelligent.•Performance on 53 different benchmark problems is considered.•The problem solving success of COA is compared with 8 state-of-the-art algorithms. Nature-based algorithms have become popular in recent fifteen years and have been widely applied in various fields of science and engineering, such as robot control, cluster analysis, controller design, dynamic optimization and image processing. In this paper, a new swarm intelligence algorithm named cognitive behavior optimization algorithm (COA) is introduced, which is used to solve the real-valued numerical optimization problems. COA has a detailed cognitive behavior model. In the model of COA, the common phenomenon of foraging food source for population is summarized as the process of exploration–communication–adjustment. Matching with the process, three main behaviors and two groups in COA are introduced. Firstly, cognitive population uses Gaussian and Levy flight random walk methods to explore the search space in the rough search behavior. Secondly, the improved crossover and mutation operator are used in the information exchange and share behavior between the two groups: cognitive population and memory population. Finally, the intelligent adjustment behavior is used to enhance the exploitation of the population for cognitive population. To verify the performance of our approach, both the classic and modern complex benchmark functions considered as the unconstrained functions are employed. Meanwhile, some well-known engineering design optimization problems are used as the constrained functions in the literature. The experimental results, considering both convergence and accuracy simultaneously, demonstrate the effectiveness of COA for global numerical and engineering optimization problems.
AbstractList •A new swarm intelligence algorithm, COA, is developed for the optimization problems.•The novel behavior model in COA makes the algorithm more effective and intelligent.•Performance on 53 different benchmark problems is considered.•The problem solving success of COA is compared with 8 state-of-the-art algorithms. Nature-based algorithms have become popular in recent fifteen years and have been widely applied in various fields of science and engineering, such as robot control, cluster analysis, controller design, dynamic optimization and image processing. In this paper, a new swarm intelligence algorithm named cognitive behavior optimization algorithm (COA) is introduced, which is used to solve the real-valued numerical optimization problems. COA has a detailed cognitive behavior model. In the model of COA, the common phenomenon of foraging food source for population is summarized as the process of exploration–communication–adjustment. Matching with the process, three main behaviors and two groups in COA are introduced. Firstly, cognitive population uses Gaussian and Levy flight random walk methods to explore the search space in the rough search behavior. Secondly, the improved crossover and mutation operator are used in the information exchange and share behavior between the two groups: cognitive population and memory population. Finally, the intelligent adjustment behavior is used to enhance the exploitation of the population for cognitive population. To verify the performance of our approach, both the classic and modern complex benchmark functions considered as the unconstrained functions are employed. Meanwhile, some well-known engineering design optimization problems are used as the constrained functions in the literature. The experimental results, considering both convergence and accuracy simultaneously, demonstrate the effectiveness of COA for global numerical and engineering optimization problems.
Author Weng, Xingwei
Li, Mudong
Han, Tong
Zhao, Hui
Author_xml – sequence: 1
  givenname: Mudong
  surname: Li
  fullname: Li, Mudong
  email: modern_lee@163.com
– sequence: 2
  givenname: Hui
  surname: Zhao
  fullname: Zhao, Hui
– sequence: 3
  givenname: Xingwei
  surname: Weng
  fullname: Weng, Xingwei
– sequence: 4
  givenname: Tong
  surname: Han
  fullname: Han, Tong
BookMark eNp9kM9OwzAMhyM0JLbBC3DqC7TETf8kEhc0AUNM4gLnKE3TzVPbTElUCZ6ejHGBw06fJfuz7N-CzEY7GkJugWZAobrbZ8pbneUUygwgi7ggc-B1noqKwyzWZcXTQhTVFVl4v6dREjmfk9eV3Y4YcDJJY3ZqQusSewg44JcKaMdE9VvrMOyGpIstb_sJx-3fkYOzTW8Gf00uO9V7c_PLJfl4enxfrdPN2_PL6mGTakZpSKFRutC0LpoScqiY6Bg1wtCaNWXHQAlRtFBxXlLO6rZpNRO6a1rVgQKltGZLkp_2ame9d6aTB4eDcp8SqDzGIffyGIc8xiEBZESU-D9JY_i5PziF_Xn1_qSa-NSExkmv0YzatOiMDrK1eE7_BkPSgBo
CitedBy_id crossref_primary_10_1007_s00500_023_08575_1
crossref_primary_10_1134_S0040579523070060
crossref_primary_10_1007_s10489_020_01947_2
crossref_primary_10_1007_s00521_018_3785_6
crossref_primary_10_1134_S0040579524700799
crossref_primary_10_32604_cmc_2023_037611
crossref_primary_10_1016_j_dajour_2023_100182
crossref_primary_10_3390_electronics12122559
crossref_primary_10_1007_s12559_020_09730_8
crossref_primary_10_1016_j_eswa_2018_04_012
crossref_primary_10_1016_j_aej_2021_09_013
crossref_primary_10_1016_j_asoc_2019_02_037
crossref_primary_10_1007_s10462_020_09952_0
crossref_primary_10_1109_ACCESS_2019_2933661
crossref_primary_10_1007_s10462_023_10470_y
crossref_primary_10_1109_ACCESS_2019_2908262
crossref_primary_10_1007_s00500_019_03806_w
crossref_primary_10_1007_s00521_022_06908_z
crossref_primary_10_1007_s11831_022_09742_7
crossref_primary_10_1007_s41403_018_0051_2
crossref_primary_10_1016_j_aej_2022_08_013
crossref_primary_10_1016_j_crfs_2022_02_006
crossref_primary_10_1109_ACCESS_2020_3030950
crossref_primary_10_1016_j_mtcomm_2024_110666
crossref_primary_10_1016_j_aej_2025_02_046
crossref_primary_10_1515_jisys_2017_0046
crossref_primary_10_1007_s10586_017_1432_0
crossref_primary_10_1007_s10489_018_1325_9
crossref_primary_10_1016_j_energy_2017_09_130
crossref_primary_10_1088_1742_6596_1213_3_032009
crossref_primary_10_3390_math13050717
crossref_primary_10_1016_j_eswa_2016_02_036
crossref_primary_10_1109_ACCESS_2019_2918406
crossref_primary_10_1007_s00521_020_05475_5
crossref_primary_10_1016_j_knosys_2022_108320
crossref_primary_10_1155_2017_8034573
crossref_primary_10_1007_s41403_020_00185_9
crossref_primary_10_1007_s42235_022_00207_y
crossref_primary_10_1016_j_asoc_2019_105680
crossref_primary_10_3390_electronics13214215
crossref_primary_10_3846_jcem_2023_20399
crossref_primary_10_1007_s11831_022_09801_z
crossref_primary_10_3390_math13040668
crossref_primary_10_1093_comjnl_bxz046
Cites_doi 10.1016/j.ins.2013.06.051
10.1007/s00500-008-0323-y
10.1016/j.ins.2009.03.004
10.1016/j.swevo.2011.02.002
10.1016/j.cageo.2011.12.011
10.1109/TEVC.2003.810752
10.1109/TEVC.2008.927706
10.1016/j.asoc.2014.02.009
10.1016/j.asoc.2012.04.026
10.1016/j.asoc.2013.10.019
10.1162/evco.2007.15.1.1
10.1145/2480741.2480752
10.1016/j.asoc.2014.01.038
10.1109/TEVC.2006.872133
10.1016/j.cam.2004.02.013
10.1007/s00521-012-1028-9
10.1016/j.jfranklin.2008.11.003
10.1016/j.jappgeo.2013.08.019
10.2528/PIER07082403
10.1016/j.advengsoft.2013.12.007
10.1016/j.asoc.2014.06.022
10.1109/TEVC.2009.2014613
10.1016/j.ins.2014.02.154
10.1007/s10462-009-9137-2
10.1016/j.compstruc.2014.03.007
10.1109/TKDE.2010.234
10.1016/S1004-9541(13)60442-5
10.1007/s10898-007-9149-x
10.1016/j.asoc.2015.06.056
10.1016/j.ijepes.2014.03.039
10.1016/j.advengsoft.2012.11.019
10.1016/j.ins.2014.08.040
10.1007/s00521-013-1433-8
10.1007/s00707-009-0270-4
10.1016/j.cor.2013.06.012
10.1016/j.advengsoft.2005.04.005
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2015.11.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 222
ExternalDocumentID 10_1016_j_asoc_2015_11_015
S1568494615007334
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-1bac4c074b5121639f30e9e073b5f31a994d168850837dbdc39cfbdaf1a1aacc3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Wed Oct 01 02:32:05 EDT 2025
Thu Apr 24 22:58:47 EDT 2025
Fri Feb 23 02:28:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cognitive behavior model
Nature-based algorithms
Exploration
Global optimization
Exploitation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-1bac4c074b5121639f30e9e073b5f31a994d168850837dbdc39cfbdaf1a1aacc3
PageCount 24
ParticipantIDs crossref_primary_10_1016_j_asoc_2015_11_015
crossref_citationtrail_10_1016_j_asoc_2015_11_015
elsevier_sciencedirect_doi_10_1016_j_asoc_2015_11_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2016
2016-02-00
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: February 2016
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Karaboga (bib0240) 2005
Mirjalili, Mirjalili, Lewis (bib0370) 2014; 69
Ishibuchi, Yoshida, Murata (bib0225) 2003; 7
Baykasoğlu, Ozsoydan (bib0285) 2015; 36
Kanzow, Yamashita, Fukushima (bib0235) 2004; 172
Sun, Zhong, Cheng, Qian (bib0305) 2013; 21
Derrac, Garcia, Molina, Herrera (bib0415) 2011; 1
Zhang, Sanderson (bib0245) 2009; 13
Koupaei, Abdechiri (bib0290) 2013; 13
Kennedy, Eberhart (bib0345) 1995
Karaboga, Basturk (bib0355) 2007; 39
Kaveh, Talatahari (bib0385) 2010; 213
Gandomi, Yang, Alavi, Talatahari (bib0440) 2013; 22
Erol, Eksin (bib0380) 2006; 37
Holland (bib0315) 1992
Price, Storn, Lampinen (bib0320) 2005
Lindley (bib0430) 1995
Igel, Hansen, Roth (bib0395) 2007; 15
Karaboga (bib0270) 2009; 346
Helbig, Engelbrecht (bib0255) 2013; 250
Ono, Maeda, Sakimoto, Nakayama (bib0275) 2014; 15
Liang, Qu, Suganthan (bib0435) 2013
Yang (bib0310) 2008
Civicioglu (bib0340) 2012; 46
Chen, Huang (bib0300) 2013; 66
Cheng, Prayogo (bib0350) 2014; 139
Formato (bib0375) 2007; 77
Balkaya (bib0260) 2013; 98
Neri, Tirronen (bib0250) 2010; 33
Brest, Greiner, Bošković, Mernik, Žumer (bib0325) 2006; 10
Tsaia, Fanga, Chou (bib0295) 2013; 40
Qin, Huang, Suganthan (bib0330) 2009; 13
Rashedi, Nezamabadi-pour, Saryazdi (bib0390) 2009; 179
Črepinšek, Liu, Mernik (bib0405) 2014; 19
de Carvalho, Laender, Goncalves, da Solva (bib0230) 2012; 24
Li, Zhang, Yin (bib0365) 2014; 24
Veček, Mernik, Črepinšek (bib0425) 2014; 277
Wang, Li, Huang, Li (bib0335) 2014; 18
Črepinšek, Liu, Mernik (bib0400) 2013; 45
Tamilselvi, Baskar (bib0280) 2014; 61
Yang, Deb (bib0360) 2009
Teixeira, Covas, Stützle, Gaspar-Cunha (bib0265) 2014; 23
Alcalá-Fdez, Sánchez, García, del Jesus, Ventura, Garrell, Otero, Romero, Bacardit, Rivas, Fernández, Herrera (bib0420) 2009; 13
Mernik, Liu, Karaboga, Črepinšek (bib0410) 2015; 291
Zhang (10.1016/j.asoc.2015.11.015_bib0245) 2009; 13
Price (10.1016/j.asoc.2015.11.015_bib0320) 2005
Veček (10.1016/j.asoc.2015.11.015_bib0425) 2014; 277
Karaboga (10.1016/j.asoc.2015.11.015_bib0270) 2009; 346
Teixeira (10.1016/j.asoc.2015.11.015_bib0265) 2014; 23
Rashedi (10.1016/j.asoc.2015.11.015_bib0390) 2009; 179
Liang (10.1016/j.asoc.2015.11.015_bib0435) 2013
Karaboga (10.1016/j.asoc.2015.11.015_bib0240) 2005
Črepinšek (10.1016/j.asoc.2015.11.015_bib0405) 2014; 19
Baykasoğlu (10.1016/j.asoc.2015.11.015_bib0285) 2015; 36
Mernik (10.1016/j.asoc.2015.11.015_bib0410) 2015; 291
Balkaya (10.1016/j.asoc.2015.11.015_bib0260) 2013; 98
Wang (10.1016/j.asoc.2015.11.015_bib0335) 2014; 18
Helbig (10.1016/j.asoc.2015.11.015_bib0255) 2013; 250
Tamilselvi (10.1016/j.asoc.2015.11.015_bib0280) 2014; 61
Yang (10.1016/j.asoc.2015.11.015_bib0310) 2008
Brest (10.1016/j.asoc.2015.11.015_bib0325) 2006; 10
de Carvalho (10.1016/j.asoc.2015.11.015_bib0230) 2012; 24
Kaveh (10.1016/j.asoc.2015.11.015_bib0385) 2010; 213
Qin (10.1016/j.asoc.2015.11.015_bib0330) 2009; 13
Mirjalili (10.1016/j.asoc.2015.11.015_bib0370) 2014; 69
Ishibuchi (10.1016/j.asoc.2015.11.015_bib0225) 2003; 7
Igel (10.1016/j.asoc.2015.11.015_bib0395) 2007; 15
Cheng (10.1016/j.asoc.2015.11.015_bib0350) 2014; 139
Črepinšek (10.1016/j.asoc.2015.11.015_bib0400) 2013; 45
Kennedy (10.1016/j.asoc.2015.11.015_bib0345) 1995
Neri (10.1016/j.asoc.2015.11.015_bib0250) 2010; 33
Koupaei (10.1016/j.asoc.2015.11.015_bib0290) 2013; 13
Li (10.1016/j.asoc.2015.11.015_bib0365) 2014; 24
Civicioglu (10.1016/j.asoc.2015.11.015_bib0340) 2012; 46
Karaboga (10.1016/j.asoc.2015.11.015_bib0355) 2007; 39
Formato (10.1016/j.asoc.2015.11.015_bib0375) 2007; 77
Kanzow (10.1016/j.asoc.2015.11.015_bib0235) 2004; 172
Ono (10.1016/j.asoc.2015.11.015_bib0275) 2014; 15
Derrac (10.1016/j.asoc.2015.11.015_bib0415) 2011; 1
Holland (10.1016/j.asoc.2015.11.015_bib0315) 1992
Chen (10.1016/j.asoc.2015.11.015_bib0300) 2013; 66
Yang (10.1016/j.asoc.2015.11.015_bib0360) 2009
Tsaia (10.1016/j.asoc.2015.11.015_bib0295) 2013; 40
Erol (10.1016/j.asoc.2015.11.015_bib0380) 2006; 37
Gandomi (10.1016/j.asoc.2015.11.015_bib0440) 2013; 22
Sun (10.1016/j.asoc.2015.11.015_bib0305) 2013; 21
Lindley (10.1016/j.asoc.2015.11.015_bib0430) 1995
Alcalá-Fdez (10.1016/j.asoc.2015.11.015_bib0420) 2009; 13
References_xml – volume: 250
  start-page: 61
  year: 2013
  end-page: 81
  ident: bib0255
  article-title: Performance measures for dynamic multi-objective optimization algorithms
  publication-title: Inf. Sci.
– volume: 36
  start-page: 152
  year: 2015
  end-page: 164
  ident: bib0285
  article-title: Adaptive firefly algorithm with chaos for mechanical design optimization problems
  publication-title: Appl. Soft Comput.
– volume: 33
  start-page: 61
  year: 2010
  end-page: 106
  ident: bib0250
  article-title: Recent advances in differential evolution: a survey and experimental analysis
  publication-title: Artif. Intell. Rev.
– volume: 24
  start-page: 1867
  year: 2014
  end-page: 1877
  ident: bib0365
  article-title: Animal migration optimization: an optimization algorithm inspired by animal migration behavior
  publication-title: Neural Comput. Appl.
– volume: 61
  start-page: 208
  year: 2014
  end-page: 218
  ident: bib0280
  article-title: Modified parameter optimization of distribution transformer design using covariance matrix adaptation evolution strategy
  publication-title: Int. J. Electr. Power
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: bib0355
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
– volume: 13
  start-page: 307
  year: 2009
  end-page: 318
  ident: bib0420
  article-title: KEEL: a software tool to assess evolutionary algorithms to data mining problems
  publication-title: Soft Comput.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib0415
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 23
  start-page: 298
  year: 2014
  end-page: 307
  ident: bib0265
  article-title: Hybrid algorithms for the twin-screw extrusion configuration problem
  publication-title: Appl. Soft Comput.
– start-page: 210
  year: 2009
  end-page: 214
  ident: bib0360
  article-title: Cuckoo search via levy flights
  publication-title: Proceedings of World Congress on Nature and Biologically Inspired Computing, vol. 4
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: bib0245
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
– volume: 98
  start-page: 160
  year: 2013
  end-page: 175
  ident: bib0260
  article-title: An implementation of differential evolution algorithm for inversion of geoelectrical data
  publication-title: J. Appl. Geophys.
– volume: 13
  start-page: 2896
  year: 2013
  end-page: 2905
  ident: bib0290
  article-title: Sensor deployment for fault diagnosis using a new discrete optimization algorithm
  publication-title: Appl. Soft Comput.
– year: 2005
  ident: bib0240
  article-title: An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report-TR06
– volume: 66
  start-page: 24
  year: 2013
  end-page: 33
  ident: bib0300
  article-title: Application of data mining in a global optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 291
  start-page: 115
  year: 2015
  end-page: 127
  ident: bib0410
  article-title: On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation
  publication-title: Inf. Sci.
– volume: 37
  start-page: 106
  year: 2006
  end-page: 111
  ident: bib0380
  article-title: A new optimization method: big bang–big crunch
  publication-title: Adv. Eng. Softw.
– volume: 13
  start-page: 398
  year: 2009
  end-page: 417
  ident: bib0330
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib0370
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: bib0390
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
– volume: 40
  start-page: 3045
  year: 2013
  end-page: 3055
  ident: bib0295
  article-title: Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm
  publication-title: Comput. Oper. Res.
– start-page: 39
  year: 1995
  end-page: 43
  ident: bib0345
  article-title: Particle swarm optimization
  publication-title: Proceedings of Sixth International Symposium on Micro Machine and Human Science
– volume: 7
  start-page: 204
  year: 2003
  end-page: 223
  ident: bib0225
  article-title: Balance between genetic search and local search in memetic algorithms for multi objective permutation flowshop scheduling
  publication-title: IEEE Trans. Evol. Comput.
– year: 2005
  ident: bib0320
  article-title: Differential Evolution: A Practical Approach to Global Optimization
– volume: 18
  start-page: 232
  year: 2014
  end-page: 247
  ident: bib0335
  article-title: Differential evolution based on covariance matrix learning and bimodal distribution parameter setting
  publication-title: Appl. Soft Comput.
– volume: 46
  start-page: 229
  year: 2012
  end-page: 247
  ident: bib0340
  article-title: Transforming geocentric Cartesian coordinates to geodetic coordinates by using differential search algorithm
  publication-title: Comput. Geosci.-UK
– volume: 15
  start-page: 1
  year: 2007
  end-page: 28
  ident: bib0395
  article-title: Covariance matrix adaptation for multi-objective optimization
  publication-title: Evol. Comput.
– volume: 15
  start-page: 203
  year: 2014
  end-page: 218
  ident: bib0275
  article-title: User-system cooperative evolutionary computation for both quantitative and qualitative objective optimization in image processing filter design
  publication-title: Appl. Soft Comput.
– year: 2008
  ident: bib0310
  article-title: Nature-inspired Nature-based Algorithms
– volume: 10
  start-page: 646
  year: 2006
  end-page: 657
  ident: bib0325
  article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 213
  start-page: 267
  year: 2010
  end-page: 289
  ident: bib0385
  article-title: A novel heuristic optimization method: charged system search
  publication-title: Acta Mech.
– volume: 19
  start-page: 161
  year: 2014
  end-page: 170
  ident: bib0405
  article-title: Replication and comparison of computational experiments in applied evolutionary computing: common pitfalls and guidelines to avoid them
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2013
  end-page: 32
  ident: bib0435
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-parameter Numerical Optimization, Technical Report
– year: 1995
  ident: bib0430
  article-title: New Cambridge Statistical Tables
– year: 1992
  ident: bib0315
  article-title: Adaptation in Natural and Artificial Systems
– volume: 277
  start-page: 656
  year: 2014
  end-page: 679
  ident: bib0425
  article-title: A chess rating system for evolutionary algorithms: a new method for the comparison and ranking of evolutionary algorithms
  publication-title: Inf. Sci.
– volume: 346
  start-page: 328
  year: 2009
  end-page: 348
  ident: bib0270
  article-title: A new design method based on artificial bee colony algorithm for digital IIR filters
  publication-title: J. Franklin I
– volume: 77
  start-page: 425
  year: 2007
  end-page: 491
  ident: bib0375
  article-title: Central force optimization: a new nature-based with applications in applied electromagnetics
  publication-title: Prog. Electromagn. Res.
– volume: 139
  start-page: 98
  year: 2014
  end-page: 112
  ident: bib0350
  article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm
  publication-title: Comput. Struct.
– volume: 45
  start-page: 1
  year: 2013
  end-page: 33
  ident: bib0400
  article-title: Exploration and exploitation in evolutionary algorithms: a survey
  publication-title: ACM Comput. Surv.
– volume: 24
  start-page: 399
  year: 2012
  end-page: 412
  ident: bib0230
  article-title: A genetic programming approach to record deduplication
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 172
  start-page: 375
  year: 2004
  end-page: 397
  ident: bib0235
  article-title: Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints
  publication-title: J. Comput. Appl. Math.
– volume: 21
  start-page: 64
  year: 2013
  end-page: 71
  ident: bib0305
  article-title: Novel control vector parameterization method with differential evolution algorithm and its application in dynamic optimization of chemical processes
  publication-title: Chin. J. Chem. Eng.
– volume: 22
  start-page: 1239
  year: 2013
  end-page: 1255
  ident: bib0440
  article-title: Bat algorithm for constrained optimization tasks
  publication-title: Neural Comput. Appl.
– volume: 250
  start-page: 61
  year: 2013
  ident: 10.1016/j.asoc.2015.11.015_bib0255
  article-title: Performance measures for dynamic multi-objective optimization algorithms
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.06.051
– volume: 13
  start-page: 307
  year: 2009
  ident: 10.1016/j.asoc.2015.11.015_bib0420
  article-title: KEEL: a software tool to assess evolutionary algorithms to data mining problems
  publication-title: Soft Comput.
  doi: 10.1007/s00500-008-0323-y
– year: 2005
  ident: 10.1016/j.asoc.2015.11.015_bib0320
– volume: 179
  start-page: 2232
  year: 2009
  ident: 10.1016/j.asoc.2015.11.015_bib0390
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– start-page: 1
  year: 2013
  ident: 10.1016/j.asoc.2015.11.015_bib0435
– start-page: 210
  year: 2009
  ident: 10.1016/j.asoc.2015.11.015_bib0360
  article-title: Cuckoo search via levy flights
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.asoc.2015.11.015_bib0415
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 46
  start-page: 229
  year: 2012
  ident: 10.1016/j.asoc.2015.11.015_bib0340
  article-title: Transforming geocentric Cartesian coordinates to geodetic coordinates by using differential search algorithm
  publication-title: Comput. Geosci.-UK
  doi: 10.1016/j.cageo.2011.12.011
– volume: 7
  start-page: 204
  year: 2003
  ident: 10.1016/j.asoc.2015.11.015_bib0225
  article-title: Balance between genetic search and local search in memetic algorithms for multi objective permutation flowshop scheduling
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810752
– volume: 13
  start-page: 398
  year: 2009
  ident: 10.1016/j.asoc.2015.11.015_bib0330
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.927706
– volume: 19
  start-page: 161
  year: 2014
  ident: 10.1016/j.asoc.2015.11.015_bib0405
  article-title: Replication and comparison of computational experiments in applied evolutionary computing: common pitfalls and guidelines to avoid them
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.02.009
– volume: 13
  start-page: 2896
  year: 2013
  ident: 10.1016/j.asoc.2015.11.015_bib0290
  article-title: Sensor deployment for fault diagnosis using a new discrete optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.04.026
– volume: 15
  start-page: 203
  year: 2014
  ident: 10.1016/j.asoc.2015.11.015_bib0275
  article-title: User-system cooperative evolutionary computation for both quantitative and qualitative objective optimization in image processing filter design
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.10.019
– year: 2008
  ident: 10.1016/j.asoc.2015.11.015_bib0310
– volume: 15
  start-page: 1
  year: 2007
  ident: 10.1016/j.asoc.2015.11.015_bib0395
  article-title: Covariance matrix adaptation for multi-objective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/evco.2007.15.1.1
– volume: 45
  start-page: 1
  year: 2013
  ident: 10.1016/j.asoc.2015.11.015_bib0400
  article-title: Exploration and exploitation in evolutionary algorithms: a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2480741.2480752
– year: 1995
  ident: 10.1016/j.asoc.2015.11.015_bib0430
– volume: 18
  start-page: 232
  year: 2014
  ident: 10.1016/j.asoc.2015.11.015_bib0335
  article-title: Differential evolution based on covariance matrix learning and bimodal distribution parameter setting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.01.038
– volume: 10
  start-page: 646
  issue: 6
  year: 2006
  ident: 10.1016/j.asoc.2015.11.015_bib0325
  article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.872133
– volume: 172
  start-page: 375
  year: 2004
  ident: 10.1016/j.asoc.2015.11.015_bib0235
  article-title: Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2004.02.013
– volume: 22
  start-page: 1239
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2015.11.015_bib0440
  article-title: Bat algorithm for constrained optimization tasks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-1028-9
– volume: 346
  start-page: 328
  year: 2009
  ident: 10.1016/j.asoc.2015.11.015_bib0270
  article-title: A new design method based on artificial bee colony algorithm for digital IIR filters
  publication-title: J. Franklin I
  doi: 10.1016/j.jfranklin.2008.11.003
– volume: 98
  start-page: 160
  year: 2013
  ident: 10.1016/j.asoc.2015.11.015_bib0260
  article-title: An implementation of differential evolution algorithm for inversion of geoelectrical data
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2013.08.019
– volume: 77
  start-page: 425
  year: 2007
  ident: 10.1016/j.asoc.2015.11.015_bib0375
  article-title: Central force optimization: a new nature-based with applications in applied electromagnetics
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER07082403
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.asoc.2015.11.015_bib0370
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 23
  start-page: 298
  year: 2014
  ident: 10.1016/j.asoc.2015.11.015_bib0265
  article-title: Hybrid algorithms for the twin-screw extrusion configuration problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.06.022
– volume: 13
  start-page: 945
  year: 2009
  ident: 10.1016/j.asoc.2015.11.015_bib0245
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
– volume: 277
  start-page: 656
  year: 2014
  ident: 10.1016/j.asoc.2015.11.015_bib0425
  article-title: A chess rating system for evolutionary algorithms: a new method for the comparison and ranking of evolutionary algorithms
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.154
– volume: 33
  start-page: 61
  year: 2010
  ident: 10.1016/j.asoc.2015.11.015_bib0250
  article-title: Recent advances in differential evolution: a survey and experimental analysis
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-009-9137-2
– start-page: 39
  year: 1995
  ident: 10.1016/j.asoc.2015.11.015_bib0345
  article-title: Particle swarm optimization
– volume: 139
  start-page: 98
  year: 2014
  ident: 10.1016/j.asoc.2015.11.015_bib0350
  article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2014.03.007
– volume: 24
  start-page: 399
  year: 2012
  ident: 10.1016/j.asoc.2015.11.015_bib0230
  article-title: A genetic programming approach to record deduplication
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2010.234
– volume: 21
  start-page: 64
  year: 2013
  ident: 10.1016/j.asoc.2015.11.015_bib0305
  article-title: Novel control vector parameterization method with differential evolution algorithm and its application in dynamic optimization of chemical processes
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(13)60442-5
– year: 1992
  ident: 10.1016/j.asoc.2015.11.015_bib0315
– volume: 39
  start-page: 459
  year: 2007
  ident: 10.1016/j.asoc.2015.11.015_bib0355
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9149-x
– year: 2005
  ident: 10.1016/j.asoc.2015.11.015_bib0240
– volume: 36
  start-page: 152
  year: 2015
  ident: 10.1016/j.asoc.2015.11.015_bib0285
  article-title: Adaptive firefly algorithm with chaos for mechanical design optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.06.056
– volume: 61
  start-page: 208
  year: 2014
  ident: 10.1016/j.asoc.2015.11.015_bib0280
  article-title: Modified parameter optimization of distribution transformer design using covariance matrix adaptation evolution strategy
  publication-title: Int. J. Electr. Power
  doi: 10.1016/j.ijepes.2014.03.039
– volume: 66
  start-page: 24
  year: 2013
  ident: 10.1016/j.asoc.2015.11.015_bib0300
  article-title: Application of data mining in a global optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2012.11.019
– volume: 291
  start-page: 115
  year: 2015
  ident: 10.1016/j.asoc.2015.11.015_bib0410
  article-title: On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.08.040
– volume: 24
  start-page: 1867
  issue: 7–8
  year: 2014
  ident: 10.1016/j.asoc.2015.11.015_bib0365
  article-title: Animal migration optimization: an optimization algorithm inspired by animal migration behavior
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1433-8
– volume: 213
  start-page: 267
  year: 2010
  ident: 10.1016/j.asoc.2015.11.015_bib0385
  article-title: A novel heuristic optimization method: charged system search
  publication-title: Acta Mech.
  doi: 10.1007/s00707-009-0270-4
– volume: 40
  start-page: 3045
  year: 2013
  ident: 10.1016/j.asoc.2015.11.015_bib0295
  article-title: Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2013.06.012
– volume: 37
  start-page: 106
  year: 2006
  ident: 10.1016/j.asoc.2015.11.015_bib0380
  article-title: A new optimization method: big bang–big crunch
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2005.04.005
SSID ssj0016928
Score 2.3532732
Snippet •A new swarm intelligence algorithm, COA, is developed for the optimization problems.•The novel behavior model in COA makes the algorithm more effective and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 199
SubjectTerms Cognitive behavior model
Exploitation
Exploration
Global optimization
Nature-based algorithms
Title Cognitive behavior optimization algorithm for solving optimization problems
URI https://dx.doi.org/10.1016/j.asoc.2015.11.015
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM32XY32aTZYwmWaqWIWugt7Cta6Ytar_52d5KNWJAePC0JsxA-ZmdmwzfzIXSddISUJqYk4IoSbq0giaaaUGFVzoRxGatg-Q7j_ojfj6NxDaVVLwzQKn3sL2N6Ea39m7ZHs72cTNrP7uaRcMFhojkoD8JMUM47oGLQ-vqhebBYFPqqYEzA2jfOlBwv6RAAelfUgkmeII37V3L6lXB6B2jPV4q4W37MIarZ-RHar1QYsD-Ux2iQVgwgXPXc44ULBDPfYYnl9HWxmqzfZtgVqNj5GvxD2DTxsjIfJ2jUu31J-8RLJBAdUromTEnNtSsDlEvcrrQSeUitsA4PFeUhk0Jww-IkgaHvHaOMDoXOlZE5k0xKrcNTVJ8v5vYM4SCOhKKBprmMOA9yF_hUZEJmpA2SWPEGYhU2mfbzw0HGYppVRLH3DPDMAE93scjc0kA3P3uW5fSMrdZRBXm24QOZC-9b9p3_c98F2nVPnoN9ierr1ae9ciXGWjULH2qinW769PAI692gP_wGMb3T6w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2zIrZ3YaTyiiqrQ0oVW6mb5FSjqSyWs_Hbs1KmohBiYIiV3UvTpcneOvrsPgNu0yaU0CUYRVRhRazlKNdYIc6sywo2rWAXLt590hvRpxEYV0CpnYTytMuT-VU4vsnW40whoNhbjcePFnTxSyqnfaO6VB-kW2KYsavoTWP1rzfMgCS8EVr018uZhcmZF8pIOAs_vYnW_ytNr4_5WnX5UnPYB2AutIrxfvc0hqNjZEdgvZRhg-CqPQbdVUoBgOXQP5y4TTMOIJZST1_lynL9NoetQoQs2_xNh0yToynycgGH7YdDqoKCRgHSMcY6Ikppq1wcoV7ldb8WzGFtuHSCKZTGRnFNDkjT1W9-bRhkdc50pIzMiiZRax6egOpvP7BmAUcK4wpHGmWSURpnLfIqZmBhpozRRtAZIiY3QYYG417GYiJIp9i48nsLj6U4Wwl1q4G7ts1itz_jTmpWQi40gEC6__-F3_k-_G7DTGTz3RO-x370Au-5JIGRfgmq-_LRXrt_I1XURT9-ht9Pr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cognitive+behavior+optimization+algorithm+for+solving+optimization+problems&rft.jtitle=Applied+soft+computing&rft.au=Li%2C+Mudong&rft.au=Zhao%2C+Hui&rft.au=Weng%2C+Xingwei&rft.au=Han%2C+Tong&rft.date=2016-02-01&rft.issn=1568-4946&rft.volume=39&rft.spage=199&rft.epage=222&rft_id=info:doi/10.1016%2Fj.asoc.2015.11.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2015_11_015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon