Co-clustering optimization using Artificial Bee Colony (ABC) algorithm
This paper presents an Artificial Bee Colony (ABC) optimization based algorithm for co-clustering of high-dimensional data. The ABC algorithm is used for optimization problems including data clustering. We incorporate aspects of co-clustering by embedding it into the objective function used for clus...
Saved in:
| Published in | Applied soft computing Vol. 97; p. 106725 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.12.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 |
| DOI | 10.1016/j.asoc.2020.106725 |
Cover
| Abstract | This paper presents an Artificial Bee Colony (ABC) optimization based algorithm for co-clustering of high-dimensional data. The ABC algorithm is used for optimization problems including data clustering. We incorporate aspects of co-clustering by embedding it into the objective function used for clustering by the ABC algorithm. Instead of a linear metric, such as the Euclidean distance, we propose the use of higher order correlations to build similarity between rows and columns, each based on the other. This measure uses co-evolving similarities which when embedded into the objective function results in optimizing the co-clusters. The search space is also explored in the vicinity of the solutions produced by the ABC algorithm using three local search methods — the first is a heuristic based on computing the cluster means; the second uses the analytical gradient of the objective with respect to a centroid to find lower cost solutions in the vicinity; and, the third is a hybrid of the first two methods. Numerical experiments show significant improvement in the search for optimal clustering by incorporating new similarity metric and optimized local search method. Finally, the algorithm is shown to be highly scalable for parallel architectures for both distributed and shared memory systems. Theoretically, the best iso-efficiency function of Θ (p log p) for fully connected network with p processors is also computed for the parallel algorithm.
•We incorporate co-clustering into the objective function of the ABC using co-similarity matrices to achieve co-clustering.•We enhance the ABC approach using a neighborhood-search-space-aware local search method to guide the solution.•We discuss ways to parallelize the algorithm and provide a scalability analysis.•Experiments show much better results as compared to other clustering and co-clustering methods. |
|---|---|
| AbstractList | This paper presents an Artificial Bee Colony (ABC) optimization based algorithm for co-clustering of high-dimensional data. The ABC algorithm is used for optimization problems including data clustering. We incorporate aspects of co-clustering by embedding it into the objective function used for clustering by the ABC algorithm. Instead of a linear metric, such as the Euclidean distance, we propose the use of higher order correlations to build similarity between rows and columns, each based on the other. This measure uses co-evolving similarities which when embedded into the objective function results in optimizing the co-clusters. The search space is also explored in the vicinity of the solutions produced by the ABC algorithm using three local search methods — the first is a heuristic based on computing the cluster means; the second uses the analytical gradient of the objective with respect to a centroid to find lower cost solutions in the vicinity; and, the third is a hybrid of the first two methods. Numerical experiments show significant improvement in the search for optimal clustering by incorporating new similarity metric and optimized local search method. Finally, the algorithm is shown to be highly scalable for parallel architectures for both distributed and shared memory systems. Theoretically, the best iso-efficiency function of Θ (p log p) for fully connected network with p processors is also computed for the parallel algorithm.
•We incorporate co-clustering into the objective function of the ABC using co-similarity matrices to achieve co-clustering.•We enhance the ABC approach using a neighborhood-search-space-aware local search method to guide the solution.•We discuss ways to parallelize the algorithm and provide a scalability analysis.•Experiments show much better results as compared to other clustering and co-clustering methods. |
| ArticleNumber | 106725 |
| Author | Hussain, Syed Fawad Hussain, Masroor Pervez, Adeel |
| Author_xml | – sequence: 1 givenname: Syed Fawad orcidid: 0000-0001-9122-6029 surname: Hussain fullname: Hussain, Syed Fawad email: fawadhussain@giki.edu.pk organization: Machine Learning and Data Science (MDS) Lab, G.I.K. Institute, Topi, Pakistan – sequence: 2 givenname: Adeel surname: Pervez fullname: Pervez, Adeel email: adeel@giki.edu.pk organization: Machine Learning and Data Science (MDS) Lab, G.I.K. Institute, Topi, Pakistan – sequence: 3 givenname: Masroor surname: Hussain fullname: Hussain, Masroor email: hussain@giki.edu.pk organization: Faculty of Computer Science and Engineering, G.I.K. Institute, Topi, Pakistan |
| BookMark | eNp9kLFOwzAQhi1UJNrCCzBlhCHFjhM3lljaiAJSJZbulmNfylVpXNkuUnl6EsrE0OlOv_Sd_vsmZNS5Dgi5Z3TGKBNPu5kOzswymg2BmGfFFRmzcp6lUpRs1O-FKNNc5uKGTELY0R6SWTkmq8qlpj2GCB67beIOEff4rSO6LjmGIVr4iA0a1G2yBEgq17rulDwsltVjotut8xg_97fkutFtgLu_OSWb1cumekvXH6_v1WKdGk5pTJmGOtfUFoXg0PRteW2ksZYKKWze8JIKJuU8lyByQUHT2rKmoIU0rOSC8ykpz2eNdyF4aJTB-Fs2eo2tYlQNOtRODTrUoEOddfRo9g89eNxrf7oMPZ8h6H_6QvAqGITOgEUPJirr8BL-A-zAenM |
| CitedBy_id | crossref_primary_10_1007_s00170_021_08054_7 crossref_primary_10_1016_j_prime_2024_100424 crossref_primary_10_1038_s41598_023_44770_8 crossref_primary_10_3390_en14123385 crossref_primary_10_2139_ssrn_4155123 crossref_primary_10_1016_j_ast_2021_106642 crossref_primary_10_1088_1361_6501_ad4c8d crossref_primary_10_1109_ACCESS_2022_3157400 crossref_primary_10_1007_s10489_021_03087_7 crossref_primary_10_1155_2022_3826702 crossref_primary_10_1016_j_patcog_2023_109405 crossref_primary_10_1007_s00521_022_07063_1 crossref_primary_10_1016_j_seta_2025_104258 crossref_primary_10_1017_S0263574722001680 crossref_primary_10_1007_s10586_024_04903_8 crossref_primary_10_1093_comjnl_bxab194 crossref_primary_10_1016_j_eswa_2021_116356 crossref_primary_10_1016_j_compag_2023_108173 crossref_primary_10_1016_j_ijsrc_2024_02_004 crossref_primary_10_1007_s40314_023_02344_4 crossref_primary_10_1016_j_asoc_2021_107280 crossref_primary_10_1016_j_ijleo_2022_170470 crossref_primary_10_1080_21642583_2022_2102552 crossref_primary_10_1016_j_energy_2021_121843 crossref_primary_10_1007_s10462_024_10957_2 crossref_primary_10_3934_era_2022149 crossref_primary_10_1016_j_asoc_2023_110627 crossref_primary_10_1002_int_22836 crossref_primary_10_1109_TMAG_2021_3075580 crossref_primary_10_1016_j_ins_2024_120459 |
| Cites_doi | 10.1002/wics.1359 10.1016/S0045-7825(99)00389-8 10.1109/81.933333 10.1007/s00500-013-1032-8 10.1016/j.compchemeng.2003.12.004 10.1016/j.engappai.2015.07.011 10.1145/1081870.1081949 10.1002/int.20111 10.1007/BF01593790 10.3390/agronomy10020267 10.1016/j.asoc.2008.09.001 10.1016/j.asoc.2007.05.007 10.1109/ICMLA.2008.103 10.1016/j.eswa.2011.07.123 10.1145/956750.956764 10.1145/321062.321069 10.1007/s00500-014-1571-7 10.1016/j.eswa.2009.11.003 10.1145/502512.502550 10.1145/331499.331504 10.1007/s00521-015-2095-5 10.1007/s10115-015-0861-4 10.1016/j.asoc.2015.01.001 10.1016/j.cam.2012.01.013 10.1007/s10586-017-1571-3 10.1016/j.asoc.2013.05.012 10.1137/0105003 10.1016/j.eswa.2018.09.006 10.1016/j.eswa.2016.02.029 10.1016/j.asoc.2018.07.045 10.1007/s10462-012-9328-0 10.1016/j.asoc.2018.06.013 10.1016/j.eswa.2019.04.037 10.1016/j.asoc.2009.12.025 10.1016/j.asoc.2018.11.014 10.1109/MCI.2006.329691 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2020.106725 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2020_106725 S1568494620306633 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-1aeb4a0d5563ef2023bc9cdd0696d4f3806199749e6460ea0bd1f5059c183633 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Thu Apr 24 23:02:06 EDT 2025 Wed Oct 29 21:24:44 EDT 2025 Fri Feb 23 02:46:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Artificial Bee Colony Swarm intelligence Clustering Co-clustering Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-1aeb4a0d5563ef2023bc9cdd0696d4f3806199749e6460ea0bd1f5059c183633 |
| ORCID | 0000-0001-9122-6029 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106725 crossref_primary_10_1016_j_asoc_2020_106725 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106725 |
| PublicationCentury | 2000 |
| PublicationDate | December 2020 2020-12-00 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Runkler (b17) 2005; 20 Hussain (b38) 2019; 131 Hussain, Haris (b48) 2019; 118 Mahajan, Nimbhorkar, Varadarajan (b3) 2009 Gao, Liu, Huang (b24) 2012; 236 Hussain, Iqbal (b39) 2018; 72 Dorigo, Birattari, Stutzle (b15) 2006; 1 D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding, in: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, USA, 2007, pp. 1027–1035. Hussain, Abid, Ahmad, Hussain (b40) 2013; 27 I.S. Dhillon, S. Mallela, D.S. Modha, Information-theoretic Co-clustering, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2003, pp. 89–98. Shelokar, Jayaraman, Kulkarni (b16) 2004; 28 Zhu, Kwong (b23) 2010; 217 Aggarwal, Reddy (b2) 2013 Jain, Murty, Flynn (b1) 1999; 31 Karaboga, Basturk (b11) 2008; 8 F. Xie, F. Li, C. Lei, J. Yang, Y. Zhang, Unsupervised band selection based on artificial bee colony algorithm for hyperspectral image classification, 75 (2019) 428-440. B. Long, Z.M. Zhang, P.S. Yu, Co-clustering by block value decomposition, in: Proceedings of the eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005, pp. 635–640. Gao, Liu, Huang (b25) 2013; 13 I.S. Dhillon, Co-clustering documents and words using bipartite spectral graph partitioning, in: Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 269–274. Saeidi (b7) 2020; 7 Karaoglan, Atalay, Kucukkoc (b6) 2020 Cura (b12) 2012; 39 Hong, Chen, Lin (b44) 2015; 29 He, He, Jiang, Zhu, Hu (b30) 2001; 48 Hussain, Bashir (b9) 2016; 47 Van der Merwe, Engelbrecht (b14) 2003 Karaboga, Ozturk (b18) 2011; 11 Hooke, Jeeves (b32) 1961; 8 Singh (b36) 2009; 9 Karaboga, Gorkemli, Ozturk, Karaboga (b19) 2014; 42 A-Gilandeh, Sabzi, Benmouna, G-Mateos, H-Hernandez, M-Martinez (b5) 2020; 10 Deb (b21) 2000; 186 Hussain, Suryani (b10) 2015; 45 Eberhart, Kennedy (b13) 1995 Karaboga, Ozturk (b22) 2010; 5 Ilango, Vimal, Kaliappan, Subbulakshmi (b33) 2019; 22 G. Bisson, F. Hussain, Chi-Sim: A new similarity measure for the co-clustering task, in: Proceedings of the 2008 Seventh International Conference on Machine Learning and Applications, 2008, pp. 211–217. Karaboga, Akay (b4) 2009; 214 Powell (b29) 1977; 12 Hussain (b49) 2011 Sahoo (b31) 2017; 28 Zhang, Ouyang, Ning (b20) 2010; 37 Zabihi, Nasiri (b35) 2018; 71 Munkres (b45) 1957; 5 Sharma, Pant, Singh (b27) 2012; 1 Bansal, Sharma, Arya, Nagar (b26) 2013; 17 Hussain, Ramazan (b37) 2016; 55 Domeniconi, Laskey (b42) 2015; 7 Bharti, Singh (b28) 2016; 20 Sharma (10.1016/j.asoc.2020.106725_b27) 2012; 1 Karaboga (10.1016/j.asoc.2020.106725_b18) 2011; 11 10.1016/j.asoc.2020.106725_b8 Bansal (10.1016/j.asoc.2020.106725_b26) 2013; 17 Hussain (10.1016/j.asoc.2020.106725_b39) 2018; 72 Van der Merwe (10.1016/j.asoc.2020.106725_b14) 2003 Hong (10.1016/j.asoc.2020.106725_b44) 2015; 29 Hooke (10.1016/j.asoc.2020.106725_b32) 1961; 8 Dorigo (10.1016/j.asoc.2020.106725_b15) 2006; 1 Domeniconi (10.1016/j.asoc.2020.106725_b42) 2015; 7 Hussain (10.1016/j.asoc.2020.106725_b48) 2019; 118 Karaboga (10.1016/j.asoc.2020.106725_b22) 2010; 5 Hussain (10.1016/j.asoc.2020.106725_b9) 2016; 47 Zhu (10.1016/j.asoc.2020.106725_b23) 2010; 217 Munkres (10.1016/j.asoc.2020.106725_b45) 1957; 5 Hussain (10.1016/j.asoc.2020.106725_b38) 2019; 131 Hussain (10.1016/j.asoc.2020.106725_b10) 2015; 45 Karaoglan (10.1016/j.asoc.2020.106725_b6) 2020 Singh (10.1016/j.asoc.2020.106725_b36) 2009; 9 Karaboga (10.1016/j.asoc.2020.106725_b11) 2008; 8 Eberhart (10.1016/j.asoc.2020.106725_b13) 1995 Shelokar (10.1016/j.asoc.2020.106725_b16) 2004; 28 Bharti (10.1016/j.asoc.2020.106725_b28) 2016; 20 Karaboga (10.1016/j.asoc.2020.106725_b19) 2014; 42 Powell (10.1016/j.asoc.2020.106725_b29) 1977; 12 Aggarwal (10.1016/j.asoc.2020.106725_b2) 2013 Zabihi (10.1016/j.asoc.2020.106725_b35) 2018; 71 Deb (10.1016/j.asoc.2020.106725_b21) 2000; 186 10.1016/j.asoc.2020.106725_b34 Hussain (10.1016/j.asoc.2020.106725_b37) 2016; 55 Mahajan (10.1016/j.asoc.2020.106725_b3) 2009 Gao (10.1016/j.asoc.2020.106725_b24) 2012; 236 Sahoo (10.1016/j.asoc.2020.106725_b31) 2017; 28 Ilango (10.1016/j.asoc.2020.106725_b33) 2019; 22 10.1016/j.asoc.2020.106725_b46 10.1016/j.asoc.2020.106725_b47 Cura (10.1016/j.asoc.2020.106725_b12) 2012; 39 Saeidi (10.1016/j.asoc.2020.106725_b7) 2020; 7 Hussain (10.1016/j.asoc.2020.106725_b40) 2013; 27 A-Gilandeh (10.1016/j.asoc.2020.106725_b5) 2020; 10 10.1016/j.asoc.2020.106725_b43 He (10.1016/j.asoc.2020.106725_b30) 2001; 48 Gao (10.1016/j.asoc.2020.106725_b25) 2013; 13 10.1016/j.asoc.2020.106725_b41 Jain (10.1016/j.asoc.2020.106725_b1) 1999; 31 Runkler (10.1016/j.asoc.2020.106725_b17) 2005; 20 Zhang (10.1016/j.asoc.2020.106725_b20) 2010; 37 Hussain (10.1016/j.asoc.2020.106725_b49) 2011 Karaboga (10.1016/j.asoc.2020.106725_b4) 2009; 214 |
| References_xml | – volume: 8 start-page: 212 year: 1961 end-page: 229 ident: b32 article-title: ‘Direct Search’Solution of Numerical and Statistical Problems publication-title: J. ACM – volume: 131 start-page: 116 year: 2019 end-page: 131 ident: b38 article-title: A novel robust kernel for classifying high-dimensional data using Support Vector Machine publication-title: Expert Syst. Appl. – volume: 5 start-page: 1899 year: 2010 end-page: 1902 ident: b22 article-title: Fuzzy clustering with artificial bee colony algorithm publication-title: Sci. Res. Essays – volume: 29 start-page: 371 year: 2015 end-page: 378 ident: b44 article-title: Using group genetic algorithm to improve performance of attribute clustering publication-title: Appl. Soft Comput. – volume: 217 start-page: 3166 year: 2010 end-page: 3173 ident: b23 article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization publication-title: Appl. Math. Comput. – volume: 72 start-page: 30 year: 2018 end-page: 42 ident: b39 article-title: CCGA: Co-similarity based Co-clustering using Genetic Algorithm publication-title: Appl. Soft Comput. – volume: 1 start-page: 14 year: 2012 end-page: 19 ident: b27 article-title: Improved Local Search in Artificial Bee Colony using Golden Section Search publication-title: J. Eng. (JOE) – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: b1 article-title: Data clustering: a review publication-title: ACM Comput. Surv. – start-page: 190 year: 2011 end-page: 200 ident: b49 article-title: Bi-clustering gene expression data using co-similarity publication-title: International Conference on Advanced Data Mining and Applications – volume: 37 start-page: 4761 year: 2010 end-page: 4767 ident: b20 article-title: An artificial bee colony approach for clustering publication-title: Expert Syst. Appl. – volume: 11 start-page: 652 year: 2011 end-page: 657 ident: b18 article-title: A novel clustering approach: Artificial Bee Colony (ABC) algorithm publication-title: Appl. Soft Comput. – start-page: 157 year: 2020 end-page: 173 ident: b6 article-title: Distance-constrained Vehicle Routing problems: A case study using Artificial Bee Colony Algorithm publication-title: Mathematical Modelling and Optimization of Engineering Problems – year: 2013 ident: b2 article-title: Data Clustering: Algorithms and Applications – reference: I.S. Dhillon, Co-clustering documents and words using bipartite spectral graph partitioning, in: Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 269–274. – volume: 8 start-page: 687 year: 2008 end-page: 697 ident: b11 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. – volume: 236 start-page: 2741 year: 2012 end-page: 2753 ident: b24 article-title: A global best artificial bee colony algorithm for global optimization publication-title: J. Comput. Appl. Math. – volume: 28 start-page: 537 year: 2017 end-page: 551 ident: b31 article-title: A two-step artificial bee colony algorithm for clustering publication-title: Neural Comput. Appl. – volume: 118 start-page: 20 year: 2019 end-page: 34 ident: b48 article-title: A publication-title: Expert Syst. Appl. – volume: 55 start-page: 520 year: 2016 end-page: 531 ident: b37 article-title: Biclustering of human cancer microarray data using co-similarity based co-clustering publication-title: Expert Syst. Appl. – volume: 22 start-page: 12169 year: 2019 end-page: 12177 ident: b33 article-title: Optimization using Artificial Bee Colony based clustering approach for big data publication-title: Cluster Comput. – reference: I.S. Dhillon, S. Mallela, D.S. Modha, Information-theoretic Co-clustering, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2003, pp. 89–98. – volume: 47 start-page: 545 year: 2016 end-page: 570 ident: b9 article-title: Co-clustering of multi-view datasets publication-title: Knowl. Inf. Syst. – reference: B. Long, Z.M. Zhang, P.S. Yu, Co-clustering by block value decomposition, in: Proceedings of the eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005, pp. 635–640. – volume: 10 start-page: 267 year: 2020 ident: b5 article-title: Estimation of the Constituent Properties of Red Delicious Apples using a hybrid of artificial neural networks and Artificial Bee Colony Algorithm publication-title: Agronomy – start-page: 215 year: 2003 end-page: 220 ident: b14 article-title: Data clustering using particle swarm optimization publication-title: The 2003 Congress on Evolutionary Computation, Vol. 1 – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: b4 article-title: A comparative study of Artificial Bee Colony algorithm publication-title: Appl. Math. Comput. – volume: 7 start-page: 347 year: 2015 end-page: 356 ident: b42 article-title: Bayesian co-clustering publication-title: Wiley Interdiscip. Rev. Comput. Stat. – reference: G. Bisson, F. Hussain, Chi-Sim: A new similarity measure for the co-clustering task, in: Proceedings of the 2008 Seventh International Conference on Machine Learning and Applications, 2008, pp. 211–217. – volume: 71 start-page: 226 year: 2018 end-page: 241 ident: b35 article-title: A novel history-driven artificial bee colony algorithm for data clustering publication-title: Appl. Soft Comput. – volume: 1 start-page: 28 year: 2006 end-page: 39 ident: b15 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. – volume: 45 start-page: 246 year: 2015 end-page: 258 ident: b10 article-title: On retrieving intelligently plagiarized documents using semantic similarity publication-title: Eng. Appl. Artif. Intell. – volume: 9 start-page: 625 year: 2009 end-page: 631 ident: b36 article-title: An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem publication-title: Appl. Soft Comput. – volume: 186 start-page: 311 year: 2000 end-page: 338 ident: b21 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 5 start-page: 32 year: 1957 end-page: 38 ident: b45 article-title: Algorithms for the assignment and transportation problems publication-title: J. Soc. Ind. Appl. Math. – volume: 12 start-page: 241 year: 1977 end-page: 254 ident: b29 article-title: Restart procedures for the conjugate gradient method publication-title: Math. Program. – start-page: 39 year: 1995 end-page: 43 ident: b13 article-title: A new optimizer using particle swarm theory publication-title: Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on – volume: 27 start-page: 1119 year: 2013 end-page: 1125 ident: b40 article-title: A parallel 2D stabilized finite element method for darcy flow on distributed systems publication-title: World Appl. Sci. J. – volume: 28 start-page: 1577 year: 2004 end-page: 1584 ident: b16 article-title: An ant colony classifier system: application to some process engineering problems publication-title: Comput. Chem. Eng. – reference: F. Xie, F. Li, C. Lei, J. Yang, Y. Zhang, Unsupervised band selection based on artificial bee colony algorithm for hyperspectral image classification, 75 (2019) 428-440. – start-page: 274 year: 2009 end-page: 285 ident: b3 article-title: The planar publication-title: International Workshop on Algorithms and Computation – volume: 39 start-page: 1582 year: 2012 end-page: 1588 ident: b12 article-title: A particle swarm optimization approach to clustering publication-title: Expert Syst. Appl. – volume: 48 start-page: 900 year: 2001 end-page: 906 ident: b30 article-title: Chaotic characteristics of a one-dimensional iterative map with infinite collapses publication-title: IEEE Trans. Circuits Syst. I – volume: 20 start-page: 1233 year: 2005 end-page: 1251 ident: b17 article-title: Ant colony optimization of clustering models publication-title: Int. J. Intell. Syst. – volume: 42 start-page: 21 year: 2014 end-page: 57 ident: b19 article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications publication-title: Artif. Intell. Rev. – volume: 7 year: 2020 ident: b7 article-title: A new model for calculating the maximum trust in Online Social Networks and solving by Artificial Bee Colony algorithm publication-title: Comput. Soc. Netw. – reference: D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding, in: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, USA, 2007, pp. 1027–1035. – volume: 17 start-page: 1911 year: 2013 end-page: 1928 ident: b26 article-title: Memetic search in artificial bee colony algorithm publication-title: Soft Comput. – volume: 20 start-page: 1113 year: 2016 end-page: 1126 ident: b28 article-title: Chaotic gradient artificial bee colony for text clustering publication-title: Soft Comput. – volume: 13 start-page: 3763 year: 2013 end-page: 3775 ident: b25 article-title: A novel artificial bee colony algorithm with Powell’s method publication-title: Appl. Soft Comput. – volume: 7 start-page: 347 issue: 5 year: 2015 ident: 10.1016/j.asoc.2020.106725_b42 article-title: Bayesian co-clustering publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.1359 – volume: 186 start-page: 311 issue: 2–4 year: 2000 ident: 10.1016/j.asoc.2020.106725_b21 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(99)00389-8 – volume: 48 start-page: 900 issue: 7 year: 2001 ident: 10.1016/j.asoc.2020.106725_b30 article-title: Chaotic characteristics of a one-dimensional iterative map with infinite collapses publication-title: IEEE Trans. Circuits Syst. I doi: 10.1109/81.933333 – volume: 17 start-page: 1911 issue: 10 year: 2013 ident: 10.1016/j.asoc.2020.106725_b26 article-title: Memetic search in artificial bee colony algorithm publication-title: Soft Comput. doi: 10.1007/s00500-013-1032-8 – volume: 214 start-page: 108 issue: 1 year: 2009 ident: 10.1016/j.asoc.2020.106725_b4 article-title: A comparative study of Artificial Bee Colony algorithm publication-title: Appl. Math. Comput. – volume: 28 start-page: 1577 issue: 9 year: 2004 ident: 10.1016/j.asoc.2020.106725_b16 article-title: An ant colony classifier system: application to some process engineering problems publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2003.12.004 – volume: 45 start-page: 246 year: 2015 ident: 10.1016/j.asoc.2020.106725_b10 article-title: On retrieving intelligently plagiarized documents using semantic similarity publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.07.011 – ident: 10.1016/j.asoc.2020.106725_b47 doi: 10.1145/1081870.1081949 – volume: 20 start-page: 1233 issue: 12 year: 2005 ident: 10.1016/j.asoc.2020.106725_b17 article-title: Ant colony optimization of clustering models publication-title: Int. J. Intell. Syst. doi: 10.1002/int.20111 – volume: 12 start-page: 241 issue: 1 year: 1977 ident: 10.1016/j.asoc.2020.106725_b29 article-title: Restart procedures for the conjugate gradient method publication-title: Math. Program. doi: 10.1007/BF01593790 – volume: 10 start-page: 267 issue: 2 year: 2020 ident: 10.1016/j.asoc.2020.106725_b5 article-title: Estimation of the Constituent Properties of Red Delicious Apples using a hybrid of artificial neural networks and Artificial Bee Colony Algorithm publication-title: Agronomy doi: 10.3390/agronomy10020267 – volume: 9 start-page: 625 issue: 2 year: 2009 ident: 10.1016/j.asoc.2020.106725_b36 article-title: An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2008.09.001 – volume: 8 start-page: 687 issue: 1 year: 2008 ident: 10.1016/j.asoc.2020.106725_b11 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.05.007 – ident: 10.1016/j.asoc.2020.106725_b8 doi: 10.1109/ICMLA.2008.103 – volume: 39 start-page: 1582 issue: 1 year: 2012 ident: 10.1016/j.asoc.2020.106725_b12 article-title: A particle swarm optimization approach to clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.123 – year: 2013 ident: 10.1016/j.asoc.2020.106725_b2 – start-page: 215 year: 2003 ident: 10.1016/j.asoc.2020.106725_b14 article-title: Data clustering using particle swarm optimization – volume: 1 start-page: 14 issue: 1 year: 2012 ident: 10.1016/j.asoc.2020.106725_b27 article-title: Improved Local Search in Artificial Bee Colony using Golden Section Search publication-title: J. Eng. (JOE) – start-page: 190 year: 2011 ident: 10.1016/j.asoc.2020.106725_b49 article-title: Bi-clustering gene expression data using co-similarity – ident: 10.1016/j.asoc.2020.106725_b46 doi: 10.1145/956750.956764 – volume: 217 start-page: 3166 issue: 7 year: 2010 ident: 10.1016/j.asoc.2020.106725_b23 article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization publication-title: Appl. Math. Comput. – volume: 8 start-page: 212 issue: 2 year: 1961 ident: 10.1016/j.asoc.2020.106725_b32 article-title: ‘Direct Search’Solution of Numerical and Statistical Problems publication-title: J. ACM doi: 10.1145/321062.321069 – volume: 20 start-page: 1113 issue: 3 year: 2016 ident: 10.1016/j.asoc.2020.106725_b28 article-title: Chaotic gradient artificial bee colony for text clustering publication-title: Soft Comput. doi: 10.1007/s00500-014-1571-7 – volume: 37 start-page: 4761 issue: 7 year: 2010 ident: 10.1016/j.asoc.2020.106725_b20 article-title: An artificial bee colony approach for clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.11.003 – ident: 10.1016/j.asoc.2020.106725_b43 doi: 10.1145/502512.502550 – volume: 31 start-page: 264 issue: 3 year: 1999 ident: 10.1016/j.asoc.2020.106725_b1 article-title: Data clustering: a review publication-title: ACM Comput. Surv. doi: 10.1145/331499.331504 – volume: 28 start-page: 537 issue: 3 year: 2017 ident: 10.1016/j.asoc.2020.106725_b31 article-title: A two-step artificial bee colony algorithm for clustering publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-2095-5 – volume: 47 start-page: 545 issue: 3 year: 2016 ident: 10.1016/j.asoc.2020.106725_b9 article-title: Co-clustering of multi-view datasets publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-015-0861-4 – volume: 29 start-page: 371 year: 2015 ident: 10.1016/j.asoc.2020.106725_b44 article-title: Using group genetic algorithm to improve performance of attribute clustering publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.01.001 – volume: 236 start-page: 2741 issue: 11 year: 2012 ident: 10.1016/j.asoc.2020.106725_b24 article-title: A global best artificial bee colony algorithm for global optimization publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.01.013 – volume: 22 start-page: 12169 year: 2019 ident: 10.1016/j.asoc.2020.106725_b33 article-title: Optimization using Artificial Bee Colony based clustering approach for big data publication-title: Cluster Comput. doi: 10.1007/s10586-017-1571-3 – volume: 13 start-page: 3763 issue: 9 year: 2013 ident: 10.1016/j.asoc.2020.106725_b25 article-title: A novel artificial bee colony algorithm with Powell’s method publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.05.012 – volume: 27 start-page: 1119 issue: 9 year: 2013 ident: 10.1016/j.asoc.2020.106725_b40 article-title: A parallel 2D stabilized finite element method for darcy flow on distributed systems publication-title: World Appl. Sci. J. – ident: 10.1016/j.asoc.2020.106725_b41 – volume: 5 start-page: 32 year: 1957 ident: 10.1016/j.asoc.2020.106725_b45 article-title: Algorithms for the assignment and transportation problems publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0105003 – volume: 7 issue: 3 year: 2020 ident: 10.1016/j.asoc.2020.106725_b7 article-title: A new model for calculating the maximum trust in Online Social Networks and solving by Artificial Bee Colony algorithm publication-title: Comput. Soc. Netw. – start-page: 39 year: 1995 ident: 10.1016/j.asoc.2020.106725_b13 article-title: A new optimizer using particle swarm theory – volume: 118 start-page: 20 year: 2019 ident: 10.1016/j.asoc.2020.106725_b48 article-title: A k-means based co-clustering (kCC) algorithm for sparse, high dimensional data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.09.006 – start-page: 274 year: 2009 ident: 10.1016/j.asoc.2020.106725_b3 article-title: The planar k-means problem is NP-hard – volume: 55 start-page: 520 year: 2016 ident: 10.1016/j.asoc.2020.106725_b37 article-title: Biclustering of human cancer microarray data using co-similarity based co-clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.02.029 – volume: 72 start-page: 30 year: 2018 ident: 10.1016/j.asoc.2020.106725_b39 article-title: CCGA: Co-similarity based Co-clustering using Genetic Algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.045 – volume: 42 start-page: 21 issue: 1 year: 2014 ident: 10.1016/j.asoc.2020.106725_b19 article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-012-9328-0 – volume: 5 start-page: 1899 issue: 14 year: 2010 ident: 10.1016/j.asoc.2020.106725_b22 article-title: Fuzzy clustering with artificial bee colony algorithm publication-title: Sci. Res. Essays – volume: 71 start-page: 226 year: 2018 ident: 10.1016/j.asoc.2020.106725_b35 article-title: A novel history-driven artificial bee colony algorithm for data clustering publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.06.013 – volume: 131 start-page: 116 year: 2019 ident: 10.1016/j.asoc.2020.106725_b38 article-title: A novel robust kernel for classifying high-dimensional data using Support Vector Machine publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.04.037 – start-page: 157 year: 2020 ident: 10.1016/j.asoc.2020.106725_b6 article-title: Distance-constrained Vehicle Routing problems: A case study using Artificial Bee Colony Algorithm – volume: 11 start-page: 652 issue: 1 year: 2011 ident: 10.1016/j.asoc.2020.106725_b18 article-title: A novel clustering approach: Artificial Bee Colony (ABC) algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.12.025 – ident: 10.1016/j.asoc.2020.106725_b34 doi: 10.1016/j.asoc.2018.11.014 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 10.1016/j.asoc.2020.106725_b15 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.329691 |
| SSID | ssj0016928 |
| Score | 2.461515 |
| Snippet | This paper presents an Artificial Bee Colony (ABC) optimization based algorithm for co-clustering of high-dimensional data. The ABC algorithm is used for... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106725 |
| SubjectTerms | Artificial Bee Colony Clustering Co-clustering Optimization Swarm intelligence |
| Title | Co-clustering optimization using Artificial Bee Colony (ABC) algorithm |
| URI | https://dx.doi.org/10.1016/j.asoc.2020.106725 |
| Volume | 97 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kXrz4Ft_swYMisZtms2aPNVjqE9EKvYXNPmqlTaXUgxd_uzPJRhSkB08hy0wIX7LzYGfmI-SISZW0cq5gf3MZ8FyxQEW5CZwRXMeJjnR5XHB3L7rP_Lof9xdIWvfCYFmlt_2VTS-ttV9pejSbb8Nh8wkyj4RLLloY9ooIJ35yfo4sBmef32UeoZAlvyoKByjtG2eqGi8FCECO2MIFcY502X85px8Op7NKln2kSNvVy6yRBVusk5WahYH6TblBOukk0KN3HHgAbohOwAaMfXMlxar2QfmIalAEvbCWpmDvig963L5IT6gaDSbT4exlvEl6ncte2g08O0KgI8ZmQagsYMwMTviyDlnQcy21MUxIYbiLEvDUErIFaQUXzCqWm9BBvCM17GKAa4s0iklhtwmNTKSYa0VGQ3AUQz7kQhdaxyw3kjmX75CwRiXTfnI4EliMsrpE7DVDJDNEMquQ3CGn3zpv1dyMudJxDXb26-tnYNjn6O3-U2-PLOFdVZayTxqz6bs9gOBilh-Wf88hWWynj7cPeL266d5_AV0Xzkc |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjXjjgQGEQp3YMfFII6ry6kKR2CLHDyjqS1U6sPDbOScOAgkxsDp3UfQl91K-u0PohAiZRDmTYN9MBCyXJJA014HVnKk4UVSVvwseerz7xG6f4-cGSuteGEer9L6_8umlt_YnLY9mazoYtB6h8kiYYDxyaS-ndAEtsji6dBXYxccXzyPkolyw6qQDJ-47ZyqSlwQIoEiM3AG_dPuyf4tO3yJOZw2t-FQRX1VPs44aZryBVus1DNhb5SbqpJNADedu4gHEITwBJzDy3ZXY0dpfyltUkyJw2xicgsMbv-PTq3Z6huXwZTIbFK-jLdTvXPfTbuDXIwSKElIEoTQAMtFuxJexbg16roTSmnDBNbM0gVAtoFwQhjNOjCS5Di0kPEKBGQNe26g5nozNDsJUU0lsRLWC7CiGgsiGNjSWGKYFsTbfRWGNSqb86HC3wWKY1Ryxt8whmTkkswrJXXT-pTOtBmf8KR3XYGc_Xn8Gnv0Pvb1_6h2jpW7_4T67v-nd7aNld6XiqBygZjGbm0PINIr8qPySPgHinM5H |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-clustering+optimization+using+Artificial+Bee+Colony+%28ABC%29+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Hussain%2C+Syed+Fawad&rft.au=Pervez%2C+Adeel&rft.au=Hussain%2C+Masroor&rft.date=2020-12-01&rft.issn=1568-4946&rft.volume=97&rft.spage=106725&rft_id=info:doi/10.1016%2Fj.asoc.2020.106725&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106725 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |