Co-clustering optimization using Artificial Bee Colony (ABC) algorithm

This paper presents an Artificial Bee Colony (ABC) optimization based algorithm for co-clustering of high-dimensional data. The ABC algorithm is used for optimization problems including data clustering. We incorporate aspects of co-clustering by embedding it into the objective function used for clus...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 97; p. 106725
Main Authors Hussain, Syed Fawad, Pervez, Adeel, Hussain, Masroor
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2020.106725

Cover

Abstract This paper presents an Artificial Bee Colony (ABC) optimization based algorithm for co-clustering of high-dimensional data. The ABC algorithm is used for optimization problems including data clustering. We incorporate aspects of co-clustering by embedding it into the objective function used for clustering by the ABC algorithm. Instead of a linear metric, such as the Euclidean distance, we propose the use of higher order correlations to build similarity between rows and columns, each based on the other. This measure uses co-evolving similarities which when embedded into the objective function results in optimizing the co-clusters. The search space is also explored in the vicinity of the solutions produced by the ABC algorithm using three local search methods — the first is a heuristic based on computing the cluster means; the second uses the analytical gradient of the objective with respect to a centroid to find lower cost solutions in the vicinity; and, the third is a hybrid of the first two methods. Numerical experiments show significant improvement in the search for optimal clustering by incorporating new similarity metric and optimized local search method. Finally, the algorithm is shown to be highly scalable for parallel architectures for both distributed and shared memory systems. Theoretically, the best iso-efficiency function of Θ (p log p) for fully connected network with p processors is also computed for the parallel algorithm. •We incorporate co-clustering into the objective function of the ABC using co-similarity matrices to achieve co-clustering.•We enhance the ABC approach using a neighborhood-search-space-aware local search method to guide the solution.•We discuss ways to parallelize the algorithm and provide a scalability analysis.•Experiments show much better results as compared to other clustering and co-clustering methods.
AbstractList This paper presents an Artificial Bee Colony (ABC) optimization based algorithm for co-clustering of high-dimensional data. The ABC algorithm is used for optimization problems including data clustering. We incorporate aspects of co-clustering by embedding it into the objective function used for clustering by the ABC algorithm. Instead of a linear metric, such as the Euclidean distance, we propose the use of higher order correlations to build similarity between rows and columns, each based on the other. This measure uses co-evolving similarities which when embedded into the objective function results in optimizing the co-clusters. The search space is also explored in the vicinity of the solutions produced by the ABC algorithm using three local search methods — the first is a heuristic based on computing the cluster means; the second uses the analytical gradient of the objective with respect to a centroid to find lower cost solutions in the vicinity; and, the third is a hybrid of the first two methods. Numerical experiments show significant improvement in the search for optimal clustering by incorporating new similarity metric and optimized local search method. Finally, the algorithm is shown to be highly scalable for parallel architectures for both distributed and shared memory systems. Theoretically, the best iso-efficiency function of Θ (p log p) for fully connected network with p processors is also computed for the parallel algorithm. •We incorporate co-clustering into the objective function of the ABC using co-similarity matrices to achieve co-clustering.•We enhance the ABC approach using a neighborhood-search-space-aware local search method to guide the solution.•We discuss ways to parallelize the algorithm and provide a scalability analysis.•Experiments show much better results as compared to other clustering and co-clustering methods.
ArticleNumber 106725
Author Hussain, Syed Fawad
Hussain, Masroor
Pervez, Adeel
Author_xml – sequence: 1
  givenname: Syed Fawad
  orcidid: 0000-0001-9122-6029
  surname: Hussain
  fullname: Hussain, Syed Fawad
  email: fawadhussain@giki.edu.pk
  organization: Machine Learning and Data Science (MDS) Lab, G.I.K. Institute, Topi, Pakistan
– sequence: 2
  givenname: Adeel
  surname: Pervez
  fullname: Pervez, Adeel
  email: adeel@giki.edu.pk
  organization: Machine Learning and Data Science (MDS) Lab, G.I.K. Institute, Topi, Pakistan
– sequence: 3
  givenname: Masroor
  surname: Hussain
  fullname: Hussain, Masroor
  email: hussain@giki.edu.pk
  organization: Faculty of Computer Science and Engineering, G.I.K. Institute, Topi, Pakistan
BookMark eNp9kLFOwzAQhi1UJNrCCzBlhCHFjhM3lljaiAJSJZbulmNfylVpXNkuUnl6EsrE0OlOv_Sd_vsmZNS5Dgi5Z3TGKBNPu5kOzswymg2BmGfFFRmzcp6lUpRs1O-FKNNc5uKGTELY0R6SWTkmq8qlpj2GCB67beIOEff4rSO6LjmGIVr4iA0a1G2yBEgq17rulDwsltVjotut8xg_97fkutFtgLu_OSWb1cumekvXH6_v1WKdGk5pTJmGOtfUFoXg0PRteW2ksZYKKWze8JIKJuU8lyByQUHT2rKmoIU0rOSC8ykpz2eNdyF4aJTB-Fs2eo2tYlQNOtRODTrUoEOddfRo9g89eNxrf7oMPZ8h6H_6QvAqGITOgEUPJirr8BL-A-zAenM
CitedBy_id crossref_primary_10_1007_s00170_021_08054_7
crossref_primary_10_1016_j_prime_2024_100424
crossref_primary_10_1038_s41598_023_44770_8
crossref_primary_10_3390_en14123385
crossref_primary_10_2139_ssrn_4155123
crossref_primary_10_1016_j_ast_2021_106642
crossref_primary_10_1088_1361_6501_ad4c8d
crossref_primary_10_1109_ACCESS_2022_3157400
crossref_primary_10_1007_s10489_021_03087_7
crossref_primary_10_1155_2022_3826702
crossref_primary_10_1016_j_patcog_2023_109405
crossref_primary_10_1007_s00521_022_07063_1
crossref_primary_10_1016_j_seta_2025_104258
crossref_primary_10_1017_S0263574722001680
crossref_primary_10_1007_s10586_024_04903_8
crossref_primary_10_1093_comjnl_bxab194
crossref_primary_10_1016_j_eswa_2021_116356
crossref_primary_10_1016_j_compag_2023_108173
crossref_primary_10_1016_j_ijsrc_2024_02_004
crossref_primary_10_1007_s40314_023_02344_4
crossref_primary_10_1016_j_asoc_2021_107280
crossref_primary_10_1016_j_ijleo_2022_170470
crossref_primary_10_1080_21642583_2022_2102552
crossref_primary_10_1016_j_energy_2021_121843
crossref_primary_10_1007_s10462_024_10957_2
crossref_primary_10_3934_era_2022149
crossref_primary_10_1016_j_asoc_2023_110627
crossref_primary_10_1002_int_22836
crossref_primary_10_1109_TMAG_2021_3075580
crossref_primary_10_1016_j_ins_2024_120459
Cites_doi 10.1002/wics.1359
10.1016/S0045-7825(99)00389-8
10.1109/81.933333
10.1007/s00500-013-1032-8
10.1016/j.compchemeng.2003.12.004
10.1016/j.engappai.2015.07.011
10.1145/1081870.1081949
10.1002/int.20111
10.1007/BF01593790
10.3390/agronomy10020267
10.1016/j.asoc.2008.09.001
10.1016/j.asoc.2007.05.007
10.1109/ICMLA.2008.103
10.1016/j.eswa.2011.07.123
10.1145/956750.956764
10.1145/321062.321069
10.1007/s00500-014-1571-7
10.1016/j.eswa.2009.11.003
10.1145/502512.502550
10.1145/331499.331504
10.1007/s00521-015-2095-5
10.1007/s10115-015-0861-4
10.1016/j.asoc.2015.01.001
10.1016/j.cam.2012.01.013
10.1007/s10586-017-1571-3
10.1016/j.asoc.2013.05.012
10.1137/0105003
10.1016/j.eswa.2018.09.006
10.1016/j.eswa.2016.02.029
10.1016/j.asoc.2018.07.045
10.1007/s10462-012-9328-0
10.1016/j.asoc.2018.06.013
10.1016/j.eswa.2019.04.037
10.1016/j.asoc.2009.12.025
10.1016/j.asoc.2018.11.014
10.1109/MCI.2006.329691
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106725
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106725
S1568494620306633
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-1aeb4a0d5563ef2023bc9cdd0696d4f3806199749e6460ea0bd1f5059c183633
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:02:06 EDT 2025
Wed Oct 29 21:24:44 EDT 2025
Fri Feb 23 02:46:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Artificial Bee Colony
Swarm intelligence
Clustering
Co-clustering
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-1aeb4a0d5563ef2023bc9cdd0696d4f3806199749e6460ea0bd1f5059c183633
ORCID 0000-0001-9122-6029
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_106725
crossref_primary_10_1016_j_asoc_2020_106725
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106725
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Runkler (b17) 2005; 20
Hussain (b38) 2019; 131
Hussain, Haris (b48) 2019; 118
Mahajan, Nimbhorkar, Varadarajan (b3) 2009
Gao, Liu, Huang (b24) 2012; 236
Hussain, Iqbal (b39) 2018; 72
Dorigo, Birattari, Stutzle (b15) 2006; 1
D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding, in: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, USA, 2007, pp. 1027–1035.
Hussain, Abid, Ahmad, Hussain (b40) 2013; 27
I.S. Dhillon, S. Mallela, D.S. Modha, Information-theoretic Co-clustering, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2003, pp. 89–98.
Shelokar, Jayaraman, Kulkarni (b16) 2004; 28
Zhu, Kwong (b23) 2010; 217
Aggarwal, Reddy (b2) 2013
Jain, Murty, Flynn (b1) 1999; 31
Karaboga, Basturk (b11) 2008; 8
F. Xie, F. Li, C. Lei, J. Yang, Y. Zhang, Unsupervised band selection based on artificial bee colony algorithm for hyperspectral image classification, 75 (2019) 428-440.
B. Long, Z.M. Zhang, P.S. Yu, Co-clustering by block value decomposition, in: Proceedings of the eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005, pp. 635–640.
Gao, Liu, Huang (b25) 2013; 13
I.S. Dhillon, Co-clustering documents and words using bipartite spectral graph partitioning, in: Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 269–274.
Saeidi (b7) 2020; 7
Karaoglan, Atalay, Kucukkoc (b6) 2020
Cura (b12) 2012; 39
Hong, Chen, Lin (b44) 2015; 29
He, He, Jiang, Zhu, Hu (b30) 2001; 48
Hussain, Bashir (b9) 2016; 47
Van der Merwe, Engelbrecht (b14) 2003
Karaboga, Ozturk (b18) 2011; 11
Hooke, Jeeves (b32) 1961; 8
Singh (b36) 2009; 9
Karaboga, Gorkemli, Ozturk, Karaboga (b19) 2014; 42
A-Gilandeh, Sabzi, Benmouna, G-Mateos, H-Hernandez, M-Martinez (b5) 2020; 10
Deb (b21) 2000; 186
Hussain, Suryani (b10) 2015; 45
Eberhart, Kennedy (b13) 1995
Karaboga, Ozturk (b22) 2010; 5
Ilango, Vimal, Kaliappan, Subbulakshmi (b33) 2019; 22
G. Bisson, F. Hussain, Chi-Sim: A new similarity measure for the co-clustering task, in: Proceedings of the 2008 Seventh International Conference on Machine Learning and Applications, 2008, pp. 211–217.
Karaboga, Akay (b4) 2009; 214
Powell (b29) 1977; 12
Hussain (b49) 2011
Sahoo (b31) 2017; 28
Zhang, Ouyang, Ning (b20) 2010; 37
Zabihi, Nasiri (b35) 2018; 71
Munkres (b45) 1957; 5
Sharma, Pant, Singh (b27) 2012; 1
Bansal, Sharma, Arya, Nagar (b26) 2013; 17
Hussain, Ramazan (b37) 2016; 55
Domeniconi, Laskey (b42) 2015; 7
Bharti, Singh (b28) 2016; 20
Sharma (10.1016/j.asoc.2020.106725_b27) 2012; 1
Karaboga (10.1016/j.asoc.2020.106725_b18) 2011; 11
10.1016/j.asoc.2020.106725_b8
Bansal (10.1016/j.asoc.2020.106725_b26) 2013; 17
Hussain (10.1016/j.asoc.2020.106725_b39) 2018; 72
Van der Merwe (10.1016/j.asoc.2020.106725_b14) 2003
Hong (10.1016/j.asoc.2020.106725_b44) 2015; 29
Hooke (10.1016/j.asoc.2020.106725_b32) 1961; 8
Dorigo (10.1016/j.asoc.2020.106725_b15) 2006; 1
Domeniconi (10.1016/j.asoc.2020.106725_b42) 2015; 7
Hussain (10.1016/j.asoc.2020.106725_b48) 2019; 118
Karaboga (10.1016/j.asoc.2020.106725_b22) 2010; 5
Hussain (10.1016/j.asoc.2020.106725_b9) 2016; 47
Zhu (10.1016/j.asoc.2020.106725_b23) 2010; 217
Munkres (10.1016/j.asoc.2020.106725_b45) 1957; 5
Hussain (10.1016/j.asoc.2020.106725_b38) 2019; 131
Hussain (10.1016/j.asoc.2020.106725_b10) 2015; 45
Karaoglan (10.1016/j.asoc.2020.106725_b6) 2020
Singh (10.1016/j.asoc.2020.106725_b36) 2009; 9
Karaboga (10.1016/j.asoc.2020.106725_b11) 2008; 8
Eberhart (10.1016/j.asoc.2020.106725_b13) 1995
Shelokar (10.1016/j.asoc.2020.106725_b16) 2004; 28
Bharti (10.1016/j.asoc.2020.106725_b28) 2016; 20
Karaboga (10.1016/j.asoc.2020.106725_b19) 2014; 42
Powell (10.1016/j.asoc.2020.106725_b29) 1977; 12
Aggarwal (10.1016/j.asoc.2020.106725_b2) 2013
Zabihi (10.1016/j.asoc.2020.106725_b35) 2018; 71
Deb (10.1016/j.asoc.2020.106725_b21) 2000; 186
10.1016/j.asoc.2020.106725_b34
Hussain (10.1016/j.asoc.2020.106725_b37) 2016; 55
Mahajan (10.1016/j.asoc.2020.106725_b3) 2009
Gao (10.1016/j.asoc.2020.106725_b24) 2012; 236
Sahoo (10.1016/j.asoc.2020.106725_b31) 2017; 28
Ilango (10.1016/j.asoc.2020.106725_b33) 2019; 22
10.1016/j.asoc.2020.106725_b46
10.1016/j.asoc.2020.106725_b47
Cura (10.1016/j.asoc.2020.106725_b12) 2012; 39
Saeidi (10.1016/j.asoc.2020.106725_b7) 2020; 7
Hussain (10.1016/j.asoc.2020.106725_b40) 2013; 27
A-Gilandeh (10.1016/j.asoc.2020.106725_b5) 2020; 10
10.1016/j.asoc.2020.106725_b43
He (10.1016/j.asoc.2020.106725_b30) 2001; 48
Gao (10.1016/j.asoc.2020.106725_b25) 2013; 13
10.1016/j.asoc.2020.106725_b41
Jain (10.1016/j.asoc.2020.106725_b1) 1999; 31
Runkler (10.1016/j.asoc.2020.106725_b17) 2005; 20
Zhang (10.1016/j.asoc.2020.106725_b20) 2010; 37
Hussain (10.1016/j.asoc.2020.106725_b49) 2011
Karaboga (10.1016/j.asoc.2020.106725_b4) 2009; 214
References_xml – volume: 8
  start-page: 212
  year: 1961
  end-page: 229
  ident: b32
  article-title: ‘Direct Search’Solution of Numerical and Statistical Problems
  publication-title: J. ACM
– volume: 131
  start-page: 116
  year: 2019
  end-page: 131
  ident: b38
  article-title: A novel robust kernel for classifying high-dimensional data using Support Vector Machine
  publication-title: Expert Syst. Appl.
– volume: 5
  start-page: 1899
  year: 2010
  end-page: 1902
  ident: b22
  article-title: Fuzzy clustering with artificial bee colony algorithm
  publication-title: Sci. Res. Essays
– volume: 29
  start-page: 371
  year: 2015
  end-page: 378
  ident: b44
  article-title: Using group genetic algorithm to improve performance of attribute clustering
  publication-title: Appl. Soft Comput.
– volume: 217
  start-page: 3166
  year: 2010
  end-page: 3173
  ident: b23
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
– volume: 72
  start-page: 30
  year: 2018
  end-page: 42
  ident: b39
  article-title: CCGA: Co-similarity based Co-clustering using Genetic Algorithm
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 14
  year: 2012
  end-page: 19
  ident: b27
  article-title: Improved Local Search in Artificial Bee Colony using Golden Section Search
  publication-title: J. Eng. (JOE)
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: b1
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
– start-page: 190
  year: 2011
  end-page: 200
  ident: b49
  article-title: Bi-clustering gene expression data using co-similarity
  publication-title: International Conference on Advanced Data Mining and Applications
– volume: 37
  start-page: 4761
  year: 2010
  end-page: 4767
  ident: b20
  article-title: An artificial bee colony approach for clustering
  publication-title: Expert Syst. Appl.
– volume: 11
  start-page: 652
  year: 2011
  end-page: 657
  ident: b18
  article-title: A novel clustering approach: Artificial Bee Colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– start-page: 157
  year: 2020
  end-page: 173
  ident: b6
  article-title: Distance-constrained Vehicle Routing problems: A case study using Artificial Bee Colony Algorithm
  publication-title: Mathematical Modelling and Optimization of Engineering Problems
– year: 2013
  ident: b2
  article-title: Data Clustering: Algorithms and Applications
– reference: I.S. Dhillon, Co-clustering documents and words using bipartite spectral graph partitioning, in: Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 269–274.
– volume: 8
  start-page: 687
  year: 2008
  end-page: 697
  ident: b11
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– volume: 236
  start-page: 2741
  year: 2012
  end-page: 2753
  ident: b24
  article-title: A global best artificial bee colony algorithm for global optimization
  publication-title: J. Comput. Appl. Math.
– volume: 28
  start-page: 537
  year: 2017
  end-page: 551
  ident: b31
  article-title: A two-step artificial bee colony algorithm for clustering
  publication-title: Neural Comput. Appl.
– volume: 118
  start-page: 20
  year: 2019
  end-page: 34
  ident: b48
  article-title: A
  publication-title: Expert Syst. Appl.
– volume: 55
  start-page: 520
  year: 2016
  end-page: 531
  ident: b37
  article-title: Biclustering of human cancer microarray data using co-similarity based co-clustering
  publication-title: Expert Syst. Appl.
– volume: 22
  start-page: 12169
  year: 2019
  end-page: 12177
  ident: b33
  article-title: Optimization using Artificial Bee Colony based clustering approach for big data
  publication-title: Cluster Comput.
– reference: I.S. Dhillon, S. Mallela, D.S. Modha, Information-theoretic Co-clustering, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2003, pp. 89–98.
– volume: 47
  start-page: 545
  year: 2016
  end-page: 570
  ident: b9
  article-title: Co-clustering of multi-view datasets
  publication-title: Knowl. Inf. Syst.
– reference: B. Long, Z.M. Zhang, P.S. Yu, Co-clustering by block value decomposition, in: Proceedings of the eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005, pp. 635–640.
– volume: 10
  start-page: 267
  year: 2020
  ident: b5
  article-title: Estimation of the Constituent Properties of Red Delicious Apples using a hybrid of artificial neural networks and Artificial Bee Colony Algorithm
  publication-title: Agronomy
– start-page: 215
  year: 2003
  end-page: 220
  ident: b14
  article-title: Data clustering using particle swarm optimization
  publication-title: The 2003 Congress on Evolutionary Computation, Vol. 1
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: b4
  article-title: A comparative study of Artificial Bee Colony algorithm
  publication-title: Appl. Math. Comput.
– volume: 7
  start-page: 347
  year: 2015
  end-page: 356
  ident: b42
  article-title: Bayesian co-clustering
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
– reference: G. Bisson, F. Hussain, Chi-Sim: A new similarity measure for the co-clustering task, in: Proceedings of the 2008 Seventh International Conference on Machine Learning and Applications, 2008, pp. 211–217.
– volume: 71
  start-page: 226
  year: 2018
  end-page: 241
  ident: b35
  article-title: A novel history-driven artificial bee colony algorithm for data clustering
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 28
  year: 2006
  end-page: 39
  ident: b15
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
– volume: 45
  start-page: 246
  year: 2015
  end-page: 258
  ident: b10
  article-title: On retrieving intelligently plagiarized documents using semantic similarity
  publication-title: Eng. Appl. Artif. Intell.
– volume: 9
  start-page: 625
  year: 2009
  end-page: 631
  ident: b36
  article-title: An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem
  publication-title: Appl. Soft Comput.
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  ident: b21
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 5
  start-page: 32
  year: 1957
  end-page: 38
  ident: b45
  article-title: Algorithms for the assignment and transportation problems
  publication-title: J. Soc. Ind. Appl. Math.
– volume: 12
  start-page: 241
  year: 1977
  end-page: 254
  ident: b29
  article-title: Restart procedures for the conjugate gradient method
  publication-title: Math. Program.
– start-page: 39
  year: 1995
  end-page: 43
  ident: b13
  article-title: A new optimizer using particle swarm theory
  publication-title: Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on
– volume: 27
  start-page: 1119
  year: 2013
  end-page: 1125
  ident: b40
  article-title: A parallel 2D stabilized finite element method for darcy flow on distributed systems
  publication-title: World Appl. Sci. J.
– volume: 28
  start-page: 1577
  year: 2004
  end-page: 1584
  ident: b16
  article-title: An ant colony classifier system: application to some process engineering problems
  publication-title: Comput. Chem. Eng.
– reference: F. Xie, F. Li, C. Lei, J. Yang, Y. Zhang, Unsupervised band selection based on artificial bee colony algorithm for hyperspectral image classification, 75 (2019) 428-440.
– start-page: 274
  year: 2009
  end-page: 285
  ident: b3
  article-title: The planar
  publication-title: International Workshop on Algorithms and Computation
– volume: 39
  start-page: 1582
  year: 2012
  end-page: 1588
  ident: b12
  article-title: A particle swarm optimization approach to clustering
  publication-title: Expert Syst. Appl.
– volume: 48
  start-page: 900
  year: 2001
  end-page: 906
  ident: b30
  article-title: Chaotic characteristics of a one-dimensional iterative map with infinite collapses
  publication-title: IEEE Trans. Circuits Syst. I
– volume: 20
  start-page: 1233
  year: 2005
  end-page: 1251
  ident: b17
  article-title: Ant colony optimization of clustering models
  publication-title: Int. J. Intell. Syst.
– volume: 42
  start-page: 21
  year: 2014
  end-page: 57
  ident: b19
  article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications
  publication-title: Artif. Intell. Rev.
– volume: 7
  year: 2020
  ident: b7
  article-title: A new model for calculating the maximum trust in Online Social Networks and solving by Artificial Bee Colony algorithm
  publication-title: Comput. Soc. Netw.
– reference: D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding, in: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, USA, 2007, pp. 1027–1035.
– volume: 17
  start-page: 1911
  year: 2013
  end-page: 1928
  ident: b26
  article-title: Memetic search in artificial bee colony algorithm
  publication-title: Soft Comput.
– volume: 20
  start-page: 1113
  year: 2016
  end-page: 1126
  ident: b28
  article-title: Chaotic gradient artificial bee colony for text clustering
  publication-title: Soft Comput.
– volume: 13
  start-page: 3763
  year: 2013
  end-page: 3775
  ident: b25
  article-title: A novel artificial bee colony algorithm with Powell’s method
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 347
  issue: 5
  year: 2015
  ident: 10.1016/j.asoc.2020.106725_b42
  article-title: Bayesian co-clustering
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.1359
– volume: 186
  start-page: 311
  issue: 2–4
  year: 2000
  ident: 10.1016/j.asoc.2020.106725_b21
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 48
  start-page: 900
  issue: 7
  year: 2001
  ident: 10.1016/j.asoc.2020.106725_b30
  article-title: Chaotic characteristics of a one-dimensional iterative map with infinite collapses
  publication-title: IEEE Trans. Circuits Syst. I
  doi: 10.1109/81.933333
– volume: 17
  start-page: 1911
  issue: 10
  year: 2013
  ident: 10.1016/j.asoc.2020.106725_b26
  article-title: Memetic search in artificial bee colony algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-013-1032-8
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2020.106725_b4
  article-title: A comparative study of Artificial Bee Colony algorithm
  publication-title: Appl. Math. Comput.
– volume: 28
  start-page: 1577
  issue: 9
  year: 2004
  ident: 10.1016/j.asoc.2020.106725_b16
  article-title: An ant colony classifier system: application to some process engineering problems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2003.12.004
– volume: 45
  start-page: 246
  year: 2015
  ident: 10.1016/j.asoc.2020.106725_b10
  article-title: On retrieving intelligently plagiarized documents using semantic similarity
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.07.011
– ident: 10.1016/j.asoc.2020.106725_b47
  doi: 10.1145/1081870.1081949
– volume: 20
  start-page: 1233
  issue: 12
  year: 2005
  ident: 10.1016/j.asoc.2020.106725_b17
  article-title: Ant colony optimization of clustering models
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.20111
– volume: 12
  start-page: 241
  issue: 1
  year: 1977
  ident: 10.1016/j.asoc.2020.106725_b29
  article-title: Restart procedures for the conjugate gradient method
  publication-title: Math. Program.
  doi: 10.1007/BF01593790
– volume: 10
  start-page: 267
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2020.106725_b5
  article-title: Estimation of the Constituent Properties of Red Delicious Apples using a hybrid of artificial neural networks and Artificial Bee Colony Algorithm
  publication-title: Agronomy
  doi: 10.3390/agronomy10020267
– volume: 9
  start-page: 625
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2020.106725_b36
  article-title: An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2008.09.001
– volume: 8
  start-page: 687
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2020.106725_b11
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.05.007
– ident: 10.1016/j.asoc.2020.106725_b8
  doi: 10.1109/ICMLA.2008.103
– volume: 39
  start-page: 1582
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2020.106725_b12
  article-title: A particle swarm optimization approach to clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.123
– year: 2013
  ident: 10.1016/j.asoc.2020.106725_b2
– start-page: 215
  year: 2003
  ident: 10.1016/j.asoc.2020.106725_b14
  article-title: Data clustering using particle swarm optimization
– volume: 1
  start-page: 14
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2020.106725_b27
  article-title: Improved Local Search in Artificial Bee Colony using Golden Section Search
  publication-title: J. Eng. (JOE)
– start-page: 190
  year: 2011
  ident: 10.1016/j.asoc.2020.106725_b49
  article-title: Bi-clustering gene expression data using co-similarity
– ident: 10.1016/j.asoc.2020.106725_b46
  doi: 10.1145/956750.956764
– volume: 217
  start-page: 3166
  issue: 7
  year: 2010
  ident: 10.1016/j.asoc.2020.106725_b23
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
– volume: 8
  start-page: 212
  issue: 2
  year: 1961
  ident: 10.1016/j.asoc.2020.106725_b32
  article-title: ‘Direct Search’Solution of Numerical and Statistical Problems
  publication-title: J. ACM
  doi: 10.1145/321062.321069
– volume: 20
  start-page: 1113
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2020.106725_b28
  article-title: Chaotic gradient artificial bee colony for text clustering
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1571-7
– volume: 37
  start-page: 4761
  issue: 7
  year: 2010
  ident: 10.1016/j.asoc.2020.106725_b20
  article-title: An artificial bee colony approach for clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.11.003
– ident: 10.1016/j.asoc.2020.106725_b43
  doi: 10.1145/502512.502550
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 10.1016/j.asoc.2020.106725_b1
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– volume: 28
  start-page: 537
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2020.106725_b31
  article-title: A two-step artificial bee colony algorithm for clustering
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2095-5
– volume: 47
  start-page: 545
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2020.106725_b9
  article-title: Co-clustering of multi-view datasets
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-015-0861-4
– volume: 29
  start-page: 371
  year: 2015
  ident: 10.1016/j.asoc.2020.106725_b44
  article-title: Using group genetic algorithm to improve performance of attribute clustering
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.001
– volume: 236
  start-page: 2741
  issue: 11
  year: 2012
  ident: 10.1016/j.asoc.2020.106725_b24
  article-title: A global best artificial bee colony algorithm for global optimization
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.01.013
– volume: 22
  start-page: 12169
  year: 2019
  ident: 10.1016/j.asoc.2020.106725_b33
  article-title: Optimization using Artificial Bee Colony based clustering approach for big data
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-017-1571-3
– volume: 13
  start-page: 3763
  issue: 9
  year: 2013
  ident: 10.1016/j.asoc.2020.106725_b25
  article-title: A novel artificial bee colony algorithm with Powell’s method
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.05.012
– volume: 27
  start-page: 1119
  issue: 9
  year: 2013
  ident: 10.1016/j.asoc.2020.106725_b40
  article-title: A parallel 2D stabilized finite element method for darcy flow on distributed systems
  publication-title: World Appl. Sci. J.
– ident: 10.1016/j.asoc.2020.106725_b41
– volume: 5
  start-page: 32
  year: 1957
  ident: 10.1016/j.asoc.2020.106725_b45
  article-title: Algorithms for the assignment and transportation problems
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0105003
– volume: 7
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2020.106725_b7
  article-title: A new model for calculating the maximum trust in Online Social Networks and solving by Artificial Bee Colony algorithm
  publication-title: Comput. Soc. Netw.
– start-page: 39
  year: 1995
  ident: 10.1016/j.asoc.2020.106725_b13
  article-title: A new optimizer using particle swarm theory
– volume: 118
  start-page: 20
  year: 2019
  ident: 10.1016/j.asoc.2020.106725_b48
  article-title: A k-means based co-clustering (kCC) algorithm for sparse, high dimensional data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.09.006
– start-page: 274
  year: 2009
  ident: 10.1016/j.asoc.2020.106725_b3
  article-title: The planar k-means problem is NP-hard
– volume: 55
  start-page: 520
  year: 2016
  ident: 10.1016/j.asoc.2020.106725_b37
  article-title: Biclustering of human cancer microarray data using co-similarity based co-clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.02.029
– volume: 72
  start-page: 30
  year: 2018
  ident: 10.1016/j.asoc.2020.106725_b39
  article-title: CCGA: Co-similarity based Co-clustering using Genetic Algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.045
– volume: 42
  start-page: 21
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2020.106725_b19
  article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9328-0
– volume: 5
  start-page: 1899
  issue: 14
  year: 2010
  ident: 10.1016/j.asoc.2020.106725_b22
  article-title: Fuzzy clustering with artificial bee colony algorithm
  publication-title: Sci. Res. Essays
– volume: 71
  start-page: 226
  year: 2018
  ident: 10.1016/j.asoc.2020.106725_b35
  article-title: A novel history-driven artificial bee colony algorithm for data clustering
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.06.013
– volume: 131
  start-page: 116
  year: 2019
  ident: 10.1016/j.asoc.2020.106725_b38
  article-title: A novel robust kernel for classifying high-dimensional data using Support Vector Machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.04.037
– start-page: 157
  year: 2020
  ident: 10.1016/j.asoc.2020.106725_b6
  article-title: Distance-constrained Vehicle Routing problems: A case study using Artificial Bee Colony Algorithm
– volume: 11
  start-page: 652
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2020.106725_b18
  article-title: A novel clustering approach: Artificial Bee Colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.12.025
– ident: 10.1016/j.asoc.2020.106725_b34
  doi: 10.1016/j.asoc.2018.11.014
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 10.1016/j.asoc.2020.106725_b15
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
SSID ssj0016928
Score 2.461515
Snippet This paper presents an Artificial Bee Colony (ABC) optimization based algorithm for co-clustering of high-dimensional data. The ABC algorithm is used for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106725
SubjectTerms Artificial Bee Colony
Clustering
Co-clustering
Optimization
Swarm intelligence
Title Co-clustering optimization using Artificial Bee Colony (ABC) algorithm
URI https://dx.doi.org/10.1016/j.asoc.2020.106725
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kXrz4Ft_swYMisZtms2aPNVjqE9EKvYXNPmqlTaXUgxd_uzPJRhSkB08hy0wIX7LzYGfmI-SISZW0cq5gf3MZ8FyxQEW5CZwRXMeJjnR5XHB3L7rP_Lof9xdIWvfCYFmlt_2VTS-ttV9pejSbb8Nh8wkyj4RLLloY9ooIJ35yfo4sBmef32UeoZAlvyoKByjtG2eqGi8FCECO2MIFcY502X85px8Op7NKln2kSNvVy6yRBVusk5WahYH6TblBOukk0KN3HHgAbohOwAaMfXMlxar2QfmIalAEvbCWpmDvig963L5IT6gaDSbT4exlvEl6ncte2g08O0KgI8ZmQagsYMwMTviyDlnQcy21MUxIYbiLEvDUErIFaQUXzCqWm9BBvCM17GKAa4s0iklhtwmNTKSYa0VGQ3AUQz7kQhdaxyw3kjmX75CwRiXTfnI4EliMsrpE7DVDJDNEMquQ3CGn3zpv1dyMudJxDXb26-tnYNjn6O3-U2-PLOFdVZayTxqz6bs9gOBilh-Wf88hWWynj7cPeL266d5_AV0Xzkc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjXjjgQGEQp3YMfFII6ry6kKR2CLHDyjqS1U6sPDbOScOAgkxsDp3UfQl91K-u0PohAiZRDmTYN9MBCyXJJA014HVnKk4UVSVvwseerz7xG6f4-cGSuteGEer9L6_8umlt_YnLY9mazoYtB6h8kiYYDxyaS-ndAEtsji6dBXYxccXzyPkolyw6qQDJ-47ZyqSlwQIoEiM3AG_dPuyf4tO3yJOZw2t-FQRX1VPs44aZryBVus1DNhb5SbqpJNADedu4gHEITwBJzDy3ZXY0dpfyltUkyJw2xicgsMbv-PTq3Z6huXwZTIbFK-jLdTvXPfTbuDXIwSKElIEoTQAMtFuxJexbg16roTSmnDBNbM0gVAtoFwQhjNOjCS5Di0kPEKBGQNe26g5nozNDsJUU0lsRLWC7CiGgsiGNjSWGKYFsTbfRWGNSqb86HC3wWKY1Ryxt8whmTkkswrJXXT-pTOtBmf8KR3XYGc_Xn8Gnv0Pvb1_6h2jpW7_4T67v-nd7aNld6XiqBygZjGbm0PINIr8qPySPgHinM5H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-clustering+optimization+using+Artificial+Bee+Colony+%28ABC%29+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Hussain%2C+Syed+Fawad&rft.au=Pervez%2C+Adeel&rft.au=Hussain%2C+Masroor&rft.date=2020-12-01&rft.issn=1568-4946&rft.volume=97&rft.spage=106725&rft_id=info:doi/10.1016%2Fj.asoc.2020.106725&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106725
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon