Hybrid of representation learning and reinforcement learning for dynamic and complex robotic motion planning

•The implementation of RG-DSAC and AW-DSAC. These two algorithms are important baselines for LSA-DSAC because LSA-DSAC is optimized from AW-DSAC where attention network is optimized to alleviate the problems of unstable training and slow convergence.•Proposing LSA-DSAC for robotic motion planning in...

Full description

Saved in:
Bibliographic Details
Published inRobotics and autonomous systems Vol. 194; p. 105167
Main Authors Zhou, Chengmin, Lu, Xin, Dai, Jiapeng, Liu, Xiaoxu, Huang, Bingding, Fränti, Pasi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2025
Subjects
Online AccessGet full text
ISSN0921-8890
1872-793X
DOI10.1016/j.robot.2025.105167

Cover

Abstract •The implementation of RG-DSAC and AW-DSAC. These two algorithms are important baselines for LSA-DSAC because LSA-DSAC is optimized from AW-DSAC where attention network is optimized to alleviate the problems of unstable training and slow convergence.•Proposing LSA-DSAC for robotic motion planning in dense and dynamic environment, with better interpretability, stability, and convergence. LSA-DSAC is the optimized version of AW-DSAC by integrating the skip connection method and LSTM into the architecture of the attention network of AW-DSAC.•Extensive evaluations of LSA-DSAC against the state-of-the-art by simulations.•Physical implementation, testing of the robot in the real world, and analytical discussions about the problem of vanishing gradient in deep networks, computation challenges with increasing obstacle numbers, and inaccurate attention of attention network. Motion planning is the soul of robot decision making. Classical planning algorithms like graph search and reaction-based algorithms face challenges in cases of dense and dynamic obstacles. Deep learning algorithms generate suboptimal one-step predictions that cause many collisions. Reinforcement learning algorithms generate optimal or near-optimal time-sequential predictions. However, they suffer from slow convergence, suboptimal converged results, and unstable training. This paper introduces a hybrid algorithm for robotic motion planning: long short-term memory (LSTM) and skip connection for attention-based discrete soft actor critic (LSA-DSAC). First, graph network (relational graph) and attention network (attention weight) interpret the environmental state for the learning of the discrete soft actor critic algorithm. The expressive power of attention network outperforms that of graph in our task by difference analysis of these two representation methods. However, attention based DSAC faces the problem of unstable training (vanishing gradient). Second, the skip connection method is integrated to attention based DSAC to mitigate unstable training and improve convergence speed. Third, LSTM is taken to replace the sum operator of attention weigh and eliminate unstable training by slightly sacrificing convergence speed at early-stage training. Experiments show that LSA-DSAC outperforms the state-of-the-art in training and most evaluations. Physical robots are also implemented and tested in the real world.
AbstractList •The implementation of RG-DSAC and AW-DSAC. These two algorithms are important baselines for LSA-DSAC because LSA-DSAC is optimized from AW-DSAC where attention network is optimized to alleviate the problems of unstable training and slow convergence.•Proposing LSA-DSAC for robotic motion planning in dense and dynamic environment, with better interpretability, stability, and convergence. LSA-DSAC is the optimized version of AW-DSAC by integrating the skip connection method and LSTM into the architecture of the attention network of AW-DSAC.•Extensive evaluations of LSA-DSAC against the state-of-the-art by simulations.•Physical implementation, testing of the robot in the real world, and analytical discussions about the problem of vanishing gradient in deep networks, computation challenges with increasing obstacle numbers, and inaccurate attention of attention network. Motion planning is the soul of robot decision making. Classical planning algorithms like graph search and reaction-based algorithms face challenges in cases of dense and dynamic obstacles. Deep learning algorithms generate suboptimal one-step predictions that cause many collisions. Reinforcement learning algorithms generate optimal or near-optimal time-sequential predictions. However, they suffer from slow convergence, suboptimal converged results, and unstable training. This paper introduces a hybrid algorithm for robotic motion planning: long short-term memory (LSTM) and skip connection for attention-based discrete soft actor critic (LSA-DSAC). First, graph network (relational graph) and attention network (attention weight) interpret the environmental state for the learning of the discrete soft actor critic algorithm. The expressive power of attention network outperforms that of graph in our task by difference analysis of these two representation methods. However, attention based DSAC faces the problem of unstable training (vanishing gradient). Second, the skip connection method is integrated to attention based DSAC to mitigate unstable training and improve convergence speed. Third, LSTM is taken to replace the sum operator of attention weigh and eliminate unstable training by slightly sacrificing convergence speed at early-stage training. Experiments show that LSA-DSAC outperforms the state-of-the-art in training and most evaluations. Physical robots are also implemented and tested in the real world.
ArticleNumber 105167
Author Fränti, Pasi
Lu, Xin
Dai, Jiapeng
Huang, Bingding
Zhou, Chengmin
Liu, Xiaoxu
Author_xml – sequence: 1
  givenname: Chengmin
  orcidid: 0000-0002-8297-5949
  surname: Zhou
  fullname: Zhou, Chengmin
  email: zhou@cs.uef.fi
  organization: University of Eastern Finland FI-80100 Joensuu, Finland
– sequence: 2
  givenname: Xin
  surname: Lu
  fullname: Lu, Xin
  email: luwenkai67109@outlook.com
  organization: Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, 518118 Shenzhen, China
– sequence: 3
  givenname: Jiapeng
  surname: Dai
  fullname: Dai, Jiapeng
  email: jalaxy1996@outlook.com
  organization: College of Big Data and Internet, Shenzhen Technology University, 518118 Shenzhen, China
– sequence: 4
  givenname: Xiaoxu
  surname: Liu
  fullname: Liu, Xiaoxu
  email: liuxiaoxu@sztu.edu.cn
  organization: Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, 518118 Shenzhen, China
– sequence: 5
  givenname: Bingding
  orcidid: 0000-0002-4748-2882
  surname: Huang
  fullname: Huang, Bingding
  email: huangbingding@sztu.edu.cn
  organization: College of Big Data and Internet, Shenzhen Technology University, 518118 Shenzhen, China
– sequence: 6
  givenname: Pasi
  orcidid: 0000-0002-9554-2827
  surname: Fränti
  fullname: Fränti, Pasi
  email: franti@cs.uef.fi
  organization: Machine Learning Group, School of Computing, University of Eastern Finland, FI-80100 Joensuu, Finland
BookMark eNqNkM1OwzAQhH0oEm3hCbjkBVK8cZw4Bw6oAlqpEhc4W669Qa4SO3LCT94eN0HihjitNLPfamdWZOG8Q0JugG6AQnF72gR_9MMmoxmPCoeiXJAlrTJIhajoJVn1_YlSynjJlqTZjcdgTeLrJGAXsEc3qMF6lzSogrPuLVHORM-62geNbfR_rSglZnSqtXpa077tGvxKpg-i1vrpVNcod96_Ihe1anq8_plr8vr48LLdpYfnp_32_pBqRumQwpGpXFHKUcUMABUTRSnyLKtyoaHOdaU41IabUpUFiJwbyAXUJYOCAwrN1iSf7767To2fqmlkF2yrwiiBynNL8iSnH-W5JTm3FDE2Yzr4vg9Y_5O6mymMiT4sBtlri06jsQH1II23f_LfaI-H0A
Cites_doi 10.1109/LRA.2022.3199674
10.1016/j.neucom.2020.04.020
10.1088/0031-9155/58/24/8769
10.1109/70.508439
10.1007/s10845-022-01988-z
10.1109/100.580977
10.1007/978-3-030-32323-3_12
10.1038/nature14236
10.1016/j.neucom.2016.11.023
10.1016/j.trpro.2021.07.052
10.1016/j.tre.2022.102834
10.1007/BF01386390
10.1109/TSSC.1968.300136
10.1007/s12008-020-00714-4
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.robot.2025.105167
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10.1016/j.robot.2025.105167
10_1016_j_robot_2025_105167
S0921889025002647
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
RXW
SBC
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
UNMZH
WUQ
XPP
~G-
~HD
AAYXX
CITATION
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c300t-1b3a4a005ea02511938678422948c1f4c9a51fd5d7a761845d1481f731651e8c3
IEDL.DBID UNPAY
ISSN 0921-8890
1872-793X
IngestDate Tue Aug 26 13:24:22 EDT 2025
Thu Oct 16 04:41:07 EDT 2025
Sat Oct 25 17:18:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep deterministic policy gradient
skip connection for attention-based DSAC
advantage actor critic
Long short-term memory
relational graph based DSAC
Representation learning
twin delayed deep deterministic policy gradient
Monte-Carlo tree search
optimal reciprocal collision avoidance
proximal policy optimization
dynamic window approach
relational graph
Navigation
probabilistic roadmap method
multi-layer perceptron
convolutional neural network
pulse-width modulation
Reinforcement learning
Intelligent robot
Motion planning
LSTM and skip connection for attention-based discrete soft actor critic
rapidly exploring random tree
Deep learning algorithms
attention weight based DSAC
soft actor critic
local area network
Markov decision process
asynchronous advantage actor critic
robot operation system
deep Q network
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-1b3a4a005ea02511938678422948c1f4c9a51fd5d7a761845d1481f731651e8c3
ORCID 0000-0002-9554-2827
0000-0002-4748-2882
0000-0002-8297-5949
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.robot.2025.105167
ParticipantIDs unpaywall_primary_10_1016_j_robot_2025_105167
crossref_primary_10_1016_j_robot_2025_105167
elsevier_sciencedirect_doi_10_1016_j_robot_2025_105167
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Robotics and autonomous systems
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References García-Vázquez, Marinetto, Santos-Miranda, Calvo, Desco, Pascau (bib0049) 2013; 58
Long, Fanl, Liao, Liu, Zhang, Pan (bib0032) 2018
Quigley (bib0046) 2009; 3
Vemula, Muelling, Oh (bib0019) 2018
Barbosa (bib0004) 2020; 14
T. Dam, G. Chalvatzaki, J. Peters, and J. Pajarinen, “Monte-Carlo robot path planning,”
Baird (bib0037) 1995; 1995
Duan, Guan, Li, Ren, Sun, Cheng (bib0030) 2021
Huang, Liu, van der Maaten, Weinberger (bib0043) 2017
Van Hasselt, Guez, Silver (bib0021) 2016
Bas (bib0036) 2019
Dai, Mao, Huang, Qin, Huang, Li (bib0012) 2020; 402
Gerrits, Schuur (bib0002) 2021
Everett, Chen, How (bib0035) 2018
Y. Xu, D. Hu, L. Liang, S. McAleer, P. Abbeel, and R. Fox, “Target entropy annealing for discrete soft actor-critic,”
Wang, Schaul, Hessel, Van Hasselt, Lanctot, De Frcitas (bib0022) 2016; 4
Fox, Burgard, Thrun (bib0010) 1997; 4
Bartoš, Bulej, Bohušík, Stancek, Ivanov, Macek (bib0005) 2021; 55
Mnih (bib0038) 2015; 518
Hamilton (bib0017) 2020; 14
Boyd, Vandenberghe (bib0040) 2004
Mnih (bib0013) 2013
Fujimoto, Van Hoof, Meger (bib0031) 2018; 4
Furtado, Liu, Lai, Lacheray, Desouza-Coelho (bib0047) 2018; 2018
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,”
Haarnoja, Zhou, Abbeel, Levine (bib0028) 2018; 5
hwan Jeon (bib0008) 2013
C. Zhou, C. Wang, H. Hassan, H. Shah, B. Huang, and P. Fränti, “Bayesian inference for data-efficient, explainable, and safe robotic motion planning : a review,” arXiv:2307.08024, pp. 1–33.
Xu, Jegelka, Hu, Leskovec (bib0044) 2019
Tang, Wang, Kwong (bib0042) 2017; 225
Den Van Berg, Lin, Manocha (bib0011) 2008; 2
Konda, Tsitsiklis (bib0039) 2000
C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational graph learning for crowd navigation,” in
pp. 1–13, 2021.
Alahi, Goel, Ramanathan, Robicquet, Fei-Fei, Savarese (bib0015) 2016
pp. 1–12, 2017.
pp. 1–8, 2022.
Kavraki, Švestka, Latombe, Overmars (bib0009) 1996; 12
Chen, Liu, Everett, How (bib0033) 2017
Dijkstra (bib0007) 1959; 1
Mnih (bib0014) 2016; 48
Fuentes-Moraleda, Díaz-Pérez, Orea-Giner, Muñoz- Mazón, Villacé-Molinero (bib0001) 2020; 36
Chen, Liu, Kreiss, Alahi (bib0018) 2019; 2019-May
2019, pp. 1–7.
T. Haarnoja et al., “Soft actor-critic algorithms and applications,”
Zhou, Huang, Hassan, Fränti (bib0034) 2023; 34
Ameler (bib0048) 2019
pp. 1–7, 2019.
He, Zhang, Ren, Sun (bib0041) 2016
Srinivas, Ramachandiran, Rajendran (bib0003) 2022; 165
Haarnoja, Tang, Abbeel, Levine (bib0023) 2017; 3
Silver, Lever, Heess, Degris, Wierstra, Riedmiller (bib0024) 2014; 1
Munos, Stepleton, Harutyunyan, Bellemare (bib0025) 2016
Hart, Nilsson, Raphael (bib0006) 1968; 4
pp. 1–17, 2018.
P. Christodoulou, “Soft actor-critic for discrete action settings,”
Ameler (10.1016/j.robot.2025.105167_bib0048) 2019
Srinivas (10.1016/j.robot.2025.105167_bib0003) 2022; 165
Kavraki (10.1016/j.robot.2025.105167_bib0009) 1996; 12
Alahi (10.1016/j.robot.2025.105167_bib0015) 2016
Dai (10.1016/j.robot.2025.105167_bib0012) 2020; 402
Wang (10.1016/j.robot.2025.105167_bib0022) 2016; 4
Munos (10.1016/j.robot.2025.105167_bib0025) 2016
Tang (10.1016/j.robot.2025.105167_bib0042) 2017; 225
Gerrits (10.1016/j.robot.2025.105167_bib0002) 2021
Bartoš (10.1016/j.robot.2025.105167_bib0005) 2021; 55
Dijkstra (10.1016/j.robot.2025.105167_bib0007) 1959; 1
Chen (10.1016/j.robot.2025.105167_bib0018) 2019; 2019-May
Van Hasselt (10.1016/j.robot.2025.105167_bib0021) 2016
Fujimoto (10.1016/j.robot.2025.105167_bib0031) 2018; 4
Chen (10.1016/j.robot.2025.105167_bib0033) 2017
Boyd (10.1016/j.robot.2025.105167_bib0040) 2004
Zhou (10.1016/j.robot.2025.105167_bib0034) 2023; 34
Silver (10.1016/j.robot.2025.105167_bib0024) 2014; 1
Baird (10.1016/j.robot.2025.105167_bib0037) 1995; 1995
Haarnoja (10.1016/j.robot.2025.105167_bib0023) 2017; 3
Long (10.1016/j.robot.2025.105167_bib0032) 2018
10.1016/j.robot.2025.105167_bib0050
Bas (10.1016/j.robot.2025.105167_bib0036) 2019
Mnih (10.1016/j.robot.2025.105167_bib0013) 2013
10.1016/j.robot.2025.105167_bib0045
Barbosa (10.1016/j.robot.2025.105167_bib0004) 2020; 14
Haarnoja (10.1016/j.robot.2025.105167_bib0028) 2018; 5
Xu (10.1016/j.robot.2025.105167_bib0044) 2019
Duan (10.1016/j.robot.2025.105167_bib0030) 2021
Quigley (10.1016/j.robot.2025.105167_bib0046) 2009; 3
Fuentes-Moraleda (10.1016/j.robot.2025.105167_bib0001) 2020; 36
Den Van Berg (10.1016/j.robot.2025.105167_bib0011) 2008; 2
Everett (10.1016/j.robot.2025.105167_bib0035) 2018
Konda (10.1016/j.robot.2025.105167_bib0039) 2000
10.1016/j.robot.2025.105167_bib0020
Mnih (10.1016/j.robot.2025.105167_bib0014) 2016; 48
He (10.1016/j.robot.2025.105167_bib0041) 2016
10.1016/j.robot.2025.105167_bib0016
García-Vázquez (10.1016/j.robot.2025.105167_bib0049) 2013; 58
Huang (10.1016/j.robot.2025.105167_bib0043) 2017
Furtado (10.1016/j.robot.2025.105167_bib0047) 2018; 2018
Mnih (10.1016/j.robot.2025.105167_bib0038) 2015; 518
hwan Jeon (10.1016/j.robot.2025.105167_bib0008) 2013
Fox (10.1016/j.robot.2025.105167_bib0010) 1997; 4
10.1016/j.robot.2025.105167_bib0026
10.1016/j.robot.2025.105167_bib0027
Hart (10.1016/j.robot.2025.105167_bib0006) 1968; 4
Vemula (10.1016/j.robot.2025.105167_bib0019) 2018
Hamilton (10.1016/j.robot.2025.105167_bib0017) 2020; 14
10.1016/j.robot.2025.105167_bib0029
References_xml – reference: , pp. 1–7, 2019.
– volume: 12
  start-page: 566
  year: 1996
  end-page: 580
  ident: bib0009
  article-title: Probabilistic roadmaps for path planning in high-dimensional configuration spaces
  publication-title: IEEE Trans. Robot. Autom.
– volume: 4
  start-page: 23
  year: 1997
  end-page: 33
  ident: bib0010
  article-title: The dynamic window approach to collision avoidance
  publication-title: IEEE Robot. Autom. Mag.
– volume: 5
  start-page: 2976
  year: 2018
  end-page: 2989
  ident: bib0028
  article-title: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor
  publication-title: 35th Int. Conf. Mach. Learn. ICML 2018
– year: 2004
  ident: bib0040
  article-title: Convex Optimization
– volume: 1
  start-page: 605
  year: 2014
  end-page: 619
  ident: bib0024
  article-title: Deterministic policy gradient algorithms
  publication-title: 31st Int. Conf. Mach. Learn. ICML 2014,
– start-page: 188
  year: 2013
  end-page: 193
  ident: bib0008
  article-title: Optimal motion planning with the half-car dynamical model for autonomous high-speed driving
  publication-title: 2013 American Control Conference
– volume: 165
  year: 2022
  ident: bib0003
  article-title: Autonomous robot-driven deliveries : a review of recent developments and future directions
  publication-title: Transp. Res. Part E
– start-page: 1465
  year: 2019
  end-page: 1470
  ident: bib0048
  article-title: A comparative evaluation of SteamVR tracking and the OptiTrack system for medical device tracking
  publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS
– start-page: 961
  year: 2016
  end-page: 971
  ident: bib0015
  article-title: Social LSTM: human trajectory prediction in crowded spaces
  publication-title: n (CVPR)
– start-page: 285
  year: 2017
  end-page: 292
  ident: bib0033
  article-title: Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning
  publication-title: Proc. - IEEE Int. Conf. RobotAutom
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: bib0038
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib0043
  article-title: Densely connected convolutional networks
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit
– volume: 3
  start-page: 1
  year: 2009
  end-page: 6
  ident: bib0046
  article-title: ROS: an open-source robot operating system
  publication-title: ICRA Work. open source Softw
– volume: 1
  start-page: 269
  year: 1959
  end-page: 271
  ident: bib0007
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
– volume: 3
  start-page: 2171
  year: 2017
  end-page: 2186
  ident: bib0023
  article-title: Reinforcement learning with deep energy-based policies
  publication-title: 34th Int. Conf. Mach. Learn. ICML 2017
– volume: 4
  start-page: 2587
  year: 2018
  end-page: 2601
  ident: bib0031
  article-title: Addressing function approximation error in actor-critic methods
  publication-title: 35th Int. Conf. Mach. Learn. ICML 2018
– start-page: 1
  year: 2013
  end-page: 9
  ident: bib0013
  article-title: Playing Atari with Deep Reinforcement Learning
  publication-title: arXiv
– reference: , pp. 1–12, 2017.
– volume: 14
  start-page: 1569
  year: 2020
  end-page: 1575
  ident: bib0004
  article-title: Industry 4.0: examples of the use of the robotic arm for digital manufacturing processes
  publication-title: Int. J. Interact. Des. Manuf.
– volume: 2019-May
  start-page: 6015
  year: 2019
  end-page: 6022
  ident: bib0018
  article-title: Crowd-robot interaction: crowd-aware robot navigation with attention-based deep reinforcement learning
  publication-title: Proc. - IEEE Int. Conf. Robot. Autom
– reference: T. Dam, G. Chalvatzaki, J. Peters, and J. Pajarinen, “Monte-Carlo robot path planning,”
– volume: 402
  start-page: 346
  year: 2020
  end-page: 358
  ident: bib0012
  article-title: Automatic obstacle avoidance of quadrotor UAV via CNN-based learning
  publication-title: Neurocomputing
– reference: J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,”
– volume: 4
  start-page: 100
  year: 1968
  end-page: 107
  ident: bib0006
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
– start-page: 1
  year: 2019
  end-page: 17
  ident: bib0044
  article-title: How powerful are graph neural networks?
  publication-title: 7th Int. Conf. Learn. Represent. ICLR 2019
– reference: , 2019, pp. 1–7.
– volume: 36
  year: 2020
  ident: bib0001
  article-title: Interaction between hotel service robots and humans: a hotel-specific service robot acceptance model (sRAM)
  publication-title: Tour. Manag. Perspect
– start-page: 1
  year: 2021
  end-page: 12
  ident: bib0002
  article-title: Parcel delivery for smart cities: a synchronization approach for combined truck-drone-street robot deliveries
  publication-title: 2021 Winter Simul
– reference: Y. Xu, D. Hu, L. Liang, S. McAleer, P. Abbeel, and R. Fox, “Target entropy annealing for discrete soft actor-critic,”
– volume: 1995
  start-page: 30
  year: 1995
  end-page: 37
  ident: bib0037
  article-title: Residual algorithms: reinforcement learning with function approximation
  publication-title: Mach. Learn. Proc.
– volume: 14
  start-page: 1
  year: 2020
  end-page: 159
  ident: bib0017
  article-title: Graph representation learning
  publication-title: Synth. Lect. Artif. Intell. Mach. Learn.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0041
  article-title: Deep residual learning for image recognition
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit
– start-page: 6252
  year: 2018
  end-page: 6259
  ident: bib0032
  article-title: Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning
  publication-title: Proc. - IEEE Int. Conf. Robot. Autom
– volume: 34
  start-page: 151
  year: 2023
  end-page: 180
  ident: bib0034
  article-title: Attention-based advantage actor-critic algorithm with prioritized experience replay for complex 2-D robotic motion planning
  publication-title: J. Intell. Manuf.
– volume: 55
  start-page: 837
  year: 2021
  end-page: 844
  ident: bib0005
  article-title: An overview of robot applications in automotive industry
  publication-title: Transp. Res. Procedia
– volume: 58
  start-page: 8769
  year: 2013
  end-page: 8782
  ident: bib0049
  article-title: Feasibility of integrating a multi-camera optical tracking system in intra-operative electron radiation therapy scenarios
  publication-title: Phys. Med. Biol.
– reference: , pp. 1–17, 2018.
– start-page: 1008
  year: 2000
  end-page: 1014
  ident: bib0039
  article-title: Actor-critic algorithms
  publication-title: Adv. Neural Inf. Process. Syst
– start-page: 179
  year: 2019
  end-page: 198
  ident: bib0036
  article-title: An introduction to Markov chains
  publication-title: Basics Probab. Stoch. Process.
– volume: 48
  start-page: 1928
  year: 2016
  end-page: 1937
  ident: bib0014
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: Proceedings of Machine Learning Research
– reference: , pp. 1–8, 2022.
– reference: T. Haarnoja et al., “Soft actor-critic algorithms and applications,”
– reference: P. Christodoulou, “Soft actor-critic for discrete action settings,”
– start-page: 1
  year: 2021
  end-page: 15
  ident: bib0030
  article-title: Distributional soft actor-critic: off-policy reinforcement learning for addressing value estimation errors
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 2018
  year: 2018
  ident: bib0047
  article-title: Comparative analysis of OptiTrack motion capture systems
  publication-title: Proc. Can. Soc. Mech. Eng. Int. Congr
– reference: , pp. 1–13, 2021.
– volume: 225
  start-page: 188
  year: 2017
  end-page: 197
  ident: bib0042
  article-title: G-MS2F: googLeNet based multi-stage feature fusion of deep CNN for scene recognition
  publication-title: Neurocomputing
– volume: 2
  start-page: 100
  year: 2008
  end-page: 107
  ident: bib0011
  article-title: Reciprocal velocity obstacles for real-time multi-agent navigation
  publication-title: Proc. - IEEE Int. Conf. Robot. Autom
– reference: C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational graph learning for crowd navigation,” in
– start-page: 3052
  year: 2018
  end-page: 3059
  ident: bib0035
  article-title: Motion planning among dynamic, decision-making agents with deep reinforcement learning
  publication-title: 2018 IEEE/RSJ Int. Conf. Intell. Robot. Syst
– start-page: 2094
  year: 2016
  end-page: 2100
  ident: bib0021
  article-title: Deep reinforcement learning with double Q-learning
  publication-title: 30th AAAI Conf. Artif. Intell. AAAI 2016
– start-page: 4601
  year: 2018
  end-page: 4607
  ident: bib0019
  article-title: Social attention: modeling attention in Human crowds
  publication-title: Proc. - IEEE Int. Conf. Robot. Autom
– start-page: 1054
  year: 2016
  end-page: 1062
  ident: bib0025
  article-title: Safe and efficient off-policy reinforcement learning
  publication-title: 30th Conf. Neural Inf. Process. Syst. (NIPS2016)
– reference: C. Zhou, C. Wang, H. Hassan, H. Shah, B. Huang, and P. Fränti, “Bayesian inference for data-efficient, explainable, and safe robotic motion planning : a review,” arXiv:2307.08024, pp. 1–33.
– volume: 4
  start-page: 2939
  year: 2016
  end-page: 2947
  ident: bib0022
  article-title: Dueling network architectures for deep reinforcement learning
  publication-title: 33rd Int. Conf. Mach. Learn. ICML 2016
– start-page: 1465
  year: 2019
  ident: 10.1016/j.robot.2025.105167_bib0048
  article-title: A comparative evaluation of SteamVR tracking and the OptiTrack system for medical device tracking
– year: 2004
  ident: 10.1016/j.robot.2025.105167_bib0040
– volume: 4
  start-page: 2587
  year: 2018
  ident: 10.1016/j.robot.2025.105167_bib0031
  article-title: Addressing function approximation error in actor-critic methods
– start-page: 1
  year: 2019
  ident: 10.1016/j.robot.2025.105167_bib0044
  article-title: How powerful are graph neural networks?
– start-page: 6252
  year: 2018
  ident: 10.1016/j.robot.2025.105167_bib0032
  article-title: Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning
– start-page: 1
  year: 2021
  ident: 10.1016/j.robot.2025.105167_bib0030
  article-title: Distributional soft actor-critic: off-policy reinforcement learning for addressing value estimation errors
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 3
  start-page: 2171
  year: 2017
  ident: 10.1016/j.robot.2025.105167_bib0023
  article-title: Reinforcement learning with deep energy-based policies
– volume: 36
  issue: October 2020
  year: 2020
  ident: 10.1016/j.robot.2025.105167_bib0001
  article-title: Interaction between hotel service robots and humans: a hotel-specific service robot acceptance model (sRAM)
  publication-title: Tour. Manag. Perspect
– start-page: 188
  year: 2013
  ident: 10.1016/j.robot.2025.105167_bib0008
  article-title: Optimal motion planning with the half-car dynamical model for autonomous high-speed driving
– start-page: 1
  year: 2013
  ident: 10.1016/j.robot.2025.105167_bib0013
  article-title: Playing Atari with Deep Reinforcement Learning
  publication-title: arXiv
– volume: 2019-May
  start-page: 6015
  year: 2019
  ident: 10.1016/j.robot.2025.105167_bib0018
  article-title: Crowd-robot interaction: crowd-aware robot navigation with attention-based deep reinforcement learning
– ident: 10.1016/j.robot.2025.105167_bib0029
– ident: 10.1016/j.robot.2025.105167_bib0020
  doi: 10.1109/LRA.2022.3199674
– volume: 402
  start-page: 346
  year: 2020
  ident: 10.1016/j.robot.2025.105167_bib0012
  article-title: Automatic obstacle avoidance of quadrotor UAV via CNN-based learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.020
– volume: 14
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.robot.2025.105167_bib0017
  article-title: Graph representation learning
  publication-title: Synth. Lect. Artif. Intell. Mach. Learn.
– start-page: 1054
  year: 2016
  ident: 10.1016/j.robot.2025.105167_bib0025
  article-title: Safe and efficient off-policy reinforcement learning
– volume: 4
  start-page: 2939
  year: 2016
  ident: 10.1016/j.robot.2025.105167_bib0022
  article-title: Dueling network architectures for deep reinforcement learning
– volume: 58
  start-page: 8769
  issue: 24
  year: 2013
  ident: 10.1016/j.robot.2025.105167_bib0049
  article-title: Feasibility of integrating a multi-camera optical tracking system in intra-operative electron radiation therapy scenarios
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/24/8769
– volume: 1995
  start-page: 30
  year: 1995
  ident: 10.1016/j.robot.2025.105167_bib0037
  article-title: Residual algorithms: reinforcement learning with function approximation
  publication-title: Mach. Learn. Proc.
– volume: 2018
  year: 2018
  ident: 10.1016/j.robot.2025.105167_bib0047
  article-title: Comparative analysis of OptiTrack motion capture systems
– start-page: 961
  year: 2016
  ident: 10.1016/j.robot.2025.105167_bib0015
  article-title: Social LSTM: human trajectory prediction in crowded spaces
– volume: 1
  start-page: 605
  year: 2014
  ident: 10.1016/j.robot.2025.105167_bib0024
  article-title: Deterministic policy gradient algorithms
– volume: 12
  start-page: 566
  issue: 4
  year: 1996
  ident: 10.1016/j.robot.2025.105167_bib0009
  article-title: Probabilistic roadmaps for path planning in high-dimensional configuration spaces
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.508439
– start-page: 770
  year: 2016
  ident: 10.1016/j.robot.2025.105167_bib0041
  article-title: Deep residual learning for image recognition
– volume: 34
  start-page: 151
  year: 2023
  ident: 10.1016/j.robot.2025.105167_bib0034
  article-title: Attention-based advantage actor-critic algorithm with prioritized experience replay for complex 2-D robotic motion planning
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-022-01988-z
– volume: 4
  start-page: 23
  issue: 1
  year: 1997
  ident: 10.1016/j.robot.2025.105167_bib0010
  article-title: The dynamic window approach to collision avoidance
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/100.580977
– start-page: 4601
  year: 2018
  ident: 10.1016/j.robot.2025.105167_bib0019
  article-title: Social attention: modeling attention in Human crowds
– start-page: 179
  year: 2019
  ident: 10.1016/j.robot.2025.105167_bib0036
  article-title: An introduction to Markov chains
  publication-title: Basics Probab. Stoch. Process.
  doi: 10.1007/978-3-030-32323-3_12
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.robot.2025.105167_bib0038
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 225
  start-page: 188
  year: 2017
  ident: 10.1016/j.robot.2025.105167_bib0042
  article-title: G-MS2F: googLeNet based multi-stage feature fusion of deep CNN for scene recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.023
– volume: 55
  start-page: 837
  year: 2021
  ident: 10.1016/j.robot.2025.105167_bib0005
  article-title: An overview of robot applications in automotive industry
  publication-title: Transp. Res. Procedia
  doi: 10.1016/j.trpro.2021.07.052
– start-page: 1008
  year: 2000
  ident: 10.1016/j.robot.2025.105167_bib0039
  article-title: Actor-critic algorithms
  publication-title: Adv. Neural Inf. Process. Syst
– ident: 10.1016/j.robot.2025.105167_bib0045
– ident: 10.1016/j.robot.2025.105167_bib0026
– volume: 3
  start-page: 1
  year: 2009
  ident: 10.1016/j.robot.2025.105167_bib0046
  article-title: ROS: an open-source robot operating system
  publication-title: ICRA Work. open source Softw
– volume: 5
  start-page: 2976
  year: 2018
  ident: 10.1016/j.robot.2025.105167_bib0028
  article-title: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor
– start-page: 4700
  year: 2017
  ident: 10.1016/j.robot.2025.105167_bib0043
  article-title: Densely connected convolutional networks
– ident: 10.1016/j.robot.2025.105167_bib0027
– volume: 165
  year: 2022
  ident: 10.1016/j.robot.2025.105167_bib0003
  article-title: Autonomous robot-driven deliveries : a review of recent developments and future directions
  publication-title: Transp. Res. Part E
  doi: 10.1016/j.tre.2022.102834
– ident: 10.1016/j.robot.2025.105167_bib0050
– volume: 48
  start-page: 1928
  year: 2016
  ident: 10.1016/j.robot.2025.105167_bib0014
  article-title: Asynchronous methods for deep reinforcement learning
– start-page: 285
  year: 2017
  ident: 10.1016/j.robot.2025.105167_bib0033
  article-title: Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning
– ident: 10.1016/j.robot.2025.105167_bib0016
– start-page: 3052
  year: 2018
  ident: 10.1016/j.robot.2025.105167_bib0035
  article-title: Motion planning among dynamic, decision-making agents with deep reinforcement learning
– volume: 1
  start-page: 269
  issue: 1
  year: 1959
  ident: 10.1016/j.robot.2025.105167_bib0007
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
  doi: 10.1007/BF01386390
– start-page: 1
  year: 2021
  ident: 10.1016/j.robot.2025.105167_bib0002
  article-title: Parcel delivery for smart cities: a synchronization approach for combined truck-drone-street robot deliveries
– volume: 4
  start-page: 100
  issue: 2
  year: 1968
  ident: 10.1016/j.robot.2025.105167_bib0006
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
  doi: 10.1109/TSSC.1968.300136
– volume: 14
  start-page: 1569
  issue: 4
  year: 2020
  ident: 10.1016/j.robot.2025.105167_bib0004
  article-title: Industry 4.0: examples of the use of the robotic arm for digital manufacturing processes
  publication-title: Int. J. Interact. Des. Manuf.
  doi: 10.1007/s12008-020-00714-4
– start-page: 2094
  year: 2016
  ident: 10.1016/j.robot.2025.105167_bib0021
  article-title: Deep reinforcement learning with double Q-learning
– volume: 2
  start-page: 100
  year: 2008
  ident: 10.1016/j.robot.2025.105167_bib0011
  article-title: Reciprocal velocity obstacles for real-time multi-agent navigation
SSID ssj0003573
Score 2.4554954
Snippet •The implementation of RG-DSAC and AW-DSAC. These two algorithms are important baselines for LSA-DSAC because LSA-DSAC is optimized from AW-DSAC where...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 105167
SubjectTerms Intelligent robot
Motion planning
Navigation
Reinforcement learning
Representation learning
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jF_UgfuL8IgePxjXNR9ujDMcQ9KKD3UqaD5mMtowN3cW_3Xy0boKIeGySNuElfS8v-b33A-BKYs0x5xGiCTWIKhesLGONmJLWaSbGZMKddzw88tGY3k_YpAMGbSyMg1U2uj_odK-tm5J-I81-PZ32n6LMmid_TeYcCeoiyilNHIvBzcca5kFYuGW2jZFr3WYe8hiveVVUDlAZM8d3iz3Z_I_WaWtZ1mL1JmazDesz3AO7zbYR3oaR7YOOLg_AzkYywUMwG61c9BWsDPSZKtuoohI2zBAvUJTK1vlcqdIfC66rbBFUgZ3eN_NQc_0O_dhtWWD7gXXDcXQExsO758EINVwKSJIoWiBcEEGF_eW08F5FRlJrpmgcZzSV2FCZCYaNYioRieOAYcr6Sdg4XiuGdSrJMeiWValPACSF4tx-RhSGUJMw68EJnhURM4nKOI164LqVYV6HlBl5iyV7zf2wcyfyPIi8B3gr5_zbzOdWqf_-Ivqalb90dPrfjs7AtnsKIJZz0F3Ml_rCbkUWxaVfa58i39x4
  priority: 102
  providerName: Elsevier
Title Hybrid of representation learning and reinforcement learning for dynamic and complex robotic motion planning
URI https://dx.doi.org/10.1016/j.robot.2025.105167
https://doi.org/10.1016/j.robot.2025.105167
UnpaywallVersion publishedVersion
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0921-8890
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003573
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0921-8890
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003573
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0921-8890
  databaseCode: ACRLP
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003573
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  issn: 0921-8890
  databaseCode: AIKHN
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003573
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0921-8890
  databaseCode: AKRWK
  dateStart: 19880301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003573
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uO4gHv8WJjhw8mtG0SdoehzimwyHicJ5KmjSCjnbMDp0H_3aTtNUpKvNUSNI0zUt5H33v9wPgWOCEYcYcRHyiEJGmWFm4CaJSaKfZUyrkJt5xOWC9IbkY0VGJs21qYb78v7d5WNMszkzSo0sNJy1mfg00GNWGdx00hoOrzp1F03MxCgIbUcGBr23G0BtVGEM_z_KbHlqdpRM-f-bj8YKe6W4UBdxPFp7QpJc8tmd53Bav38Abl3yFTbBe2puwUxyQLbCSpNtgbQGFcAeMe3NTtgUzBS3EZVWOlMKSUuIe8lTqPguyKmw88bNLN0FZ0NrbYTZHPXmBdjW6raAJgpOSHGkXDLtnN6c9VJIwIOE5To5w7HHC9beacOuOhF6g9Rtx3ZAEAisiQk6xklT63DfkMVRqBwsrQ4hFcRIIbw_U0yxN9gH0YsmYnobHyiPKp9r14yyMHap8GTLiNMFJJZJoUmBtRFUS2kNklx2ZTYyKTWwCVoktKs2FwgyItAT-vhF9CHmZBx38c_whqOfTWXKkrZU8boFa-w23QKNz3u8NzLV_fdtvlWf3HcsR6rM
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGQoD4inK0wMjpkn8SDOiiqpA24VW6hY5sY2KqiSqWkEXfjt-JFAkhBDr2Ymtc3Lns7-7D4Cr1JfMZ8xDJCQKEWGSldNAIipSHTRjpSJuzjsGQ9Ybk4cJndRAp8qFMbDK0vY7m26tdSlpldpsFdNp68mLtHuy12QmkCDhBtgkNAhNBHbz_oXzwNRdM-veyHSvSg9ZkNc8T3KDqAyoIbz1Ldv8j-6pscwKvnrls9ma--nugp1y3whv3dT2QE1m-2B7rZrgAZj1Vib9CuYK2lKVVVpRBktqiGfIM6HbbLHU1J4LfjVpERSOnt52s1hz-Qbt3LXM0f3AoiQ5OgTj7t2o00MlmQJKsectkJ9gTrj-5yS3YUWE29pPkSCISDv1FUkjTn0lqAh5aEhgqNCBkq8MsRX1ZTvFR6Ce5Zk8BhAngjH9Gp4oTFRIdQjHWZR4VIUiYsRrgutKh3HhambEFZjsJbbTjo3KY6fyJmCVnuNvSx9rq_77g-hzVf4y0Ml_B7oEjd5o0I_798PHU7BlWhyi5QzUF_OlPNf7kkVyYb-7D0w235s
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA-6HcSDb3GikoNHM5rm0fY4xDEEhwcH81TSPAQd7ZgdOv96k7TVKSrzmqRpmi_le-T7fj8AziXWHHMeIBpRg6hyxcoy1IgpaZ1mYkwiXLzjZsgHI3o9ZuMaZ9vVwny5v_d5WLMiK1zSY8gcJy3m0Tpoc2YN7xZoj4a3vXuPphdiFMc-ooLjyNqMCRk3GEM_z_KbHtqY51OxeBGTyZKe6W9XBdzPHp7QpZc8dedl1pVv38AbV_yEHbBV25uwVx2QXbCm8z2wuYRCuA8mg4Ur24KFgR7isilHymFNKfEARa5snwdZlT6e-Nllm6CqaO39MJ-jrl-hX41tq2iC4LQmRzoAo_7V3eUA1SQMSJIgKBHOiKDC_qtaeHckIbHVbzQMExpLbKhMBMNGMRWJyJHHMGUdLGwcIRbDOpbkELTyItdHAJJMcW6nEZkh1ETMun6CJ1nATKQSToMOuGhEkk4rrI20SUJ7TP2yU7eJabWJHcAbsaW1uVCZAamVwN8Pog8hr_Ki43-OPwGtcjbXp9ZaKbOz-pS-A9TK5oQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+of+representation+learning+and+reinforcement+learning+for+dynamic+and+complex+robotic+motion+planning&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Zhou%2C+Chengmin&rft.au=Lu%2C+Xin&rft.au=Dai%2C+Jiapeng&rft.au=Liu%2C+Xiaoxu&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=0921-8890&rft.volume=194&rft_id=info:doi/10.1016%2Fj.robot.2025.105167&rft.externalDocID=S0921889025002647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon